31C01100 - Taloustieteen matemaattiset menetelmät - Mathematics for Economists
 Aalto University - Fall 2021
 Instructor: Michele Crescenzi

Final Exam, 16.12.2021
Suggested Answers

Instructions:

- The exam has 4 questions. You must answer all parts of all questions
- Please write as clearly as you can
- Explain your reasoning. You don't have to give lengthy explanations for what you do, but I should be able to see how you justify the key steps in your answers

Question 1 [28 points]

Consider the following constrained maximization problem:

$$
\begin{aligned}
\max _{x, y} & x^{2}-a y \\
\text { s.t. } & 4 x^{2}+4 y^{2}=a^{2},
\end{aligned}
$$

where $a>0$ is a parameter. Note that a solution to this problem exists by Weierstrass's Theorem.

1. [5 points] Show that the non-degenerate constraint qualification (NDCQ) is satisfied at every point of the constraint set.
2. [7 points] Form the Lagrangian function and find all its critical points.
3. [10 points] Find all the solutions of this maximization problem. [Hint: You don't need to check second-order conditions.]
4. [6 points] Suppose a is changed to $a+\epsilon$, where $\epsilon>0$. Use the envelope theorem to estimate the corresponding change in the problem's value function.

Solution

Call $h(x, y):=4 x^{2}+4 y^{2}$. We have that $\frac{\partial h}{\partial x}=\frac{\partial h}{\partial y}=0$ only at the point $(0,0)$. Since $(0,0)$ does not belong to the constraint set, the NDCQ is satisfied. The Lagrangian is

$$
L=x^{2}-a y-\lambda\left(4 x^{2}+4 y^{2}-a^{2}\right) .
$$

The critical points of L are found by solving the following system:

$$
\begin{align*}
2 x-8 \lambda x & =0 \tag{1}\\
-a-8 \lambda y & =0 \tag{2}\\
4 x^{2}+4 y^{2}-a^{2} & =0 \tag{3}
\end{align*}
$$

It follows from (1) that $x=0$ or $\lambda=\frac{1}{4}$. Suppose $x=0$. It follows from (3) that $y=\frac{a}{2}$ or $y=-\frac{a}{2}$. If $y=\frac{a}{2}$, then $\lambda=-\frac{1}{4}$ by (2). Similarly, if $y=-\frac{a}{2}$, then $\lambda=\frac{1}{4}$ by (2). Now suppose $\lambda=\frac{1}{4}$. It follows from (2) that $y=-\frac{a}{2}$, which implies $x=0$ by (3). In sum, there are two critical points:

$$
\left(0, \frac{a}{2},-\frac{1}{4}\right) \quad \text { and } \quad\left(0,-\frac{a}{2}, \frac{1}{4}\right) .
$$

Since we know that a solution exists, it must be a critical point of the Lagrangian. Evaluating the objective function $f(x, y):=x^{2}-a y$ at the two critical points yields

$$
f\left(0, \frac{a}{2}\right)=-\frac{a^{2}}{2}<\frac{a^{2}}{2}=f\left(0,-\frac{a}{2}\right),
$$

from which we conclude that $\left(0,-\frac{a}{2}\right)$ is the unique solution.
Finally, the change in the parameter a is $d a=\epsilon$. By the envelope theorem,

$$
\begin{aligned}
d f\left(x^{*}, y^{*}\right) & =\frac{\partial L}{\partial a}\left(x^{*}, y^{*}, \lambda^{*}\right) d a \\
& =\left(-y^{*}+2 a \lambda^{*}\right) d a \\
& =\left(\frac{a}{2}+\frac{a}{2}\right) \epsilon \\
& =a \epsilon
\end{aligned}
$$

Question 2 [22 points]

Consider the following constrained maximization problem:

$$
\begin{array}{cc}
\max _{x, y} & -x^{2}-y^{2}+x y+7 \\
\text { s.t. } & 4 x+9 y \leq 0 \\
& x \leq 4 \tag{5}
\end{array}
$$

Note that the problem's objective function is concave and both constraints are linear.

1. [7 points] Form the Lagrangian function and write all the first order conditions.
2. [15 points] Find all the solutions of this maximization problem. [Hint: A possible way to proceed is the following. First, show that (5) must be slack. Then, show that (4) must be binding.]

Solution

Since the objective function is concave and the constraints linear, first order conditions are necessary and sufficient to identify all the solutions to the maximization problem. The Lagrangian is

$$
L=-x^{2}-y^{2}+x y+7-\mu_{1}(4 x+9 y)-\mu_{2}(x-4)
$$

The first order conditions are

$$
\begin{align*}
-2 x+y-4 \mu_{1}-\mu_{2} & =0 \tag{6}\\
-2 y+x-9 \mu_{1} & =0 \tag{7}\\
\mu_{1}(4 x+9 y) & =0 \tag{8}\\
\mu_{2}(x-4) & =0 \tag{9}\\
4 x+9 y & \leq 0 \tag{10}\\
x & \leq 4 \tag{11}\\
\mu_{1}, \mu_{2} & \geq 0 . \tag{12}
\end{align*}
$$

Suppose (5) is binding, i.e. $x=4$. It follows from (10) that $y \leq-\frac{16}{9}<0$. But (6) implies $y=$ $8+4 \mu_{1}+\mu_{2}>0$, so leading to a contradiction. Thus (5) must be slack and $\mu_{2}=0$. Now suppose that
(4) is slack. By (8), $\mu_{1}=0$. But (6) and (7) imply $x=y=0$, so contradicting the assumption that (4) is slack. Hence (4) must be binding. Now, (6), (7) and the binding constraint (4) form a system of three linear equations in three unknowns, which solves for $x=y=\mu_{1}=0$. Therefore, we can conclude that the unique solution to this maximization problem is $(0,0)$.

