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Aim of Kinetic Theory:
Connecting Macro- to Micro-Description

“The extremely small size of the basic constituents of matter is such that we dcanno
immediately obtain from it an image of the world atréacroscopic level. There are
hierarchies of structures, am@éw concepts arise ateach level. Even if the real world

IS made up of atoms (or even smaller particles), it is toodatiftito describe what occurs
in that world in terms of those basic constituents. What wedis toestablish a
bridge between the various levels in order to form@herent picture.”

(C. Cercignani )
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"WED BETTER LOOK AT THOSE PLANS AGAIN
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Part I. A few but essential physical pictures
presented in a casual fashion

OUTLINE

® Coulomb Collisions: particle—particle interaction;
® Irreversibility: diffusion and Fokker-Planck equations;
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Coulomb Collisions
particle—particle interaction
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Collisions In a Normal Gas: Head-on Collisions W

® |nagasofneutral particles (of atomic diametel) collisions are mainly of the
“head-on” type: The interaction potential can be approxedavith

o 0 if:r >d ‘_) = (/8\'_@WQd
Un(r){oo if:r <O (_‘ Id N/

o=m d?
Theeffective collisional area (collisional cross section) is simply = wd->.

® Theaverage distance between collisions (mean free path) is the traveled
distance divided by the number of collisions:

traveled distance

(v) 1

v)t

Anfp = — : ith rel) = V2

fp o (Urel)t M V2on s (rel) \/_<v>
N —’

interaction vol.

® The collision frequency is thus:

Ve = w) =vV2o0on (v) xon VT

)\mfp

In a gas the collisional frequendyicreases with the square root of temperatyre
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Collisions in an lonized Gas W

® TheCoulomb force decreaseslowly with distance:

#® many small deflections already present at large distanges4ing
collisions)

® grazing collisions overwhelm théhead-on collisions.

® However, beyond th®ebye sphere (of radius\p) the Coulomb force is
balanced by the presence of other particlegbye shielding)

1: Hard spheres
h— (% . T
D = ﬁwp =\ Ton o2 1/r
—P/AD/
c r
Tke
—7.43-107° \/ =~V m
n[1019m—3]
ion
with o >
11 - U1
5T | o— — — -_= == —=/— >0 U2
vt := 4/ — = thermal velocity V2 > U1
m
4t e*n
Wp 1= = electron plasma (angular) frequency
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Collisions in an lonized Gas:
Definition of the Collision Frequency

The collisional timer. = v, * is the time required byandom Coulomb interactions to
change the velocity of a test particle of an amafntequal to the thermal velocity

(Av®)

2
Uy

=1

We need to considgAv?), since(Av) = 0 due to therandomness of the motion.
In the following slides,
® e evaluate,. by expressingAv?) in terms ofr..

® |n analogy with the estimate done for the normal gas, we\fiotkest particlex

colliding against an ensemble of field particl&swhich are not necessarily of the
same type ot..
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Collisions in an lonized Gas:
Test particle « colliding against field particles 5

In a collisional timer®~* a test particlex undergoes on averagé. = 727/t F
(2P the time of the elementary interactions) small velocityrafesdv which are
® random: (§v) =0
® uncorrelated: (Jvidv;x;) =0

Therefore, in a collisional time we have

® 2P is proportional to the time necessary to the test partidesdss the Debye
spheret®? o« Ap/{(vre).
® v is valuated by assuming thelt* is short enough that the particle experiences a

constant acceleration

Sv ~ &P Za 0Bs
SC ma

with § /g the electric field due to the field particles.
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Collisions in an lonized Gas:
Test particle « colliding against field particles 3 (con’t)

Sv ~ 1P Za 0Bp 0Ep
SC ma

® J(FEgarerandom, (6Eg) = 0, anddecorrelated, (6 Eg,0Eg, ;) =0

® Nature of Coulomb collisions in a plasma
® Grazing: §Es = Zg/\} (at the Debye sphere),
® Many: Np < ngA} (the number of field particles in the Debye sphere).

Using these reasonable assumptions, we have

o) = (1 2o ) (5 om) = (10 2) v (o

Bi=1

The collisional frequency becomes

Va_>5 1 <5’02> . Zﬁ Zga ng
c 2

o— 2 o 2
tsc & Ut,oz ma <Urel> vt,oz

(from previous slideS.”” o« Ap /(vrel))
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Collisions in an lonized Gas: Collision Frequency W

2 2
Za ZB ng

mg& <Ure1 > Ut2, o

a—

Since the velocity of the test and field particles are undaied,

<Urel>:\/vt2a +Ut25 :\/ + & = V2T &
’ ’ M mg maqmg

where the last equality holds if we assuffie= T3 = T, it follows

a=B 72 72 mpg ng
Ve X Lo 4p \/ma(ma-l—mﬁ) T3/2

In a plasma the collisional frequendye:creases with temperatureie
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Collisions in an lonized Gas: Energy Exchange Rate W

Temperature equilibration is described by

With collisions particles exchange not only momentum bso&nergy.

