A!
 Matrix Algebra
 MS-A0001
 Hakula
 T
 Mock Exam, 2022

I'll be available on Zoom on Dec 12, if you have any questions. I'll also write up solutions or at least ideas of solutions...

Problem 1 Given

$$
A=\left(\begin{array}{rr}
0 & 1 \\
0 & -1
\end{array}\right)
$$

find matrices B such that $A B=B A$.
Problem 2 Show that, if A and B are orthogonal, then both $A B$ and A^{-1} are orthogonal.

Problem 3 (a) Are the vectors $\left(\begin{array}{llll}0 & 2 & -4 & 8\end{array}\right)^{\mathrm{T}},\left(\begin{array}{llll}6 & 12 & 3 & 3\end{array}\right)^{\mathrm{T}},\left(\begin{array}{llll}2 & 5 & -1 & 5\end{array}\right)^{\mathrm{T}}$ linearly independent? (b) Is the vector $\left(\begin{array}{cccc}-2 & 0 & -9 & 15\end{array}\right)^{\mathrm{T}}$ a linear combination of the first three?

Problem 4 Let

$$
A=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 & 1 \\
3 & 4 & 1 \\
1 & -1 & 1
\end{array}\right) .
$$

(a) Compute $P A=L U$.
(b) What is the volume spanned by $a_{i}, i=1,2,3$?

Problem 5 Let

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Find the eigenvalues and orthonormal eigenvectors.
Problem 6 Let the matrix A have exactly two eigenvalues $\lambda_{1}=1$, $\lambda_{2}=1 / 2$, and the corresponding eigenvectors $v_{1}=(1,1)^{T}, v_{2}=(-1,1)^{T}$. Find the limit $\lim _{k \rightarrow \infty} A^{k}$.

