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Definitions ...

• (Force-) Equilibrium:

Plasma configuration in which driving forces

due to electrical currents, plasma pressure (and possibly others)

are balanced

• Stability:

A configuration is stable if it restores itself back towards equilibrium

in response to any possible displacement

• Tokamak:

Axisymmetric toroidal configuration which

— confines plasma with aid of a toroidal electrical plasma current

and

— gains stability from a strong guiding toroidal field



IPP Summer University 2016 Tokamak Equilibrium and Stability 3

Plasma Force Equilibrium

The most simple way to describe a force equilibrium

Examples of magnetic equilibria — (“natural” and “man-made”)

Why a strong magnetic field helps
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Describe plasma as a single, conducting fluid

“Magneto-Hydro-Dynamics”, MHD

Describes motion (velocity~u) of fluid volume elements (mass density mn).

Force equation: Reaction = Action (Newton III)

m
d

dt
(n~u)

︸ ︷︷ ︸

moving frame

= m n
∂~u
∂t

︸ ︷︷ ︸

fixed frame

+ m n(~u ·∇)~u
︸ ︷︷ ︸

advection

= ρ~E + ~j×~B − ∇ ·P0

Simplifications:

— ∂/∂t = 0

— No advection, but allow~u 6= 0

→ additional centrifugal force

— Charge neutrality

— Isotropic plasma pressure, no shear stress

⇒ MHD “equilibrium”

∇p = ~j×~B

With T : “magnetic pressure tensor”

∇p = −∇ ·T
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Observation of magnetic loops in solar corona

Lifetime: Hours (Inertial time scale: Seconds)

SOHO / EIT  Fe IX/X  171A
23 Aug 1996  00:10 UT

Quelle: http://sohowww.nascom.nasa.gov
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Magnetic Surfaces, Flux Tubes

Force balance (“equilibrium”):

∇p = ~j×~B

Dot-product with ~B, ~j:

∇p ·~B = (~j×~B) ·~B = 0

∇p ·~j = (~j×~B) ·~j = 0

⇒ ~B ⊥ ∇p, ~j ⊥ ∇p.

~B, ~j span surfaces

with constant plasma pressure,

magnetic surfaces.

B
j
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Most simple geometry: Linear z-pinch

Willard H Bennet, Phys. Rev. 45 (1934) 890, “Magnetically self-focusing streams”

θ

zIp

Bθ

Cylindrical coordinates: jz, Bθ, dp/dr
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z-pinch equilibrium

z, θ ignorable coordinates

Ampère’s law:

1

r

∂
∂r

(rBθ) = µ0 jz

Radial force balance:

dp

dr
=− jzBθ

z-pinch maximises “Plasma-Beta”:

β =
kinetic pressure

magnetic pressure
= < p > /

B2
θ(a)

2µ0
= 1

Example: jz=const.

a r

Bθ

jz

p
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“Z machine”

Sandia National Laboratories, Albuquerque, NM, U.S.A.

20 MA tungsten wire explosion, strong X-ray source

Sources: Wikipedia, Sandia national lab: http://www.sandia.gov/z-machine
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The Z-pinch is inherently unstable

Sausage instability

jz

Bθ

Bθ

jz

small

Bθ large

Kink instability

jz

jz

Bθ

Bθ

Physical origin: Deformation of plasma column

→ local change of magnetic field pressure B2
θ/2µ0, not balanced by (constant) plasma pressure.

→ Growing perturbation
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(Historical) observation of the sausage instability

F L Curzon et al, Proc. Roy. Soc. A 257 (1960) 386

Short exposure time: Kerr cell (electro-optical

polarisation rotation) in between crossed polarisers.
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“Guiding” magnetic field improves stability

Add azimuthal external currents (magnets) → “screw pinch”

Icoil
Ip

B

However: Linear configurations suffer from “end losses”

— Magnetic field intersects the wall.
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Magnetic pressure tensor

Using

1. Ampère’s law: µ0
~j = ∇×~B

2. Vector identity: ∇(~F · ~G) = (~F ·∇~G)+~F × (∇× ~G)+(~G ·∇)~F + ~G× (∇×~F)

we have

~j×~B = −
1

µ0

~B×
(

∇×~B
)

