
Designing and Building
Scalable Web Applications

Lecture 6 / 28.11.2022

The Big Picture

Scalability laws

Scalability expectations

H
um

an and organizational factors

Infrastructures and platforms

Application frameworks

Implementations and architectures

Applications and application archetypes

M
onitoring &

 m
easuring perform

ance

scratching today

scratching today

Agenda

● Scalability Laws
● Kubernetes and PostgreSQL
● Scalability and the Cloud
● Example: Pokémon GO
● Scalability and the Cloud: Serverless
● Serverless and Knative
● Beyond software scalability
● Third course project

Scalability Laws

In distributed systems, linear

scalability is not possible in

practice due to bottlenecks

Scalability Laws

● Amdahl’s Law
● Gunther’s Universal Scalability Law

In distributed systems, linear

scalability is not possible in

practice due to bottlenecks

Scalability Laws: Amdahl’s Law

Scalability Laws: Amdahl’s Law

● A program has parts that can be parallelized
and parts that cannot be parallelized

Scalability Laws: Amdahl’s Law

● A program has parts that can be parallelized
and parts that cannot be parallelized

Can parallelize Cannot parallelizeprogram:

Scalability Laws: Amdahl’s Law

● A program has parts that can be parallelized
and parts that cannot be parallelized

Can parallelize Cannot parallelizeprogram:

Total execution time = execution time of part that can be
parallelized + execution time of part that cannot be parallelized

Scalability Laws: Amdahl’s Law

● A program has parts that can be parallelized
and parts that cannot be parallelized

● Amdahl’s Law outlines a maximum
theoretical improvement due to
parallelization of work

Can parallelize Cannot parallelizeprogram:

Total execution time = execution time of part that can be
parallelized + execution time of part that cannot be parallelized

Scalability Laws: Amdahl’s Law

● A program has parts that can be parallelized
and parts that cannot be parallelized

● Amdahl’s Law outlines a maximum
theoretical improvement due to
parallelization of work

Can parallelize Cannot parallelizeprogram:

Total execution time = execution time of part that can be
parallelized + execution time of part that cannot be parallelized

Time without improvement

Time with improvement

Scalability Laws: Amdahl’s Law

● A program has parts that can be parallelized
and parts that cannot be parallelized

● Amdahl’s Law outlines a maximum
theoretical improvement due to
parallelization of work

Can parallelize Cannot parallelizeprogram:

Total execution time = execution time of part that can be
parallelized + execution time of part that cannot be parallelized

Scalability Laws: Amdahl’s Law

● A program has parts that can be parallelized
and parts that cannot be parallelized

● Amdahl’s Law outlines a maximum
theoretical improvement due to
parallelization of work

Proportion of the program that can be parallelized

Can parallelize Cannot parallelizeprogram:

Total execution time = execution time of part that can be
parallelized + execution time of part that cannot be parallelized

Scalability Laws: Amdahl’s Law

● A program has parts that can be parallelized
and parts that cannot be parallelized

● Amdahl’s Law outlines a maximum
theoretical improvement due to
parallelization of work

Proportion of the program that can be parallelized

Can parallelize Cannot parallelizeprogram:

Total execution time = execution time of part that can be
parallelized + execution time of part that cannot be parallelized

The number of workers to

which the parallel work

can be divided to

Scalability Laws: Amdahl’s Law

● A program has parts that can be parallelized
and parts that cannot be parallelized

● Amdahl’s Law outlines a maximum
theoretical improvement due to
parallelization of work

Proportion of the program that can be parallelized

5% of work can be parallelized, 10 workers ⇒ 1 / ((1 - 0.05) + (0.05 / 10)) ⇒ 1 / (0.95 + 0.005)⇒ 1 / 0.955
⇒ ~1.047

Can parallelize Cannot parallelizeprogram:

Total execution time = execution time of part that can be
parallelized + execution time of part that cannot be parallelized

The number of workers to

which the parallel work

can be divided to

Scalability Laws: Amdahl’s Law

● A program has parts that can be parallelized
and parts that cannot be parallelized

● Amdahl’s Law outlines a maximum
theoretical improvement due to
parallelization of work

Proportion of the program that can be parallelized

The number of workers to

which the parallel work

can be divided to

5% of work can be parallelized, 10 workers ⇒ 1 / ((1 - 0.05) + (0.05 / 10)) ⇒ 1 / (0.95 + 0.005)⇒ 1 / 0.955
⇒ ~1.047

Up to 4.7% improvement in total time it takes to complete the program

Can parallelize Cannot parallelizeprogram:

Total execution time = execution time of part that can be
parallelized + execution time of part that cannot be parallelized

Scalability Laws: Amdahl’s Law

● A program has parts that can be parallelized
and parts that cannot be parallelized

● Amdahl’s Law outlines a maximum
theoretical improvement due to
parallelization of work

Proportion of the program that can be parallelized

5% of work can be parallelized, 10 workers ⇒ 1 / ((1 - 0.05) + (0.05 / 10)) ⇒ 1 / (0.95 + 0.005)⇒ 1 / 0.955
⇒ ~1.047

Up to 4.7% improvement in total time it takes to complete the program

80% of work can be parallelized, 5 workers

⇒ 1 / ((1 - 0.8) + (0.8 / 5))

⇒ 1 / (0.2 + 0.16)

⇒ 1 / 0.316
⇒ ~3.165

Can parallelize Cannot parallelizeprogram:

Total execution time = execution time of part that can be
parallelized + execution time of part that cannot be parallelized

The number of workers to

which the parallel work

can be divided to

Scalability Laws: Amdahl’s Law

● A program has parts that can be parallelized
and parts that cannot be parallelized

