#### Mathematics for Economists

Mitri Kitti

Aalto University

Differential equations

# Economics Study Survey by Aalto Economics



Please respond!

- ▶ Difference equations: time is a *discrete* variable, t = 0, 1, 2, ...
- ▶ Differential equations: time is a *continuous* variable,  $t \in [0, +\infty)$  or  $t \in \mathbb{R}$
- ► An **ordinary differential equation** is an equation

$$F(t, y(t), y'(t), y''(t), \dots, y^{(n)}(t)) = 0,$$

where:

- t is an independent variable (typically, but not necessarily, time)
- $\triangleright$  y(t) is a function of t
- $\triangleright$   $y'(t), y''(t), \dots, y^{(n)}(t)$  are the first, second, ..., nth derivatives of y at t
- $\triangleright$  F is a function of n+2 variables.

**Example.** All the following are differential equations:

$$y''(t) + 3 = 0$$
$$(y'(t))^{2} - t^{2}y(t) = 0$$
$$y'(t)(y''(t) + 3) = 0$$
$$y'(t) - t^{2} = 0$$

- ► **Terminology.** An **ordinary** differential equation describes a relationship between a function of *one variable* and its derivative
- ► A **partial** differential equation describes a relationship between a function of *several* variables and its partial derivatives
- A differential equation is an *n*th order differential equation if it involves derivatives up to and including the *n*th derivative of y(t). For example, y''(t) + 3 = 0 is a second order differential equation
- ▶ In this course, we confine ourselves to first and second order ordinary differential equations

Notation. In the theory of differential equations it is customary to use the dot notation for derivatives:

$$y'(t) = \frac{dy}{dt}(t) = \dot{y}$$

$$y''(t) = \frac{d^2y}{dt^2}(t) = \ddot{y}$$

▶ For example, the equation y'(t)(y''(t) + 3) = 0 can be written as

$$\dot{y}(\ddot{y}+3)=0$$

Consider the following differential equation

$$\dot{y} = 2t \tag{1}$$

- ▶ To **solve** (1) we need to find a function y(t) such that (1) holds for all t. In other words, we need to find a function y(t) whose first derivative w.r.t. t is 2t for all t
- $y(t) = t^2$  solves (1). And so do  $y(t) = t^2 + 17$ ,  $y(t) = t^2 + \sqrt{2}$ , ...
- More generally, any function

$$y(t) = t^2 + C, (2)$$

with  $C \in \mathbb{R}$ , solves the differential equation (1)

▶ We say that (2) is the **general solution** of (1)

▶ Suppose that y(t) must satisfy y(0) = 1 in addition to  $\dot{y} = 2t$ . That is, the two equations

$$\dot{y} = 2t \tag{3}$$

$$y(0) = 1 \tag{4}$$

must hold simultaneously

- ► The system (3)-(4) is called an **initial value problem (IVP)**
- ▶ You can verify that the unique solution of this IVP is

$$y(t) = t^2 + 1 \tag{5}$$

► The solution (5) is called a **particular solution** and is derived from the general solution (2) by choosing the appropriate value of the constant *C* 

▶ Direction field (or integral field) of  $\dot{y} = 2t$ 



▶ Solution of the IVP  $\dot{y} = 2t$ , y(0) = 1



#### Proposition (Existence and uniqueness of a solution)

Consider the initial value problem

$$\dot{y}=f(t,y), \qquad y(t_0)=y_0.$$

Suppose that f is continuous at  $(t_0, y_0)$ .

- ▶ Then, there exists a  $C^1$  function  $y: I \to \mathbb{R}$  defined on the open interval  $(t_0 a, t_0 + a)$  around  $t_0$  such that  $y(t_0) = y_0$  and  $\dot{y}(t) = f(t, y(t))$  for all  $t \in I$ . That is, y(t) is a solution of the initial value problem under consideration.
- ▶ If in addition the partial derivative of f with respect to y is continuous at  $(t_0, y_0)$ , then the solution y(t) is unique.