L I

Since the scattering is elastic, energy conservation iegpasymmetry on the
energy exchange rate:.

navy C=ngrg (1)

X ‘Hﬁ is proportional to the collisional frequeney —?, and to guarantee the
symmetry (1) we symmetrize the dependence on the massgs’in

2 2
LB Zo L3 g ~ M a—B
B maomg ((Urel>)3 meg + Ma ¢

2 2 mao Mp ng
X Za Zj \/(ma T mg)3 T3/2

Note: This is just a heuristic derivation, which howeveregacceptable dependencies and
orderings.
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Collisions in an lonized Gas: Ordering W

Summarizing:

OB e g
¢ Mo (Me +mg) T3/2

m

— — o —

V%B:I/gaoc pop
mﬁ"’ma

recalling thatn, /m. ~ 1836 and\/m, /m. ~ 43 and normalizing with respect tgf ¢,
in a proton-e plasma the ordering is

m m m
e—re e—re e—r e e—e — e e—e —e e e—e
vE - X Vg o, Vg T ve °, vp P P

mp mp mp
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Collisions in an lonized Gas: Relaxation Times (protonﬂ
gas)

e—e | e—1 . e—e . T—1 11— 1—e . 1—e . e—1
Veoll - Veoll - Vg o Veoll - Vg o Veonl - Vg o Vg
Me Me Me Me Me
1: 1: 1: : : : :

How does an electron-proton gas evolve in time starting faonarbitrary velocity
distribution function with7, and7; of the same order?

1 € 4%~ fe — Isotropic - no preferred direction
e —e= fe — Maxwellian

mj .. :
i—i=> fi — Maxwellian

Me

mj : :

. 1 — eande — 1 = T. ="1T;

e
time
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Collisions in an lonized Gas: In Numbers ...

T§_>e — 1/V§—>e
Density | T=0.1 keV | T=1keV | T = 10keV
10¥9m~? 2.4u8 67us 1.9 ms
10%°m~? 0.27us 7.2uS 0.2ms
7o P =1/v27P

Density | T=0.1 keV | T=1keV | T = 10keV
10¥9m~? 0.2ms 5ms 0.13s
10°°m~? 21us 0.54 ms 14 ms
Density | T=0.1keV | T=1keV | T =10keV
10%m—3 4.4ms 120 ms 34s
10°°m=2 | 0.49ms 13 ms 0.37 s

from Wesson, Tokamaks
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Collisions in an lonized Gas: What We Have Learned W

® Coulomb collisions argrazing andmany.

® Contrary to a normal gas, in a plasma the collision frequelazyeases with the
temperature.

® Collisions are responsible for the isotropization of th&trbution function and for
the energy equipartition.
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Random walk and Diffusion Equation

Fokker-Planck Equation



Kinetic Theory W

® The aim of the Kinetic Theory (KT) is to describe a gas of maaistiples to make
possible the interpretations/predictiosfsmacroscopic quantities (e.g. density,

temperature ...) starting from theicroscopic (position of each particle in phase
space) descriptions of the gas.

® This is achieved with a quantity called distribution fuocij f (x, v, t), which has
two possible interpretations: 1déterministic) approximation of therue gas
density in phase space; Yrobabilistic) probability to find the gas in a given
configuration in the phase space.

® The interpretation you choose has no consequences on theeBoés.
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Kinetic Theory: lrreversibility W

® What we need to describe the motion of particles in a gas amglgithe
Netwon’s lawsfor the particle motion and the Maxwell’'s equatidios the

associated electric and magnetic fields inter-connectethe constitutive relations

® These equations are all reversible in time, i.e. are inmaxidth respect to the
transformation

t— —t, X — X, VvV — —V

® BUT our experience with normal gases teaches us that theoptema are typically
irreversible. How can KT resolve this contradiction?

® Forinstance, we are used to see equatioryfof the type

of 0 <D6>:S

ot ov " Ov

which is manifestlynot time-symmetric.

To grasp the flavour of the probabilistic concept of the gaxdption and how the
irreversibility enters, we will investigate the simd#grunk’s problem.
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The Drunk Man Problem

B AR HoME

Just imagine ane-dimensional drunk man, who, leaving a bar, wants to go home.
Therules of his wandering areimply

® Steps of equal length, i.&\x

® At each step the drunk can go either on the right or on the ligft ®qual
probability.

Question If home ism steps away from the bar, which is the probability that thenklru
reaches home aftex(> m) steps?
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Recall of few Statistical Concepts W

® P(n|m, s): conditional probability — if at timet = 0 the drunk isnAxz away
from the Bar,P(n|m, s) is the probability to find himnAx away a timeg = s At.