● Amdahl’s Law outlines a maximum
theoretical improvement due to
parallelization of work

Proportion of the program that can be parallelized

5% of work can be parallelized, 10 workers ⇒ 1 / ((1 - 0.05) + (0.05 / 10)) ⇒ 1 / (0.95 + 0.005)⇒ 1 / 0.955
⇒ ~1.047

Up to 4.7% improvement in total time it takes to complete the program

80% of work can be parallelized, 5 workers

⇒ 1 / ((1 - 0.8) + (0.8 / 5))

⇒ 1 / (0.2 + 0.16)

⇒ 1 / 0.316
⇒ ~3.165

Up to 216.5% improvement in total time it takes to

complete the program

Can parallelize Cannot parallelizeprogram:

Total execution time = execution time of part that can be
parallelized + execution time of part that cannot be parallelized

The number of workers to

which the parallel work

can be divided to

Scalability Laws: Amdahl’s Law

● A program has parts that can be parallelized
and parts that cannot be parallelized

● Amdahl’s Law outlines a maximum
theoretical improvement due to
parallelization of work

Proportion of the program that can be parallelized

5% of work can be parallelized, 10 workers ⇒ 1 / ((1 - 0.05) + (0.05 / 10)) ⇒ 1 / (0.95 + 0.005)⇒ 1 / 0.955
⇒ ~1.047

Up to 4.7% improvement in total time it takes to complete the program

80% of work can be parallelized, 5 workers

⇒ 1 / ((1 - 0.8) + (0.8 / 5))

⇒ 1 / (0.2 + 0.16)

⇒ 1 / 0.316
⇒ ~3.165

Up to 216.5% improvement in total time it takes to

complete the program

With an infinite number of workers,

maximum speedup: 1 / (1 - p)

Can parallelize Cannot parallelizeprogram:

Total execution time = execution time of part that can be
parallelized + execution time of part that cannot be parallelized

The number of workers to

which the parallel work

can be divided to

Scalability Laws: Amdahl’s Law

● Outlines the theoretical maximum
improvement through parallelization of tasks
that can be parallelized

● But, does not account for communication
between the workers → with more workers,
the time needed for communication increases

Amdahl, Gene M. Validity of the single processor approach to achieving large scale computing capabilities
https://inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

Scalability Laws: Amdahl’s Law

● Outlines the theoretical maximum
improvement through parallelization of tasks
that can be parallelized

● But, does not account for communication
between the workers → with more workers,
the time needed for communication increases

E.g. synchronization

of tasks

Amdahl, Gene M. Validity of the single processor approach to achieving large scale computing capabilities
https://inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

Scalability Laws: Gunther’s Universal Scalability Law

Gunther, Neil J. A simple capacity model of massively parallel transaction systems. Int.
CMG Conference. 1993.

Scalability Laws: Gunther’s Universal Scalability Law

● A peek at Amdahl’s Law with different notation.

Gunther, Neil J. A simple capacity model of massively parallel transaction systems. Int.
CMG Conference. 1993.

Scalability Laws: Gunther’s Universal Scalability Law

● A peek at Amdahl’s Law with different notation.

Gunther, Neil J. A simple capacity model of massively parallel transaction systems. Int.
CMG Conference. 1993.

Proportion of work that cannot be parallelized.

Workers

Scalability Laws: Gunther’s Universal Scalability Law

● A peek at Amdahl’s Law with different notation.

Gunther, Neil J. A simple capacity model of massively parallel transaction systems. Int.
CMG Conference. 1993.

Proportion of work that cannot be parallelized.

Workers

95% of work cannot be parallelized, 10 workers ⇒ 10 / (1 + 0.95 * (10 - 1))⇒ ~1.047

Scalability Laws: Gunther’s Universal Scalability Law

● A peek at Amdahl’s Law with different notation.
● Gunther’s Universal Scalability Law adds

communication overhead.

Gunther, Neil J. A simple capacity model of massively parallel transaction systems. Int.
CMG Conference. 1993.

Proportion of work that cannot be parallelized.

Workers

Scalability Laws: Gunther’s Universal Scalability Law

● A peek at Amdahl’s Law with different notation.
● Gunther’s Universal Scalability Law adds

communication overhead.

Gunther, Neil J. A simple capacity model of massively parallel transaction systems. Int.
CMG Conference. 1993.

Proportion of work that cannot be parallelized.

Workers

Scalability Laws: Gunther’s Universal Scalability Law

● A peek at Amdahl’s Law with different notation.
● Gunther’s Universal Scalability Law adds

communication overhead.

Gunther, Neil J. A simple capacity model of massively parallel transaction systems. Int.
CMG Conference. 1993.

Proportion of work that cannot be parallelized.

Workers

Communication overhead (e.g. using shared data, invalidating caches, …)

Scalability Laws: Gunther’s Universal Scalability Law

● A peek at Amdahl’s Law with different notation.
● Gunther’s Universal Scalability Law adds

communication overhead.

Gunther, Neil J. A simple capacity model of massively parallel transaction systems. Int.
CMG Conference. 1993.

Proportion of work that cannot be parallelized.

Workers

Workers passing messages

to each othersCommunication overhead (e.g. using shared data, invalidating caches, …)

Scalability Laws: Gunther’s Universal Scalability Law

● A peek at Amdahl’s Law with different notation.
● Gunther’s Universal Scalability Law adds

communication overhead.

Gunther, Neil J. A simple capacity model of massively parallel transaction systems. Int.
CMG Conference. 1993.

Proportion of work that cannot be parallelized.

