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Aim of Kinetic Theory:
Connecting Macro- to Micro-Description

“Theextremely small size of the basic constituents of matter is such that we cannot
immediately obtain from it an image of the world at amacroscopic level. There are
hierarchies of structures, andnew concepts arise ateach level. Even if the real world
is made up of atoms (or even smaller particles), it is too difficult to describe what occurs
in that world in terms of those basic constituents. What we can do is toestablish a
bridge between the various levels in order to form acoherent picture.”
(C. Cercignani )
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Part I: A few but essential physical pictures
presented in a casual fashion

OUTLINE

Coulomb Collisions: particle–particle interaction;

Irreversibility: diffusion and Fokker-Planck equations;
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Coulomb Collisions

particle–particle interaction
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Collisions in a Normal Gas: Head-on Collisions

In a gas ofneutral particles (of atomic diameterd) collisions are mainly of the
“head-on” type: The interaction potential can be approximated with

Un(r) =

{

0 if : r > d

∞ if : r < 0
d

⇒ ≡ 2 d

σ=π d2

Theeffective collisional area (collisional cross section) is simplyσ = πd2.

Theaverage distance between collisions (mean free path) is the traveled
distance divided by the number of collisions:

λmfp =

traveled distance
︷︸︸︷

〈v〉 t
σ 〈vrel〉 t
︸ ︷︷ ︸

interaction vol.

n
=

1√
2 σ n

, with 〈vrel〉 =
√
2〈v〉

The collision frequency is thus:

νc =
〈v〉
λmfp

=
√
2 σ n 〈v〉 ∝ σ n

√
T

In a gas the collisional frequencyincreases with the square root of temperature
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Collisions in an Ionized Gas

TheCoulomb force decreasesslowly with distance:

many small deflections already present at large distances (grazing

collisions)
grazing collisions overwhelm thehead-on collisions.

However, beyond theDebye sphere (of radiusλD) the Coulomb force is
balanced by the presence of other particles (Debye shielding)

λD :=
vt√
2 ωp

=

√

T

4πn e2

= 7.43 · 10−5

√

T[keV]

n[1019m−3]

m

with

vt :=

√

2T

m
= thermal velocity

ωp :=

√

4π e2n

m
= electron plasma (angular) frequency

ion

r

Hard spheres

1/r

e−r/λD/r

λD v1
v2

v2 > v1

R. Bilato – IPP SU 2016 – p.6



Collisions in an Ionized Gas:
Definition of the Collision Frequency

The collisional timeτc = ν−1
c is the time required byrandom Coulomb interactions to

change the velocity of a test particle of an amount∆v equal to the thermal velocity

〈∆v2〉
v2t

= 1

We need to consider〈∆v2〉, since〈∆v〉 = 0 due to therandomness of the motion.

In the following slides,

We evaluateνc by expressing〈∆v2〉 in terms ofτc.

In analogy with the estimate done for the normal gas, we follow test particleα
colliding against an ensemble of field particlesβ, which are not necessarily of the
same type ofα.
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Collisions in an Ionized Gas:
Test particle α colliding against field particlesβ

In a collisional timeτα→β
c a test particleα undergoes on averageNc = τα→β

c /tα→β
sc

(tα→β
sc the time of the elementary interactions) small velocity changesδv which are

random: 〈δv〉 = 0

uncorrelated: 〈δviδvj 6=i〉 = 0

Therefore, in a collisional time we have

〈∆v2α〉 = 〈
(

Nc∑

i=1

δvi

)2

〉 =
Nc∑

i=1

〈δv2i 〉 = Nc〈δv2〉

tα→β
sc is proportional to the time necessary to the test particles to cross the Debye

sphere,tα→β
sc ∝ λD/〈vrel〉.

δv is valuated by assuming thattα→β
sc is short enough that the particle experiences a

constant acceleration

δv ≈ tα→β
sc

Zα δEβ

mα

with δEβ the electric field due to the field particles.
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Collisions in an Ionized Gas:
Test particle α colliding against field particlesβ (con’t)

δv ≈ tα→β
sc

Zα δEβ

mα

δEβ arerandom, 〈δEβ〉 = 0, anddecorrelated, 〈δEβi
δEβj 6=i

〉 = 0

Nature of Coulomb collisions in a plasma

Grazing: δEβ = Zβ/λ
2
D (at the Debye sphere),

Many: ND ∝ nβλ
3
D (the number of field particles in the Debye sphere).

Using these reasonable assumptions, we have

〈δv2〉 =
(

tα→β
sc

Zα

mα

)2

〈
ND∑

βi=1

δE2
βi
〉 =

(

tα→β
sc

Zα

mα

)2

ND 〈δE2
β〉

The collisional frequency becomes

να→β
c ∝ 1

tα→β
sc

〈δv2〉
v2t,α

=
Z2

α Z2
β nβ

m2
α 〈vrel〉 v2t,α

(from previous slidetα→β
sc ∝ λD/〈vrel〉)
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Collisions in an Ionized Gas: Collision Frequency

να→β
c ∝ Z2

α Z2
β nβ

m2
α 〈vrel〉 v2t,α

Since the velocity of the test and field particles are uncorrelated,

〈vrel〉 =
√

v2t,α + v2t,β =

√

2Tα

mα
+

2Tβ

mβ
=

√
2T

√
mα +mβ

mαmβ

where the last equality holds if we assumeTα = Tβ = T , it follows

να→β
c ∝ Z2

α Z2
β

√
mβ

mα(mα +mβ)

nβ

T3/2

In a plasma the collisional frequencydecreases with temperature
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Collisions in an Ionized Gas: Energy Exchange Rate

Temperature equilibration is described by

dTα

dt
=
∑

β

να→β
E (Tβ − Tα)

With collisions particles exchange not only momentum but also energy.