The equation folP(n|m, s) (Smoluchowski’s equation - Markoff series)
P(n|m, s) ZP nlk,s —1) P(klm,1)

— of the whole trajectory only the very last positionthe past matters for the present.
In particular, since in the case of the drunk we havedhenk’s rule

1 1
P(klm,1) = 2 Om,k—1 + > Om, k+1

we have

from the left

A

~

P(nm+1,s —1) —|—§ P(nm —1,s — 15

DO | —

P(n|lm,s) =

~~

from the right
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Diffusion Equation W

The Smoluchowski's equation for the discrete random walk is

1 1
P(nlm,s) = 5 Pnm+1,s—1)+ 5 P(nlm—1,s —1)

By addingP(n|m, s — 1) to both sides, we have

1
P(nlm,s)—P(n|m,s—1) = 5

P(nlm+1,s—1)—2 P(n|m, s—1)+P(n|m—1, 3—1)]

which can be re-written as

Ay P(n|m,s) — P(n|m,s — 1) _
At
Pnjm+1,s—1)—P(nlm,s—1) P(n|m,s—1)—P(n/m—-1,s—1)

Ax Ax ]

(Az)®
2

Ax
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Diffusion Equation (con’t)

In the limit thatt = sAt andxz = mAx becomecontinuous variables, the
Smoluchowski’s equation for the discrete random walk,

1 1
P(nlm,s) = 5 Pnm+1,s—1)+ 5 P(nlm—-1,s—1),

becomes the diffusion equation

9 plaolet) = D 2 Pale.t)
at 0|4y — 8.’,U2 0|y

with the constraints that

® The diffusion coefficient,

- (Az)’
At,hAI:f:l—m 2 At

D = stays finite.

(In other words, the spread increases with the square rdohef)

® D doesnot depend omnx, so that

9
ot
the “drunk” doesnot disappear! (Conservation law of the drunk).

P(xzo|z,t)de =0
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Fundamental Solution of the Diffusion Equation W

A last word on the diffusion equation,

9 plaolet) = D 2 Pale.t)
at 0|4y — 8$2 O]y
Starting at = 0 with the Dirac (distribution) functioi (xz — () the solution of this

parabolic equation is:

P(x()’xa t) —

i

In words, an initially localized function irreversibly smoiined out with time.
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Fokker—Planck Equation (1) W

Now we relax the constraint th&? is constant, i.e. go beyond tlhkeunk’s rule.

® Start from the time derivative P (x|y, t)

1

[ 4 Rw) 5 PGalyt) = Jim 1 [ dy Rw) [Plaly,t + At) ~ Plaly. )]

whereR(y) is an arbitrary function such théin,_, 1+, R(y) = 0.

® Use the Smoluchowski’s equation for the continuous Markoyrocess
P(x|y,t+ At) = /dz P(x|z,t) P(z|y, At)
to obtain

[ dv Rw) 5 Plaly.t) =

i, ; { [ @ Plalzt) [ o Ro)PGIna) ~ [ ay RG) Pl |

At—0 At
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Fokker—Planck Equation (I1) W

® We replaceR(y) with its Taylor series aroung,

/dz R(z) %p(a;|z,t) _ /dz P(z]z, 1) [Al(z) R'(2) + 5 Aa(2) B'(2) + }

with the coefficient of the Taylor series,

Y im L ap—
A= fm A = Ao ag ) Wl Pl A

® |f we assume that:

1
An(2) = limat—o A [dy(y — 2)" P(z|ly,At) =0 for n > 2

we have

/dz {R(z) %P(ﬂdz,t) — P(z|z,t) |A1(2) R (2) + %Ag(z) R”(z)] } —
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Fokker—Planck Equation (llI) W

/dz {R(z) %P(ﬂz,t) _ Pz]zt) {Al(z) R'(2) + 3 As(2) R”(z)] } ~0

By integrating by part (recalling thditm,_, + - R(y) = 0), we have

/dz R(2) {%P(ﬂz,t) + %(Al(z) P(x|z,t)) _ %%;(AQ(Z) P(a:|z,t))} — 0

Since this must be satisfied for af(z), P(x|z, t) must be solution of:

%p(ﬂz,t) — —% (Al(z) P(x|z,t)) + %;—; (AQ(Z) P($|Z>t))

This is theFokker-Planck equation whose coefficients depend only onfilhe and
second order moments of the changes.
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1°* Remark on the Fokker—Planck Equation

The Smoluchowski equation (Markoff process)

P(wly.t + At) = /dz P(w]2,1) P2y, At)

becomes the Fokker-Planck equation

friction diffusion
A _A

Ve

9 P
S Plalzt) = — 5 (Al(z) P(x|z,t)> n

under theassumption

1
A, (2) = limas o A [dy(y — 2)" P(zly,At) =0 for n>2

which means that in these processesriall times the coordinates can only change of
small amounts.

In general, without this assumption the Smoluchowski aqudiecomes an
integro-differential equation of the same type of #ieltzmann equation.
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24 Remark on the Fokker—Planck Equation W

® |etusre-namelz(z) =2 D(z), if
d

M) =-=D) (1)

then the Fokker-Planck equation can be written as a diffusguation with non
constantD

3] 0 0
Zf(21) = - (D(2) 5-f(=.1) (2)

Note: All Hamiltonian systems satisfy (1)!