= −∇
(

B2

2µ0

)

+
1

µ0

(

~B ·∇
)

~B ≡ −∇ ·T

Magnetic pressure tensor:

T ≡

(
B2

2µ0

)

︸ ︷︷ ︸

isotropic pressure

1 −

(
~B~B

µ0

)

︸ ︷︷ ︸

tension in B-direction
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Toroidal plasma avoids end-losses

Bφ

φ

z

R

Icoil

Change coordinate system: Cylinder coordinates with z-axis = torus axis

Bθ, jθ → Bp, jp (poloidal direction)

Bz, jz → Bφ, jφ (toroidal direction)
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Toroidal Force Equilibrium

Why a poloidal field is needed

Toroidal + poloidal fields = helically twisted magnetic field

Use fluxes (ψ, I) instead of fields (~B, ~j)

Most simple case: Axisymmetric toroidal equilibrium

Poloidal field is generated by plasma current

Tokamak:

Axisymmetric toroidal configuration with strong guiding field

Describe toroidal equilibrium by the Grad-Shafranov-Schlüter equation

Vertical field for radial force balance (and plasma shaping)
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The need for a poloidal field (particle picture)

Grad-B and curvature drift:

~vd =
mv2

‖+mv2
⊥/2

q

~B×∇B

B3

→ Charge separation, vertical ~E.

→ Outward E ×B-drift (along major radius).

Fast radial particle loss

∆t ∼ r/vd ∼ (r LB) ωc / v2
th ∼

r ωc

R0 v2
th

Solution:

additional poloidal field guides particle orbits

to above and below equator,

cancels drift motion.

z

R

v
d,i

B
∆

B

v
d,e E

v
ExB

z

RR
0

vd

∆ xpass
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Rotational transform (“field line pitch”)

Definition:

ι ≡
ι

2π
=

Number poloidal passes

Number of toroidal passes

. . . of a field line before it closes back

in itself.

Axisymmetry,

Cylindrical approximation (r ≪ R0):

ι
2π

=
R

r

Bp

Bφ
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The need for a poloidal field (MHD picture)

Force balance: ∇p = j⊥×B — constant on a flux surface.

Consider two positions on the same flux surface: R1 < R2:

Toroidal field Bφ(R1)> Bφ(R2).

⇒ Poloidal current density: jp(R2)> jp(R1), in general not divergence free.

For source-free (= divergence-free) plasma current, ∇ ·~j = 0,

need additional toroidal “Pfirsch-Schlüter” current jφ,PS:

∇φ ·∇ jφ,PS +∇p ·∇ jp = 0

N.B. Can make zero total toroidal current Iφ =
∫

A
~jφdA (e.g. in a stellarator)

but need finite current density jφ locally somewhere.
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With axisymmetry, poloidal field is produced by toroidal current

Consider poloidal section:

p K

A

j

I

B

Stokes & Ampère:

∫
A

∇×~Bp ·d~A=
∫

A
µ0
~jφ ·d~A= µ0Iφ =

∮
K

~Bp ·d~s

Bp may not vanish anywhere on path K

(otherwise rotational transform would disappear)

⇒ Finite Iφ

Note:

Not true for Stellarator (non-axisymmetric) — Bp pattern can depend on toroidal angle.
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Toroidal current is induced by separate transformer winding

Produce magnetic flux Φ(t) ⇒ loop voltage Uφ =−Φ̇ ⇒ Iφ =Uφ/R,

Iron core transformer: Central solenoid with air core:

— Technically, current in primary winding is limited

⇒ Pulsed operation

(seconds in existing devices, 0.3-3 hours in a fusion plant)
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The Tokamak

toroidalnaja kamera (toroidal chamber)

magnitnaja katushka (with magnetic coils)

Tamm, Sakharov (1952)

• Toroidal axisymmetric plasma

• Toroidal field from poloidal windings

• Central solenoid:

→ Toroidal plasma current Iφ

→ Ohmic heating: POH =Uφ Iφ

• Vertical field from toroidal coils

. . . to balance “hoop force”

. . . for plasma shaping
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Safety factor

Definition:

q =
Number of toroidal passes

Number poloidal passes

. . . of a field line before it closes back

in itself.