**Example.** Consider the initial value problem

$$\dot{y}=3y^{\frac{2}{3}}, \qquad y(0)=0$$

- ▶ We have  $f(t,y) = 3y^{\frac{2}{3}}$ , which is continuous on  $\mathbb{R}^2$ . This is sufficient to establish that a solution exists
- ▶ However,  $\frac{\partial f}{\partial y} = \frac{2}{y^{1/3}}$ , which is not well-defined at  $(t_0, y_0) = (0, 0)$ . Hence we cannot apply the second part of the proposition in the previous page about uniqueness. In other words, the solution is not necessarily unique
- ▶ In fact, two solutions of this IVP are y(t) = 0 and  $y(t) = t^3$

▶ Direction field of  $\dot{y} = 3y^{\frac{2}{3}}$ 



► Two solutions of the IVP  $\dot{y} = 3y^{\frac{2}{3}}$ , y(0) = 0



- How to solve a differential equation?
- In general, when a solution exists, we cannot always write it down in closed form, i.e. as an *explicit* function y(t)
- ► However, there two important families of differential equations for which explicit solutions can often be found:
  - 1. Separable equations
  - 2. Linear equations

► A linear first order differential equation with constant coefficients is an equation of the form

$$\dot{y} = ay + b, \tag{6}$$

with  $a \neq 0$ 

► The general solution of (6) is

$$y(t) = -\frac{b}{a} + Ce^{at} \tag{7}$$

- ▶ We can derive the solution of (6) also by following another method (*integrating factor*)
- ▶ Take the differential equation (6), multiply both sides by  $e^{-at}$  (which is called the "integrating factor") and rearrange terms

$$\dot{y}e^{-at} - aye^{-at} = be^{-at} \tag{8}$$

The left-hand side of (8) is the derivative of  $ye^{-at}$  w.r.t. t. Hence we can rewrite (8) as

$$\frac{d}{dt}(ye^{-at}) = be^{-at}$$

▶ Then by the definition of the indefinite integral, we have

$$ye^{-at} = \int be^{-at}dt = -\frac{b}{a}e^{-at} + C$$

► Thus  $ye^{-at} = -\frac{b}{a}e^{-at} + C$ , and multiplying both sides of this expression by  $e^{at}$  we finally get

$$y(t) = -\frac{b}{a} + Ce^{at}$$

**Example.** Solve the differential equation

$$\dot{y} + 2y = 8$$

► Rewrite the equation as

$$\dot{y} = -2y + 8$$

▶ By (7), the general solution is

$$y(t) = 4 + Ce^{-2t}$$

Suppose we want to solve the linear equation

$$\dot{y} = ay + b(t), \tag{9}$$

with  $a \neq 0$ 

ightharpoonup We can use the integrating factor  $e^{-at}$  to obtain the general solution

$$y(t) = Ce^{at} + e^{at} \int b(t)e^{-at}dt$$
 (10)

**Example.** Solve the differential equation

$$\dot{y} + y = t$$

Rewrite the equation as

$$\dot{y} = -y + t$$

▶ By (10), the general solution is

$$y(t) = Ce^{-t} + e^{-t} \int te^{t} dt$$
$$= ke^{-t} + t - 1,$$

where k is a constant

▶ Notice that one can use *integration by parts* to evaluate  $\int te^t dt$ 

▶ A linear second order ordinary differential equation is an equation of the form

$$a\ddot{y} + b\dot{y} + cy = 0 \tag{11}$$

- Equation (11) is also homogeneous because each non-zero term depends directly on the unknown function y or on a derivative of it. Equations like  $a\ddot{y} + b\dot{y} + cy = 7$  or  $a\ddot{y} + b\dot{y} + cy = 4t$  are not homogeneous
- ▶ An expression for a general solution of (11) can be found as follows
- If a=0, then (11) is a first order linear differential equation, and in this case we know that a solution will have the form  $y(t)=e^{rt}$  for some parameter r
- The idea is to find conditions under which a function like  $y(t) = e^{rt}$  is a solution of (11)

If  $y(t) = e^{rt}$  is our candidate solution, then we must have

$$y = e^{rt} (12)$$

$$\dot{y} = re^{rt} \tag{13}$$

$$\ddot{y} = r^2 e^{rt} \tag{14}$$

▶ Inserting (12)-(14) into (11) and rearranging yields

$$e^{rt}\left(ar^2+br+c\right)=0$$

ightharpoonup Since  $e^{rt}$  is never equal to zero, the latter equation is equivalent to

$$ar^2 + br + c = 0 ag{15}$$

- ▶ Thus we can conclude that  $y = e^{rt}$  is a solution if and only if r satisfies (15)
- ► Equation (15) is called the **characteristic equation** of the differential equation (11)
- ► The left-hand side of (15) is a polynomial of degree 2 whose roots can be found through the quadratic formula:

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

▶ The term  $b^2 - 4ac$  is called the **discriminant** 

- ► There are three mutually exclusive cases:
  - 1. the discriminant is *strictly positive* and the characteristic equation has two distinct real roots
  - 2. the discriminant is *equal to zero* and the characteristic equation has two identical real roots, i.e. a real root of multiplicity 2
  - 3. the discriminant is *strictly negative* and the characteristic equation has two distinct complex roots

- ▶ First case.  $b^2 4ac > 0$  and the characteristic equation has two distinct real roots  $r_1$  and  $r_2$
- ▶ The general solution of the differential equation (11) is

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

Note:  $C_1$  and  $C_2$  are two distinct unknown constants

- ▶ **Second case.**  $b^2 4ac = 0$  and the characteristic equation has a unique root r of multiplicity 2
- ▶ The general solution of the differential equation (11) is

$$y(t) = C_1 e^{rt} + C_2 t e^{rt}$$

- ▶ **Third case.**  $b^2 4ac < 0$  and the characteristic equation has two distinct complex roots  $r_1 = \alpha + i\beta$  and  $r_2 = \alpha i\beta$ , where i is the imaginary unit
- ▶ The general solution of the differential equation (11) is

$$y(t) = e^{\alpha t} \left( C_1 \cos \beta t + C_2 \sin \beta t \right)$$

Note: The two complex roots of the characteristic equation are always *conjugates* of each other

- **Example.** Let  $\ddot{y} 7y = 0$
- ▶ The characteristic equation is  $r^2 7 = 0$
- ▶ There are two real roots  $r_1 = \sqrt{7}$  and  $r_2 = -\sqrt{7}$
- ► The general solution is

$$y(t) = C_1 e^{\sqrt{7}t} + C_2 e^{-\sqrt{7}t}$$

- **Example.** Let  $\ddot{y} 6\dot{y} + 9y = 0$
- ▶ The characteristic equation is  $r^2 6r + 9 = (r 3)^2$
- ▶ The two identical roots are  $r_1 = r_2 = 3$
- ► The general solution is

$$y(t) = C_1 e^{3t} + C_2 t e^{3t} = e^{3t} (C_1 + C_2 t)$$

▶ In an initial value problem with a second order differential equation, we need to specify *two initial conditions*:

$$y(t_0) = y_0, \qquad \dot{y}(t_0) = y_1$$

- Since the general solution of the differential equation depends on two independent parameters  $C_1$  and  $C_2$ , we need two initial conditions to pin down a particular solution of the IVP under consideration
- **Example.** Consider the following initial value problem

$$\ddot{y} - \dot{y} - 2y = 0$$
,  $y(0) = 3$ ,  $\dot{y}(0) = 0$ 

You can verify that the general solution of the differential equation is

$$y(t) = C_1 e^{-t} + C_2 e^{2t}$$

**Example (cont'd).** To find the particular solution, we need to solve the system

$$y(0) = 3 \iff C_1 e^0 + C_2 e^0 = 3$$
  
 $\dot{y}(0) = 0 \iff -C_1 e^0 + 2C_2 e^0 = 0$ 

- ▶ We easily get  $C_1 = 2$  and  $C_2 = 1$
- ▶ Thus the solution of the IVP is

$$y(t) = 2e^{-t} + e^{2t}$$

- In economics and other disciplines, it is often important to understand the stability of solutions of differential equations
- Consider a first order differential equation that can be written as

$$\dot{y} = f(y) \tag{16}$$

- In words, the independent variable t does not explicitly appear on the right-hand side of (16)
- ► The equation in (16) is called **autonomous**

- If there exists a value  $y^*$  such that  $f(y^*) = 0$ , we say that  $y^*$  is an **equilibrium** or a **stationary state** or a **steady state** for the equation in (16)
- Given an equilibrium  $y^*$ , the constant function  $y(t) = y^*$  for all t is a solution of (16). Intuitively, an equilibrium is a solution that does not change over time
- The question we are going to address is this. Suppose y(t) is a solution of (16) with initial condition  $y(t_0) = y_0$ . Will this solution converge to the steady state  $y^*$  as t goes to infinity? Differently put, will the "system" described by (16) ever reach the equilibrium  $y^*$  if the system itself starts from  $(t_0, y_0)$ ?

