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Intended Learning Outcomes

After this lecture, you will be able to:
@ describe the basic idea of particle filtering,

@ explain the three steps in particle filtering: simulation,
weighting, resampling,

@ identify the differences between Kalman filtering and
particle filtering.
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Recap: Extended Kalman Filter
@ Model approximation:
Xp = f(Xp_1) +Qn =~ f()A(n—1|n—1) + Fx(Xp—1 — )A(n—1|n—1) +an
Yn= g(x,,) +rh~ g(ﬁn|nf1) + GX(xn - ﬁn|nf1) +rn
@ Prediction:
ﬁn|n—1 = f(ﬁn—1\n—1)a
Prin—1 = FxPr_1jn_1F} + Qn,
@ Measurement update:
Kn= Pn|n—1G-)|;(GXPn|n—1G-Ix— + Rn)_1a

Xnin = Xpjn—1 + Kn(Yn — 9(Xpn—1)),
Pn\n = Pn|n—1 - Kn(GxPn|n_1GI + Rn)KE-
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Recap: Unscented Kalman Filter
@ Uses a nonlinear transformation of deterministic sampling
points
@ Prediction:
o Calculate the sigma-points using X,_1|,—1 and P,_1,_1
o Propagate the sigma-points x/, = f(x/,_,)
o Calculate the mean and covariance Xpn_1, Ppjn_1
@ Measurement update:
o Calculate the sigma-points using X,,—1 and Pp,_4
o Propagate the sigma-points y/, = g(x})
e Calculate the mean and covariance E{y, | Y1.n-1},
Cov{yn | Y1:n—1}, Cov{Xn,¥n [ Y1:n-1}
Perform the Kalman filter measurement update:
K, = COV{xnayn | y1:n71}C0V{yn ‘ Yi:n—1 }_17
Xnin = Xpjn—1 + Kn(Yn — E{Yn | Y1:n-1}),

|:’n|n = F,n|n—1 — Ky Covi{yn | V1:n—1}KI~
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Discrete-Time Nonlinear State-Space Model

@ Discrete-time nonlinear state-space model:

Xp =f(Xp-1) +Qn
Yn=9d(Xn) +Fn
@ Process noise: g, ~ p(dn)

@ Measurement noise: r, ~ p(rn)
@ Initial state: xo ~ p(Xo)

This is a stochastic process, each realization of
the state sequence x4, Xo, ..., X, is different
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Example: Random Walk Process (1/2)

@ Dynamic model:

Xn = Xp—1 + Qn
XONN(Oa1)
quN(Oa1)
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Example: Random Walk Process (2/2)

@ Only one realization of the process is observed
@ Measurement model:

Yn=Xn+TIn
rnNN(O,1)
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Particle Filtering: Idea

Prediction

@ Given: Simulated states x{7_1 G=1,...,J)

@ Simulate from t,_1 to t, to obtain xf,'7 G=1,...,J)

Measurement Update

@ Evaluate how well x/,'7 explainsy, (j=1,...,J)
@ Assign aweight whtox, (j=1,...,J)
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Prediction: Simulation

@ Intuitive way: Use the dynamic model to simulate one time

step

Xp = f(Xp—1) +dn

@ Two step procedure:

@ Sample g, ~ p(an), ,
@ Calculate x), = f(x,_,) + qh.
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Measurement Update: Importance Weights

@ Weights W{, indicate the relevance of each sample
@ Importance weights:

o High weight w}: Explains y, well

e Low weight w),: Explains y, poorly

e Should sum to one:

@ Cost function gives low values for good estimates of x,
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Measurement Update: Likelihood (1/2)
@ Measurement model:

Yn=9(Xn) +Fn
rn~ p(rp)

@ r,is a random variable = y, is a random variable too

@ y, must have a probability density function (pdf)

@ Given x,, the pdf for y, is the same as for r, but shifted by
g(xn)

@ The pdf for y, given x, is called the likelihood

Yn ~ P(Yn | Xn)
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Measurement Update: Likelihood (2/2)

@ The likelihood is a suitable measure for the importance
weights w),

@ The non-normalized weights are then:
W) = p(Yn | Xh).

@ Normalization:
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Example: Gaussian Likelihood (1/2)

@ Measurement model:
Yn=9(Xn) +rn
@ The measurement noise is often (assumed) Gaussian:
p(rn) = N(rn; 0, Rn)
@ Then, the likelihood is Gaussian too:

p(Yn | Xn) = N(Yn; 9(Xn), Rn).
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Example: Gaussian Likelihood (2/2)

@ Example: Scalar case with

Yn=90(Xn) + n
rn ~ N(0, Ur)
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Point Estimates

@ Moments of the state can be calculated using weighted
sums of the weighted samples

@ Mean:
J . .
& J
xn|n - Z an/n
j=1
@ Covariance:

J
Poin = Z wh(Xp — )A(n|n)(xln - )A(n\n)T-
j=1
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Summary: Sequential Sampling and Weighing

@ Initialization: Sample J particles:
X}y ~ P(Xo)
@ Prediction: Sample q{, and propagate particles:
ah ~ p(an)
X = f(x;) + an

@ Measurement update: Calculate and normalize the particle
weights:

Wh = p(yn | Xh)

W

J _
Wn= —7 =
> i Wh
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Example: Random Walk Process

@ State-space model:

Xn = Xp—1 + Qn
Yn=Xn+"In
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Resampling (1/2)

@ Problem: The particles diverge after a few samples
@ Resampling:
e Remove samples with low weights

o Replicate samples with high weights
e Samples should be represented proportional to their weight:

| WhJ]

@ Equivalent interpretation

Pr{%), = Xh} = wi,
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Resampling (2/2)
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Bootstrap Particle Filter

Algorithm 1 Bootstrap Particle Filter (Gaussian Noises)

1: Initialize: x, ~ A'(mo,Po) (= 1,...,J)
2: forn=1,2,... do

3 forj=1,2,...,Jdo
4 Sample: g, ~ N (0,Q) ‘ ‘
5: Propagate the state: x/, = fx! )+ q’,,.
6 Calculate the weights: W}, = N (Yn; 9(X}), Rn)
7 end for
8 Normalize the importance weights (j = 1,...,J)
7l
j_ _ Wn
Wn = =5
Zi:1 Wn
9: Calculate the mean x,,|n and covariance P,
10:  Resample such that Pr{X, = x/,} = w/,
11: end for



Example: Random Walk

@ State-space model:

Xn = Xp—1 + Qn
Yn=Xn+"In
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Example: Object Tracking (1/3)

@ Quasi-constant turn model:

pX(t) v(t) cos((t)) 00
Pt _ | v(t)sin(e(1)) 00
W) | = 0 11 oW
(1) 0 0 1
@ Range (distance) measurements:
IPn — Pj]|
B lPn — P3|
n — . n
IPn — PXI
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Example: Object Tracking (2/3)
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Example: Object Tracking (3/3)
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Summary

@ The particle filter uses a set of random samples to
estimate the state

@ During prediction, the samples are simulated from f,_4 to t,

@ The bootstrap particle filter uses the dynamic model to
simulate the samples

@ The measurement update evaluates the likelihood to
assign an importance weight to each sample

@ Resampling is used to mitigate particle degeneracy

@ Particle filtering is a universal approach equally applicable
to linear and nonlinear system

@ It can be shown that particle filters are asymptotically
(J — oo) optimal in many cases
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