Cylindrical approximation (r ≪ R0):

q =
r

R

Bφ

Bp

(Kink) stability requirements:

q(r)> 1, q(a)> 2
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Magnetic flux, electrical current flux

Maxwell: ∇ ·~B = 0,

No sources of electrical charge: ∇ ·~j = 0

∫
F1

~B d~A+
∫

F2

~B d~A =
∫

F1+F2

~B d~A

=
︸︷︷︸

Gauss’ theorem

∫
V

∇ ·~B dV = 0

⇒ Fluxes

ψ ≡
∫

F
~B d~A, I ≡

∫
F
~j d~A

depend only on boundary of the

corresponding area (not its shape).
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Poloidal und toroidal fluxes

Two ways of defining boundary in toroidal geometry:

Poloidal flux through surface with

– poloidal normal Ap

– toroidal boundary Kt

ψp

K t

Ap

B, j

Ip

Toroidal flux through surface with

– toroidal normal At

– poloidal boundary Kp

ψ
t

Kp

At

B, j

It

Magnetic surfaces characterised by p, ψp und ψt . → “flux surface quantities”

By convention, choose poloidal fluxes (ψp, Ip).
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Axisymmetric “equilibrium”: Grad-Shafranov-Schlüter equation

~B components can be expressed by fluxes:

BR =−
1

2πR

∂ψp

∂z
, Bz =

1

2πR

∂ψp

∂R
, Bφ =

µ0

2πR
Ip

Note: As Ip is a flux quantity, so is RBφ

Ampère:

jφ =−
1

2πµ0

[
1

R

∂2ψp

∂z2
+

∂
∂R

(
1

R

∂ψp

∂R

)]

or, with ∆∗ (“Elliptic differential operator”)

jφ =−
1

2πµ0

1

R
∆∗ψp

Radial force balance (∇p)R = (~j×~B)R

. . . in cylindrical coordinates:

∂p

∂R
= jφBz − jzBφ

— Replace field by fluxes (ψp, Ip)

— divide by ∂ψp/∂R

— use notation: ′ ≡ ∂/∂ψp

→ GSS equation for poloidal flux ψp

∆∗ψp = −4π2µ0R2 p′− µ2
0IpI′p

Non-linear differential equation in ψp!
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Vertical magnetic field needed for toroidal solution

Consider Solovjev’s analytical ansatz with constant C1 . . .C5, C1 = µ2
0IpI′p, C2 = 4π2µ0 p′

ψp =
C1

2
z2 +

C2

8
R4 + C3 +C4R2 +C5

(
R4 −4R2z2

)
+ . . .

︸ ︷︷ ︸

solutions of homogeneous equation

Since

Bz =
1

2πR

∂ψp

∂R

a homogeneous vertical field has

ψp ∝ R2

(Coefficient C4 in above ansatz)

Without vertical field:

Spheroid

0 2 4 6
-4

-3

-2

-1

0

1

2

3

4

R

z

C1 =−10, C2 =−1, C3 =C5 = 0 C4 = 0

With vertical field:

Torus

0 2 4 6
-4

-3

-2

-1

0

1

2

3

4

0 2 4 6
-4

-3

-2

-1

0

1

2

3

4

R

z

C4 = 4.49
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Tokamak configuration

Flux Surface Contours

-1

-0.5

0

0.5

1

Z
 (

m
)

1 1.5 2 2.5

R (m)

q
jtor

Bpol

B tor

p

1 1.5 2

R (m)

GSS - numerical solution

Magnetic shear q′:

— “built-in”

( jtor, Bpol profiles)

— provides stability

“Divertor”:

Plasma current

+ external coil:

“X-line” (zero Bp = 0)

→ long (parallel)

connection length to wall,

favourable for power

exhaust



IPP Summer University 2016 Tokamak Equilibrium and Stability 28

Axial-Symmetric Divertor EXperiment (ASDEX) Upgrade

Max-Planck-Institut für Plasmaphysik (Garching)
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ASDEX Upgrade, view into vacuum vessel

Max-Planck-Institut für Plasmaphysik (Garching)
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ASDEX Upgrade, view of plasma