Since the scattering is elastic, energy conservation imposes a symmetry on the
energy exchange rate:

nα να→β
E = nβ νβ→α

E (1)

να→β
E is proportional to the collisional frequencyνα→β

c , and to guarantee the

symmetry (1) we symmetrize the dependence on the masses inτα→β
c

να→β
E ∝ Z2

α Z2
β nβ

mαmβ (〈vrel〉)3
∝ mα

mβ +mα
να→β
c

∝ Z2
α Z2

β

√
mα mβ

(mα +mβ)3
nβ

T 3/2

Note: This is just a heuristic derivation, which however gives acceptable dependencies and
orderings.
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Collisions in an Ionized Gas: Ordering

Summarizing:

να→β
c ≈

√
mβ

mα (mα +mβ)

nβ

T 3/2

να→β
E = νβ→α

E ∝ mα

mβ +mα
να→β
c

recalling thatmp/me ≈ 1836 and
√

mp/me ≈ 43 and normalizing with respect toνe→e
c ,

in a proton-e plasma the ordering is

νe→e
E ∝ νe→e

c , νe→p
E ∝ me

mp

νe→e
c , νp→p

E ∝
√

me

mp

νe→e
c , νp→e

E ∝ me

mp

νe→e
c
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Collisions in an Ionized Gas: Relaxation Times (proton-e
gas)

νe→e
coll : νe→i

coll : νe→e
E : νi→i

coll : νi→i
E : νi→e

coll : νi→e
E : νe→i

E

1 : 1 : 1 :

√
me

mi
:

√
me

mi
:

me

mi
:

me

mi
:

me

mi

How does an electron-proton gas evolve in time starting froman arbitrary velocity
distribution function withTe andTi of the same order?

time

1 e → i ⇒ fe −→ isotropic - no preferred direction
e → e ⇒ fe −→ Maxwellian

√
mi

me

i → i ⇒ fi −→ Maxwellian

mi

me
i → e ande → i ⇒ Te = Ti
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Collisions in an Ionized Gas: In Numbers ...

τe→e
c = 1/νe→e

c

Density T=0.1 keV T = 1keV T = 10keV

1019m−3 2.4µs 67µs 1.9 ms

1020m−3 0.27µs 7.2µs 0.2 ms

τD→D
c = 1/νD→D

c

Density T=0.1 keV T = 1keV T = 10keV

1019m−3 0.2 ms 5 ms 0.13 s

1020m−3 21µs 0.54 ms 14 ms

τe↔D
E = 1/νe↔D

E

Density T=0.1 keV T = 1keV T = 10keV

1019m−3 4.4ms 120 ms 3.4 s

1020m−3 0.49 ms 13 ms 0.37 s
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Collisions in an Ionized Gas: What We Have Learned

Coulomb collisions aregrazing andmany.

Contrary to a normal gas, in a plasma the collision frequencydecreases with the
temperature.

Collisions are responsible for the isotropization of the distribution function and for
the energy equipartition.
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Random walk and Diffusion Equation

Fokker-Planck Equation
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Kinetic Theory

The aim of the Kinetic Theory (KT) is to describe a gas of many particles to make
possible the interpretations/predictionsof macroscopic quantities (e.g. density,
temperature ...) starting from themicroscopic (position of each particle in phase
space) descriptions of the gas.

This is achieved with a quantity called distribution function,f(x,v, t), which has
two possible interpretations: 1) (deterministic) approximation of thetrue gas
density in phase space; 2) (probabilistic) probability to find the gas in a given
configuration in the phase space.

The interpretation you choose has no consequences on the final results.
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Kinetic Theory: Irreversibility

What we need to describe the motion of particles in a gas are simply the
Netwon’s lawsfor the particle motion and the Maxwell’s equationsfor the
associated electric and magnetic fields inter-connected via the constitutive relations.

These equations are all reversible in time, i.e. are invariant with respect to the
transformation

t → −t , x → x , v → −v

BUT our experience with normal gases teaches us that the phenomena are typically
irreversible. How can KT resolve this contradiction?

For instance, we are used to see equation forf of the type

∂f

∂t
− ∂

∂v
·
(

D · ∂

∂v
f

)

= S

which is manifestlynot time-symmetric.

To grasp the flavour of the probabilistic concept of the gas description and how the
irreversibility enters, we will investigate the simpleDrunk’s problem.
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The Drunk Man Problem

Just imagine aone-dimensional drunk man, who, leaving a bar, wants to go home.
Therules of his wandering aresimply

Steps of equal length, i.e.∆x

At each step the drunk can go either on the right or on the left with equal

probability.

Question: If home ism steps away from the bar, which is the probability that the drunk

reaches home aftern(> m) steps?
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Recall of few Statistical Concepts

P (n|m, s): conditional probability – if at timet = 0 the drunk isn∆x away
from the Bar,P (n|m, s) is the probability to find himm∆x away a timet = s∆t.