Workers

Workers passing messages

to each others

95% of work cannot be parallelized, 10 workers, 5% communication overhead
⇒ 10 / (1 + 0.95 * (10 - 1) + 0.95*0.05*(10*9))⇒ ~0.723⇒ leads to a decrease in performance

Communication overhead (e.g. using shared data, invalidating caches, …)

Scalability Laws: Gunther’s Universal Scalability Law

● A peek at Amdahl’s Law with different notation.
● Gunther’s Universal Scalability Law adds

communication overhead.

Gunther, Neil J. A simple capacity model of massively parallel transaction systems. Int.
CMG Conference. 1993.

Proportion of work that cannot be parallelized.

Workers

Workers passing messages

to each others

95% of work cannot be parallelized, 10 workers, 5% communication overhead
⇒ 10 / (1 + 0.95 * (10 - 1) + 0.95*0.05*(10*9))⇒ ~0.723⇒ leads to a decrease in performance

Communication overhead (e.g. using shared data, invalidating caches, …)

50% of work cannot be parallelized, 2 workers,

5% communication overhead

⇒ 2 / (1 + 0.5 * (2 - 1) + 0.5*0.05*(2*1))

⇒ ~1.29

⇒ leads to an increase in performance

Scalability Laws

● Reminding that scalability is not linear
○ There are parts that cannot be parallelized
○ There is communication overhead

Scalability Laws

● Reminding that scalability is not linear
○ There are parts that cannot be parallelized
○ There is communication overhead

● Reminding that parallelization is not always
an answer

○ Parallelization of a system with high communication
overhead and high proportion of parts that cannot be
parallelized can lead to decrease in performance
when compared to a single worker setup

Scalability Laws

● Reminding that scalability is not linear
○ There are parts that cannot be parallelized
○ There is communication overhead

● Reminding that parallelization is not always
an answer

○ Parallelization of a system with high communication
overhead and high proportion of parts that cannot be
parallelized can lead to decrease in performance
when compared to a single worker setup

Scalability Laws Should not always assume that distributing
work will make the work faster (although, in

practice, this is most often the case)

● Reminding that scalability is not linear
○ There are parts that cannot be parallelized
○ There is communication overhead

● Reminding that parallelization is not always
an answer

○ Parallelization of a system with high communication
overhead and high proportion of parts that cannot be
parallelized can lead to decrease in performance
when compared to a single worker setup

Scalability Laws Should not always assume that distributing
work will make the work faster (although, in

practice, this is most often the case)

Disk IO often bottleneck

● Reminding that scalability is not linear
○ There are parts that cannot be parallelized
○ There is communication overhead

● Reminding that parallelization is not always
an answer

○ Parallelization of a system with high communication
overhead and high proportion of parts that cannot be
parallelized can lead to decrease in performance
when compared to a single worker setup

Scalability Laws Should not always assume that distributing
work will make the work faster (although, in

practice, this is most often the case)

Disk IO often bottleneck

But, even that can be parallelized to some extent

● Reminding that scalability is not linear
○ There are parts that cannot be parallelized
○ There is communication overhead

● Reminding that parallelization is not always
an answer

○ Parallelization of a system with high communication
overhead and high proportion of parts that cannot be
parallelized can lead to decrease in performance
when compared to a single worker setup

Scalability Laws Should not always assume that distributing
work will make the work faster (although, in

practice, this is most often the case)

Disk IO often bottleneck

But, even that can be parallelized to some extent

See e.g. Min, C., Kashyap, S., Maass, S., & Kim, T. (2016). Understanding manycore scalability of file
systems. In 2016 USENIX Annual Technical Conference (USENIX ATC 16).

Kubernetes and PostgreSQL

Kubernetes and PostgreSQL

● When using Kubernetes and PostgreSQL, hoping to scale the database, we’d use an
operator such as Kubegres.

○ There are many operators to choose from; see e.g.
https://blog.palark.com/cloudnativepg-and-other-kubernetes-operators-for-postgresql/

https://blog.palark.com/cloudnativepg-and-other-kubernetes-operators-for-postgresql/

Kubernetes and PostgreSQL:
Example with CloudNative PG

CloudNativePG example
● Install operator:

○ kubectl apply -f
https://raw.githubusercontent.com/cloudnative-pg/cloudnative-pg/release-1.18/releases/cnpg-1.18.0.yaml

● Deploy a cluster (using slightly modified sample yaml from CloudNativePG quickstart – name: pg-cluster-example instead of
cluster-example)

○ kubectl apply -f pg-cluster-example.yaml
● Login to cluster

○ kubectl exec -ti pg-cluster-example-1 -- /bin/bash
● Launch psql

○ psql
● Adjust password

○ ALTER USER postgres WITH password 'postgres';
● Create a table “names” and add a name

○ CREATE TABLE names (name VARCHAR(255));
○ INSERT INTO names VALUES ('Mickey Mouse');

● Quit using \q, then exit
● Connect to another pod

○ kubectl exec -ti pg-cluster-example-2 -- /bin/bash
● List names

○ SELECT * FROM names;
● Quit using \q, then exit

https://cloudnative-pg.io/documentation/1.18/quickstart/

Note that in reality we’d store

passwords etc in a secret file

…and use Flyway or similar for versioning

https://raw.githubusercontent.com/cloudnative-pg/cloudnative-pg/release-1.18/releases/cnpg-1.18.0.yaml
https://cloudnative-pg.io/documentation/1.18/quickstart/

● Adjust application to use the CloudNativePG service
– apps in same cluster have environment variable
PG_CLUSTER_EXAMPLE_RW_SERVICE_HOST

● Build image
○ minikube image build -t names-api .

