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Plan of the lectures

@ LECTURE I: MHD equations.
@ |Introduction to basic fluid dynamics.
@ From two-fluid plasma models to MHD equations.

@ LECTURE II: Character of MHD.

@ Conservation laws.
@ Basic processes in MHD: magnetic field diffusion, waves.
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LECTURE I: MHD equations

@ Basic fluid dynamics:
Mass, momentum and energy conservation laws.

@ Two-fluid description of plasmas:
Each particle species is described as an electrically charged fluid.

© Quasi-neutral/low-frequency limit:
At low frequency, charge separation in suppressed and plasmas are quasi-neutral.

© MHD equations:
A single electrically conducting neutral fluid.
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Basic fluid dynamics W
Definition of the basic physical quantities of fluid dynamics
Let W be a arbitrary (measurable) subset of the physical domain occupied by the fluid.
@ MAss DENSITY: The mass per unit of volume p(t, ) > 0,
mass in W :/ p(t, z)dx.
w
@ FLUID VELOCITY: The velocity u(t, x) of the fluid element p(t, )dx,
momentum in W = / p(t, z)u(t, z)dz.
w
@ TEMPERATURE: A scalar T'(t,x) > 0 for the internal energy of a fluid element,
internal energy in W = / n(t,z)kpT(t,x))dz,

where n(t, ) = p(t, z)/m and m is the mass of fluids atoms/molecules.
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Basic fluid dynamics
The flow of a vector field

@ Lagrangian trajectories of a fluid element:
da(t) _
TR u(t,z(t)),
z(0) = xo.

The point (t) moves at the same velocity of
the fluid, thus representing the fluid motion.

/\

@ By (ideally) computing the Lagrangian trajectories for every initial condition, we
can construct a one-parameter family of maps

o — Fi(xo) = x(t), t>0.

The family of maps F'; is referred to as the flow of the vector field u(t, x).
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Basic fluid dynamics
The flow of a vector field - cartoon

F,

/X/r

Fludatt =0 Fluid at ¢
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Basic fluid dynamics
The flow of a vector field - Basic mathematical properties

@ For every given point xo, F'+(xo) is a Lagrangian trajectory, hence,
d
%Ft(wo) = u(t, Ft(wo)),
Fo (.’130) = Xo.

@ Atany giventime ¢ > 0,
x = Fy¢(x0)

is a coordinate transformation generated by the fluid motion.

@ The Jacobian matrix VF'; and determinant J; = det(V F;) satisfies

%VFt:VFt-Vu(t,Ft), %Jt: [V-u(t,Ft)]Jt,
VF, =1, Jo=1.
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Basic fluid dynamics W
Deformation and rotation tensors

@ The motion of two neighboring points: N Fi(@o)
0 ‘ e
z(t) = Fy(z0), \ h(t)
@' (t) = Fy(x)), zy,
h(t) = x'(t) — x(t). o Fi(x)
At the lowest order, the evolution of h(t) is governed by the tensor Vu, i.e.,

%h(t) — u(t,') — ult,x) = h(t) - Vu(t,z) + O(h(t)?),

Vu =1 [Vu+ (Vu)'] + 1 [Vu - (Vu)"].

D=Deformation S=Rotation
@ The rotation tensor is related to the VORTICITY w = V X u,
h-S= %[h-Vu—Vu-h] :%(qu) x h = %wxh.

o At last,

d, 1 2
ah_D-h+2wxh+O(h ).
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Basic fluid dynamics
Example of pure-deformation flow

@ Consider the two-dimensional flow

@ This is a pure-deformation flow, that is,

D = Vu, w =0.
@ The flow is

eutx(),l
—vt

Fi(xo) = | e xo2 | .
Zo,3

The Lagrangian trajectories are
hyperbolas 1‘1(t)$2 (t) = Z0,1%0,2-
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Basic fluid dynamics
Example of pure-rotation flow: a simple vortex

@ Consider the two-dimensional flow

T2 0 —v O
uv=v|—x1]|, Vu=|v 0 0
0 0 0 O

@ This is a pure-rotation flow, that is, Vu is anti-symmetric,

D=0, w=(00—2v)".