$ Animportant property of the diffusion equation (and of thakker-Planck one) is:
If £ > 0is solution of (2) and id.' integrable, namely

:/f(z,t) dz is finite
Q

then/(t) is constant in time, in other wordsis conserved.

Ex.: if f is the plasma density, then the total density is conserved.

Note: In more dimensionsd > 1), equation (1) becomes

9 10 (0
5l (0= 555 (7 DY) g5 (0)

with .J the Jacobian associated with the coordinate system
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Part Il: Some basic concepts
presented in a more rigorous fashion

OUTLINE
® Distribution function & kinetic equation: statistical description;

® Collision operator: Landau formulation;
$ Landau Damping: wave—particle interaction;
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Introduction

Distribution Function
Kinetic Equation
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Discrete Plasma Description W

Thestate of a set of particles mutually interacting and subject temél forces is
completely determined by a system of coupled Ordinary Differential &opns (ODE),
namely theNewton equations

m; X; = Fz( = Zj?ﬁi F,_.(t) + Fext)

plusa set ofinitial value conditions {X;(0), X;(0) := V;(0) }i<icn.
F,_,; is the force exerted by particleon particle:, andF . the total external force.

... Complexity Issues

$® Initial Knowledge: the lack of information about thenitial Conditions
forces us to tackle the problem fromstatistical point of view, namely as an
ensemble average over all possible initial conditions.

$® Dimensionality: the computational effort to follow all the particles of a
laboratory plasmast 107?) is . . . at the moment. . technicallyprohibitive.

® Distillation: The measured quantities arecrage quantities: a detailed
knowledge of the motion of each particle is not ondylundant but also makes
troublesome andlengthy the interpretation of the numerical results.
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The Aim of Kinetic Theory

9
N
N

AIM

Replace arery large number of simpléD D E equations (one for each parﬂi-
cle) with onlyONE Partial differential equation (PDE) for #function
which is defined in aeduced space of variables and which is able to thor-

oughly describe the plasma propertiescbsurements).

... In other words ... we need to define/determine

thestate of a plasma;
themeasure (particle counter) in the space of plasma states;

theequation for this measure.
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Dynamical State and its Measure W

Let usdouble the number of variables by splitting the second-order ODEHe particle
motion in two first-order ODESs,

F; 1 1
D Fini(t) + —Fex

m; mg; —- m;
JFi

Xi = Vi, and : Vz =

® Thus, the state of an N-particle system at tilme described by a point in the
(x,v)Y = (x1,...,X2;Vv1,...,vn) phase spac@ = (T* x R*)" (T stands for
the torus, since we assume a confined system with periodrdaoy conditions),
and this is called thdynamical state of the system.

® The most naturalneasure in this phase space is

N N
PN(B C Q;t) — / <H 5(X7, — Xz(t)) 5(VZ — Vz(t))> HdXidVi
B \i=1 i=1
whered(z) is the Dirac delta function.

® Py(B CQ;t) = probability that at time the state of the system is i3 C (2.
—> Note, Py (B C €;t) can be eithe6 or 1.
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Distribution Function and its Equation W

® Inthe space of the dynamical states,we can define thdensity distribution
function associated with the system,

fv(xa,vi,oxn, v t) = [ ] 60 — Xa(t) 8(vi — V()
so thus i=1
N
Pn(B C Q;t) :/ fn(X1,Vi, ..., XN, VN; ) deidvi
B

=1

$» For Hamiltonian systems the continuity equation of the dgmbstribution function
together with the divergence theorem gives the Liouvilleagmpn

aﬂ+2[vi_%iN+Fi,3fN]:O

8t i1 i m (9VZ'

What did we learn?

® state,z:= (x,v)" € O

BUT
® measure, fi(z;¢); All the complexity is still there!
® equation of state forfy.
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Relaxing the Initial Knowledge W

® The use of Dirac delta functioi(z) with z := (x, v), implies that weexactly
know the initial conditions of each particle.

® As proxy of theprobabilistic interpretation offx, we can replacé(x) with a

Gaussian ,

1 —
(ro2)1/2 €

Qw‘&%

720 5 (x)

and fn IS anensemble average over the possible initial conditions in phase space.

® Py (B CQ;t)is not anymore restricted to the valugand1, but can assume
values betweefl and1.

fN(X1,Vi, ..., XN, VN;T) Hf;L dx;dv; is the probability of finding the state of

the system within the vqumE[f\f:1 dx;dv; around(xi,vi,...,xn, vy) at timet.
fn(x1,v1,...,xn, Vvn;t) is still solution of Liouville equation with initial
conditions.

What did we achieve?

Conceptually, we have done a substantial improvementhieutamplexity due to high
dimensionality 6 V-dimensional state space) is still there!
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Reducing the Dimensionality W

® Atthe price of loosing some of the microscopic details, tireathsionality of the
phase space can be reducedTd x R?)®, with s < N, by defining the measure

N
N
fS(Xl,Vl; “ e ;X37Vs’t) — m /fN(Xl,Vl;. - ,XN,VNlt) z_U—l_lddeVz

with f; called thereduced distribution function.