The equation forP (n|m, s) (Smoluchowski’s equation - Markoff series)

P (n|m, s) =
∑

k

P (n|k, s− 1) P (k|m, 1)

=⇒ of the whole trajectory only the very last positionin the past matters for the present.
In particular, since in the case of the drunk we have thedrunk’s rule

P (k|m, 1) =
1

2
δm,k−1 +

1

2
δm,k+1 ,

we have

P (n|m, s) =
1

2
P (n|m+ 1, s− 1)
︸ ︷︷ ︸

from the right

+
1

2

from the left
︷ ︸︸ ︷

P (n|m− 1, s− 1)
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Diffusion Equation

The Smoluchowski’s equation for the discrete random walk is

P (n|m, s) =
1

2
P (n|m+ 1, s− 1) +

1

2
P (n|m− 1, s− 1)

By addingP (n|m, s− 1) to both sides, we have

P (n|m, s)−P (n|m, s−1) =
1

2

[

P (n|m+1, s−1)−2P (n|m, s−1)+P (n|m−1, s−1)

]

which can be re-written as

∆t
P (n|m, s)− P (n|m, s− 1)

∆t
=

(∆x)2

2

[ P (n|m+ 1, s− 1)− P (n|m, s− 1)

∆x
− P (n|m, s− 1)− P (n|m− 1, s− 1)

∆x
∆x

]
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Diffusion Equation (con’t)

In the limit thatt = s∆t andx = m∆x becomecontinuous variables, the
Smoluchowski’s equation for the discrete random walk,

P (n|m, s) =
1

2
P (n|m+ 1, s− 1) +

1

2
P (n|m− 1, s− 1) ,

becomes the diffusion equation

∂

∂t
P (x0|x, t) = D

∂2

∂x2
P (x0|x, t)

with the constraints that

The diffusion coefficient,

D = lim
∆t,∆x→0

(∆x)2

2∆t
stays finite.

(In other words, the spread increases with the square root oftime.)

D doesnot depend onx, so that

∂

∂t

∫

P (x0|x, t)dx = 0

the “drunk” doesnot disappear! (Conservation law of the drunk).
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Fundamental Solution of the Diffusion Equation

A last word on the diffusion equation,

∂

∂t
P (x0|x, t) = D

∂2

∂x2
P (x0|x, t)

Starting att = 0 with the Dirac (distribution) functionδ(x− x0) the solution of this
parabolic equation is:

P (x0|x, t) =
1√

4πD t
e
−
(x− x0)

2

4D t

x

∆t

2∆t

3∆t

4∆t

In words, an initially localized function irreversibly smoothed out with time.

R. Bilato – IPP SU 2016 – p.23



Fokker–Planck Equation (I)

Now we relax the constraint thatD is constant, i.e. go beyond thedrunk’s rule.

Start from the time derivative ofP (x|y, t)
∫

dy R(y)
∂

∂t
P (x|y, t) = lim

∆t→0

1

∆t

∫

dy R(y)
[

P (x|y, t+∆t)− P (x|y, t)
]

whereR(y) is an arbitrary function such thatlimy→±∞ R(y) = 0.

Use the Smoluchowski’s equation for the continuous Markovian process

P (x|y, t+∆t) =

∫

dz P (x|z, t)P (z|y,∆t)

to obtain

∫

dy R(y)
∂

∂t
P (x|y, t) =

lim
∆t→0

1

∆t

{∫

dz P (x|z, t)
∫

dy R(y)P (z|y,∆t) −
∫

dy R(y) P (x|y, t)
}
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Fokker–Planck Equation (II)

We replaceR(y) with its Taylor series aroundz,

∫

dz R(z)
∂

∂t
P (x|z, t) =

∫

dz P (x|z, t)
[

A1(z)R
′(z) +

1

2
A2(z)R

′′(z) + ...

]

with the coefficient of the Taylor series,

An(z) := lim
∆t→0

〈zn〉
∆t

= lim
∆t→0

1

∆t

∫

dy (y − z)n P (z|y,∆t)

If we assume that:

An(z) = lim∆t→0
1

∆t

∫
dy(y − z)n P (z|y,∆t) = 0 for n > 2

we have
∫

dz

{

R(z)
∂

∂t
P (x|z, t)− P (x|z, t)

[

A1(z)R
′(z) +

1

2
A2(z)R

′′(z)

]}

= 0
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Fokker–Planck Equation (III)

∫

dz

{

R(z)
∂

∂t
P (x|z, t)− P (x|z, t)

[

A1(z)R
′(z) +

1

2
A2(z)R

′′(z)

]}

= 0

By integrating by part (recalling thatlimy→±∞ R(y) = 0), we have

∫

dz R(z)

{
∂

∂t
P (x|z, t) + ∂

∂z

(

A1(z) P (x|z, t)
)

− 1

2

∂2

∂z2

(

A2(z) P (x|z, t)
)}

= 0

Since this must be satisfied for anyR(z), P (x|z, t) must be solution of:

∂

∂t
P (x|z, t) = − ∂

∂z

(

A1(z) P (x|z, t)
)

+
1

2

∂2

∂z2

(

A2(z) P (x|z, t)
)

This is theFokker-Planck equation whose coefficients depend only on thefirst and
second order moments of the changes.
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1st Remark on the Fokker–Planck Equation

The Smoluchowski equation (Markoff process)

P (x|y, t+∆t) =

∫

dz P (x|z, t)P (z|y,∆t)

becomes the Fokker-Planck equation

∂

∂t
P (x|z, t) = −

friction
︷ ︸︸ ︷

∂

∂z

(

A1(z) P (x|z, t)
)

+

diffusion
︷ ︸︸ ︷

1

2

∂2

∂z2

(

A2(z) P (x|z, t)
)

under theassumption

An(z) = lim∆t→0
1

∆t

∫
dy(y − z)n P (z|y,∆t) = 0 for n > 2

which means that in these processes insmall times the coordinates can only change of
small amounts.
In general, without this assumption the Smoluchowski equation becomes an
integro-differential equation of the same type of theBoltzmann equation.
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2nd Remark on the Fokker–Planck Equation

Let us re-nameA2(z) = 2 D(z), if

A1(z) = − d

dz
D(z) (1)

then the Fokker-Planck equation can be written as a diffusion equation with non
constantD

∂

∂t
f(z, t) =

∂

∂z

(

D(z)
∂

∂z
f(z, t)

)

(2)

Note: All Hamiltonian systems satisfy (1)!

