Mathematics for Economists

Mitri Kitti

Aalto University
Differential equations

Economics Study Survey by Aalto Economics

Please respond!

Ordinary differential equations

- Difference equations: time is a discrete variable, $t=0,1,2, \ldots$
- Differential equations: time is a continuous variable, $t \in[0,+\infty)$ or $t \in \mathbb{R}$
- An ordinary differential equation is an equation

$$
F\left(t, y(t), y^{\prime}(t), y^{\prime \prime}(t), \ldots, y^{(n)}(t)\right)=0
$$

where:

- t is an independent variable (typically, but not necessarily, time)
- $y(t)$ is a function of t
- $y^{\prime}(t), y^{\prime \prime}(t), \ldots, y^{(n)}(t)$ are the first, second, \ldots, nth derivatives of y at t
- F is a function of $n+2$ variables.

Ordinary differential equations

- Example. All the following are differential equations:

$$
\begin{aligned}
y^{\prime \prime}(t)+3 & =0 \\
\left(y^{\prime}(t)\right)^{2}-t^{2} y(t) & =0 \\
y^{\prime}(t)\left(y^{\prime \prime}(t)+3\right) & =0 \\
y^{\prime}(t)-t^{2} & =0
\end{aligned}
$$

Ordinary differential equations

- Terminology. An ordinary differential equation describes a relationship between a function of one variable and its derivative
- A partial differential equation describes a relationship between a function of several variables and its partial derivatives
- A differential equation is an nth order differential equation if it involves derivatives up to and including the nth derivative of $y(t)$. For example, $y^{\prime \prime}(t)+3=0$ is a second order differential equation
- In this course, we confine ourselves to first and second order ordinary differential equations

Ordinary differential equations

- Notation. In the theory of differential equations it is customary to use the dot notation for derivatives:

$$
\begin{array}{r}
y^{\prime}(t)=\frac{d y}{d t}(t)=\dot{y} \\
y^{\prime \prime}(t)=\frac{d^{2} y}{d t^{2}}(t)=\ddot{y}
\end{array}
$$

- For example, the equation $y^{\prime}(t)\left(y^{\prime \prime}(t)+3\right)=0$ can be written as

$$
\dot{y}(\ddot{y}+3)=0
$$

Ordinary differential equations

- Consider the following differential equation

$$
\begin{equation*}
\dot{y}=2 t \tag{1}
\end{equation*}
$$

- To solve (1) we need to find a function $y(t)$ such that (1) holds for all t. In other words, we need to find a function $y(t)$ whose first derivative w.r.t. t is $2 t$ for all t
- $y(t)=t^{2}$ solves (1). And so do $y(t)=t^{2}+17, y(t)=t^{2}+\sqrt{2}, \ldots$
- More generally, any function

$$
\begin{equation*}
y(t)=t^{2}+C \tag{2}
\end{equation*}
$$

with $C \in \mathbb{R}$, solves the differential equation (1)

- We say that (2) is the general solution of (1)

Ordinary differential equations

- Suppose that $y(t)$ must satisfy $y(0)=1$ in addition to $\dot{y}=2 t$. That is, the two equations

$$
\begin{align*}
\dot{y} & =2 t \tag{3}\\
y(0) & =1 \tag{4}
\end{align*}
$$

must hold simultaneously

- The system (3)-(4) is called an initial value problem (IVP)
- You can verify that the unique solution of this IVP is

$$
\begin{equation*}
y(t)=t^{2}+1 \tag{5}
\end{equation*}
$$

- The solution (5) is called a particular solution and is derived from the general solution (2) by choosing the appropriate value of the constant C

Ordinary differential equations

- Direction field (or integral field) of $\dot{y}=2 t$

Ordinary differential equations

- Solution of the IVP $\dot{y}=2 t, y(0)=1$
$y(t)$

Ordinary differential equations

Proposition (Existence and uniqueness of a solution)

Consider the initial value problem

$$
\dot{y}=f(t, y), \quad y\left(t_{0}\right)=y_{0} .
$$

Suppose that f is continuous at $\left(t_{0}, y_{0}\right)$.