@ The flow is
xo,1 cos(vt) + xo,2 sin(vt)
Fi(xo) = | —mo,1 sin(vt) + zo,2 cos(vt) | .
Zo,3

The Lagrangian trajectories are circles
x1(t)? +22(t)? = asg,l + x?m.
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Basic fluid dynamics W

Reynolds transport theorem
@ Let f(t,x) be a scalar field and W; = F;(Ws) a volume moving with the fluid:

Fy
D pit)de =2
dt Jy,

@ We can use the flow F'; as a change of variables,

% W f(t, z)dr = %/WO [ (t, F(x0)) Je(z0)dxo

_ /WO [Dt, Fuw0) o) + 1 (1 o () & (o)

_ /W [%(t,Ft(a:o)) (6 Fu(@0)V - ult, Fiu(ao)) | (wo)dao

:/ [0f + V- (fu)]dz,
Wi

where df /dt = 0. f + u - V f is the advective derivative.
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Basic fluid dynamics
Reynolds transport theorem - contd

@ Statement of the REYNOLDS TRANSPORT THEOREM:

% . f(t,a:)dm:/Wt [Z—];+fv~u]dm:/vvt [Btf—{—v-(fu)]dw.

: conservative form
advective form

@ Example: For f = 1 one has the evolution of the volume of W,

i dr = V- udz.
dt Jw, W,

@ INCOMPRESSIBILITY: The volume of every domain W; is conserved,

incompressibility <= V.-u=0.
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Basic fluid dynamics
Equations of motion: Mass continuity equation

@ The mass contained in a volume W; which moves with the fluid is constant,

d

ad t, x)dzx = 0.

dt/th(,w) T
~——

mass in Wy
@ From the transport theorem (conservative form):

d

— p(t, x)dr = / [Oip+ V - (pu)]dz =0, for every W;.
dt Jw, Wy

This yields the MASS CONTINUITY EQUATION

‘BthrV-(pu):O.‘

@ For incompressible flows, p = constant is a solution.
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Basic fluid dynamics W
Equations of motion: Momentum balance equation

@ Newton’s second law:

d

— p(t, z)u(t, z)dx = forces acting on W;.
dt Jw,

momentum in W,

control volume
ds

@ Forces on a fluid volume:

p = pressure,
m = viscosity [Tr(w) = 0],

f = force per unit of mass. ~/pfdx

surfaces forces = — /

; [pn+ m-n|dS, body forces:/ p(t, ) f(t, x)dz.
Wi

Wi
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Basic fluid dynamics W
Equations of motion: Momentum balance equation - cont'd

@ By means of the Reynolds theorem, the momentum balance reads
/ [8t(pu)+V-(puu)]dx:—/ [pn+7r~n]d5+/ pfdx.
Wy oWy Wy
@ Gauss divergence theorem allows us to deal with boundary terms
/ [pn+7r~n]d5:/ [Vp—i—V-w]dm.
OWy Wi

@ Since W, is an arbitrary volume, the momentum balance becomes

‘ O(pu) + V- (puu+m) = —-Vp+pf. ‘
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Basic fluid dynamics W
Equations of motion: Energy balance equation

@ The balance of the total (kinetic plus internal) energy is

Zpu’ + SnkpT|dx = (work of forces on W) + (energy exchange in W7).
T oo+ SnksT]dr = (work of )+ (energy exchange in 1)

dt [y, L2

energy in Wy

@ Work done by the forces:

work of forces on W; = —/ u- [pn+7r-n]d8+/ pu - fdx
oWy Wy

:f/ V-[pquﬂ"u]der/ pu - fdx.
Wy Wi
@ Energy exchance via heat flux and sources
energy exchance in W; = — / q-ndS + Qdzx
oWy Wi
=— V - qdz + Qdz,
W Wy
where g is the heat flux and @ the heat source.
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Basic fluid dynamics W
Equations of motion: Energy balance equation - contd

@ Reynolds theorem yields the total energy balance,
Bt(%qu + 3nkpT) + V- [(%pu2 + 3nksT +plu+7-u+q] =pu-f+Q.
@ The momentum balance equation implies
at(%pUQ) +V. (%pu2u+pu+7r~u) =pu-f+7m:Vu+pV-u,

which can be used to simplify the kinetic energy terms.
@ By using the latter identity, one obtains the internal energy balance

‘8t(%nkBT) + V- (%nkBTu—Fq) +pV-u+m:Vu=Q.
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Basic fluid dynamics
Summary of the equations of motion

General form of the equations of fluid dynamics:

@ Mass continuity equation:
Op+ V- (pu) = 0.

@ Momentum balance equation:
O(pu) + V- (puu+ ) = —Vp+pf.