An important property of the diffusion equation (and of the Fokker-Planck one) is:

If f > 0 is solution of (2) and isL1 integrable, namely

I(t) =

∫

Ω

f(z, t) dz is finite

thenI(t) is constant in time, in other wordsI is conserved.

Ex.: if f is the plasma density, then the total density is conserved.

Note: In more dimensions (d > 1), equation (1) becomes

∂

∂t
f(z, t) =

1

J

∂

∂zi

(

J Dij(z)
∂

∂zj
f(z, t)

)

with J the Jacobian associated with the coordinate systemzi.
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Part II: Some basic concepts
presented in a more rigorous fashion

OUTLINE

Distribution function & kinetic equation: statistical description;

Collision operator: Landau formulation;

Landau Damping: wave–particle interaction;
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Introduction

Distribution Function

Kinetic Equation
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Discrete Plasma Description

Thestate of a set of particles mutually interacting and subject to external forces is
completely determined by a system of coupled Ordinary Differential Equations (ODE),
namely theNewton equations

mi Ẍi = Fi

(

≡
∑

j 6=i Fj→i(t) + Fext

)

plusa set ofinitial value conditions {Xi(0), Ẋi(0) := Vi(0)}1≤i≤N .
Fj→i is the force exerted by particlej on particlei, andFext the total external force.

. . . Complexity Issues . . .

Initial Knowledge: the lack of information about theInitial Conditions
forces us to tackle the problem from astatistical point of view, namely as an
ensemble average over all possible initial conditions.

Dimensionality: the computational effort to follow all the particles of a
laboratory plasma (≈ 1022) is . . . at the moment. . . technicallyprohibitive.

Distillation: The measured quantities areaverage quantities: a detailed
knowledge of the motion of each particle is not onlyredundant but also makes
troublesome andlengthy the interpretation of the numerical results.
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The Aim of Kinetic Theory

AIM

Replace avery large number of simpleODE equations (one for each parti-
cle) with onlyONE Partial differential equation (PDE) for afunction
which is defined in areduced space of variables and which is able to thor-
oughly describe the plasma properties (measurements).

... in other words ... we need to define/determine

thestate of a plasma;

themeasure (particle counter) in the space of plasma states;

theequation for this measure.
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Dynamical State and its Measure

Let usdouble the number of variables by splitting the second-order ODE for the particle
motion in two first-order ODEs,

Ẋi = Vi, and : V̇i =
Fi

mi
=

1

mi

∑

j 6=i

Fj→i(t) +
1

mi
Fext

Thus, the state of an N-particle system at timet is described by a point in the
(x,v)N = (x1, . . . ,x2;v1, . . . ,vN ) phase spaceΩ = (T3 × R

3)N (T stands for
the torus, since we assume a confined system with periodic boundary conditions),
and this is called thedynamical state of the system.

The most naturalmeasure in this phase space is

PN (B ⊆ Ω; t) =

∫

B

(
N∏

i=1

δ(xi −Xi(t)) δ(vi −Vi(t))

)
N∏

i=1

dxidvi

whereδ(x) is the Dirac delta function.

PN (B ⊆ Ω; t) = probability that at timet the state of the system is inB ⊆ Ω.
=⇒ Note,PN (B ⊆ Ω; t) can be either0 or 1.
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Distribution Function and its Equation

In the space of the dynamical states,Ω, we can define thedensity distribution
function associated with the system,

fN (x1,v1, . . . ,xN ,vN ; t) :=
N∏

i=1

δ(xi −Xi(t)) δ(vi −Vi(t))

so thus

PN (B ⊆ Ω; t) =

∫

B

fN (x1,v1, . . . ,xN ,vN ; t)

N∏

i=1

dxidvi

For Hamiltonian systems the continuity equation of the density distribution function
together with the divergence theorem gives the Liouville equation

∂fN
∂t

+

N∑

i=1

[

vi ·
∂fN
∂xi

+
Fi

m
· ∂fN
∂vi

]

= 0

What did we learn?

state, z := (x,v)N ∈ Ω;

measure, fN (z; t);

equation of state forfN .

BUT
All the complexity is still there!

R. Bilato – IPP SU 2016 – p.34



Relaxing the Initial Knowledge

The use of Dirac delta function,δ(z) with z := (x,v), implies that weexactly
know the initial conditions of each particle.

As proxy of theprobabilistic interpretation offN , we can replaceδ(x) with a
Gaussian

1

(πσ2)1/2
e
−
x2

σ2 σ→0−→ δ(x)

andfN is anensemble average over the possible initial conditions in phase space.

PN (B ⊆ Ω; t) is not anymore restricted to the values0 and1, but can assume
values between0 and1.

fN (x1,v1, . . . ,xN ,vN ; t)
∏N

i=1 dxidvi is the probability of finding the state of

the system within the volume
∏N

i=1 dxidvi around(x1,v1, . . . ,xN ,vN ) at timet.

fN (x1,v1, . . . ,xN ,vN ; t) is still solution of Liouville equation with initial
conditions.

What did we achieve?

Conceptually, we have done a substantial improvement, but the complexity due to high
dimensionality (6N -dimensional state space) is still there!
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Reducing the Dimensionality

At the price of loosing some of the microscopic details, the dimensionality of the
phase space can be reduced to(T3 × R

3)s, with s < N , by defining the measure

fs(x1,v1; . . . ;xs,vs|t) =
N !

(N − s)!