Question 3 [33 points]

Consider the following matrix:

$$
A=\left(\begin{array}{cc}
15 & -4 \\
9 & 3
\end{array}\right)
$$

1. [6 points] Find all the eigenvalues of A and determine their multiplicity.
2. [8 points] If A has two distinct eigenvalues, find two linearly independent eigenvectors. Alternatively, if A has only one repeated eigenvalue, find an eigenvector and a generalized eigenvector.
3. [5 points] Form the general solution of the following system of linear difference equations:

$$
\binom{x_{t+1}}{y_{t+1}}=\left(\begin{array}{cc}
15 & -4 \tag{13}\\
9 & 3
\end{array}\right)\binom{x_{t}}{y_{t}}, \quad t=0,1,2, \ldots
$$

Note that the system's coefficient matrix is the same matrix A as before.
4. [4 points] Is $\left(x^{*}, y^{*}\right)=(0,0)$ the only steady state of system (13)? If so, explain why. If not, find all the steady states of the system.
5. [3 points] Is the steady state $\left(x^{*}, y^{*}\right)=(0,0)$ globally asymptotically stable? Explain why or why not.
6. [7 points] Find the particular solution of the following linear system of differential equations:

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
15 & -4 \\
9 & 3
\end{array}\right)\binom{x}{y}
$$

with initial conditions $x(0)=4$ and $y(0)=2$. Note that the system's coefficient matrix is the same matrix A as before.

Solution

A has a unique eigenvalue $r=9$ of multiplicity 2 . An eigenvector is any non-zero solution of

$$
\left(\begin{array}{cc}
15-9 & -4 \\
9 & 3-9
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} .
$$

We can choose $\boldsymbol{v}=\binom{2}{3}$. A generalized eigenvector is any solution of

$$
\left(\begin{array}{cc}
15-9 & -4 \\
9 & 3-9
\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{2}{3} .
$$

We can choose $\boldsymbol{w}=\binom{1}{1}$.
The general solution of (13) is

$$
\binom{x_{t}}{y_{t}}=\left(C_{1} 9^{t}+t C_{2} 9^{t-1}\right)\binom{2}{3}+C_{2} 9^{t}\binom{1}{1} .
$$

The steady state $\left(x^{*}, y^{*}\right)=(0,0)$ is unique because $\operatorname{det}(I-A)=64 \neq 0$. However, the steady state is not stable because $|r|=9 \nless 1$.
The general solution of the system of differential equations is

$$
\binom{x(t)}{y(t)}=\left(C_{1}+C_{2} t\right) e^{9 t}\binom{2}{3}+C_{2} e^{9 t}\binom{1}{1} .
$$

The particular solution is found by solving

$$
\binom{4}{2}=C_{1}\binom{2}{3}+C_{2}\binom{1}{1},
$$

from which we get $C_{1}=-2$ and $C_{2}=8$.

Question 4 [17 points]

Consider the following autonomous first order differential equation:

$$
\dot{y}=y^{2}-7 a y,
$$

where $a \neq 0$ is a parameter.

1. [4 points] This differential equation has two equilibria (or steady states), one of which is $y_{1}^{*}=0$. Find the other equilibrium y_{2}^{*}.
2. [6 points] Find all values of $a \neq 0$ such that $y_{1}^{*}=0$ is locally asymptotically stable. [Hint: Think what happens when $a>0$ and when $a<0$.]
3. [4 points] Consider the case in the previous question where $y_{1}^{*}=0$ is locally asymptotically stable. Is the other equilibrium y_{2}^{*} stable or unstable? Explain.
4. [3 points] Now suppose that $a=0$, so that $y_{1}^{*}=0$ is the unique equilibrium. Is $y_{1}^{*}=0$ locally asymptotically stable in this case? Explain why or why not.

Solution

The two equilibria are $y_{1}^{*}=0$ and $y_{2}^{*}=7 a$. Let $f(y):=y^{2}-7 a y$. Then $f^{\prime}(y)=2 y-7 a$. Consequently, $f^{\prime}(0)=-7 a$. Therefore, y_{1}^{*} is locally asymptotically stable when $a>0$ (so that $f^{\prime}(0)<0$), and unstable when $a<0$. When $a>0, f^{\prime}(7 a)=14 a-7 a=7 a>0$. Hence y_{2}^{*} is unstable. Finally, when $a=0$, $f^{\prime}(0)=0$, so the test with derivatives is inconclusive. By sketching a phase portrait, one can verify that $y_{1}^{*}=0$ is unstable in this case.