@ Internal energy balance:

O (3nkpT) + V- (3nkTu+q) +pV-u+m:Vu=Q.

@ The equations are not closed! We need to specify
pressure p, viscosity w, heatflux g, and heat source Q,

as functions of (p, w,T): This is known as the closure problem.
@ Kinetic theory is needed to obtain good closure relations. In particular,
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Two-fluid description of plasmas
Forces acting on an electrically charged fluid

@ For a gas of charged particles of mass m, and electric charge e,,

mass density = mana, charge density = eqna,
electric current density = eqnatq.

@ Forces acting of an electrically charged fluid are then

(eanaua) X B

manafa :eanaE+ +Ro¢7

where E, B are the electromagnetic fields (c.g.s. units) and
R, is the friction force due to collisions,

cf. the kinetic physics lecture by R. Bilato.
@ If a € {i = ions, e = electrons}, and neglecting thermal forces,

—Ri = R. = enend, J = Z €aNalq.
ac{ie}
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Two-fluid description of plasmas W
Two-fluid description of plasmas: basic equations

@ Basic equations: for two-species plasmas « € {i, e},
Oina + V - (Naua) =0,

8t(mo¢naua) + V- (manauaua + 77(1) = _vpa + manafa7
8t(%pa) + V- (%paua + qa) +pav “Ua + Tt VUua = QD"

VxB=%2J+19,E, [J = einius — enctte],
0B +cVxE=0,

V- E =47pep, [pch =eini — ene],
V-B=0,

where we have used the closure p., = noksT., and

MaNafy = €aNa [E + #] +R,, —Ri =R.=cennJ.

@ Total momentum and energy conservation requires

> Ra=0, > [Qa+ua-Ra]=0.

«@
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Two-fluid description of plasmas W
Low-frequency regime and quasi-neutrality
@ Typical values of basic quantities:
() ~7(), VO~LTH(), wa~V, na~ N,

kT kT
ksT. ~ energy scale ~ kgT, E ~ ~2— B~"BLE

el ’ el V'
@ Assumptions defining the regime of interest:
T=L/V, 7 is set by the advection time scale (low frequencies),
miV? = kgT, kinetic-energy scale is set by temperature scale,
V/ie=Ap/L K 1, non-relativistic quasi-neutral plasmas,

where the typical Debye length (in c.g.s. units) is

N
P =V 4re2N"

@ With e = (Ap/L)? < 1, one finds two small terms (relative to the others):

¢ 'OE = O(e), displacement current is negligible,
V-E =0(e), charge separation is negligible.
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Two-fluid description of plasmas W
Quasi-neutral two-fluid model
@ Quasi-neutral limit of the two-fluid model:
Ona + V- (naua) =0, eini — ene = 0,
O (Manata) + V- (Manabata + Ta) = —Vpa + mana f,,
01 (2pa) + V- (3patta + q,) + PaV - Ua + o : Ve = Qa,

VxB=1%42], [this defines J directly and V - J = 0],
B +cV X E =0,
V-B=0.

@ This model does not imply V - E = 0. Gauss law is recovered at first order in e.
@ Energy and momentum in the quasi-neutral limit:

. 1 2 Da E? B?
r nsity = “Mmanaul 2
energy density E(anu 4—7_1)—1—87r +a-
O(e)
. E x B
momentum density = aNaUa .
omentum de y;mnu—kMC
O(e)
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From two-fluid to single-fluid models W
Equation for the center-of-mass fluid
@ Let us consider a single fluid with “center-of-mass parameters”:
P = Mini + MeMNe, PU = MiNiWi + MeNeUe, pPeh = €ini — ene = 0.
@ By summing over the index «, the two-fluid equations imply
Otp+ V- (pu) =0,

Dulpu) + 7 - (pus + ) = ~Vp+ (J x B)e,
0(Ep)+V-(Eputq)+pV-ut+nm:Vu=J -E—u-(J x B)/c,

where the single fluid quantities are
— 1 2
p= ; [pa + 3mana(ua —u) ],

T = Z |:7l‘a + mana(ta —u)(Uq —u) — %mana(ua — 'u,)2:|,

[e3

q= Z [qa + pa(tla —u) + 7o - (Ua —u) + %mana(ua —u)? (o — u)].