- Then, there exists a C^{1} function $y: I \rightarrow \mathbb{R}$ defined on the open interval $\left(t_{0}-a, t_{0}+a\right)$ around t_{0} such that $y\left(t_{0}\right)=y_{0}$ and $\dot{y}(t)=f(t, y(t))$ for all $t \in I$. That is, $y(t)$ is a solution of the initial value problem under consideration.
- If in addition the partial derivative of f with respect to y is continuous at $\left(t_{0}, y_{0}\right)$, then the solution $y(t)$ is unique.

Ordinary differential equations

- Example. Consider the initial value problem

$$
\dot{y}=3 y^{\frac{2}{3}}, \quad y(0)=0
$$

- We have $f(t, y)=3 y^{\frac{2}{3}}$, which is continuous on \mathbb{R}^{2}. This is sufficient to establish that a solution exists
- However, $\frac{\partial f}{\partial y}=\frac{2}{y^{1 / 3}}$, which is not well-defined at $\left(t_{0}, y_{0}\right)=(0,0)$. Hence we cannot apply the second part of the proposition in the previous page about uniqueness. In other words, the solution is not necessarily unique
- In fact, two solutions of this IVP are $y(t)=0$ and $y(t)=t^{3}$

Ordinary differential equations

- Direction field of $\dot{y}=3 y^{\frac{2}{3}}$

Ordinary differential equations

- Two solutions of the IVP $\dot{y}=3 y^{\frac{2}{3}}, y(0)=0$

Ordinary differential equations

- How to solve a differential equation?
- In general, when a solution exists, we cannot always write it down in closed form, i.e. as an explicit function $y(t)$
- However, there two important families of differential equations for which explicit solutions can often be found:

1. Separable equations
2. Linear equations

Linear first order differential equations

- A linear first order differential equation with constant coefficients is an equation of the form

$$
\begin{equation*}
\dot{y}=a y+b, \tag{6}
\end{equation*}
$$

with $a \neq 0$

- The general solution of (6) is

$$
\begin{equation*}
y(t)=-\frac{b}{a}+C e^{a t} \tag{7}
\end{equation*}
$$

Linear first order differential equations

- We can derive the solution of (6) also by following another method (integrating factor)
- Take the differential equation (6), multiply both sides by $e^{-a t}$ (which is called the "integrating factor") and rearrange terms

$$
\begin{equation*}
\dot{y} e^{-a t}-a y e^{-a t}=b e^{-a t} \tag{8}
\end{equation*}
$$

- The left-hand side of (8) is the derivative of $y e^{-a t} w . r . t . t$. Hence we can rewrite (8) as

$$
\frac{d}{d t}\left(y e^{-a t}\right)=b e^{-a t}
$$

Linear first order differential equations

- Then by the definition of the indefinite integral, we have

$$
y e^{-a t}=\int b e^{-a t} d t=-\frac{b}{a} e^{-a t}+C
$$

- Thus $y e^{-a t}=-\frac{b}{a} e^{-a t}+C$, and multiplying both sides of this expression by $e^{a t}$ we finally get

$$
y(t)=-\frac{b}{a}+C e^{a t}
$$

Linear first order differential equations

- Example. Solve the differential equation

$$
\dot{y}+2 y=8
$$

- Rewrite the equation as

$$
\dot{y}=-2 y+8
$$

- By (7), the general solution is

$$
y(t)=4+C e^{-2 t}
$$

Linear first order differential equations

- Suppose we want to solve the linear equation

$$
\begin{equation*}
\dot{y}=a y+b(t) \tag{9}
\end{equation*}
$$

with $a \neq 0$

- We can use the integrating factor $e^{-a t}$ to obtain the general solution

$$
\begin{equation*}
y(t)=C e^{a t}+e^{a t} \int b(t) e^{-a t} d t \tag{10}
\end{equation*}
$$