- ▶ Consider the autonomous equation  $\dot{y} = y^2 9$
- ▶ There are two steady states:  $y_1^* = 3$  and  $y_2^* = -3$
- ▶ A useful tool in the analysis of stability is the **phase diagram** or **phase portrait**

▶ Phase portrait of  $\dot{y} = y^2 - 9$ 



- ightharpoonup Suppose y(t) is a solution of the given equation
- For any t, the pair  $(y(t), \dot{y}(t))$  is a point on the curve in the phase diagram
- If  $(y(t), \dot{y}(t))$  lies above the horizontal axis, then  $\dot{y}(t) = f(y(t)) > 0$ . That is, y(t) is increasing with respect to t. In the diagram, we move from  $(y(t), \dot{y}(t))$  to the right and along the curve
- On the other hand, if  $(y(t), \dot{y}(t))$  lies below the horizontal axis, then  $\dot{y}(t) = f(y(t)) < 0$ . That is, y(t) is decreasing with respect to t. In the diagram, we move from  $(y(t), \dot{y}(t))$  to the left and along the curve

- ► Consider the two equilibria  $y_1^* = 3$  and  $y_2^* = -3$
- If a solution y(t) of  $\dot{y} = y^2 9$  starts close to  $y_2^* = -3$ , but not at  $y_2^*$ , then y(t) will approach  $y_2^*$  as time t goes to infinity. We say that the equilibrium  $y_2^* = -3$  is **locally asymptotically stable**
- If a solution y(t) of  $\dot{y} = y^2 9$  starts close to  $y_1^* = 3$ , but not at  $y_1^*$ , then y(t) will move away from  $y_1^*$  as time t goes to infinity. We say that the equilibrium  $y_1^* = 3$  is **unstable**

▶ Direction field of  $\dot{y} = y^2 - 9$ 



- Now consider the autonomous equation  $\dot{y} = y 1$
- ▶ The unique equilibrium is  $y^* = 1$
- ightharpoonup You can verify that  $y^*$  is unstable

▶ Direction field of  $\dot{y} = y - 1$ 



- ▶ Consider yet another autonomous equation,  $\dot{y} = 24 2y$
- ▶ The unique equilibrium is  $y^* = 12$
- ightharpoonup You can verify that  $y^*$  is stable
- More specifically,  $y^*$  is **globally asymptotically stable** because a solution y(t) with initial condition  $y(t_0) = y_0$  will always converge to  $y^*$  for any start point  $(t_0, y_0)$

▶ Direction field of  $\dot{y} = 24 - 2y$ 



- Building on the graphical analysis with phase diagrams, we can state the following result
- Let  $\dot{y} = f(y)$  be an autonomous differential equation:
  - ▶ If  $f(y^*) = 0$  and  $f'(y^*) < 0$ , then  $y^*$  is a locally asymptotically stable equilibrium;
  - If  $f(y^*) = 0$  and  $f'(y^*) > 0$ , then  $y^*$  is an unstable equilibrium.
- If  $f(y^*) = 0$  and  $f'(y^*) = 0$ , then  $y^*$  can be either stable or unstable. For example,  $\dot{y} = y^3$  has a unique equilibrium  $y^* = 0$ , which is unstable. On the other hand,  $\dot{y} = -y^3$  has a unique equilibrium  $y^* = 0$ , which is globally asymptotically stable

▶ We can also determine the stability of a second order linear differential equation

$$a\ddot{y} + b\dot{y} + cy = 0, (17)$$

with  $a \neq 0$ 

- Notice that y(t) = 0 is always a solution of (17). In other words,  $y^* = 0$  is a steady state of (17)
- ▶ The equilibrium  $y^* = 0$  is globally asymptotically stable if and only if:
  - ightharpoonup a, b, c > 0 or, equivalently,
  - **b** both roots of the characteristic equation  $ar^2 + br + c = 0$  have negative real part.

