
Differential and Integral Calculus 1 - MS-A0111
Orlich

Solutions to the exam
October 19, 2022

PROBLEM 1 Compute the following limits:

(a) lim
x→0

(cosx)2 + x2 − 1

x4
(b) lim

x→0

e3x − sin(3x)− 1

ln(1− 2x)
.

SOLUTION.
(a) Let us use the Taylor formulas provided on the exam sheet. For
x→ 0, we may write

cosx = 1− x2

2
+
x4

24
+O(x6),

so that

(cosx)2 =
(
1− x2

2
+
x4

24
+O(x6)

)2
= 1− x2 + 2

x4

24
+
x4

4
+O(x6)

= 1− x2 + x4

3
+O(x6),

where in the last two steps we collected as a single O(x6) all the terms
that go to zero at least as fast as x6. When doing this in the given limit,
we get

lim
x→0

(cosx)2 + x2 − 1

x4
= lim

x→0

1− x2 + x4

3
+O(x6) + x2 − 1

x4

= lim
x→0

x4

3
+O(x6)

x4

= 1/3.

(b) By plugging 3x instead of x in the formulas on the exam sheet, we
get

e3x = 1 + 3x+
(3x)2

2
+O(x3) and sin(3x) = 3x−O(x3),
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as x→ 0. Similarly, with −2x instead of x we have

ln(1− 2x) = −2x+O(x2),

as x→ 0. Thus for the given limit we get

lim
x→0

e3x − sin(3x)− 1

ln(1− 2x)
= lim

x→0

1 + 3x+ (3x)2

2
+O(x3)− (3x−O(x3))− 1

−2x+O(x2)

= lim
x→0

9
2
x2 +O(x3)

−2x+O(x2)

= lim
x→0

9
2
x+O(x2)

−2 +O(x)
.

For x → 0, the numerator tends to zero and the denominator to −2,
hence the limit is equal to zero.

COMMENTS. There were other ways of computing these limits, for
instance by remembering some famous ones or using L’Hopital’s rule.
In the approach with Taylor polynomials, a recurring mistake was in
taking the square in the first limit. Remember that O(xn) is O(x6) for
any n ≥ 6, and that the sum of several functions all of which are O(x6)
is itself O(x6). So when you have something like

O(x6) +O(x8) +O(x9),

you can simply write it all as O(x6).

2



PROBLEM 2 Consider the function f(x) = (sin(cos x))2 + (cos(cos(x)))2.

a) Compute the derivative of f using only famous derivatives and
differentiation rules, without using trigonometric formulas.

b) What does this tell you about the function f? What is its value?

SOLUTION.
(a) By the Chain Rule (and by the fact that the derivative of a sum of
functions is the sum of the respective derivatives), we find

f ′(x) = −2 sin(x) cos(cos(x)) sin(cos(x)) + 2 sin(x) cos(cos(x)) sin(cos(x))

= 0.

(b) The fact that the derivative of a continuous function is zero tells us
that the function is constant. The value is then the same for any input
number, so if we pick for instance x = π/2, which gives cos(π/2) = 0, we
find

f(π/2) = sin(0)2 + cos(0)2

= 02 + 12

= 1.
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PROBLEM 3 Compute the integrals

(a)
∫
x2 sinx dx (b)

∫ √8
0

x3√
x2 + 1

dx.

SOLUTION.
(a) We may differentiate by parts twice:∫

x2 sinx dx = −x2 cosx+
∫

2x cosx dx

= −x2 cosx+
[
2x sinx−

∫
2 sinx dx

]
= −x2 cosx+ 2x sinx+ 2 cosx+ C,

for C ∈ R.
(b) Notice that in the interval [0,

√
8] the functions we consider are

non-negative. So it makes sense to take only non-negative results of
a square root. We perform the substitution u =

√
x2 + 1, which yields

du = 2x√
x2+1

dx, and x2 = u2 − 1, hence

∫ √8
0

x3√
x2 + 1

dx =

∫ √8
0

x2

2

2x√
x2 + 1

dx

=

∫ 3

1

u2 − 1

2
du

=
1

2

(u3
3
− u
)∣∣∣3

1

= 20/3.
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PROBLEM 4 Find all the solutions to y′ + 2y = 3.

SOLUTION. There are at least four ways of solving this problem, based
on what was shown in the course: recall the formula for the general so-
lution and take it for granted; use the method of the integrating factor;
use the variation of parameter; observe that this is a separable equa-
tion. Denote µ(x) = 2x, an antiderivative of the function p(x) = 2. And
denote q(x) = 3. Here we just use the general formula and separate the
variables.

a) Take the general formula for granted. We saw in two different
ways that the general solution for such a DE is

y(x) = e−µ(x)
∫
eµ(x)q(x) dx,

which in this case gives

y(x) = e−µ(x)
∫
eµ(x)q(x) dx

= e−2x
∫
e2x · 3 dx

= e−2x
3

2
(e2x + C) (∗)

=
3

2
+ Ce−2x,

where C can be any real number.

b) Separating the variables. You can also observe that this is a sepa-
rable equation: you may write dy

dx
+ 2y = 3 and separate

1

3− 2y
dy = dx.

Taking the integral on both sides yields

− ln |3− 2y| = x+ C,

so that |3 − 2y| = e−x+C , which means that 3 − 2y = ±e−x+C =
±e−xeC = C ′e−x, where we simply rename C ′ = ±eC , which can be
any nonzero real number, but in case C ′ = 0 we still get a solution.
So to conclude

y =
1

2
(3 + C ′e−x).
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COMMENTS. The most popular solutions were by far separating the
variables or recalling the general formula. The most frequent mistakes:

• forgetting the absolute value, or the ±

• recalling the wrong formula, for instance with wrong operations,
like a sum instead of a product: y(x) = e−µ(x)+

∫
eµ(x)q(x) dx, or

also y(x) = e−µ(x)+
∫
(eµ(x)+q(x)) dx

• in step (∗) in method a), many forgot the integrating constant C.
This gives just one single solution for our DE, although there is
an infinite amount of solutions.