Linear first order differential equations

- Example. Solve the differential equation

$$
\dot{y}+y=t
$$

- Rewrite the equation as

$$
\dot{y}=-y+t
$$

- By (10), the general solution is

$$
\begin{aligned}
y(t) & =C e^{-t}+e^{-t} \int t e^{t} d t \\
& =k e^{-t}+t-1
\end{aligned}
$$

where k is a constant

- Notice that one can use integration by parts to evaluate $\int t e^{t} d t$

Linear second order differential equations

- A linear second order ordinary differential equation is an equation of the form

$$
\begin{equation*}
a \ddot{y}+b \dot{y}+c y=0 \tag{11}
\end{equation*}
$$

- Equation (11) is also homogeneous because each non-zero term depends directly on the unknown function y or on a derivative of it. Equations like $a \ddot{y}+b \dot{y}+c y=7$ or $a \ddot{y}+b \dot{y}+c y=4 t$ are not homogeneous
- An expression for a general solution of (11) can be found as follows
- If $a=0$, then (11) is a first order linear differential equation, and in this case we know that a solution will have the form $y(t)=e^{r t}$ for some parameter r
- The idea is to find conditions under which a function like $y(t)=e^{r t}$ is a solution of (11)

Linear second order differential equations

- If $y(t)=e^{r t}$ is our candidate solution, then we must have

$$
\begin{align*}
& y=e^{r t} \tag{12}\\
& \dot{y}=r e^{r t} \tag{13}\\
& \ddot{y}=r^{2} e^{r t} \tag{14}
\end{align*}
$$

- Inserting (12)-(14) into (11) and rearranging yields

$$
e^{r t}\left(a r^{2}+b r+c\right)=0
$$

- Since $e^{r t}$ is never equal to zero, the latter equation is equivalent to

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{15}
\end{equation*}
$$

Linear second order differential equations

- Thus we can conclude that $y=e^{r t}$ is a solution if and only if r satisfies (15)
- Equation (15) is called the characteristic equation of the differential equation (11)
- The left-hand side of (15) is a polynomial of degree 2 whose roots can be found through the quadratic formula:

$$
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- The term $b^{2}-4 a c$ is called the discriminant

Linear second order differential equations

- There are three mutually exclusive cases:

1. the discriminant is strictly positive and the characteristic equation has two distinct real roots
2. the discriminant is equal to zero and the characteristic equation has two identical real roots, i.e. a real root of multiplicity 2
3. the discriminant is strictly negative and the characteristic equation has two distinct complex roots

Linear second order differential equations

- First case. $b^{2}-4 a c>0$ and the characteristic equation has two distinct real roots r_{1} and r_{2}
- The general solution of the differential equation (11) is

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

- Note: C_{1} and C_{2} are two distinct unknown constants

Linear second order differential equations

- Second case. $b^{2}-4 a c=0$ and the characteristic equation has a unique root r of multiplicity 2
- The general solution of the differential equation (11) is

$$
y(t)=C_{1} e^{r t}+C_{2} t e^{r t}
$$

Linear second order differential equations

- Third case. $b^{2}-4 a c<0$ and the characteristic equation has two distinct complex roots $r_{1}=\alpha+i \beta$ and $r_{2}=\alpha-i \beta$, where i is the imaginary unit
- The general solution of the differential equation (11) is

$$
y(t)=e^{\alpha t}\left(C_{1} \cos \beta t+C_{2} \sin \beta t\right)
$$

- Note: The two complex roots of the characteristic equation are always conjugates of each other

Linear second order differential equations

- Example. Let $\ddot{y}-7 y=0$
- The characteristic equation is $r^{2}-7=0$
- There are two real roots $r_{1}=\sqrt{7}$ and $r_{2}=-\sqrt{7}$
- The general solution is

$$
y(t)=C_{1} e^{\sqrt{7} t}+C_{2} e^{-\sqrt{7} t}
$$

Linear second order differential equations

- Example. Let $\ddot{y}-6 \dot{y}+9 y=0$
- The characteristic equation is $r^{2}-6 r+9=(r-3)^{2}$
- The two identical roots are $r_{1}=r_{2}=3$
- The general solution is

$$
y(t)=C_{1} e^{3 t}+C_{2} t e^{3 t}=e^{3 t}\left(C_{1}+C_{2} t\right)
$$

Linear second order differential equations

- In an initial value problem with a second order differential equation, we need to specify two initial conditions:

$$
y\left(t_{0}\right)=y_{0}, \quad \dot{y}\left(t_{0}\right)=y_{1}
$$

- Since the general solution of the differential equation depends on two independent parameters C_{1} and C_{2}, we need two initial conditions to pin down a particular solution of the IVP under consideration
- Example. Consider the following initial value problem

$$
\ddot{y}-\dot{y}-2 y=0, \quad y(0)=3, \quad \dot{y}(0)=0
$$

- You can verify that the general solution of the differential equation is

$$
y(t)=C_{1} e^{-t}+C_{2} e^{2 t}
$$

Linear second order differential equations

- Example (cont'd). To find the particular solution, we need to solve the system

$$
\begin{aligned}
& y(0)=3 \Longleftrightarrow C_{1} e^{0}+C_{2} e^{0}=3 \\
& \dot{y}(0)=0 \Longleftrightarrow-C_{1} e^{0}+2 C_{2} e^{0}=0
\end{aligned}
$$

- We easily get $C_{1}=2$ and $C_{2}=1$
- Thus the solution of the IVP is

$$
y(t)=2 e^{-t}+e^{2 t}
$$

Equilibria and stability

- In economics and other disciplines, it is often important to understand the stability of solutions of differential equations
- Consider a first order differential equation that can be written as

$$
\begin{equation*}
\dot{y}=f(y) \tag{16}
\end{equation*}
$$

- In words, the independent variable t does not explicitly appear on the right-hand side of (16)
- The equation in (16) is called autonomous

Equilibria and stability

- If there exists a value y^{*} such that $f\left(y^{*}\right)=0$, we say that y^{*} is an equilibrium or a stationary state or a steady state for the equation in (16)
- Given an equilibrium y^{*}, the constant function $y(t)=y^{*}$ for all t is a solution of (16). Intuitively, an equilibrium is a solution that does not change over time
- The question we are going to address is this. Suppose $y(t)$ is a solution of (16) with initial condition $y\left(t_{0}\right)=y_{0}$. Will this solution converge to the steady state y^{*} as t goes to infinity? Differently put, will the "system" described by (16) ever reach the equilibrium y^{*} if the system itself starts from $\left(t_{0}, y_{0}\right)$?

Equilibria and stability

- Consider the autonomous equation $\dot{y}=y^{2}-9$
- There are two steady states: $y_{1}^{*}=3$ and $y_{2}^{*}=-3$
- A useful tool in the analysis of stability is the phase diagram or phase portrait

Equilibria and stability

- Phase portrait of $\dot{y}=y^{2}-9$

Equilibria and stability

- Suppose $y(t)$ is a solution of the given equation
- For any t, the pair $(y(t), \dot{y}(t))$ is a point on the curve in the phase diagram
- If $(y(t), \dot{y}(t))$ lies above the horizontal axis, then $\dot{y}(t)=f(y(t))>0$. That is, $y(t)$ is increasing with respect to t. In the diagram, we move from $(y(t), \dot{y}(t))$ to the right and along the curve
- On the other hand, if $(y(t), \dot{y}(t))$ lies below the horizontal axis, then $\dot{y}(t)=f(y(t))<0$. That is, $y(t)$ is decreasing with respect to t. In the diagram, we move from $(y(t), \dot{y}(t))$ to the left and along the curve

Equilibria and stability

- Consider the two equilibria $y_{1}^{*}=3$ and $y_{2}^{*}=-3$
- If a solution $y(t)$ of $\dot{y}=y^{2}-9$ starts close to $y_{2}^{*}=-3$, but not at y_{2}^{*}, then $y(t)$ will approach y_{2}^{*} as time t goes to infinity. We say that the equilibrium $y_{2}^{*}=-3$ is locally asymptotically stable
- If a solution $y(t)$ of $\dot{y}=y^{2}-9$ starts close to $y_{1}^{*}=3$, but not at y_{1}^{*}, then $y(t)$ will move away from y_{1}^{*} as time t goes to infinity. We say that the equilibrium $y_{1}^{*}=3$ is unstable

Equilibria and stability

- Direction field of $\dot{y}=y^{2}-9$

Equilibria and stability

- Now consider the autonomous equation $\dot{y}=y-1$
- The unique equilibrium is $y^{*}=1$
- You can verify that y^{*} is unstable