## Ordinary differential equations

**Exercise.** Find the solution of each of the following differential equations for the initial conditions  $y(0) = 1, \dot{y}(0) = 0$ 

1. 
$$6\ddot{y} - \dot{y} - y = 0$$

2. 
$$\ddot{y} + 2\dot{y} + 2y = 0$$

3. 
$$4\ddot{y} - 4\dot{y} + y = 0$$

- $\triangleright$  Exercise  $\dot{y} = y(y-1)(y-2)$
- ▶ The three equilibria are  $y_1^* = 0$ ,  $y_2^* = 1$ , and  $y_3^* = 2$
- $y_2^* = 1$  is locally asymptotically stable whereas both  $y_1^* = 0$  and  $y_3^* = 2$  are unstable



A first order system of two ordinary differential equations has the form

$$\dot{x} = F(x, y, t) \tag{18}$$

$$\dot{y} = G(x, y, t) \tag{19}$$

- A **solution** of (18)-(19) is a pair of functions  $x^*(t)$  and  $y^*(t)$  such that, for every t, both (18) and (19) are satisfied
- ▶ If both *F* and *G* do not depend explicitly on *t*, then the system is called *autonomous* or *time-independent*

**Example.** Consider the system

$$\dot{x} = 2x + e^t y - e^t$$
$$\dot{y} = 4e^{-t}x + y$$

You can verify that the general solution is

$$x(t) = C_1 + C_2 e^{4t} - \frac{1}{3} e^t$$
$$y(t) = -2C_1 e^{-t} + 2C_2 e^{3t} + \frac{4}{3}$$

Note: The general solution of a system of *n* first order equations in *n* unknowns contains *n* independent parameters

**Example (cont'd).** Suppose we also have the two initial conditions:

$$x(0) = 0$$
$$y(0) = 0$$

▶ To find the solution of this initial value problem we have to solve

$$0 = C_1 + C_2 e^0 - \frac{1}{3} e^0$$
$$0 = -2C_1 e^0 + 2C_2 e^0 + \frac{4}{3},$$

from which we get  $C_1 = \frac{1}{2}$  and  $C_2 = -\frac{1}{6}$ 

► Thus the particular solution is

$$x(t) = \frac{1}{2} - \frac{1}{6}e^{4t} - \frac{1}{3}e^{t}$$
$$y(t) = -e^{-t} - \frac{1}{3}e^{3t} + \frac{4}{3}$$

- ► In this course, we'll learn how to solve first order **linear systems** with constant coefficients
- ▶ More specifically, we'll focus on systems that can be written as

or, in matrix notation,

$$\dot{\mathbf{x}} = A\mathbf{x} + \mathbf{b}$$

 $\blacktriangleright$  When b = 0, the system is homogeneous

- Let's consider a homogeneous system  $\dot{x} = Ax$
- ▶ If the coefficient matrix *A* is diagonal, then the system is *uncoupled* and consists of *n* independent equations:

We can solve each equation in isolation, and we already know how to do it. The general solution of the system is

$$x_1(t) = C_1 e^{a_{11}t}, x_2(t) = C_2 e^{a_{22}t}, \dots, x_n(t) = C_n e^{a_{nn}t}$$

▶ If the coefficient matrix A is not diagonal (yet diagonalizable), then we can adopt the same strategy we used with systems of difference equations. That is, we can make a change of variables by diagonalizing the coefficient matrix A, find the solution of the resulting uncoupled system, and then transform the solution back to the original variables

#### **Proposition**

Suppose the  $n \times n$  coefficient matrix A has n distinct real eigenvalues  $r_1, \ldots, r_n$ , with corresponding eigenvectors  $\mathbf{v}_1, \ldots, \mathbf{v}_n$ . Then, the general solution of the linear system  $\dot{\mathbf{x}} = A\mathbf{x}$  is

$$\mathbf{x}(t) = C_1 e^{r_1 t} \mathbf{v}_1 + C_2 e^{r_2 t} \mathbf{v}_2 + \cdots + C_n e^{r_n t} \mathbf{v}_n.$$

**Example.** Consider the following initial value problem:

$$\dot{x}_1 = 5x_1 - \frac{1}{2}x_2 
\dot{x}_2 = -2x_1 + 5x_2 
x_1(0) = 12, x_2(0) = 4.$$