Max-Planck-Institut für Plasmaphysik (Garching)
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ASDEX Upgrade, Technical data

Ohmic
transformer

Vertical field coils

Toroidal field coils

Plasma

Vacuum
vessel

Divertor

1 m

1.65 m

Major plasma radius R 1.65 m

minor plasma radius a 0.5 m

tor. plasma current Iφ ≤ 1.6 MA

toroidal field Bφ ≤ 3.2 T

vacuum base pressure p ≤ 1×10−7 mbar

plasma heating

Neutral beam injection PNBI ≤ 20 MW

Ion cyclotron heating PICRH ≤ 8 MW

Electron cyclotron heating PECRH ≤ 4 MW

typ. plasma performance

confinement time τE ≤ 0.15 s

stored kinetic energy Wkin ≤ 1 MJ

poloidal beta βp ≤ 3
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Time traces of a plasma discharge

Plasma current [MA]

Central solenoid current  [100 kA]

Time [s]
0 2 4 6 8

0

0

Neutral beam heating power [MW]

Central electron temperature [keV]3

1

2

-0.5

0

0.5

1

ASDEX Upgrade #14437

2

4

6

8

Loop voltage [V]
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Start-up of a plasma discharge

Plasma current [MA]

Central solenoid 
current  [100 kA]

Time [s]
0 0.2 0.4 0.6 0.80

ASDEX Upgrade #14437

0

2

4

6

8
Loop voltage [V]

-0.5

0

0.5

1

-0.2

3

1

2

Gas fuelling rate   [x 10    atoms/s]21

plasma density [x 10   m    ]19 -3

Gas
prefill

Ip feedback control

More experimental results in a separate talk!
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Comments on tokamak stability

Force equilibria can be ...

stable neutral unstable

Consider potental energy W .

Force balance: dW/dξ = Fnet = 0

The configuration is

— Stable, if d2W/dξ2 > 0 for all possible displacements ξ
— Unstable, if d2W/dξ2 < 0 for one displacement ξ
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Instability drive (free energy source)

Plasma currents

Example: Kink instability

Pressure gradient

Example: Interchange Instability

— Instabilities can limit tokamak operational space (q, β) → next talk

— Plasma displacement breaks axisymmetry

Toroidal and poloidal periodicity ⇒ discrete modes (m, n)

— Magnetic topology can change (“magnetic reconnection”) or not
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Thought experiment: Periodic field perturbation in a slab

“toroidal” direction (periodic):

z = 0 . . .2π
“poloidal” direction (periodic):

x =−π . . .π
“radial” direction:

y =−1 . . .1

Backgound “toroidal” field:

Bz = const.

Sheared “poloidal” field:

Bx = B′
xy

x y
z

Magnetic perturbation:

(a “radial” field that normally would not exist)

By = By,0 cos(mx−nz)

Notes:

— Ignore ∇ ·~B = 0 for now

— n: No. of periods in “toroidal” z-direction

— m: No. of periods in “poloidal” x-direction

— Globally imposed perturbation

(i.e. does not depend on “radius” y)

Follow field lines (solve ODE, see appendix):

dx

dz
=

Bx

Bz
,

dy

dz
=

By

Bz
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Result of field line tracing: Magnetic island . . .

. . . at the resonant surface, i.e. where Bx/Bz = 1/q = n/m,

. . . and only field line bending everywhere else

n = 1

m = 2

By,0 =

0.025 Bz

-1.0 -0.6 -0.2 0.2 0.6 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

B   / B   = 1/q

n/m = 1/2 = 0.5

x z x

Note: “Vacuum” perturbation — no helical structure of plasma current needed
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Result of field line tracing: Magnetic island . . .

. . . at the resonant surface, i.e. where Bx/Bz = 1/q = n/m,

. . . and only field line bending everywhere else

n = 1

m = 3

By,0 =

0.025 Bz

-1.0 -0.6 -0.2 0.2 0.6 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

B   / B   = 1/q

n/m = 1/3 = 0.33

x z x

Note: “Vacuum” perturbation — no helical structure of plasma current needed
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Result of field line tracing: Magnetic island . . .