Equilibria and stability

- Direction field of $\dot{y}=y-1$

Equilibria and stability

- Consider yet another autonomous equation, $\dot{y}=24-2 y$
- The unique equilibrium is $y^{*}=12$
- You can verify that y^{*} is stable
- More specifically, y^{*} is globally asymptotically stable because a solution $y(t)$ with initial condition $y\left(t_{0}\right)=y_{0}$ will always converge to y^{*} for any start point (t_{0}, y_{0})

Equilibria and stability

- Direction field of $\dot{y}=24-2 y$

Equilibria and stability

- Building on the graphical analysis with phase diagrams, we can state the following result
- Let $\dot{y}=f(y)$ be an autonomous differential equation:
- If $f\left(y^{*}\right)=0$ and $f^{\prime}\left(y^{*}\right)<0$, then y^{*} is a locally asymptotically stable equilibrium;
- If $f\left(y^{*}\right)=0$ and $f^{\prime}\left(y^{*}\right)>0$, then y^{*} is an unstable equilibrium.
- If $f\left(y^{*}\right)=0$ and $f^{\prime}\left(y^{*}\right)=0$, then y^{*} can be either stable or unstable. For example, $\dot{y}=y^{3}$ has a unique equilibrium $y^{*}=0$, which is unstable. On the other hand, $\dot{y}=-y^{3}$ has a unique equilibrium $y^{*}=0$, which is globally asymptotically stable

Equilibria and stability

- We can also determine the stability of a second order linear differential equation

$$
\begin{equation*}
a \ddot{y}+b \dot{y}+c y=0, \tag{17}
\end{equation*}
$$

with $a \neq 0$

- Notice that $y(t)=0$ is always a solution of (17). In other words, $y^{*}=0$ is a steady state of (17)
- The equilibrium $y^{*}=0$ is globally asymptotically stable if and only if:
- $a, b, c>0$ or, equivalently,
- both roots of the characteristic equation $a r^{2}+b r+c=0$ have negative real part.

Ordinary differential equations

- Exercise. Find the solution of each of the following differential equations for the initial conditions $y(0)=1, \dot{y}(0)=0$

1. $6 \ddot{y}-\dot{y}-y=0$
2. $\ddot{y}+2 \dot{y}+2 y=0$
3. $4 \ddot{y}-4 \dot{y}+y=0$

Equilibria and stability

- Exercise $\dot{y}=y(y-1)(y-2)$
- The three equilibria are $y_{1}^{*}=0, y_{2}^{*}=1$, and $y_{3}^{*}=2$
- $y_{2}^{*}=1$ is locally asymptotically stable whereas both $y_{1}^{*}=0$ and $y_{3}^{*}=2$ are unstable

Systems of ordinary differential equations

- A first order system of two ordinary differential equations has the form

$$
\begin{align*}
& \dot{x}=F(x, y, t) \tag{18}\\
& \dot{y}=G(x, y, t) \tag{19}
\end{align*}
$$

- A solution of (18)-(19) is a pair of functions $x^{*}(t)$ and $y^{*}(t)$ such that, for every t, both (18) and (19) are satisfied
- If both F and G do not depend explicitly on t, then the system is called autonomous or time-independent

Systems of ordinary differential equations

- Example. Consider the system

$$
\begin{aligned}
& \dot{x}=2 x+e^{t} y-e^{t} \\
& \dot{y}=4 e^{-t} x+y
\end{aligned}
$$

- You can verify that the general solution is

$$
\begin{aligned}
& x(t)=C_{1}+C_{2} e^{4 t}-\frac{1}{3} e^{t} \\
& y(t)=-2 C_{1} e^{-t}+2 C_{2} e^{3 t}+\frac{4}{3}
\end{aligned}
$$

- Note: The general solution of a system of n first order equations in n unknowns contains n independent parameters