@ Remark: This is an exact result, no approximations. But the system is not closed.
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From two-fluid to single-fluid models W
The generalized Ohm’s law

@ The momentum balance in advective form times e, /m. reads

du e e w? e2n e
€aNla a—i——av-ﬂ'a—l——ana: POE + 2“4y x B+ —"R,,
dt Me Mo 4 MaC Ma
where the plasma frequencies are (c.g.s. units)
2 2 2 2 2
wg = 4mwegna /ma, Wy = Wpi + Wy e

@ The sum over « € {i, e}, using quasi-neutrality u; ~ u, yields

du; ei ei due e e
ene +—V.-mi+ —Vp;—ene - —V 7. — Vpe
dt mi m; dt Me Me
ion inertia, viscosity, and pressure electron inertia, viscosity, and pressure
2
w ux B Jx B
=-2 [E + —nJ ] - .
47 meC
Hall term

@ Since the plasma frequency corresponds to the dominating term,

u x B

E + —nd =0, Ohm'’s law in MHD.

0. Maj (IPP-Garching) MHD lectures IPP Summer University Sept. 19, 2016 24/56
[¢)



MHD equations
MHD equations

@ Single-fluid equations, together with the Ampeéré and Faraday laws, as well as the

leading term in the generalized Ohm’s law:

Op+ V- (pu) =0,
Or(pu) + V- (puu + ) = —Vp+ (J x B)/c,

&(gp)+V-(%pu+q)+pv-u+1r:Vu=nJ2,

V x B = 4§J7 [V-J =0, quasi-neutrality],

OB +cV x E=0, [V-B=0],
u x B

E + —nJ =0.

@ We shall apply this to the case of ideal fluids for which = = 0, ¢ = 0.
@ Reconstructing single fluid variables (validity conditions):

U = u, ue = u— J/(ene), subject to |J|/(ene) < |ul.
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MHD equations
Magnetic field induction equation

@ Electrodynamics sector of the model:

E+u><B:

4
nJ, B+cVxE=0, VXB:%J.

@ Solve for J and then E:

u X B

J=vxB, E=9vxB-
47 47 c

@ The whole electrodynamics sector reduces to the MHD induction equation:

2
OB =V x (uxB) -V x(T!VxB),

which is an equation of advection-diffusion type.
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MHD equations
Magnetic Reynolds number

@ MHD induction equation:
027]
OB =V x (ux B) -V x (EVXB).
@ Estimating the order of magnitude:
VB
L 7
where V, B, and L~ are typical scales for u, B, and V.
@ MAGNETIC REYNOLDS NUMBER: advection-to-diffusion ratio

2 2
Vx(%VxB)NZnB

V x (ux B) ~ L

Rm:47r¥.
con

@ Ideal MHD:
Rm > 1, OtB:VX(uXB).

@ Magnetic field diffusion (linear problem, decoupled, less interesting as n o< 773/2):
027’]
Rm<< 1, atB:—VX (EVXB)
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MHD equations
Magnetic pressure and field line tension

@ The magnetic field acts on the flow via the force

J x B 1 1

; _E(VXB)XB_E(B«VB—VB~B)
1 B?
= EBoVB—V(g).
@ The momentum equation becomes
B? 1

pOu+u-Vu)=-V(p+ o )+, B VB
~~ —_—

magnetic pressure  field-line tension

@ The magnetic field energy contribute to the pressure. Plasma beta:

K1, (tokamaks, coronal funnels),
B= Ejg—f, B=~1, (solar wind, coronal loops),
B> 1, (7).

@ The magnetic field-line tension reacts to field-line bending.
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MHD equations
Equation of state in the ideal case

@ Continuity and pressure equations with n = 0:

dp —
E—FPV'U—O,

@ The pressure equation is equivalent to,

dp

7 +vpV -u = 0.

dp_pdp _ . d

a -7\ _
dt pdt_pdt(pp )=0

hence, we can take

‘p(p) =Cp”, (equation of state). ‘

@ Isentropic flows: The equation of state implies
p~'Vp=Cryp "*Vp=Vh(p),

where h(p) = Cyp?~' /(v — 1) is the ENTHALPY of the fluid.
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MHD equations
Summary of MHD

Resistive MHD: 1 > 0

O¢e+u-V)p+pV-u=0,
J x B

c
p(0: +u-V)u=—-Vp+ P J—EVXB,

O +u-V)p+ypV-u=nJ>,  y=5/3,

C2'I7
6tB:V><(u><B)—V><(EV><B).