∫

fN (x1,v1; . . . ;xN ,vN |t)
N∏

i=s+1

dxidvi

with fs called thereduced distribution function.

The combinatorial factor comes from the fact that the particles are identical and
thus there areindistinguishable.
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Distribution Function

Distribution Function
Which of the reduced fs (with: s ≥ 1) are of interest?
Themacroscopic description of a system, is usually done in a 6-dim space (x1

andv1) =⇒ the best we can do is to reduce the plasma description to:

f(x,v, t)≡f1(x1,v1, t) = N

∫

fN (x1,v1; . . . ;xN ,vN |t)
N∏

i=2

dxidvi

called “distribution function”.

A dual interpretation of f1 is thedeterministic one,

f(x,v, t) dx dv = density of particles in the (phase-space) volume element
dx dv centered at(x,v).

What did we achieve?

The problem dimensionality has been drastically reduced from (6N + 1) to (6 + 1).
We need the equation for the evolution off(x,v, t), calledKINETIC EQUATION
(KE)
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How to Derive the KE

To derive theKinetic Equation for f(x,v, t)

N

∫
{

∂

∂t
+

N∑

i=1

vi ·
∂

∂xi
+

N∑

i=1

Fi

mi
· ∂

∂vi

}

fN (x1,v1; . . . ;xN ,vN |t)
N∏

i=2

dxidvi = 0

we need to

separateFi in aninternal Fint
i (interaction with the particles of the same species)

and anexternal componentsFext
i (interaction with particles of other species and

external forces).

recall that for the Lorentz forceF it holds∇v · F = 0

simplify with thenon-relativistic limit of the internalelectrostatic forces

Fint
i =

(Ze)2

m

N∑

j=1,j 6=i

xi − xj

|xi − xj |3
= − 1

m

N∑

j=1,j 6=i

∂φij

∂xi

assume thatf goes to zero for|v| → ∞ and with appropriate boundary conditions
in x.
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The Pair Correlation Function

After some algebra, we obtain:

(
∂

∂t
+ v1 ·

∂

∂x1
+

Fext

m
· ∂

∂v1

)

f1(z1, t) =
1

m

∫
∂φ12

∂x1
· ∂

∂v1
f2(z1, z2, t) dz2

The presence off2 on the rhs imposes the problem ofclosure.
Let usassume:

f2(z1, z2, t) = f1(z1, t) f1(z2, t) + g(z1, z2, t)

g(1, 2, t) accounts for thecorrelation between(1) and(2) particles.

[
∂

∂t
+ v1 ·

∂

∂x1
+

1

m

(

Fext −
∫

∂φ12

∂x1

f(z2)dz2

)

· ∂

∂v1

]

f(z1, t) =

1

m

∫
∂φ12

∂x1
g(z1, z2, t) dz2
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Kinetic Equation

Theuncorrelated contribution.

−eEself(x1, t) = −e
∂φself

∂x1with (n(x, t) is the particle density defined later)

φself(x1, t) :=

∫

φ12(x1,x2)f(x2,v2, t)dx2dv2 =

∫

φ12(x1,x2)n(x2, t) dx2

is theaverage electric field experienced by one particle due to the other particles
considered as a whole.
The potentialφself is solution of the Poisson equation and computed assuming that
the particles areuncorrelated.

Thecorrelated contribution,
(
∂f

∂t

)

c

=
1

m

∫
∂φ12

∂x1
g(1, 2) dx2 dv2

is called thecollision term and is an integral-differential operator. This term
gives account of thediscreteness (binary interaction) of the particle interactions.

Finally, [
∂

∂t
+ v · ∂

∂x
+

1

m

(

Fext + eEself
)

· ∂

∂v

]

f =

(
∂f

∂t

)

c
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Kinetic Equation - Summary

The original dimensionality of the problem has been drastically reduced from
(6N + 1) with N ≈ 1022 to (6 + 1), 3 forx, 3 forv and one for time.

Moreover, we have identified the measure,f(x,v, t), capable to describe the
plasma properties in this reduced space, and we know the equation for its evolution,

∂f

∂t
+ v · ∂f

∂x
+

1

m

(
Fext + Fself

)
· ∂f
∂v

=

(
∂f

∂t

)

c

Nonlinear Vlasov operator (left-hand side)
Account for theuncorrelated particle interactions plus external forces.
Collisions: Boltzmann operator (right-hand side)
Account for thecorrelated particle interactions.

The distribution functionf(x,v, t) has anatural deterministic interpretation,
namely plasma density in the phase space, and

n(x, t) =

∫

f(x,v, t) dv

is the plasma density inreal space. Somethingmeasurable!!!
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Vlasov Equation - Conservation

Since the Lorentz force satisfies∇v · F = 0, the Vlasov equation can be written

∂f

∂t
+∇z · (Vf) = 0, with : V :=

(

v,
q

m

(

E+
v

c
×B

)
)t

, z := (x,v)

since the fluxV in phase space isincompressible, i.e.∇z ·V = 0.
This is theconservative form of the Vlasov equation: variation in time of the densityin a
volumeV of the phase-space is equal to thebalance between what enters and what leaves
the volume through its boundary∂V

∂

∂t

∫

V

fdz+

∫

∂V

f V · n̂ ds = 0

If we define themean velocity on the same footing as the density,

n(x, t) u(x, t) =

∫

v f(x,v, t) dv

then the incompressibility of the flow in phase space translates into thecontinuity
equation for the plasma density

∂n

∂t
+∇x · (nu) = 0
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Kinetic Model

In akinetic model, each plasma species (ions and electrons) is described by its
distribution functionfi(x,v, t), solution of thekinetic equation