The combinatorial factor comes from the fact that the plsiare identical and
thus there aréndistinguishable.
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Distribution Function W

$® Distribution Function
Which of the reduced f; (with: s > 1) are of interest?
Themacroscopic description of a system, is usually done in a 6-dim spage (
andv;) — the best we can do is to reduce the plasma description to:

N
f(x,v,t)=f1(x1,v1,t) = N /fN(Xl,Vl; . ;XN,VN|t)HdX7;dV7;

i=2
called ‘distribution function”.
A dual interpretation of f; is thedeterministic one,

f(x,v,t) dx dv = density of particles in the (phase-space) volume element
dx dv centered atx, v).

What did we achieve?

The problem dimensionality has been drastically reducaa fi6 N + 1) to (6 + 1).
We need the equation for the evolutionfifx, v, t), calledKINETIC EQUATION
(KE)
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How to Derive the KE W

To derive theKinetic Equation for f(x, v, 1)

9 L o XLw 0 -
N /{at—l—;w-axi—l—;mi -aw}fN(Xl,Vl;---;XN,VNt)iH2dXidVi:0

we need to

® separatd; in aninternal Fi** (interaction with the particles of the same species)

and anexternal component&$** (interaction with particles of other species and
external forces).

® recall that for the Lorentz forcE it holdsV, - F =0
® simplify with the non-relativistic limit of the internalelectrostatic forces

N N
- Ze)? Xi — X; 1 0¢i;
F{nt — ( v J_ (]
' m .Z.’Xi_XjP m.Z.(‘?Xi
Jj=1,57#1 J=1,7#1

® assume thaf goes to zero fofv| — oo and with appropriate boundary conditions
N x.
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The Pair Correlation Function W

After some algebra, we obtain:

1 0 0
) fl(zlat) - ¢12 f2(Z1,Z2,t) dz2

m 0X1 . ovi

— 4V —

o0 0 FeXt. o
ot 0x1 m  0vi

The presence of; on the rhs imposes the problemdbsure.
Let usassume:

f2(z1,22,t) = fi1(2z1,t) f1(22,1) + g(21, 22, 1)

g(1,2,t) accounts for theorrelation between(1) and(2) particles.

8 a 1 ext a¢12 i —
oY o T m (F ~/ o f<Z2>dZ2> 8V1] fla,t) =
1 1,
— 8(1112 g(z1,22,t) dzg
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Kinetic Equation W

® Theuncorrelated contribution.

_eEself (Xl t)
with (n(x,t) is the particle density defined IaterS9

a¢self

gbself(xl,t) :Z/gle(Xl,Xg)f(XQ,VQ,t)dXQdVQ =/¢12(X1,X2)H(X2,t) dX2

IS theaverage electric field experienced by one particle due to the othdighas
considered as a whole.

The potentialp**!! is solution of the Poisson equation and computed assumaig th
the particles ar@ncorrelated.

® Thecorrelated contribution,

ofy 1 0P12
(a) = E aXl g(]., 2) dX2 dV2

Is called thecollision term and is an integral-differential operator. This term
gives account of thdiscreteness (binary interaction) of the particle interactions.

0 0 1 ext self 2 . 8_f
[(%_'_V 0X+m(F ek ) 8V} f_(8t>c

R. Bilato — IPP SU 2016 — p.40

Finally,




Kinetic Equation - Summary W

® The original dimensionality of the problem has been dra#fliceduced from
(6 N 4 1) with N ~ 10** to (6 + 1), 3 for x, 3 for v and one for time.

®» Moreover, we have identified the measuféx, v, t), capable to describe the
plasma properties in this reduced space, and we know theieqdar its evolution,

ﬁ+v.ﬁ+i(FeXt+Fself).ﬁ: (8_f>

ot ox m ov ot

#® Nonlinear Vlasov operator (left-hand side)
Account for theuncorrelated particle interactions plus external forces.

® Collisions: Boltzmann operator (right-hand side)
Account for thecorrelated particle interactions.

The distribution functionf (x, v, t) has anatural deterministic interpretation,
namely plasma density in the phase space, and

n(x,t) = /f(x,v,t) dv

IS the plasma density ireal space. Somethinteasurable!!!
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Vlasov Equation - Conservation W

Since the Lorentz force satisfi&5, - F = 0, the Vlasov equation can be written

¢
of _ RN _ 4q M —
E—'_VZ.(VJB)_O’ with: V := <V,m(E+CXB>>,Z-—(X>V)

since the fluxV in phase space isicompressible, i.e. V., -V = 0.