Ideal MHD: n =0

(Or+u-V)p+pV-u=0,
Jx B

c
p(Or+u-V)u=—-Vp+ Pa J—EVXB,

Oc+u-Vip+9pV-u=0, (p(p)=Cp’), v=5/3,
OB =V x (ux B).
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LECTURE Il: Character of MHD

Global resistive conservation laws:
Mass, momentum and energy conservation laws in ideal and resistive MHD.

Global ideal conservation laws:
Magnetic helicity and cross helicity.

Local ideal conservation laws:
Frozen-in law and flux conservation.

Basic processes:
Frozen-in fields, resistive diffusion of magnetic field, MHD waves.
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Global resistive conservation laws

Conservation of total mass, momentum and energy W

@ A (sufficiently regular) solution of RESISTIVE MHD on a domain © C R? with
boundary conditions w - n = 0, and B - n = 0 satisfies:

— / pdr =0, (mass conservation),

dt Jq

d B? )

— | pudx =— (p+ ——)nds, (momentum conservation),
dt Q a0 871'

d .

L wde = -5 B [nx (nJ)]dsS, (energy conservation).

dt Jo am [5q

@ In the quasi-neutral limit the energy amounts to

— 124 P 22 —
w = 5pu +7_1+87r, (v=5/3).

@ The conservation laws remain valid in the ideal case n = 0.

@ Remark: boundary terms are usually zero if 2 is properly chosen.
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Global ideal conservation laws W
Magnetic helicity and cross helicity in ideal MHD
@ Definition of MAGNETIC AND CROSS HELICITIES:

H,, = / A-Bdx, VxB=A, (magnetic helicity),
Q
H. = / u - Bdz, (cross helicity).
Q
e If B-n = 0 on 09, then magnetic helicity is invariant under gauge transformations:

A A =A4+Vy = HmHH;n:Her/ B -ndS = Hy,.
oQ

@ A (sufficiently regular) solution of IDEAL MHD on a domain Q C R? with boundary
conditions u - n = 0 and B - n = 0 satisfies:

(mass, momentum and energy conservation),

% / A-Bdr =0, (magnetic-helicity conservation),
Q
% / u - Bdx =0, (cross-helicity conservation).
Q

@ Remark: for cross helicity, one needs p~*Vp(p) = Vh(p) (isentropic flow).
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Local conservation laws in ideal MHD
Frozen-in law: definition of magnetic field lines

@ Basic definition of field lines

b=B/B,
dimt(s) =b(t,@i(s)), t= fixed,
s

@ Re-parametrization: given a function f (¢, ) > 0,

s ds’ do 1
0'(5):/ f(t,a:t(s’))’ E:f(t,mt)’
dey dsdx:
do —do ds = f(t,ze)b(t, ),
%mt(a) — u(t@(0), mlt,@) = f(t,)b(t, ).

This shows that we can re-scale the vector field by a strictly positive function.
O. Maj (IPP-Garching)
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Local conservation laws in ideal MHD W
Frozen-in law: general frozen-in condition for vector fields
@ Attime ¢t = 0, let us consider a field line,

dﬂ)o (G)
do

x = x0(0), = p(0,x0(0)),

and let it be frozen with the fluid

mt(a) = Ft($o(0')).
@ Since F', is one-to-one, x:(o) is a curve and its tangent is

de,  d
% = % VF(20) = (0, 0) - VF(z0).

@ If the new curve x(o) is a field line of (¢, ), we must have
1(0,@o) - VFi(wo) = pu(t, @:).
@ Applying the operator 9; we obtain a condition on the field p:

O [p(t, @) = Oep+u -V,
0 [1(0, o) - VFy(0)] = p(0,0) - VFy - Vu = p(t, @) - Vu(t, x),

‘ op+u-Vu—p-Vu=0, frozen-in condition for . ‘
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Local conservation laws in ideal MHD W
Frozen-in law: magnetic field lines in ideal MHD
@ MHD induction equation:

#B=Vx(uxB)=B -Vu-u-VB-BV-u,
0B+u-VB—-B-Vu+ BV -u=0.

@ Simple case: for incompressible flows V - u = 0,
OB+u-VB—B-Vu=0, = frozen-in field lines.
@ For compressible flows, let us set u = B/p, assuming p(t, z) > po > 0,

op+u-Vyp= p_l(BtB—Fu . VB) —p_z(ﬁtp+u . Vp)
=p '(B-Vu—BV-u)+p 'BV-u
=pn-Vu = frozen-in field lines.