. . . at the resonant surface, i.e. where Bx/Bz = 1/q = n/m,

. . . and only field line bending everywhere else

n = 1

m =−3

By,0 =

0.025 Bz

-1.0 -0.6 -0.2 0.2 0.6 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

B   / B   = 1/q

n/m = -1/3 = -0.33

x z x

Note: “Vacuum” perturbation — no helical structure of plasma current needed
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Result of field line tracing: Magnetic island . . .

. . . at the resonant surface, i.e. where Bx/Bz = 1/q = n/m,

. . . and only field line bending everywhere else

n = 1

m =−2

By,0 =

0.025 Bz

-1.0 -0.6 -0.2 0.2 0.6 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

B   / B   = 1/q

n/m = -1/2 = -0.5

x z x

Note: “Vacuum” perturbation — no helical structure of plasma current needed



IPP Summer University 2016 Tokamak Equilibrium and Stability 41

Magnetic islands can occur in tokamaks . . .

. . . under normal conditions.

• Helical deformation of plasma core

n = 1, m = 1 mode if q = 1 surface exists

Rotational tomographic reconstruction (poloidal section)

of Soft X-ray emission in AUG #7962,

M. Sokoll, Ph.D. 1997

. . . under abnormal conditions.

• Tearing instability

• Other instabilities that produce helical

perturbation currents

(“Neoclassical tearing mode”, Radiation

instability → next talk )

• Driven by external “error” field
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Tearing instability

Faraday

∂~B
∂t

=−∇×~E

Ohm (1-fluid MHD)

~E +~u×~B = η~j

Ampère

~j =
1

µ0
∇×~B

Vector algebra, ∇ ·~B = 0

∇×∇×~B =−(∇ ·∇)~B

⇒ Magnetic field evolution:

∂~B
∂t

= ∇×
(

~u×~B
)

︸ ︷︷ ︸

convection

−
η
µ0

(∇ ·∇)~B

︸ ︷︷ ︸

diffusion

Perturbed quantities1 ≪ equilibrium quantities0,

⇒ Linearisation (keep first order), u0 = 0

∂~B1

∂t
= ∇×

(

~u1 ×~B0

)

−
η
µ0

(∇ ·∇)~B1

Diffusion smoothes “sharp corners”:

t t t< <
1 2 3

B

x

Magnetic free energy W =
∫

µ0B2/2 drops
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Tearing in straight cylinder (“screw pinch”) geometry

Cylinder coordinates (r,θ,z)
Periodic in θ and z

r

z

θ

L = 2  Rπ 0

Sheared field with safety factor

q(r) =
r

R0

B0,z

B0,θ

Equilibrium magnetic field

~B0(r) = B0,θ

(

0, 1, q(r)
R0

r

)

Radial component of B1:

∂~B1,r

∂t
=

1

r

∂
∂θ

(u1,rB0,θ)−
∂
∂z

(u1,rB0,z)+
η
µ0

1

r

∂2

∂r2
(rB1,r)

Spatial Fourier-Ansatz, exponential growth in time:

B1,r ≡ br ei(mθ−kz) eγt , u1,r ≡ ur . . .

where kz = nφ, n = kR0.

γ rbr = iurB0,θ (m−nq(r)) +
η
µ0

∂2

∂r2
(rbr)

— For q → m/n left r.h.s. term disappears.

Any (small) resistivity matters in a thin resistive layer!

— Stability depends on sign of right r.h.s. term
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Tearing stability criterion

Define helical flux

(stream function for perturbation)

Ψ1 ≡ ψ1 ei(mθ−kz) eγt ,

so that

br =
1

r

∂
∂θ

ψ1

and

γψ1 = urB0,θ

(

1−
n

m
q(r)

)

+
η
µ0

ψ′′
1

Resistive layer, r = rs −δr . . .rs +δr,

γ ∼
η
µ0

ψ′′
1

ψ1

Integrate over resistive layer:

∆′ ≡
∫ rs+δr

rs−δr

ψ′′
1

ψ1
dr ∼

1

ψ1

∂ψ1

∂r

∣
∣
∣
∣

rs+δr

rs−δr

Instability grows depending on curvature of ψ1 at rs.

— This depends on ψ1 in the region outside the

resistive layer.