This is theconservative form of the Vlasov equation: variation in time of the densit\a
volumeY of the phase-space is equal to thdance between what enters and what leaves
the volume through its boundady’

2/fdz—l— fV-nds=0

ot Jy oV

If we define themean velocity on the same footing as the density,
n(x,t) u(x,t) = /V f(x,v,t) dv

then the incompressibility of the flow in phase space traeslamto thecontinuity
equation for the plasma density
on

E—FVX(TLU):O
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Kinetic Model W

In a kinetic model, each plasma species (ions and electrons) is describesd by it
distribution functionf;(x, v, t), solution of thekinetic equation

Fopyv G L (g Yap) O <8ﬁ>

ot ox  m; ov \ Ot
where the electromagnetic field satisfies the Maxwell equoati
10B
E=——— -E=14
V X vl \Y% TP
vxB=19E AT g B-o
c Ot c

The self-consistent electromagnetic fields enter naturally as contributionhtarge and
current via theconstitutive relations

p(x,t) = Zqiffi(X,V,t)dV
J(x,t):Zqi/fi(x,v,t)vdv

The mutual interaction among plasma particles is contaméae collision operator and in
the constitutive relations.
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Kinetic Models - Summary W

Although the dimensionality of the problem has beéeimendously reduced (from

(6N + 1) to (6 + 1)!!1), the numerical solution of a fulkinetic model is still challenging,
since

® Thekinetic and Maxwell equations ar@onlinearly coupled.

® Different time and length scales are covered, for instaycergotion vs drift
motion—- Multiscale problem.

One can analytically simplify the equations and introdgeeokinetic, gyrofluid, and
fluid (etc.) models. However, at each level of simplification, dbenain of validity
(physical phenomena that can be still correctly describedbmes narrower: developing
simplified models mainly requires

® (derivation of the equations,

® identify the validity domain.
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Kinetic Models = Fluid Models W

A fluid is characterized by
density (u?): n(x,t) = /f(x,v,t) dv
mean velocity (u') 1 n(x,t)u(x,t) = /f(x,v,t) v dv
Pressure tensor (u”) :  Pp(x,t) := /f(x, v,t) (v —u(x,t)), (v—u(x,t)),dv

Pressure scalar (u°) :  p(x,t) := %Tr(P(x,t)) = /f(x,v,t) v|® dv

If you take the moments'd, 15°, and 2¢ of the kinetic equation and use a closure for the

3*Y moment you get the fluid equations, a set of equations far, andp.
The constitutive equations becomes simply,

p(x,t) = Z gi ni(x, t), J(x,t) = Z gi ni(x, 1) v(x, t)
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Collisions

Boltzmann Equation
Landau Collision Operator
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Boltzmann Equation W

(Landau, 1936.)

® et usintroduce the number of collisions (per unit timeWegna-species
particles with momentump and 3-species particles with momentysh

A / A / /
w(p+ 5,0 = 535 4A) fap) fo(0') dp' d’A

w(p + A, p’ + A’) = probability per unit time that in a collision the particles
momenta are changed frofp, p’) to (p + A, p" + A').
We have explicitly used the momentum conservation= —A.

® 0f.(p)/0t = balance between the particles that leave and enter theneaitlp

aroundp:
(af“> Z/dB "d°A wp+%,p —é ;A)

[fa(p) fo(0)) = falp + D) fa(p' — A)]

where w(p+A/2,p" —A/2)=w(p—A/2,p" + A/2) ithas been used.
This is theBoltzmann collision operator.
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Landau Approach W

Thecollisional kernel for Coulomb interactions is given by te@utherford
formula,

A, A 3 , ZoéZBe2 ° sin# 1

S0 — A BPA = e — vhldo = [ Z22E5 do
w (p-l— 5 Y 5 ) ’U Uﬁl o ( Mas sin2(9/2) |Ua _ U%|3
with 6 the deviation angle, i.e. the angle between- vz and(va + Av,a) — (V5 — Av,a)

Singularities of the collision kernel (CK) U(r)

® grazing collision singularity:
The CK divergesa ¢ — 0

Cure Debye—Huckel screening:
_ ZaZ562 e T/AD

¢p (1) =

r

® head-on collision singularity:

The CK diverges a ¢ — 27

Cure Cut off at theLandau
distance (length)rr defined by

AT AT

where r;, < n~1/3 < Ap.
rL T
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Landau Collision Operator W

Sincegrazing collisions, characterized by many small changes of theglarmomentum,
are thedominant binary interactions, we can apply the same procedure disduer the

drunk problem to derive the collision operator which is af trokker-Planck type.

® Expand the integrand of the Boltzmann operator in a Tayloes®f powers ofA;
and up to the second order.