The “frozen-in law” of ideal MHD:
In ideal MHD, magnetic field lines move with the plasma flow. J
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Local conservation laws in ideal MHD
Frozen-in law: vortex lines

@ Vortex lines are the field lines of the vorticity w = V x w.
@ From the momentum balance equation in advective form,

ploru+u-Vu] = —Vp+pf,
and using the vector identity
w-Vu=V(u’/2) —ux (Vxu),
one obtains
IV xu—Vx(ux(Vxu)=-Vx(p 'Vp)+Vxf
@ For isentropic flows, p~*Vp = VA, and conservative forces V x f = 0,
Ow —V X (u X w) =0,

which is formally identical to the MHD induction equation.
@ For isentropic flows with conservative forces, vortex lines are frozen-in.
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Local conservation laws in ideal MHD
Flux conservation law: statement of the result

@ Consider a surface which moves frozen in the plasma flow:

So = surface with boundary Cy = 95y, a simple curve.
St = F(So) with boundary C; = 8S; = F(Cy), a simple curve.

@ The flux of the magnetic field through S is

cp(t):/ B ndS= [ A-tds,
St Ct

B=VxA.

The flux conservation law in ideal MHD:

The magnetic field flux through a surface
moving with the fluid is conserved,

de(t) _ |,
dt C, = 88,

—
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Local conservation laws in ideal MHD
Flux conservation law: Proof

@ Step 1. An equation for the vector potential A:

dB-Vx(uxB)=0, B=VxA,
Vx [0l A—ux (VxA)]=0 = §A-ux(VxA) =Vu,

for some scalar w (and for simply connected domains!). The identity
ux(VxA)=VA-u—u-VA,
gives at last
0A+u-VA—-VA- -u=Vuw.
@ Step 2. Parametrization of the curve C;:
Co givenby = xo(o) for0 <o <1,
Cy given by & =z (o) with () = Fi(xo(0)).

The the arc-element is

tds = M do.
Jdo
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Local conservation laws in ideal MHD W
Flux conservation law: Proof - cont’d
@ Step 3. Direct calculation:

d _d (! Oz (o)
a/;tA.tds = a/o A(t, (o)) - 7cla
1

- / (04 + 02, - 4) - 2207 4 2

0

88{1&(0’)
"ot Oo ]dg'

With the identities

_ gf)mt(a) _ 8 _ amt(a)
Oy = u(t, xt), % 9~ o [u(t, cct(U))] = e -Vu,
one finds,
o) (! 9z, (0)

1
=/ [0A+u-VA+V(u-A)- VA u  9zl9)
0 do

o

:/0 [V(w+u-A)}3mat7@da:L [V(w+ - A)] - tds,

and the circulation of a gradient is zero.

0. Maj (IPP-Garching) MHD lectures IPP Summer University Sept. 19, 2016 40/56



Local conservation laws in ideal MHD W
Flux conservation law: Analogous conservation law for the vorticity

@ Kelvin’s circulation theorem:

i/ u-tds =0,
dt Jo,

for isentropic fluid subject to conservative forces.
@ The magnetic field versus the vorticity field:

electrodynamics \ plasma \
A (magnetic potential) u (velocity field) circulation
B =V x A (magnetic field) | w =V x u (vorticity field) flux
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Local conservation laws in ideal MHD W
Flux conservation law: Flux tubes (and vortex tubes)

@ Flux tubes:

Sa
Oz/V-dez— B -ndS + B - ndS,
w S1 Sa
q)tube = B - ndS.

S1
To each flux tube, we can associate a constant flux ®¢upe.
@ Analogous for isentropic flows: Helmholtz’s theorem,

/ u-tds:/ u - tds
C1 Co

for every two closed path C; and C- encircling a vortex tube.
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Local conservation laws in ideal MHD w
Flux conservation law: Flux surfaces (and vortex sheets)
@ A flux surface is a surface S that is tangent to the magnetic field:
B-n =0, onS,wherenisthe unitnormalto S.