Systems of ordinary differential equations

- Example (cont'd). Suppose we also have the two initial conditions:

$$
\begin{aligned}
& x(0)=0 \\
& y(0)=0
\end{aligned}
$$

- To find the solution of this initial value problem we have to solve

$$
\begin{aligned}
& 0=C_{1}+C_{2} e^{0}-\frac{1}{3} e^{0} \\
& 0=-2 C_{1} e^{0}+2 C_{2} e^{0}+\frac{4}{3}
\end{aligned}
$$

from which we get $C_{1}=\frac{1}{2}$ and $C_{2}=-\frac{1}{6}$

- Thus the particular solution is

$$
\begin{aligned}
& x(t)=\frac{1}{2}-\frac{1}{6} e^{4 t}-\frac{1}{3} e^{t} \\
& y(t)=-e^{-t}-\frac{1}{3} e^{3 t}+\frac{4}{3}
\end{aligned}
$$

Systems of ordinary differential equations

- In this course, we'll learn how to solve first order linear systems with constant coefficients
- More specifically, we'll focus on systems that can be written as

$$
\begin{gathered}
\dot{x}_{1}=a_{11} x_{1}+\cdots+a_{1 n} x_{n}+b_{1} \\
\dot{x}_{2}=a_{21} x_{1}+\cdots+a_{2 n} x_{n}+b_{2} \\
\vdots
\end{gathered} \vdots \vdots \vdots+a_{n n} x_{n}+b_{n}
$$

or, in matrix notation,

$$
\dot{\boldsymbol{x}}=A \boldsymbol{x}+\boldsymbol{b}
$$

- When $\boldsymbol{b}=\mathbf{0}$, the system is homogeneous

Systems of ordinary differential equations

- Let's consider a homogeneous system $\dot{\boldsymbol{x}}=A \boldsymbol{x}$
- If the coefficient matrix A is diagonal, then the system is uncoupled and consists of n independent equations:

$$
\begin{aligned}
\dot{x}_{1} & =a_{11} x_{1} \\
\dot{x}_{2} & =a_{22} x_{2} \\
\vdots & \vdots \\
\dot{x}_{n} & =a_{n n} x_{n}
\end{aligned}
$$

- We can solve each equation in isolation, and we already know how to do it. The general solution of the system is

$$
x_{1}(t)=C_{1} e^{a_{11} t}, x_{2}(t)=C_{2} e^{a_{22} t}, \ldots, x_{n}(t)=C_{n} e^{a_{n n} t}
$$

Systems of ordinary differential equations

- If the coefficient matrix A is not diagonal (yet diagonalizable), then we can adopt the same strategy we used with systems of difference equations. That is, we can make a change of variables by diagonalizing the coefficient matrix A, find the solution of the resulting uncoupled system, and then transform the solution back to the original variables

Proposition

Suppose the $n \times n$ coefficient matrix A has n distinct real eigenvalues r_{1}, \ldots, r_{n}, with corresponding eigenvectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$. Then, the general solution of the linear system $\dot{x}=A x$ is

$$
\boldsymbol{x}(t)=C_{1} e^{r_{1} t} \boldsymbol{v}_{1}+C_{2} e^{r_{2} t} \boldsymbol{v}_{2}+\cdots+C_{n} e^{r_{n} t} \boldsymbol{v}_{n}
$$

Systems of ordinary differential equations

- Example. Consider the following initial value problem:

$$
\begin{aligned}
\dot{x}_{1} & =5 x_{1}-\frac{1}{2} x_{2} \\
\dot{x}_{2} & =-2 x_{1}+5 x_{2} \\
x_{1}(0) & =12, x_{2}(0)=4 .
\end{aligned}
$$

The coefficient matrix is

$$
A=\left(\begin{array}{cc}
5 & -\frac{1}{2} \\
-2 & 5
\end{array}\right)
$$

- The characteristic polynomial of A is

$$
(5-r)(5-r)-1=(r-4)(r-6)
$$

- Hence the two eigenvalues are $r_{1}=4$ and $r_{2}=6$

Systems of ordinary differential equations

- Example (cont'd). You can verify that two eigenvectors corresponding to r_{1} and r_{2} are

$$
\boldsymbol{v}_{1}=\binom{1}{2} \quad \text { and } \quad \boldsymbol{v}_{2}=\binom{1}{-2}
$$

respectively

- The general solution of the system is

$$
\binom{x_{1}(t)}{x_{2}(t)}=C_{1} e^{4 t}\binom{1}{2}+C_{2} e^{6 t}\binom{1}{-2}
$$