— At small η, fluid motion is slow and ideal force

balance can be used outside the resistive layer,

Recipe: (not much detail here, sorry)

0 = ∇×∇p = ∇×
(

~j×~B
)

=
(

~B ·∇
)

~j−
(

~j ·∇
)

~B

Linearise, bθ =−∂ψ1/∂r:

B0,θ (m−nq(r))

[
1

r

∂
∂r

(

r
∂ψ1

∂r

)

−
m2

r2
ψ1

]

−mψ1µ0

∂ jz,0

∂r
= 0

Solve this diffeq for ψ−
1 from r = 0 . . .rs −δr,

and ψ+
1 from r = a . . .rs +δr,

∆′ ∼ δr
−1 ψ+

1 −ψ−
1

ψ+
1 +ψ−

1
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Magnetic islands at the density limit

When approaching the densit limit (→ next talk), plasma cools down and islands grow.

Rotating islands are easy to diagnose:
M

A
10

   
m

   
19

-3
ke

V

time [s]

plasma current

line averaged density

electron temperature

ASDEX Upgrade #6353

minor disruptions

major disruption

island formation
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Rotating islands can be diagnosed by Te measurements

Very fast heat conduction ‖~B makes

Te = const. on flux surfaces.

Island formation (topology change!) can

be seen as islands rotate in front of radial

diagnostics sightline.

At least two island chains (q = 2, q = 3).

Te is flat across island

— confinement reduction
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Summary

Tokamak equilibrium

• Ideal MHD force balance: ∇p = ~j×~B

(stationary configuration)

• Toroidal ~B field: No end losses

• Poloidal field (“rotational transform”):

Compensation of torus drifts

Tokamak: Inductive toroidal current

• Axisymmetry (tokamak): No collisionless

particle losses

• Vertical field: Torus topology, Radial position

control

• Poloidal magnetic flux ψp described by

Grad-Shafranov (-Schlüter) equation

... and stability

• Configurations without large guiding field

possible (z-pinch, reversed field pinch) but

largely unstable

• Tokamak: Stability from guiding toroidal field

q(a) ∼ (rBφ)/(RBp) > 2

• Instabilities set operational limits

— Kink instability (β, jφ)

— Tearing instability (density limit)



IPP Summer University 2016 Tokamak Equilibrium and Stability 48

Appendices

• Field line tracing in a slab

• Overlapping islands, ergodic magnetic field
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Field line tracing in a slab (for Scilab)

m=2; n=1;

dBx_dy=1.0; By0=0.025;

global dBx_dy By0 m n

function [dxy] = Dxy_dz (z,xy)

global dBx_dy By0 m n

// 1 Island

dxy = [dBx_dy*xy(2); By0*cos(m*xy(1) - n*z)];

// 2 Islands

// dxy = [dBx_dy*xy(2); ..

// 2*By0*cos(m*xy(1))*cos(n*z)];

endfunction

nx=20; ny=30; nz=30; dz=2*%pi;

plot2d([0,0],[0,0],rect=[-%pi,-1,%pi,1],frameflag=1);

for i=0:nx-1

x = 2*%pi*(i - nx/2)/nx;

for j=0:ny-1

y = 2*(j - ny/2)/ny;

xy=[x; y]; z=0;

for k=0:nz-1

z1=z+2*%pi;

xy = ode (xy, z, z1, Dxy_dz);

if xy(1)>%pi then, xy(1)=xy(1) - 2*%pi; end

if xy(1)<-%pi then, xy(1)=xy(1) + 2*%pi; end

plot2d1([xy(1)],[xy(2)],frameflag=0,style=0);

z=z1;

end

end

end
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Overlapping islands cause stochastic field line diffusion

In our slab model, introduce

two simultaneous modes.

Island widths grow with

increasing By,0.

As islands overlap, field lines

diffuse radially.

Expect strong radial transport

‖~B!

By,0 = 0.0125Bz By,0 = 0.025Bz

Further reading on

ergodisation:

B. V. Chirikov, “A universal

instability of many oscillator

systems”,

Phys. Rep. 52 (1979) 263

By,0 = 0.05Bz By,0 = 0.1Bz