● Create deployment (and remember to adjust the image pull policy –
alternatively, create using a config file)

○ kubectl create deployment names-api-app --image=names-api
● Open tunnel (as root)

○ minikube tunnel
● Create a load balancer

○ kubectl expose deployment names-api-app --type=LoadBalancer --port=7777
● Find load balancer (external) IP:

○ kubectl get svc
● Access server at port

import { postgres } from "./deps.js";
const sql = postgres({
 host: Deno.env.get("PG_CLUSTER_EXAMPLE_RW_SERVICE_HOST"),
 database: "postgres",
 username: "postgres",
 password: "postgres"
});

CloudNativePG example

https://cloudnative-pg.io/documentation/1.18/quickstart/

Again, in reality we’d store passwords etc in the environment

https://cloudnative-pg.io/documentation/1.18/quickstart/

Note: Kubernetes configuration

● Typically, as separate folder in our project, e.g. kubernetes
○ Separate configuration files
○ Can still (and often do) use docker-compose for local development

● For example, for our names-api-app,
could have names-api-example.yaml
in a folder called kubernetes

● Now, deployment using
○ kubectl apply -f kubernetes/names-api-example.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: names-api-app

spec:

 replicas: 3

 selector:

 matchLabels:

 app: names-api-app

 template:

 metadata:

 labels:

 app: names-api-app

 spec:

 containers:

 - name: names-api-app

 image: names-api:latest

 imagePullPolicy: Never

 ports:

 - containerPort: 7777

If the application does not need ACID properties (i.e. BASE is
fine), sharding with e.g. MongoDB comes out of the box

(mongo is a document database – has document-level ACID)

https://www.mongodb.com/docs/kubernetes-operator/master/

https://www.mongodb.com/docs/kubernetes-operator/master/

Developing with Kubernetes?

Developing with Kubernetes?

● Often, separate docker-compose setup for local development and a separate
Kubernetes setup for staging and production

○ For kubernetes setup, see e.g. https://kustomize.io/

● Some work on tools that help development
○ See e.g. https://skaffold.dev/

● Perhaps still not yet in a situation where all development would happen with
Kuberneters – use docker compose (or similar) for local development and
Kubernetes for staging and production?

https://kustomize.io/
https://skaffold.dev/

Scalability and the Cloud

Scalability and the Cloud

Scalability and the Cloud
● So far, worked with local deployments or deployments on virtual

machines.

Scalability and the Cloud
● So far, worked with local deployments or deployments on virtual

machines.

● Cloud computing services abstract away “layers” leading to
infrastructure, platform, and applications as a service.

○ Can e.g. have multi-region application deployments with the click of a button
○ Some services have explicit APIs that one must build on, while others leverage

open standards

Scalability and the Cloud
● So far, worked with local deployments or deployments on virtual

machines.

● Cloud computing services abstract away “layers” leading to
infrastructure, platform, and applications as a service.

○ Can e.g. have multi-region application deployments with the click of a button
○ Some services have explicit APIs that one must build on, while others leverage

open standards

Servers at multiple locations

Scalability and the Cloud
● So far, worked with local deployments or deployments on virtual

machines.

● Cloud computing services abstract away “layers” leading to
infrastructure, platform, and applications as a service.

○ Can e.g. have multi-region application deployments with the click of a button
○ Some services have explicit APIs that one must build on, while others leverage

open standards

Servers at multiple locations

Infrastructure as a service

Scalability and the Cloud
● So far, worked with local deployments or deployments on virtual

machines.

● Cloud computing services abstract away “layers” leading to
infrastructure, platform, and applications as a service.

○ Can e.g. have multi-region application deployments with the click of a button
○ Some services have explicit APIs that one must build on, while others leverage

open standards

Servers at multiple locations

Infrastructure as a service

Cloud infrastructure as a service

Scalability and the Cloud
● So far, worked with local deployments or deployments on virtual

machines.

● Cloud computing services abstract away “layers” leading to
infrastructure, platform, and applications as a service.

○ Can e.g. have multi-region application deployments with the click of a button
○ Some services have explicit APIs that one must build on, while others leverage

open standards

Servers at multiple locations

Infrastructure as a service

Cloud infrastructure as a service

Cloud platform as a service

Scalability and the Cloud
● So far, worked with local deployments or deployments on virtual

machines.

● Cloud computing services abstract away “layers” leading to
infrastructure, platform, and applications as a service.

○ Can e.g. have multi-region application deployments with the click of a button
○ Some services have explicit APIs that one must build on, while others leverage

open standards

Servers at multiple locations

Infrastructure as a service

Cloud infrastructure as a service

Cloud platform as a service

Cloud application as a service

Scalability and the Cloud
● So far, worked with local deployments or deployments on virtual

machines.

● Cloud computing services abstract away “layers” leading to
infrastructure, platform, and applications as a service.

○ Can e.g. have multi-region application deployments with the click of a button
○ Some services have explicit APIs that one must build on, while others leverage

open standards

Servers at multiple locations

Infrastructure as a service

Cloud infrastructure as a service

Cloud platform as a service

Cloud application as a service

Cloud clients

Scalability and the Cloud
● So far, worked with local deployments or deployments on virtual

machines.

● Cloud computing services abstract away “layers” leading to
infrastructure, platform, and applications as a service.