∂fi
∂t

+ v · ∂fi
∂x

+
qi
mi

(

E+
v

c
×B

)

· ∂fi
∂v

=

(

∂fi
∂t

)

c

where the electromagnetic field satisfies the Maxwell equations,

∇×E = −1

c

∂B

∂t
, ∇ ·E = 4π ρ

∇×B =
1

c

∂E

∂t
+

4π

c
J, ∇ ·B = 0

Theself-consistent electromagnetic fields enter naturally as contribution to charge and
current via theconstitutive relations

ρ(x, t) =
∑

i

qi

∫

fi(x,v, t)dv

J(x, t) =
∑

i

qi

∫

fi(x,v, t) v dv

The mutual interaction among plasma particles is containedin the collision operator and in
the constitutive relations.
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Kinetic Models - Summary

Although the dimensionality of the problem has beentremendously reduced (from
(6N + 1) to (6 + 1)!!!), the numerical solution of a fullkinetic model is still challenging,
since

Thekinetic andMaxwell equations arenonlinearly coupled.

Different time and length scales are covered, for instance gyromotion vs drift
motion=⇒ Multiscale problem.

One can analytically simplify the equations and introducegyrokinetic, gyrofluid, and
fluid (etc.) models. However, at each level of simplification, thedomain of validity
(physical phenomena that can be still correctly described)becomes narrower: developing
simplified models mainly requires

derivation of the equations,

identify the validity domain.
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Kinetic Models =⇒ Fluid Models

A fluid is characterized by

density (u0) : n(x, t) :=

∫

f(x,v, t) dv

mean velocity (u1) : n(x, t)u(x, t) :=

∫

f(x,v, t) v dv

Pressure tensor (u2) : Pkl(x, t) :=

∫

f(x,v, t) (v − u(x, t))k (v − u(x, t))l dv

Pressure scalar (u2) : p(x, t) :=
1

3
Tr(P(x, t)) =

∫

f(x,v, t) |v|2 dv

If you take the moments 0th, 1st, and 2nd of the kinetic equation and use a closure for the
3rd moment you get the fluid equations, a set of equations forn, u, andp.
The constitutive equations becomes simply,

ρ(x, t) =
∑

i

qi ni(x, t), J(x, t) =
∑

i

qi ni(x, t)v(x, t)
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Collisions

Boltzmann Equation

Landau Collision Operator
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Boltzmann Equation

(Landau, 1936.)

Let us introduce the number of collisions (per unit time) betweenα-species
particles with momentump andβ-species particles with momentump′

w(p+
∆

2
, p′ − ∆

2
;∆) fα(p) fβ(p

′) d3p′ d3∆

w(p+∆, p′ +∆′) = probability per unit time that in a collision the particles’
momenta are changed from(p, p′) to (p+∆, p′ +∆′).
We have explicitly used the momentum conservation∆′ = −∆.

∂fα(p)/∂t = balance between the particles that leave and enter the volumed3p
aroundp:

(
∂fα
∂t

)

c

=
∑

β

∫

d3p′ d3∆ w(p+
∆

2
, p′ − ∆

2
;∆)

[
fα(p) fβ(p

′)− fα(p+∆) fβ(p
′ −∆)

]

where w(p+∆/2, p′ −∆/2) = w(p−∆/2, p′ +∆/2) it has been used.
This is theBoltzmann collision operator.
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Landau Approach

Thecollisional kernel for Coulomb interactions is given by theRutherford
formula,

w

(

p+
∆

2
, p′ − ∆

2
;∆

)

d3∆ = |vα − v′β |dσ =

(
ZαZβe

2

mαβ

)2
sin θ

sin2(θ/2)

1

|vα − v′β |3
dθ

with θ the deviation angle, i.e. the angle betweenvα − v′β and(vα +∆v,α)− (v′β −∆v,α)

Singularities of the collision kernel (CK)

grazing collision singularity:

The CK diverges asθ −→ 0

Cure: Debye–Hückel screening:

φD(r) =
ZαZβe

2

r
e−r/λD

head-on collision singularity:

The CK diverges asθ −→ 2π

Cure: Cut off at theLandau
distance (length)rL defined by

ZαZβe
2

rL
= Eth =⇒ rL =

ZαZβe
2

T
where rL ≪ n−1/3 ≪ λD.

r

U(r)

1/r

e−r/λD/r

cut-off

λDrL
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Landau Collision Operator

Sincegrazing collisions, characterized by many small changes of the particle momentum,
are thedominant binary interactions, we can apply the same procedure discussed for the
drunk problem to derive the collision operator which is of the Fokker-Planck type.

Expand the integrand of the Boltzmann operator in a Taylor series of powers of∆i

and up to the second order.

Observe that the zeroth and first order terms are equal to zero.

Then, finally one obtains:

(
∂fα
∂t

)

c

= − ∂

∂pi

∑

β

∫

d3p′
(

fα(p)
∂fβ(p

′)

∂p′k
− fβ(p

′)
∂fα(p)

∂p′k

)∫

w
∆i∆k

2
d∆

with (after some algebra):

Bαβ
ik (p, p′) =

∫

w
∆i∆k

2
d∆ = 2π ln Λ

(ZαZβe
2)2

|v − v′|

[

δα,β − (vi − v′i)(vk − v′k)

|v − v′|2
]

with : ln Λ = ln
λD

rL
, known as the Coulomb logarithm
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Properties of Landau Collision Operator
(
∂fα
∂t

)

c

= −∇p · Sα
c = −∇p ·

∑

β

Cα/β(fα, fβ)

= − ∂

∂pi

∑

β

∫

d3p′
(

fα(p)
∂fβ(p

′)

