Remember to write your name and student number on the solutions you return. And note that this sheet has a second page! You are not allowed to use a calculator, tables or notes.
Every problem carries an equal weight. Similarly, every part of a problem carries an equal weight.
Explain the reasoning behind your solutions, do not just write the final result.

Problem 1 Compute the following limits:
(a) $\lim _{x \rightarrow 0} \frac{(\cos x)^{2}+x^{2}-1}{x^{4}}$
(b) $\lim _{x \rightarrow 0} \frac{e^{3 x}-\sin (3 x)-1}{\ln (1-2 x)}$.

Problem 2 Consider the function $f(x)=(\sin (\cos x))^{2}+(\cos (\cos (x)))^{2}$.
a) Compute the derivative of f using only famous derivatives and differentiation rules, without using trigonometric formulas.
b) What does this tell you about the function f ? What is its value?

Problem 3 Compute the integrals
(a) $\int x^{2} \sin x d x$
(b) $\int_{0}^{\sqrt{8}} \frac{x^{3}}{\sqrt{x^{2}+1}} d x$.

Problem 4 Find all the solutions to $y^{\prime}+2 y=3$.
Problem 5 Consider the function $f(x)=\frac{\sin (2 x)}{16}$.
a) Compute the third Taylor polynomial P_{3} for f about $a=\pi / 2$.
b) If you approximate $f\left(\frac{\pi}{2}+1\right)$ with $P_{3}\left(\frac{\pi}{2}+1\right)$, is the error smaller than $\frac{1}{20}$? Explain why.

Problem 6 Consider the function $f(x)=\frac{e^{x}-2}{1-e^{x}}$.
a) For what values of x is the function defined? Compute the limits

$$
\lim _{x \rightarrow-\infty} f(x), \quad \lim _{x \rightarrow+\infty} f(x),
$$

and at the points a where f is not defined, compute

$$
\lim _{x \rightarrow a^{-}} f(x), \quad \lim _{x \rightarrow a^{+}} f(x) .
$$

b) Compute the first derivative of f and study its sign: where is it positive, negative, zero? Where does f increase/decrease?
c) Compute the second derivative of f and study its sign: where is it positive, negative, zero? Where is f convex (happy)/concave (sad)?
d) Use the information above to sketch the graph of f.

Formulas.

$$
\begin{array}{rlrl}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+O\left(x^{n+1}\right) & & \text { as } x \rightarrow 0 \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+O\left(x^{2 n+2}\right) & & \text { as } x \rightarrow 0 \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+O\left(x^{2 n+3}\right) & & \text { as } x \rightarrow 0 \\
\ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n+1} \frac{x^{n}}{n}+O\left(x^{n+1}\right) & & \text { as } x \rightarrow 0 \\
\sin (\pi) & =0=1+\cos (\pi) & \\
\frac{d}{d x} \sqrt{x} & =\frac{1}{2 \sqrt{x}} & &
\end{array}
$$