The coefficient matrix is

$$A = \begin{pmatrix} 5 & -\frac{1}{2} \\ -2 & 5 \end{pmatrix}$$

► The characteristic polynomial of *A* is

$$(5-r)(5-r)-1=(r-4)(r-6)$$

ightharpoonup Hence the two eigenvalues are  $r_1 = 4$  and  $r_2 = 6$ 

**Example (cont'd).** You can verify that two eigenvectors corresponding to  $r_1$  and  $r_2$  are

$${m v}_1 = egin{pmatrix} 1 \ 2 \end{pmatrix} \quad ext{ and } \quad {m v}_2 = egin{pmatrix} 1 \ -2 \end{pmatrix},$$

respectively

► The general solution of the system is

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = C_1 e^{4t} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + C_2 e^{6t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

**Example (cont'd).** To find the particular solution of the IVP, we need to solve

$$\begin{pmatrix} 12\\4 \end{pmatrix} = C_1 e^0 \begin{pmatrix} 1\\2 \end{pmatrix} + C_2 e^0 \begin{pmatrix} 1\\-2 \end{pmatrix},$$

from which we get  $C_1 = 7$  and  $C_2 = 5$ 

► Thus the unique solution of this IVP is

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = 7e^{4t} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + 5e^{6t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

- We can still apply the proposition at p. 11 even when some of the eigenvalues are repeated, provided that each eigenvalue of multiplicity h > 1 has h linearly independent eigenvectors
- **Example.** Consider the uncoupled system

$$\dot{x}_1=3x_1$$

$$\dot{x}_2 = 3x_2$$

► The coefficient matrix is the diagonal matrix

$$A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$

**Example (cont'd).** A has one eigenvalue r=3 of multiplicity 2. However, r=3 has two linearly independent eigenvectors

$$oldsymbol{v}_1 = egin{pmatrix} 1 \ 0 \end{pmatrix}$$
 and  $oldsymbol{v}_2 = egin{pmatrix} 0 \ 1 \end{pmatrix}$ 

Thus we can write the general solution of the system as

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = C_1 e^{3t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + C_2 e^{3t} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} C_1 e^{3t} \\ C_2 e^{3t} \end{pmatrix}$$

- ▶ Consider the linear system  $\dot{\mathbf{x}} = A\mathbf{x} + \mathbf{b}$
- Any vector  $\mathbf{x}^*$  such that  $A\mathbf{x}^* + \mathbf{b} = \mathbf{0}$  is an *equilibrium* or *steady state* of the system
- Given a steady state  $x^*$ , the constant function  $x(t) = x^*$  is clearly a solution of  $\dot{x} = Ax + b$
- ▶ The steady state  $\mathbf{x}^* = -A^{-1}\mathbf{b}$  is unique if and only if A is invertible

#### Proposition

Suppose the  $n \times n$  coefficient matrix A has n distinct real eigenvalues  $r_1, \ldots, r_n$ , with corresponding eigenvectors  $\mathbf{v}_1, \ldots, \mathbf{v}_n$ . Let  $\mathbf{x}^*$  be a steady state of the linear system  $\dot{\mathbf{x}} = A\mathbf{x} + \mathbf{b}$ . Then, the general solution of  $\dot{\mathbf{x}} = A\mathbf{x} + \mathbf{b}$  is

$$\mathbf{x}(t) = C_1 e^{r_1 t} \mathbf{v}_1 + C_2 e^{r_2 t} \mathbf{v}_2 + \cdots + C_n e^{r_n t} \mathbf{v}_n + \mathbf{x}^*.$$

**Example.** Consider the system

$$\dot{x} = 4x + 7y + 31$$
$$\dot{y} = x - 2y + 4$$

- ▶ The system's coefficient matrix is  $A = \begin{pmatrix} 4 & 7 \\ 1 & -2 \end{pmatrix}$  and is invertible
- ▶ The unique steady state  $(x^*, y^*)$  can be found either by direct computation:

$$\begin{pmatrix} x^* \\ y^* \end{pmatrix} = -A^{-1} \begin{pmatrix} 31 \\ 4 \end{pmatrix},$$

or by solving

$$0 = 4x^* + 7y^* + 31$$
$$0 = x^* - 2y^* + 4$$

- **Example (cont'd).** You can verify that  $(x^*, y^*) = (-6, -1)$
- ► The general solution is