Systems of ordinary differential equations

- Example (cont'd). To find the particular solution of the IVP, we need to solve

$$
\binom{12}{4}=C_{1} e^{0}\binom{1}{2}+C_{2} e^{0}\binom{1}{-2}
$$

from which we get $C_{1}=7$ and $C_{2}=5$

- Thus the unique solution of this IVP is

$$
\binom{x_{1}(t)}{x_{2}(t)}=7 e^{4 t}\binom{1}{2}+5 e^{6 t}\binom{1}{-2}
$$

Systems of ordinary differential equations

- We can still apply the proposition at p. 11 even when some of the eigenvalues are repeated, provided that each eigenvalue of multiplicity $h>1$ has h linearly independent eigenvectors
- Example. Consider the uncoupled system

$$
\begin{aligned}
& \dot{x}_{1}=3 x_{1} \\
& \dot{x}_{2}=3 x_{2}
\end{aligned}
$$

- The coefficient matrix is the diagonal matrix

$$
A=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)
$$

Systems of ordinary differential equations

- Example (cont'd). A has one eigenvalue $r=3$ of multiplicity 2. However, $r=3$ has two linearly independent eigenvectors

$$
\boldsymbol{v}_{1}=\binom{1}{0} \quad \text { and } \quad \boldsymbol{v}_{2}=\binom{0}{1}
$$

- Thus we can write the general solution of the system as

$$
\binom{x_{1}(t)}{x_{2}(t)}=C_{1} e^{3 t}\binom{1}{0}+C_{2} e^{3 t}\binom{0}{1}=\binom{C_{1} e^{3 t}}{C_{2} e^{3 t}}
$$

Systems of ordinary differential equations

- Consider the linear system $\dot{\boldsymbol{x}}=A \boldsymbol{x}+\boldsymbol{b}$
- Any vector \boldsymbol{x}^{*} such that $A \boldsymbol{x}^{*}+\boldsymbol{b}=\mathbf{0}$ is an equilibrium or steady state of the system
- Given a steady state \boldsymbol{x}^{*}, the constant function $\boldsymbol{x}(t)=\boldsymbol{x}^{*}$ is clearly a solution of $\dot{\boldsymbol{x}}=A \boldsymbol{x}+\boldsymbol{b}$
- The steady state $\boldsymbol{x}^{*}=-A^{-1} \boldsymbol{b}$ is unique if and only if A is invertible

Proposition

Suppose the $n \times n$ coefficient matrix A has n distinct real eigenvalues r_{1}, \ldots, r_{n}, with corresponding eigenvectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$. Let \boldsymbol{x}^{*} be a steady state of the linear system $\dot{\boldsymbol{x}}=A \boldsymbol{x}+\boldsymbol{b}$. Then, the general solution of $\dot{\boldsymbol{x}}=A \boldsymbol{x}+\boldsymbol{b}$ is

$$
\boldsymbol{x}(t)=C_{1} e^{r_{1} t} \boldsymbol{v}_{1}+C_{2} e^{r_{2} t} \boldsymbol{v}_{2}+\cdots+C_{n} e^{r_{n} t} \boldsymbol{v}_{n}+\boldsymbol{x}^{*}
$$

Systems of ordinary differential equations

- Example. Consider the system

$$
\begin{aligned}
& \dot{x}=4 x+7 y+31 \\
& \dot{y}=x-2 y+4
\end{aligned}
$$

- The system's coefficient matrix is $A=\left(\begin{array}{cc}4 & 7 \\ 1 & -2\end{array}\right)$ and is invertible
- The unique steady state $\left(x^{*}, y^{*}\right)$ can be found either by direct computation:

$$
\binom{x^{*}}{y^{*}}=-A^{-1}\binom{31}{4}
$$

or by solving

$$
\begin{aligned}
& 0=4 x^{*}+7 y^{*}+31 \\
& 0=x^{*}-2 y^{*}+4
\end{aligned}
$$