○ Can e.g. have multi-region application deployments with the click of a button
○ Some services have explicit APIs that one must build on, while others leverage

open standards

● E.g. Kubernetes offered as a service by cloud providers
○ Amazon Elastic Kubernetes Service – https://aws.amazon.com/eks/
○ Google Kubernetes Engine – https://cloud.google.com/kubernetes-engine

Servers at multiple locations

Infrastructure as a service

Cloud infrastructure as a service

Cloud platform as a service

Cloud application as a service

Cloud clients

https://aws.amazon.com/eks/
https://cloud.google.com/kubernetes-engine

Scalability and the Cloud
● So far, worked with local deployments or deployments on virtual

machines.

● Cloud computing services abstract away “layers” leading to
infrastructure, platform, and applications as a service.

○ Can e.g. have multi-region application deployments with the click of a button
○ Some services have explicit APIs that one must build on, while others leverage

open standards

● E.g. Kubernetes offered as a service by cloud providers
○ Amazon Elastic Kubernetes Service – https://aws.amazon.com/eks/
○ Google Kubernetes Engine – https://cloud.google.com/kubernetes-engine

● Similarly, cloud providers offer managed databases etc..
○ Amazon databases – https://aws.amazon.com/products/databases/
○ Google Cloud databases – https://cloud.google.com/products/databases

Servers at multiple locations

Infrastructure as a service

Cloud infrastructure as a service

Cloud platform as a service

Cloud application as a service

Cloud clients

https://aws.amazon.com/eks/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/products/databases/
https://cloud.google.com/products/databases

Scalability and the Cloud
● So far, worked with local deployments or deployments on virtual

machines.

● Cloud computing services abstract away “layers” leading to
infrastructure, platform, and applications as a service.

○ Can e.g. have multi-region application deployments with the click of a button
○ Some services have explicit APIs that one must build on, while others leverage

open standards

● E.g. Kubernetes offered as a service by cloud providers
○ Amazon Elastic Kubernetes Service – https://aws.amazon.com/eks/
○ Google Kubernetes Engine – https://cloud.google.com/kubernetes-engine

● Similarly, cloud providers offer managed databases etc..
○ Amazon databases – https://aws.amazon.com/products/databases/
○ Google Cloud databases – https://cloud.google.com/products/databases

● Provided services often meeting application-specific demands, e.g.
Google Cloud Bigtable can process more than 5 billion requests per
second (per Google’s documentation)

Servers at multiple locations

Infrastructure as a service

Cloud infrastructure as a service

Cloud platform as a service

Cloud application as a service

Cloud clients

https://aws.amazon.com/eks/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/products/databases/
https://cloud.google.com/products/databases

Scalability and the Cloud

Scalability and the Cloud
● Deployment on the cloud is the de-facto standard

for software development

Scalability and the Cloud
● Deployment on the cloud is the de-facto standard

for software development
○ E.g. Heroku has been around for some 15 years

Scalability and the Cloud
● Deployment on the cloud is the de-facto standard

for software development
○ E.g. Heroku has been around for some 15 years
○ Pretty much all software development companies rely on

cloud services for deployment

Scalability and the Cloud
● Deployment on the cloud is the de-facto standard

for software development
○ E.g. Heroku has been around for some 15 years
○ Pretty much all software development companies rely on

cloud services for deployment
○ Hardware maintained by dedicated service provides, e.g.

Amazon, Google, UpCloud, …

Scalability and the Cloud
● Deployment on the cloud is the de-facto standard

for software development
○ E.g. Heroku has been around for some 15 years
○ Pretty much all software development companies rely on

cloud services for deployment
○ Hardware maintained by dedicated service provides, e.g.

Amazon, Google, UpCloud, …

● Cloud platforms have been classically billed using a
hourly rate, where the cost depends on the
resources

Scalability and the Cloud
● Deployment on the cloud is the de-facto standard

for software development
○ E.g. Heroku has been around for some 15 years
○ Pretty much all software development companies rely on

cloud services for deployment
○ Hardware maintained by dedicated service provides, e.g.

Amazon, Google, UpCloud, …

● Cloud platforms have been classically billed using a
hourly rate, where the cost depends on the
resources

○ Amazon EC2 t4g.nano instance costs 0.0042$ per hour

Scalability and the Cloud
● Deployment on the cloud is the de-facto standard

for software development
○ E.g. Heroku has been around for some 15 years
○ Pretty much all software development companies rely on

cloud services for deployment
○ Hardware maintained by dedicated service provides, e.g.

Amazon, Google, UpCloud, …

● Cloud platforms have been classically billed using a
hourly rate, where the cost depends on the
resources

○ Amazon EC2 t4g.nano instance costs 0.0042$ per hour
○ Often need for different services, e.g. computing,

database, traffic, …

Scalability and the Cloud
● Deployment on the cloud is the de-facto standard

for software development
○ E.g. Heroku has been around for some 15 years
○ Pretty much all software development companies rely on

cloud services for deployment
○ Hardware maintained by dedicated service provides, e.g.

Amazon, Google, UpCloud, …

● Cloud platforms have been classically billed using a
hourly rate, where the cost depends on the
resources

○ Amazon EC2 t4g.nano instance costs 0.0042$ per hour
○ Often need for different services, e.g. computing,

database, traffic, …
○ Platforms offer tools for cost estimates, see e.g.

■ https://cloud.google.com/products/calculator/
■ https://calculator.aws/

https://cloud.google.com/products/calculator/
https://calculator.aws/

Pokémon GO

How Pokémon GO scales to millions of requests?
https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

Pokémon Go!

https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

How Pokémon GO scales to millions of requests?
https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

Pokémon Go!

400k requests per

second to up to 1

million requests per
second

https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

How Pokémon GO scales to millions of requests?
https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

Pokémon Go!

400k requests per

second to up to 1

million requests per
second

https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

How Pokémon GO scales to millions of requests?
https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

Pokémon Go!