∂p′k
− fβ(p

′)
∂fα(p)

∂p′k

)

Bαβ
ij (p, p′)

CONSERVATION OF:
Particles, independently for each species:
∫
d3p (

∂fα
∂t

)c =
∫
dp

∂

∂pi
Si = 0

Momentum for each pair of particle species:
∫
d3p [pCα/β + pCβ/α] = 0

Energy for each pair of particle species:
∫
d3p [(p2/mα)C

α/β + (p2/mβ)C
β/α] = 0

BOLZTMANN H THEOREM:
∂s

∂t
=
∑

α,β

∫
d3p ln fα Cα/β ≥ 0, s =

∑

α

∫
dp fα ln fα

Collisions increase the entropy
An equilibrium state exists, the Maxwellian.
Collisions act to smear out irregularities of the distribution function: they
drive the distribution towards the Maxwellian. R. Bilato – IPP SU 2016 – p.50



Wave-Particle Interaction

Landau Damping
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Wave-Particle Interaction

With a hand-waving approach it is possible to build a physical picture of the Landau
damping containing many of its peculiarities.

One-Dimensional problem: Let us consider an electron in the electric field of an
electrostatic wave

E = E0 cos(kx− ωt)

Weassume that the electron and the wave stay in resonance for a time∆t short

enough to justify thelinearization of the equation of the motion∆v ≪ v :

x(t) ≈ x0 + v0 t and : v(t) ≈ v0 +∆v

The velocity change∆v is

∆v =
eE0

me

∫ t

0

cos
[
kx0 + (kv0 − ω)t′

]
dt′

= 2
eE0

me

1

k v0 − ω
sin
(k v0 − ω

2
t
)
cos
(
k x0 +

k v0 − ω

2
t
)
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Landau Damping: Diffusion

We average over the initial phasek x0 (assumed random) to obtain

〈∆v ∆v〉 ≡ 1

2π

∫ 2π

0

d(kx0) ∆v ∆v

= 2

(
eE0

me

)2 [
sin((k v0 − ω)t/2)

(k v0 − ω)

]2

As t increases theaverage resonant particle picks
up more energy per unit time (height) but it
stays in resonance for a shorter time (width):

the (area) energy picked up in the t time

does not depend on t !!!
t

2 t

kv0 − ω

〈∆v∆v〉

t → ∞−→ π

ω

(
eE0

me

)2

δ(k v0 − ω)

where sin
(
t x
)
/x

t→∞−→ πδ(x) has been used.
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Landau Damping: Friction

There is a contradiction to be solved between

〈∆v〉 = 0 stated two slides before

and a theorem that for Hamiltonian systems states

〈∆v〉 = 1

2

∂

∂v
〈∆v∆v〉

= 2

(
eE0

me

)2
k

(kv0 − ω)2t

[

−1− cos((kv0 − ω)t)

kv0 − ω
+

t

2
sin((kv0 − ω)t)

]

6= 0

What is wrong? The theorem is correct ... ideas?

Ans.: To evaluate〈∆v〉 one has to expand to second order in the time, since〈∆v∆v〉.
=⇒ This is the typical example of an inconsistency that appearswhen the orderings are
not properly (consistently) taken into account.
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Landau Damping: Fokker-Planck Eq.

The electron distribution function in presence of wave-particle interaction is
described by aFokker–Planck equation

∂f

∂t
= − ∂

∂v
(〈∆v〉 f) + 1

2

∂2

∂v2
(
〈∆v ∆v〉 f

)

the energy per unit timeK exchanged by electrons with the wave is:

∂K
∂t

=

∫

dv
m

2
v2

∂f

∂t
=

∫

dv
[m

2
v 〈∆v〉

]

f

with : 〈∆v〉 = 1

2

∂ 〈∆v∆v〉
∂v

〈∆v〉 asymmetric aroundvph = ω/k

K↑ if f(vph − δv)>f(vph + δv)

or (∂f/∂v)vph
<0

K↓ if f(vph − δv)<f(vph + δv)

or (∂f/∂v)vph
>0

〈∆v〉

〈∆v∆v〉

kv − ω
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Landau Damping: Damping Rate

We start from the Fokker-Planck equation in the diffusion form:
∂f

∂t
=

1

2

∂

∂v

[
〈∆v ∆v〉 ∂f

∂v

]

and evaluate∂K/∂t with 〈∆v ∆v〉 = π

ω

(eE0

me

)2
δ(k v0 − ω):

∂K
∂t

=

∫

dv
mv2

2

∂f

∂t
= −

∫

dv
me

2
v 〈∆v∆v〉 ∂f

∂v
=
π

2

e2 E2
0

me

ω

|k| k
(
− ∂f

∂v

)

ω/k

To conserve the total energy, it must be satisfied:
∂K
∂t

+
∂W
∂t

= 0

whereW is the wave energy densityW ≈ E2
0/8π.

The wave energy density changes at the rate:
∂W
∂t

= 2ωi W

with ωi ≡ γL the imaginary part of the oscillation frequency.
Combining the three equations, we obtain:

ωi ≡ γL =
π

2
ωr

ω2
pe

k2

(
− ∂f

∂v

)

ω/k

the same result obtained by Landau with thelinearized Vlasov equation.
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Validity of the Linearization

The validity of the asymptotic limit has already been discussed:the change of
energy of resonant particles must not depend on ∆t. Thus, the time
the particle stays in resonance with the wave disappears from the final result!