Systems of ordinary differential equations

- Example (cont'd). You can verify that $\left(x^{*}, y^{*}\right)=(-6,-1)$
- The general solution is

$$
\binom{x(t)}{y(t)}=C_{1} e^{-3 t}\binom{-1}{1}+C_{2} e^{5 t}\binom{7}{1}+\binom{-6}{-1}
$$

Systems of ordinary differential equations

- When the system's coefficient matrix is non-diagonalizable, we can form the general solution by using generalized eigenvectors

Proposition

Suppose the 2×2 matrix A has equal eigenvalues $r_{1}=r_{2}=r$ and only one independent eigenvector \boldsymbol{v}. Let \boldsymbol{w} be a generalized eigenvector for A. Then, the general solution of the linear system of differential equations $\dot{\boldsymbol{x}}=A \boldsymbol{x}$ is

$$
\boldsymbol{x}(t)=\left(C_{1}+C_{2} t\right) e^{r t} \boldsymbol{v}+C_{2} e^{r t} \boldsymbol{w} .
$$

Systems of ordinary differential equations

- Example. Consider the system

$$
\begin{aligned}
& \dot{x}=4 x+y \\
& \dot{y}=-x+2 y
\end{aligned}
$$

- The system's coefficient matrix is

$$
A=\left(\begin{array}{cc}
4 & 1 \\
-1 & 2
\end{array}\right)
$$

and it has only one eigenvalue $r=3$

- An eigenvector for A is $\boldsymbol{v}=\binom{1}{-1}$ and a generalized eigenvector is $\boldsymbol{w}=\binom{1}{0}$
- The general solution is

$$
\binom{x(t)}{y(t)}=\left(C_{1}+C_{2} t\right) e^{3 t}\binom{1}{-1}+C_{2} e^{3 t}\binom{1}{0}
$$

Systems of ordinary differential equations

- First order linear systems can be used to reduce the order of a given differential equation
- Consider the second order equation

$$
\ddot{y}+2 \dot{y}-8 y=0
$$

- Define two new variables (functions) $x_{1}=y$ and $x_{2}=\dot{y}$, and form the system

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-2 x_{2}+8 x_{1}
\end{aligned}
$$

- In words, we've just transformed a second order equation into an equivalent first order system of two equations. A solution of the system gives us also a solution of the initial differential equation

Systems of ordinary differential equations

- The system's coefficient matrix is

$$
A=\left(\begin{array}{cc}
0 & 1 \\
8 & -2
\end{array}\right)
$$

- You can verify that A has two distinct eigenvalues $r_{1}=-4$ and $r_{2}=2$, and the corresponding eigenvectors are

$$
\boldsymbol{v}_{1}=\binom{1}{-4} \quad \text { and } \quad \boldsymbol{v}_{2}=\binom{1}{2}
$$

- The general solution of the system is

$$
\binom{x_{1}(t)}{x_{2}(t)}=C_{1} e^{-4 t}\binom{1}{-4}+C_{2} e^{2 t}\binom{1}{2}
$$

- Thus the solution of the second order differential equation is

$$
y(t)=x_{1}(t)=C_{1} e^{-4 t}+C_{2} e^{2 t}
$$

Equilibria and stability

- As we did for first order equations, we want to examine the stability of systems of differential equations
- Let's consider the linear system $\dot{\boldsymbol{x}}=A \boldsymbol{x}+\boldsymbol{b}$
- Let \boldsymbol{x}^{*} be a steady state. We say that \boldsymbol{x}^{*} is globally asymptotically stable if every solution $\boldsymbol{x}(t)$ of $\dot{\boldsymbol{x}}=A \boldsymbol{x}+\boldsymbol{b}$ converges to \boldsymbol{x}^{*} as $t \rightarrow \infty$. Otherwise, we say that x^{*} is unstable

Proposition (Stability of linear systems)

Consider the linear system $\dot{\boldsymbol{x}}=A \boldsymbol{x}+\boldsymbol{b}$ and suppose $\operatorname{det} A \neq 0$.

1. If every real eigenvalue of A is negative and every complex eigenvalue of A has negative real part, then the steady state \boldsymbol{x}^{*} is globally asymptotically stable.
2. If A has a positive real eigenvalue or a complex eigenvalue with positive real part, then \boldsymbol{x}^{*} is an unstable equilibrium.