400k requests per

second to up to 1

million requests per
second

https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

How Pokémon GO scales to millions of requests?
https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

Pokémon Go!

400k requests per

second to up to 1

million requests per
second

https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

How Pokémon GO scales to millions of requests?
https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

Pokémon Go!

400k requests per

second to up to 1

million requests per
second

https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

How Pokémon GO scales to millions of requests?
https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

Pokémon Go!

400k requests per

second to up to 1

million requests per
second

https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

How Pokémon GO scales to millions of requests?
https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

Pokémon Go!

400k requests per

second to up to 1

million requests per
second

https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

How Pokémon GO scales to millions of requests?
https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

Pokémon Go!

400k requests per

second to up to 1

million requests per
second

https://cloud.google.com/blog/topics/developers-practitioners/how-pok%C3%A9mon-go-scales-millions-requests

Scalability and the Cloud: Serverless

Scalability and the Cloud: Serverless

● In serverless computing, the platform provider takes
care of resource allocation (i.e. servers allocated on
demand, provider takes care of scaling)

○ AWS Lambda
○ Google Cloud Functions
○ …

Scalability and the Cloud: Serverless

● In serverless computing, the platform provider takes
care of resource allocation (i.e. servers allocated on
demand, provider takes care of scaling)

○ AWS Lambda
○ Google Cloud Functions
○ …

● Billing based on use, e.g. cost per calculation second
multiplied by amount of ram consumed, cost per
request, cost per storage second

Scalability and the Cloud: Serverless

● In serverless computing, the platform provider takes
care of resource allocation (i.e. servers allocated on
demand, provider takes care of scaling)

○ AWS Lambda
○ Google Cloud Functions
○ …

● Billing based on use, e.g. cost per calculation second
multiplied by amount of ram consumed, cost per
request, cost per storage second

○ E.g. 0.000017$ per cost per calculation second multiplied by
ram consumed, 0.20$ per 1 million requests (AWS Lambda)

Scalability and the Cloud: Serverless

● In serverless computing, the platform provider takes
care of resource allocation (i.e. servers allocated on
demand, provider takes care of scaling)

○ AWS Lambda
○ Google Cloud Functions
○ …

● Billing based on use, e.g. cost per calculation second
multiplied by amount of ram consumed, cost per
request, cost per storage second

○ E.g. 0.000017$ per cost per calculation second multiplied by
ram consumed, 0.20$ per 1 million requests (AWS Lambda)

○ Services often include a free tier (e.g. AWS Lambda comes
with one million free requests per month)

Scalability and the Cloud: Serverless

● In serverless computing, the platform provider takes
care of resource allocation (i.e. servers allocated on
demand, provider takes care of scaling)

○ AWS Lambda
○ Google Cloud Functions
○ …

● Billing based on use, e.g. cost per calculation second
multiplied by amount of ram consumed, cost per
request, cost per storage second

○ E.g. 0.000017$ per cost per calculation second multiplied by
ram consumed, 0.20$ per 1 million requests (AWS Lambda)

○ Services often include a free tier (e.g. AWS Lambda comes
with one million free requests per month)

When no activity, resources scaled

to zero; can take a while to start up

– the cold start problem

Scalability and the Cloud: Serverless

● In serverless computing, the platform provider takes
care of resource allocation (i.e. servers allocated on
demand, provider takes care of scaling)

○ AWS Lambda
○ Google Cloud Functions
○ …

● Billing based on use, e.g. cost per calculation second
multiplied by amount of ram consumed, cost per
request, cost per storage second

○ E.g. 0.000017$ per cost per calculation second multiplied by
ram consumed, 0.20$ per 1 million requests (AWS Lambda)

○ Services often include a free tier (e.g. AWS Lambda comes
with one million free requests per month)

Still quite a few vendor-specific APIs –
vendor lock-in

When no activity, resources scaled

to zero; can take a while to start up

– the cold start problem

Scalability and the Cloud: Serverless

Scalability and the Cloud: Serverless

● Starting to also see serverless message queues, serverless databases, …
○ IronMQ https://www.iron.io/mq
○ Amazon SQS https://aws.amazon.com/sqs/
○ Google Cloud Pub/Sub https://cloud.google.com/pubsub
○ Amazon Aurora Serverless https://aws.amazon.com/rds/aurora/serverless/
○ DataStax AstraDB – https://www.datastax.com/
○ …

https://www.iron.io/mq
https://aws.amazon.com/sqs/
https://cloud.google.com/pubsub
https://aws.amazon.com/rds/aurora/serverless/
https://www.datastax.com/

Serverless and Knative

Serverless and Knative

● Knative https://knative.dev/ provides an abstraction over Kubernetes, allowing
Serverless applications with Kubernetes

● Two parts:
○ Knative serving – set of objects used for running services, automated scaling, etc
○ Knative eventing – a set of APIs for event-driven architecture

● Getting started tutorial at https://knative.dev/docs/getting-started/

https://knative.dev/
https://knative.dev/docs/getting-started/

Serverless and Knative: Example
● Install kn, kn quickstart, kn func

○ https://knative.dev/docs/getting-started/quickstart-install/
○ https://knative.dev/docs/getting-started/install-func/

● Run quickstart for minikube
○ kn quickstart minikube

● Create tunnel (as root) when prompted by quickstart,
then continue quickstart

○ minikube tunnel --profile knative
● Check for existence of knative cluster

○ minikube profile list
● Create a function (here, Python)

○ kn func create -l python hello-python
● Build function (need a registry name)