• In the step following (∗) in method a), many forgot to multiply the
constant C by e−2x, which resulted in solutions of the form 3

2
+ C.

NB: In general, you can always check whether you got some right so-
lutions for an equation: you plug them inside it, and you see if they
satisfy it!
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PROBLEM 5 Consider the function f(x) = sin(2x)
16

.

a) Compute the third Taylor polynomial P3 for f about a = π/2.

b) If you approximate f(π
2
+ 1) with P3(

π
2
+ 1), is the error smaller

than 1
20

? Explain why.

SOLUTION.
(a) The third Taylor polynomial is

P3(x) =
3∑
i=0

f (k)(π/2)

k!
(x− π/2)k

=
f (0)(π/2)

0!
(x− π/2)0 + f (1)(π/2)

1!
(x− π/2)1 + f (2)(π/2)

2!
(x− π/2)2

+
f (3)(π/2)

3!
(x− π/2)3.

The derivatives of the given function are

f (0) = f f ′(x) =
cos(2x)

8
f ′′(x) = −sin(2x)

4
f ′′′(x) = −cos(2x)

2
.

Taking their values at π/2, as written in the formulas on the exam
sheet, one gets

f(π/2) = 0 f ′(π/2) = −1

8
f ′′(x) = 0 f ′′′(x) =

1

2
,

so that the Taylor polynomial is

P3(x) = −
1

8
(x− π/2) + 1

2 · 3!
(x− π/2)3.

(b) One could solve this part by recalling the error formula, which says
that for any given x, the error is equal to

f(x)− P3(x) =
f (4)(s)

4!
(x− π/2)4,

where s is some number between π/2 and x. Since the x we are interes-
ted in is x = π

2
+ 1, in this case the formula says that the error is equal

to
f (4)(s)

4!
· (π/2 + 1− π/2)4 = f (4)(s)

4!
=
f (4)(s)

24
,
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where s is some number between π
2

and π
2
+ 1. The fourth derivative of

f is f (4)(x) = sin(x), which means that for any possible value of s, we
have −1 ≤ f (4)(s) ≤ 1, but then we also have

− 1

20
≤ − 1

24
≤ f (4)(s)

24
≤ 1

24
≤ 1

20
.

So the answer is yes.

Alternatively, without using the error formula, one could simply re-
member that the error for value x is defined as f(x)− P3(x), and write
this explicitly for x = π

2
+ 1:

f(
π

2
+ 1)− P3(

π

2
+ 1) =

sin(π + 2)

16
+

1

8
− 1

2 · 3!

= (1/4)
3 sin(π + 2) + 6− 4

12

=
3 sin(π + 2) + 2

48
.

So one could show directly that the error is smaller than 1/20 by showing
that it is smaller than 1/24, which is the same as showing that −2 ≤
3 sin(π+2)+2 ≤ 2. This is true because π+2 is between π and 2π, where
the value of the sine is between −1 and 0.
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PROBLEM 6 Consider the function f(x) = ex−2
1−ex .

a) For what values of x is the function defined? Compute the limits

lim
x→−∞

f(x), lim
x→+∞

f(x),

and at the points a where f is not defined, compute

lim
x→a−

f(x), lim
x→a+

f(x).

b) Compute the first derivative of f and study its sign: where is it
positive, negative, zero? Where does f increase/decrease?

c) Compute the second derivative of f and study its sign: where is it
positive, negative, zero? Where is f convex (happy)/concave (sad)?

d) Use the information above to sketch the graph of f .

SOLUTION.
(a) The function is defined when the denominator is different from zero,
that is, for x 6= 0. The limits at infinity are

lim
x→−∞

ex − 2

1− ex
=
−2
1

= −2,

since limx→−∞ e
x = 0, and

lim
x→−∞

ex − 2

1− ex
= lim

x→∞

ex(1− 2
ex
)

ex( 1
ex
− 1)

= lim
x→∞

1− 2
ex

1
ex
− 1

=
1

−1
= −1,

since limx→+∞ e
x = +∞. For the limits at 0, observe that for x > 0 the

value of 1 − ex is slightly less than zero, so that it has negative sign,
and for x < 0 the value of 1− ex is slightly greater than zero. But for x
very close to zero, regardless of the side, ex− 2 is close to −1, so its sign
is negative. Hence we get

lim
x→0−

ex − 2

1− ex
= −∞ and lim

x→0+

ex − 2

1− ex
= +∞.

(b) The derivative is

f ′(x) =
ex(1− ex)− (ex − 2)(−ex)

(1− ex)2

=− ex

(1− ex)2
.
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Both numerator and denominator are positive, wherever f is defined.
So the sign is always negative because of the minus sign in front. This
means that f is always decreasing.
(c) The second derivative is

f ′′(x) = −e
x(1− ex)2 − ex2(1− ex)(−ex)

(1− ex)4

= −e
x(1− 2ex + e2x + 2ex − 2e2x)

1− ex)4

= −e
x(1− ex)(1 + ex)

(1− ex)4

= −e
x(1 + ex)

(1− ex)3

=
ex(1 + ex)

(ex − 1)3
.

The numerator is always positive, and the denominator changes sign
when ex − 1 does, which happens around x = 0. For x > 0, one has
f ′′(x) > 0, and instead f ′′(x) < 0 for x < 0. This means that for x > 0
the graph is happy and for x < 0 the graph is sad.
(d) Based on all of the above, the following is a sketch of the function’s
graph:
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