® Observe that the zeroth and first order terms are equal to zero

Then, finally one obtains:

of.
(%),

with (after some algebra):

3 dfs(p) afa ) AAk JA
p (fa<p>—ap;€ Foli)

A;A (ZoZge?)? (vi — ;) (vE — vy,)
af3 N 1k . atp 7 ) k k
B (p,p)—/w 5 dA =27wln A — P p—TE
with : InA =1In )\—D, known as the Coulomb logarithm
TL
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Properties of Landau Collision Operator W

(%) = =V, S5 ==Vp > C(fa, fs)
c B

_ 0 3,7 0fs(p) i Ofa(p) o /
= g o[ 8 (075 - 100 ) B

Opi 8pk k

$» CONSERVATION OF:
® Particles, independently for each species:
Jd&p ( (7fa — 87;

o Momentum for each pair of particle species:
[&ppC/P +pCPl*] =0

#® Energy for each pair of particle species:
[ &p [(p?/ma) C*'P + (p* /mp) C/*] = 0

$» BOLZTMANN H THEOREM:

gi =Y s/ P Info CP>0,s=3 [dp faln fa

#® Collisions increase the entropy
® An equilibrium state exists, the Maxwellian.

#® Collisions act to smear out irregularities of the distribatfunction: they
drive the distribution towards the Maxwellian. R. Bilato — IPP SU 2016 — p.50




Wave-Particle Interaction

Landau Damping
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Wave-Particle Interaction W

With a hand-waving approach it is possible to build a physezture of the Landau
damping containing many of its peculiarities.

One-Dimensional problem: Let us consider an electron in the electric field of an
electrostatic wave
E = Ey cos(kx — wt)
$ \Weassume that the electron and the wave stay in resonance for afimehort
enough to justify thelinearization of the equation of the motio Av < v :

x(t) ~xo+vot and : v(t) =~ vo + Av
® The velocity changé\v is
t
Av = eLo / cos [kzo + (kvo — w)t'] dt’
me Jo
1 _ _
= 2675;0 k,UO_w Sin (]CUOth> COSs (kx()—l— kvoz wt)
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Landau Damping: Diffusion

® \We average over the initial phagery (assumed random) to obtain

1 27
(Av Avy = — d(kzo) Av Av
21 Jo
_ eFo\? [sin((kvo — w)t/2)]”
N Me (kvo — w)
As/t increases thaverage resonant particle picks | (AVAV)
up more energy per unit timeh¢ight) but it ﬁ
ays in resonance for a shorter time{th): 9t
the (area) energy picked up in the ¢ time
does not depend on ¢ !!!
t
Eo\” -
ti}oo T (e O) d(kvo —w) kvo —w
w

me

where sin (¢t z)/z =3 wd(x) has been used.
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Landau Damping: Friction W

There is a contradiction to be solved between

® (Av) = 0 stated two slides before

® and atheorem that for Hamiltonian systems states

10

Av) = = — (AvA
(&) 2 8v< vAv)
eEp " k 1 —cos((kvo —w)t) t .
— 9 _ t Lo — o
( Me ) (k"l}() _ w)Qt [ k"U() Iy + 5 Slﬂ(( Vo w) )
# 0
What is wrong? The theorem is correct ... ideas?

Ans.: To evaluateg/ Av) one has to expand to second order in the time, sjfceAv).
— This is the typical example of an inconsistency that app&aen the orderings are
not properly (consistently) taken into account.
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Landau Damping: Fokker-Planck Eq. W

® The electron distribution function in presence of wavetipkr interaction is
described by &'okker—Planck equation

of 0 1 52
S =~ (A0 ) + 55 (v Aw) f)

the energy per unit tim& exchanged by electrons with the wave is:

%/tc / %22—52 dv[;v(ﬁ’@]f

. 10 (AvAv
with: \Av) = | v ﬁ (Av Av)

$ (Av) asymmetric aroundvp,, = w/k
® K1 if f(vpn = 0v)>f(vpn + 0v)

r (8f/8v)vph<0
® Ki if f(vph — 6v)<f(vph + dv)

r (0f/0v)y,,>0

N |

R. Bilato — IPP SU 2016 — p.55



Landau Damping: Damping Rate W

® \We start from the Fokker-Planck equation in the diffusiomfo

of 10 of
ot~ 20w [ <A§ Av) (91)}
and evaluatéxC /ot with (Av Av) = g(‘jno )% §(kvo — w):
oK mv? Of B Me of = e’ B2 w of
ot 2 E__/ v v lAvi) 5 o 2 me ]k]k(_%>w/’“
® To conserve the total energy, it must be satisfied:
oK n ow 0
ot ot

where)V is the wave energy densiWy ~ E§ /8.
The wave energy density changes at the rate:

oW
ot

with w; = ~1, the imaginary part of the oscillation frequency.
Combining the three equations, we obtain:

:2w¢W

2

T Whe of
§wr kp2 (_%)w/k}

the same result obtained by Landau with theearized Vlasov equation.
R. Bilato — IPP SU 2016 — p.56
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Validity of the Linearization W

9

The validity of the asymptotic limit has already been disadsthe change of
energy of resonant particles must not depend on At. Thus, the time
the particle stays in resonance with the wave disappearstfie final result!

When is the linearization of the equations of motion judtifie
We recall the approximation we have done:

At ]_eEo
x(t—kAt)wxo—i—vAt—l—/ dt Av(t) = xo +v At + =

0 2 me

(At)?