○ cd hello-python
○ kn func build

● Run function
○ kn func run

● Create a service based on function
○ kubectl apply -f hello-python.yaml

● Find serverless functions
○ kn service list

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

 name: hello-python

spec:

 template:

 spec:

 containers:

 - image: docker.io/username/hello-python:latest

 ports:

 - containerPort: 8080

https://knative.dev/docs/getting-started/quickstart-install/
https://knative.dev/docs/getting-started/install-func/

Serverless and Knative: Example
● Install kn, kn quickstart, kn func

○ https://knative.dev/docs/getting-started/quickstart-install/
○ https://knative.dev/docs/getting-started/install-func/

● Run quickstart for minikube
○ kn quickstart minikube

● Create tunnel (as root) when prompted by quickstart,
then continue quickstart

○ minikube tunnel --profile knative
● Check for existence of knative cluster

○ minikube profile list
● Create a function (here, Python)

○ kn func create -l python hello-python
● Build function (need a registry name)

○ cd hello-python
○ kn func build

● Run function
○ kn func run

● Create a service based on function
○ kubectl apply -f hello-python.yaml

● Find serverless functions
○ kn service list

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

 name: hello-python

spec:

 template:

 spec:

 containers:

 - image: docker.io/username/hello-python:latest

 ports:

 - containerPort: 8080

See also https://aws.amazon.com/blogs/opensource/deploying-lambda-compatible-functions-eks-triggermesh-klr/

https://knative.dev/docs/getting-started/quickstart-install/
https://knative.dev/docs/getting-started/install-func/

To cloud or not to cloud?

To cloud or not to cloud?
https://blog.back4app.com/reduce-cloud-costs/

https://www.cloudcomputing-news.net/news/2022/aug/18/almost-half-of-businesses-struggle-to-control-cloud-costs/

https://aws.amazon.com/economics/

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/cloud-cost-optimization-simulatorhttps://www.capitalone.com/software/blog/cloud-cost-optimization/

To cloud or not to cloud?
https://blog.back4app.com/reduce-cloud-costs/

https://www.cloudcomputing-news.net/news/2022/aug/18/almost-half-of-businesses-struggle-to-control-cloud-costs/

https://aws.amazon.com/economics/

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/cloud-cost-optimization-simulatorhttps://www.capitalone.com/software/blog/cloud-cost-optimization/

Reliance on cloud services at a scale requires

FinOps — https://www.finops.org/

Beyond software scalability

Beyond software scalability

Beyond software scalability

● Measuring performance, CDN, Static site generation, API First, Caching, Load
testing, Performance testing, Event-driven architecture, Message queues,
Database scaling, Docker, Kubernetes, Serverless, …

Beyond software scalability

● Measuring performance, CDN, Static site generation, API First, Caching, Load
testing, Performance testing, Event-driven architecture, Message queues,
Database scaling, Docker, Kubernetes, Serverless, …

● What about…
○ Practices?
○ Teams and technologies?
○ Implementation-level specifics?

Beyond software scalability

● Measuring performance, CDN, Static site generation, API First, Caching, Load
testing, Performance testing, Event-driven architecture, Message queues,
Database scaling, Docker, Kubernetes, Serverless, …

● What about…
○ Practices?
○ Teams and technologies?
○ Implementation-level specifics?

Design for failure? Run an extra instance of each service?

Beyond software scalability

● Measuring performance, CDN, Static site generation, API First, Caching, Load
testing, Performance testing, Event-driven architecture, Message queues,
Database scaling, Docker, Kubernetes, Serverless, …

● What about…
○ Practices?
○ Teams and technologies?
○ Implementation-level specifics?

Design for failure? Run an extra instance of each service? Backups!

Beyond software scalability

● Measuring performance, CDN, Static site generation, API First, Caching, Load
testing, Performance testing, Event-driven architecture, Message queues,
Database scaling, Docker, Kubernetes, Serverless, …

● What about…
○ Practices?
○ Teams and technologies?
○ Implementation-level specifics?

Design for failure? Run an extra instance of each service? Backups!

Building a team – what sort of development and communication practices scale?

Beyond software scalability

● Measuring performance, CDN, Static site generation, API First, Caching, Load
testing, Performance testing, Event-driven architecture, Message queues,
Database scaling, Docker, Kubernetes, Serverless, …

● What about…
○ Practices?
○ Teams and technologies?
○ Implementation-level specifics?

Design for failure? Run an extra instance of each service? Backups!

Choosing a technology – new tech for

increased hiring opportunities?

Building a team – what sort of development and communication practices scale?

Beyond software scalability

● Measuring performance, CDN, Static site generation, API First, Caching, Load
testing, Performance testing, Event-driven architecture, Message queues,
Database scaling, Docker, Kubernetes, Serverless, …

● What about…
○ Practices?
○ Teams and technologies?
○ Implementation-level specifics?

Design for failure? Run an extra instance of each service? Backups!

Choosing a technology – new tech for

increased hiring opportunities?

Building a team – what sort of development and communication practices scale?

Choosing a technology – mature and battle-tested tech for reduced maintenance costs?

Beyond software scalability

● Measuring performance, CDN, Static site generation, API First, Caching, Load
testing, Performance testing, Event-driven architecture, Message queues,
Database scaling, Docker, Kubernetes, Serverless, …

● What about…
○ Practices?
○ Teams and technologies?
○ Implementation-level specifics?

Design for failure? Run an extra instance of each service? Backups!

Choosing a technology – new tech for

increased hiring opportunities?

Building a team – what sort of development and communication practices scale?

Choosing a technology – mature and battle-tested tech for reduced maintenance costs?

Implementations matter – optimization

of slow parts is meaningful.