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = C_1 e^{-3t} \begin{pmatrix} -1 \\ 1 \end{pmatrix} + C_2 e^{5t} \begin{pmatrix} 7 \\ 1 \end{pmatrix} + \begin{pmatrix} -6 \\ -1 \end{pmatrix}$$

▶ When the system's coefficient matrix is non-diagonalizable, we can form the general solution by using *generalized* eigenvectors

#### Proposition

Suppose the  $2 \times 2$  matrix A has equal eigenvalues  $r_1 = r_2 = r$  and only one independent eigenvector  $\mathbf{v}$ . Let  $\mathbf{w}$  be a generalized eigenvector for A. Then, the general solution of the linear system of differential equations  $\dot{\mathbf{x}} = A\mathbf{x}$  is

$$\mathbf{x}(t) = (C_1 + C_2 t) e^{rt} \mathbf{v} + C_2 e^{rt} \mathbf{w}.$$

**Example.** Consider the system

$$\dot{x} = 4x + y$$
  
$$\dot{y} = -x + 2y$$

► The system's coefficient matrix is

$$A = \begin{pmatrix} 4 & 1 \\ -1 & 2 \end{pmatrix}$$

and it has only one eigenvalue r = 3

- lacktriangle An eigenvector for A is  $oldsymbol{v}=egin{pmatrix}1\\-1\end{pmatrix}$  and a generalized eigenvector is  $oldsymbol{w}=egin{pmatrix}1\\0\end{pmatrix}$
- ► The general solution is

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = (C_1 + C_2 t) e^{3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + C_2 e^{3t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

- ► First order linear systems can be used to *reduce the order* of a given differential equation
- Consider the second order equation

$$\ddot{y} + 2\dot{y} - 8y = 0$$

▶ Define two new variables (functions)  $x_1 = y$  and  $x_2 = \dot{y}$ , and form the system

$$\dot{x}_1 = x_2 
\dot{x}_2 = -2x_2 + 8x_1$$

▶ In words, we've just transformed a second order equation into an equivalent first order system of two equations. A solution of the system gives us also a solution of the initial differential equation

► The system's coefficient matrix is

$$A = \begin{pmatrix} 0 & 1 \\ 8 & -2 \end{pmatrix}$$

▶ You can verify that A has two distinct eigenvalues  $r_1 = -4$  and  $r_2 = 2$ , and the corresponding eigenvectors are

$$oldsymbol{v}_1 = egin{pmatrix} 1 \\ -4 \end{pmatrix}$$
 and  $oldsymbol{v}_2 = egin{pmatrix} 1 \\ 2 \end{pmatrix}$ 

▶ The general solution of the system is

$$egin{pmatrix} x_1(t) \ x_2(t) \end{pmatrix} = C_1 e^{-4t} egin{pmatrix} 1 \ -4 \end{pmatrix} + C_2 e^{2t} egin{pmatrix} 1 \ 2 \end{pmatrix}$$

▶ Thus the solution of the second order differential equation is

$$y(t) = x_1(t) = C_1 e^{-4t} + C_2 e^{2t}$$

- As we did for first order equations, we want to examine the **stability** of systems of differential equations
- Let's consider the linear system  $\dot{\mathbf{x}} = A\mathbf{x} + \mathbf{b}$
- Let  $x^*$  be a steady state. We say that  $x^*$  is globally asymptotically stable if every solution x(t) of  $\dot{x} = Ax + b$  converges to  $x^*$  as  $t \to \infty$ . Otherwise, we say that  $x^*$  is unstable

#### Proposition (Stability of linear systems)

Consider the linear system  $\dot{\mathbf{x}} = A\mathbf{x} + \mathbf{b}$  and suppose  $\det A \neq 0$ .

- 1. If every real eigenvalue of A is negative and every complex eigenvalue of A has negative real part, then the steady state  $x^*$  is globally asymptotically stable.
- 2. If A has a positive real eigenvalue or a complex eigenvalue with positive real part, then  $\mathbf{x}^*$  is an unstable equilibrium.