When is the linearization of the equations of motion justified?
We recall the approximation we have done:

x(t+∆t) ≈ x0 + v ∆t+

∫ ∆t

0

dt ∆v(t) ≈ x0 + v ∆t+
1

2

eE0

me

(∆t)2

In the phase of the wave field the first correction to the linearequation is small if:

k δx ≪ 1 ⇒ ∆t ≪
√

m

2eE0 k

Bouncing time of electrons trapped
near the minima of the wave potential

This is also true for the linearization of the Vlasov equation!
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Collisions + Waves

∂f

∂t
=

1

2

∂

∂v

[

D
∂f

∂v

]

+
(∂f

∂v

)

c

Waves try to form a plateau
∂f/∂v = 0.

Collisions drive f back to
Maxwellian∂f/∂v < 0.

0

1

f

v
D(v)

D

10 ·D
102 ·D
103 ·D
104 ·D
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Bump-on-tail micro-instability

What does happen when∂f/∂v > 0?

Let us consider the so-calledbump-on-tail instability: some of the bulk electrons
are moved into the distribution tail by an external source.

1

f

v

∂f

∂v
> 0

According to Landau Dampingγ,

γL =
π

2
ωr

ω2
pe

k2

(
− ∂f

∂v

)

ω/k

where∂f/∂v > 0 the energy flows from electrons to
waves.

But it is not sufficient to have∂f/∂v > 0: the wave
must also exist, i.e. satisfy the plasma dispersion
relation!

The evolution leads to a diffusion in velocity space which
results in a flattening off , after which the waves are no
longer growing in amplitude.

Note: with micro-instability one refers to instability driven by the interaction of a wave
with only a relative small fraction of particle population,those in resonance with the wave
itself.

R. Bilato – IPP SU 2016 – p.59



A few hints for further reading

The derivation of the kinetic equation is described in many textbooks, for instance:
T.J.M. Boyd and J.J. Sanderson, “The Physics of Plasmas”, Cambridge University
Press.

Many ideas come from Krommes’ notes.

Numerical solution of the kinetic equation
E. Sonnendrücker’s lecture,
http://www-m16.ma.tum.de/foswiki/pub/M16/Allgemeines/NumMethVlasov/Num-
Meth-Vlasov-Notes.pdf

Landau Damping:
L. Landau, J. Phys. U.S.S.R.,10 (1946) 25.
Villani’s lecture:http://smai.emath.fr/cemracs/cemracs10/PROJ/Villani-lectures.pdf

Couloumb collisions:
L. Landau, Phys. Z. Sovjet,10 (1937) 203.
Villani’s review,
http://cedricvillani.org/wp-content/uploads/2012/07/B01.Handbook.pdf

An enjoyable book on the history of the fusion research:
Daniel Clery, “A Piece of the Sun: The Quest for Fusion Energy”, Gerald
Duckworth & Co Ltd

Acknowledgments to O. Maj for enlightening discussions in the preparation of these slides.
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Appendix - Phase Mixing
An Amplifier of Irreversibility
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Phase Mixing: Free Transport Equation

Let us consider the simplest one-dimensionalfree transport problem (here it does not real
matter whatf represents):

∂

∂t
f(t, x, v) + v · ∂

∂x
f(t, x, v) = 0

If the initial condition isf(0, x, v) = f0(x, v), the solution is simply

f(t, x, v) = f0(x− v t, v)

Phase mixing is an intrinsic properties of all mechanical systems that once expressed
in action-angle variables have the angular velocities of the angle variables depend on
the action variables.

In our case,x andv are the angle and action variables, respectively, andẋ = v.

t = 0

x

v

f0

t = ∆t

x

v

t = 5∆t

x

v
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Phase Mixing: Cascade in Velocity

From the position-velocity Fourier transform of the solution of the free transport equation

f̂(t, k, η) =

∫ ∫

f0(x− vt, v) e−2π i k x e−2π i η vdx dv

x′=x−v t
=

∫ ∫

f0(x
′, v) e−2π i k x′

e−2π i (η+k t) vdx′ dv

= f̂0(k, η + k t)

we infer

The uniform (k = 0) spatial mode is preserved in time:f̂(t, 0, η) = f̂0(0, η)

There is acascade from low to high velocity modesη.

Riemann-Lebesgue lemma states that ifg(x) is L1 integrable, then̂g(k)
|k|→∞−→ 0.

Because of the cascade in velocity modes, fork 6= 0 it holds f̂0(k, η + k t)
t→∞−→ 0.

In confined mechanical systems, therecurrence time is finite.

In the present case, the recurrence time isinfinite, although the dynamics is
reversible. Why?
(Ans.: Our problem is stated as aninfinite-dimensional system, and the
recurrence time isfinite only for finite confined mechanical systems!)
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Phase Mixing: Irreversibility Amplifier

=⇒ Diffusion in velocity space (an irreversible process) increases withη2,

D
∂2

∂v2

(∫ ∫

f̂i(k, η) e
−2π i k x e−2π i η vdk dη

)

=

−D

∫ ∫

(2πη)2
︸ ︷︷ ︸

enhancement

f̂i(k, η) e
−2π i k x′

e−2π i η vdk dη

=⇒ Velocity cascade due to phase-mixing “increases” with time the effectiveηeff ∝ k t.

=⇒ In a periodic box of lengthL, there is a naturalinfrared cutoff (k ≥ kcutoff = 2π/L)
that enhances theglobal effects of thevelocity cascade, since the cascade rate is∝ k.

BUT
Thevelocity cascade due to the phase mixing is NOT a source ofirreversibility for
the system (entropy does not increase because of phase mixing!),

INSTEAD

it enhances the effectiveness of the sources of irreversibility.

Note: The infinite recurrence time due to the infinite-dimensional description of the
system plus the velocity cascade due to phase mixing are often confused with
irreversibility!

R. Bilato – IPP SU 2016 – p.64
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