Beyond software scalability

● Measuring performance, CDN, Static site generation, API First, Caching, Load
testing, Performance testing, Event-driven architecture, Message queues,
Database scaling, Docker, Kubernetes, Serverless, …

● What about…
○ Practices?
○ Teams and technologies?
○ Implementation-level specifics?

Design for failure? Run an extra instance of each service? Backups!

Choosing a technology – new tech for

increased hiring opportunities?

Building a team – what sort of development and communication practices scale?

Choosing a technology – mature and battle-tested tech for reduced maintenance costs?

Implementations matter – optimization

of slow parts is meaningful.

Implementations matter – premature
optimization is the root of all evil.

Beyond software scalability

● Measuring performance, CDN, Static site generation, API First, Caching, Load
testing, Performance testing, Event-driven architecture, Message queues,
Database scaling, Docker, Kubernetes, Serverless, …

● What about…
○ Practices?
○ Teams and technologies?
○ Implementation-level specifics?

Design for failure? Run an extra instance of each service? Backups!

Choosing a technology – new tech for

increased hiring opportunities?

Building a team – what sort of development and communication practices scale?

Choosing a technology – mature and battle-tested tech for reduced maintenance costs?

Implementations matter – optimization

of slow parts is meaningful.

Implementations matter – premature
optimization is the root of all evil. GitOps?

Beyond software scalability

● Measuring performance, CDN, Static site generation, API First, Caching, Load
testing, Performance testing, Event-driven architecture, Message queues,
Database scaling, Docker, Kubernetes, Serverless, …

● What about…
○ Practices?
○ Teams and technologies?
○ Implementation-level specifics?

Design for failure? Run an extra instance of each service? Backups!

Choosing a technology – new tech for

increased hiring opportunities?

Building a team – what sort of development and communication practices scale?

Choosing a technology – mature and battle-tested tech for reduced maintenance costs?

Implementations matter – optimization

of slow parts is meaningful.

Implementations matter – premature
optimization is the root of all evil. GitOps? Security?

Beyond software scalability

● Measuring performance, CDN, Static site generation, API First, Caching, Load
testing, Performance testing, Event-driven architecture, Message queues,
Database scaling, Docker, Kubernetes, Serverless, …

● What about…
○ Practices?
○ Teams and technologies?
○ Implementation-level specifics?

Design for failure? Run an extra instance of each service? Backups!

Choosing a technology – new tech for

increased hiring opportunities?

Building a team – what sort of development and communication practices scale?

Choosing a technology – mature and battle-tested tech for reduced maintenance costs?

Implementations matter – optimization

of slow parts is meaningful.

Implementations matter – premature
optimization is the root of all evil. GitOps? Security? Monitoring?

Third Course Project

Third Course Project

● In the third course project, your task is to create a Jodel-like messaging
application. The application should feature:

○ A main page with a list of twenty most recent messages sorted by their posting time, a textarea
into which a new message can be written, and a button that can be used to add the message.

○ Similar to the second course project, there is no registration functionality. The user is identified
through a random user token that is generated on opening the application for the first time. The
user token is stored in localstorage and is used to identify the user in the future.

○ In the list of messages, each message has a text and the time when the message was posted.

○ Clicking on a message in the message list opens the message. Opening a message shows
replies to the message and allows writing a reply to the message.

○ A database for storing messages and replies to the messages.

○ A set of Kubernetes configuration files with autoscaling and a database operator that can be
used to deploy the application to Kubernetes.

Third Course Project - Passing Requirements
● A working Jamstack-like implementation returned in a format that allows running it

easily locally on Windows, Linux and Mac (i.e. a docker-compose configuration or
similar for running the application).

○ Recommended: Separate docker services for client and server. Can have more services (and should
have as e.g. a database is needed).

● Kubernetes configuration files that allow deploying the application into a Kubernetes
cluster. The application needs to have functionality that scales application servers on
demand. The database configuration also needs to scale (use e.g. CloudNative PG).

● Performance tests (e.g. with K6) for the application testing the main page and the
message page with and without adding a message or a reply to a message. In the
tests, record the average requests per second and the median, 95th percentile, and
99th percentile HTTP request duration. Run the tests with a sensible number of
concurrent users for 10 seconds.

● Lighthouse Performance score of at least 70/100 for the pages.

● Summary report.

Third Course Project - Passing Requirements / Report

● A markdown-formatted document (no binary content) with:

○ Brief guidelines for running the application (and performance tests if they have
been ran with scripts).

○ Guidelines for deploying the application on Kubernetes (e.g. minikube);
guidelines can include also e.g. steps needed to create a database table and
to set database credentials.

■ Guidelines must not assume that the user uses the kubernetes
dashboard!

○ Lighthouse Performance results.

○ A brief reflection (5-10 sentences) on the present performance of the
application.

○ A brief list of suggestions (5-10 sentences) for improving the performance of
the application.

Third Course Project - Passing With Merits

● In addition to fulfilling the passing requirements:

○ Scrolling down on the main page retrieves more messages, twenty at a time.

○ Each message has a score and the possibility to upvote or downvote the message.
■ Upvoting or downvoting the message changes the score.
■ Votes are stored in the database.

○ In case of new messages, replies, or up or downvotes, shown content is updated.
■ If the user is on the main page, new messages are added to the shown list of

messages.
■ If the user is on the main page, incoming up or downvotes change the score of the

specific message.
■ If the user is on a message page, new replies to that message are added to the

shown list of replies.
■ Note! This must work also in the situation where there are multiple application

server pods. Consider using a separate messaging service to achieve the desired
outcome.

○ Lighthouse Performance score at least 80/100 for the pages.

Future.. WebAssembly?