In the phase of the wave field the first correction to the liregpration is small if:

Eix<<€1l= At

2eE0k

Bouncing time of electrons trappe!:j
near the minima of the wave potential

This is also true for the linearization of the Vlasov equaitio
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Collisions + Waves

of 10 af af
ot 2 Ov [D 8v}+(8v)c
» \Waves try to form a plateau \
of /ov = 0.
® Collisions drive f back to 1

Maxwellianof /ov < 0.
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Bump-on-tail micro-instability W

What does happen whéif /0v > 0?

Let us consider the so-callédimp-on-tail instability: some of the bulk electrons
are moved into the distribution tail by an external source.

® According to Landau Damping, A

2
T Wpe of 1
= o 2 (= 50 f\
whered f /0v > 0 the energy flows from electrons to
waves.

® Butitis not sufficientto havé f /0v > 0: the wave
must also exist, i.e. satisfy the plasma dispersion — >0

relation! /
® The evolution leads to a diffusion in velocity space which

results in a flattening of , after which the waves are no

longer growing in amplitude.

Note: with micro-instability one refers to instability den by the interaction of a wave

with only a relative small fraction of particle populatidhpse in resonance with the wave
itself.
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A few hints for further reading W

® The derivation of the kinetic equation is described in maxgkiooks, for instance:
T.J.M. Boyd and J.J. Sanderson, “The Physics of Plasmasijp@dge University
Press.

°

Many ideas come from Krommes’ notes.

°

Numerical solution of the kinetic equation

E. Sonnendricker’s lecture,
http://www-m16.ma.tum.de/foswiki/pub/M16/AllgemesiBlumMethVIasov/Num-
Meth-VIasov-Notes.pdf

® |andau Damping:
L. Landau, J. Phys. U.S.S.R.0 (1946) 25.
Villani’s lecture: http://smai.emath.fr/cemracs/cemracs10/PROJ/VHlactures.pdf

® Couloumb collisions:
L. Landau, Phys. Z. Sovjel,0 (1937) 203.
Villani’s review,
http://cedricvillani.org/wp-content/uploads/2012/B@1.Handbook.pdf

® An enjoyable book on the history of the fusion research:
Daniel Clery, “A Piece of the Sun: The Quest for Fusion Engr@®erald
Duckworth & Co Ltd

Acknowledgments to O. Maj for enlightening discussiongm preparation of these slides.

R. Bilato — IPP SU 2016 — p.60



Appendix - Phase Mixing
An Amplifier of Irreversibility



Phase Mixing: Free Transport Equation W

Let us consider the simplest one-dimensiafra¢ transport problem (here it does not real
matter whatf represents):

0 0
&f(taxav)_F,U' %f(taxav) =0

If the initial condition isf (0, z,v) = fo(x,v), the solution is simply

f(t,.’l?,’U) — f()('/lj —vt,v)

Phase mixing is an intrinsic properties of all mechanicatams that once expressed
In action-angle variables have the angular velocities efahgle variables depend on
the action variables.

In our caseg andv are the angle and action variables, respectively,szagduv.

t=20 t = At t = H5AL
VA 'U)\/
z N

fO / —
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Phase Mixing: Cascade in Velocity W

From the position-velocity Fourier transform of the sadutiof the free transport equation
f(t k,n) = //fo (x —vt,v) e 2" FT 72TV g du

—r—vt . . / . .
' g v //fo(x',v)e 2wi k x e 27rz(77—|—kt)vdx/ d’U

A

we infer
® The uniform & = 0) spatial mode is preserved in timﬁ(t, 0,n) = f’o(O, n)
® There is acascade from low to high velocity modesg.

|k|— o0

® Riemann-Lebesgue lemma states thai(if) is L' integrable, theg(k) — 0.

t—00

Because of the cascade in velocity modesifef 0 it holds fo (k,n + kt) — 0.
® |n confined mechanical systems, th&urrence time Iis finite.
® Inthe present case, the recurrence timaifite, although the dynamics is

reversible. Why?
(Ans.: Our problem is stated as affinite-dimensional system, and the
recurrence time i¢inite only for finite confined mechanical systems!)
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Phase Mixing: Irreversibility Amplifier W

— Diffusion in velocity space (an irreversible process) @ases with?,

2 . .
D % (//fz(kgn) 6—27rzka: e—27rznvdk d?’]) _

— D // (27_”7)2 fz(kpn) e—27rika:/ e—27rinvdk d??
N——

enhancement

— Velocity cascade due to phase-mixing “increases” with time the effectivg « k t.

— In a periodic box of lengthl., there is a naturahfrared cutoff (k > kcutogr = 27/ L)
that enhances thelobal effects of thevelocity cascade, since the cascade ratexsk.

BUT
The velocity cascade due to the phase mixing is NOT a sourcanfeversibility for

the system (entropy does not increase because of phaseaghixin
INSTEAD

it enhances the effectiveness of the sources of irrevétgibi

Note: The infinite recurrence time due to the infinite-dimenslalescription of the
system plus the velocity cascade due to phase mixing ane afigused with
irreversibility!
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