
ELEC-E8101 Digital and Optimal Control

1. A constant variable x is measured through two different sensors. However, the measurements
are noisy and have different accuracy. Assume the system is described by

x[k + 1] = x[k]

y[k] = Cx[k] + e[k]

where CT = [1 1] and e[k] is zero-mean, white-noise vector with the covariance matrix

R2 =

[
1 0
0 9

]
Estimate x as

x̂[k] = a1y1[k] + a2y2[k]

Determine constant a1 and a2 such that the mean value of the prediction error is zero and
such that the variance of the prediction error is as low as possible. Compare the minimum
variance with the cases when only one of the measurements is used.

Solution. First, we want the mean value of the prediction error to be zero. This means that
the correct mean value should be predicted

E{x[k]} − E{x̂[k]} = 0⇒ E{x[k]} = a1CE{x[k]}+ a2CE{x[k]} ⇒ a1 + a2 = 1 (1)

Next, we want to minimize the variance which is given by (e[k] = [e1[k] e2[k]]T )

V = E{(x[k]− x̂[k])2} = E{(x[k]− a1x[k]− a1e1[k]− a2x[k]− a2e2[k])2}
= E{(1− a1 − a2)2︸ ︷︷ ︸

=0

x− 2(1− a1 − a2)x(−a1 e1︸︷︷︸
E{}=0

−a2 e2︸︷︷︸
E{}=0

) + (a21e
2
1 + a22e

2
2 + 2a1a2 e1e2︸︷︷︸

E{}=0
since R12=0

)}

= a21 + 9a22 = a21 + 9(1− a1)2 = 10a21 − 18a1 + 9

This can also be obtained more easily by using the properties of variance. For time-varying
and x[k] and y[k] and a constant a we have

var{x[k] + y[k]} = var{x[k]}+ var{y[k]}
var{ax[k]} = a2var{x[k]}

var{a} = 0

The variance of the estimation error is

V = var{x[k]− x̂[k]} = var{x[k]− a1x[k]− a1e1[k]− a2x[k]− a2e2[k]}
= var{(1− a1 − a2)x[k]}+ a21var{e1}+ a22var{e2}
= a21 + 9a22 = a21 + 9(1− a1)2 = 10a21 − 18a1 + 9

Exercise 11 - Solutions



Note that from the system equations we have that x[k] is also constant and thus the first
term in the second line would have been zero even if 1− a1 − a2 was non-zero.

To find a1 which minimizes this we take the derivative of V with respect to a1 and set it to
zero

20a1 − 18 = 0⇒ a1 = 0.9

and from (1) we get a2 = 0.1. As a result, the estimator is

x̂[k] = 0.9y1[k] + 0.1y2[k]

and the minimum variance is 0.9. Using only y1 gives the variance 1 and only y2 results in
variance 9. Therefore, using the combination of both measurements gives a lower variance.



2. A stochastic process is generated as

x[k + 1] = 0.5x[k] + v[k]

y[k] = x[k] + e[k]

where v and e are uncorrelated white-noise processes with covariances r1 and r2, respectively.
Further, x[0] is normally distributed with zero mean and standard deviation σ.

a) Determine the Kalman filter for the system.

b) What is the gain in steady state?

Solution. Consider the following process:

x[k + 1] = Φx[k] + Γu[k] + v[k]

y[k] = Cx[k] + e[k]

where v and e are discrete-time Guassian white-noise processes with zero mean and

E{v[k]vT [k]} = R1

E{e[k]vT [k]} = R12

E{e[k]eT [k]} = R2

Furthermore assume that the initial state x[0] ∼ N (m0, R0), i.e., x[0] is Gaussian distributed
with

E{x[0]} = m0 E{x[0]xT [0]} = R0

Let the estimator have the form

x̂[k + 1] = (Φ−K[k]C)x̂[k] + Γu[k] +K[k]y[k]

where the estimator’s gain is time-varying. Then, the reconstruction error x̃ = x − x̂ is
governed by

x̃[k + 1] = (Φ−K[k]C)x̃[k] + v[k]−K[k]e[k]

With Kalman filter, K[k] is determined such that the variance of the estimation error, i.e.,
P (k) = E

{
(x̃[k]− E{x̃[k]})(x̃[k]− E{x̃[k]})T

}
, is minimized and the equations for calculating

K[k] and the resulting P [k] are given in the lecture.

Here, v and e are uncorrelated which means that R12 = 0. As a result,

K[k] = ΦP [k]CT (R2 + CP [k]CT )−1 (2)

P [k + 1] = ΦP [k]ΦT +R1 − ΦP [k]CT (R2 + CP [k]CT )−1CP [k]ΦT (3)

a) We are dealing with a scalar system with R1 = r1 and R2 = r2. Direct substitution in
(2) gives

K[k] = (0.5)P [k](1)T (r2 + (1)P [k](1)T )−1 =
0.5P [k]

r2 + P [k]
(4)



where P [k] is given by (3)

P [k + 1] = (0.5)2P [k] + r1 − (0.5)2P 2[k](r2 + P [k])−1 =
r1r2 + (0.25r2 + r1)P [k]

r2 + P [k]
(5)

where the filter is initiated with P [0] = R0 which in this case is P [0] = σ2.

b) In steady state, from (5) we have

P =
r1r2 + (0.25r2 + r1)P

r2 + P

This leads to a quadratic equation (P 2+(0.75r2−r1)P−r1r2 = 0) which could be solved
if r1 and r2 were known and the positive solution is the steady-state error covariance
but that’s not what we are interested in here. The corresponding steady-state gain from
(4) is found to be

K =
0.5P

r2 + P