@ If Sy is a flux surface, then so is S = F'+(So): In fact, for every area A; on S,
/ B -ndS = B -ndS =0,
Ag Ao
in view of the flux conservation.
@ Flux surfaces in ASDEX upgrade:

AUG #27764
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Basic MHD processes

An example of frozen-in field: the Orszag-Tang vortex

O. Maj (IPP-Garching)

ield lines and flow @ t = 0.0
6

A = 77
OIS i
4 N

- =

NN < (A4, ]

1 2 3; 4 5 6

z

MHD lectures
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2
o
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Basic MHD processes W

Magnetic field diffusion at low Rm: Diffusion equation

@ MHD induction equation with resistivity:

2

8tB=VX(u><B)——ZnV><(V><B), 1 = constant,
T

cn

=V X (ux B)+ rmAB, Km = —.

47

@ Simplest case: Rm < 1,
OB(t,z) = kmAB(t,z), B(0,z)= Bo(z), (heatequation).

@ Standard Fourier analysis on the full space R?:

B(t,z) = ﬁ/eik'wﬁ(t,k)dk, Bt k) = /e—““‘wB(t,a;)dm.

In Fourier representation, the heat equation becomes
O B(t, k) = —kmk’B(t,k),  B(0,k) = Bo(k) = initial condition,
B(t, k) = Bo(k)e """
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Basic MHD processes W
Magnetic field diffusion at low Rm: Solution via the heat kernel

@ Solution via Fourier transform: 1§’(t, k) = ﬁo(k)e‘“‘m’“z,

B(t,:l:) = ﬁ/eik.mﬁo(k)e_tnmk2dk

1
(2m)3

/eik'(mim/>7tﬁmk2Bo(ZBl)déL‘ldk

o l® 12/ (@trm)

= [ Ktm—a)Botais', K(tw) =

Typical diffusive spreading: |Ax| = v4tkm,.

@ Analytical example: with = (=, y, 2),

—By, x<0,
0 By(t,z) = Boerf (x/\/4r<;mt),
By(xz) = 0, x =0, . B
= B.es.
By, x>0, 0 :
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Basic MHD processes
Magnetic field diffusion at low Rm: Example

L0 — «:=0.0

— x,t=1.0
— Kyt=19.0 / —
0.5

Bs/B,
o
o

w7

-1.0
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Basic MHD processes
Magnetic field diffusion at low Rm: Example - cont'd

K= 0.0 Kyt =1.0
1 714

0714 “t * ‘tn t %t ¢ ‘ 0,

:‘: \\1”;1&;”‘“ i :Z

0714

0429

0,143

0,143

0429

0714
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Basic MHD processes W
MHD waves: Linearized MHD equations and dispersion tensor
@ Linearization of MHD equations over a uniform steady-state background

dp(po)

p=po+dp, p(p) = plpo) + =4 =>0p+0(6p%),
u = du, dp (90)
B =B, +4B, cz = pTZO = (sound speed),

0:0p = —poV - du,
1
pudidu = —c5Vip— - (V&B "Bo— By - V(SB),
8t5B = Bo -Vou — Bov -ou.
@ Plane-wave solution: (8p, du, 6B) = (6p, 6, 6 B)e (“wi—F@)

[w? — ki — (c& + cA)kk + ¢k (bk + kb)] -64 = 0, < D(w, k) - du =0,

dispersion tensor D (w, k)
By
VAT po

The general form of the dispersion relation is det D(w, k) = 0.

ca = = Alfvén speed.
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Basic MHD processes
MHD waves: The linear shear Alfvén wave

@ Stix reference frame:

By = (0,0, Bo),
k= (ki,0,k)).
Z1
@ Matrix form of the dispersion tensor:
w? — &k: — Ak 0 —c%lm_ku Ot
0 w? — k7 0 Sio | = 0.
2 I 2 21,2 ~
—cgkLk) 0 w® — csk“ i3

@ The diagonal entry corresponds to the shear Alfvén wave,
w® =cAkj, with da-k=0, &a-Bo=0,
and from the linearized induction equation wéB = Bok - 64 — By - ké,
By -k

5B = — 5.
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Basic MHD processes W
MHD waves: Representation of the Alfvén wave

6

- -t \ f -\ |- fen) 4-»)
al . LA .%
2} - | - - - . -

o -
- o \ o <\ |- A
—2F - - - -+ - - -
I < — = S R AP v AN P .7-
» J 0 7 M By A
| SRR W A W S W SR WA "_.{_-
0.0 0.2 0.4 0.6 0.8 1.0
[EES

velocity field perturb. = red arrows  magnetic field perturb. = blue arrows
equilibrium field lines = black perturbed field lines = blue
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Basic MHD processes W
MHD waves: Magnetosonic waves

@ The remaining 2 x 2 block corresponds to the compressional MHD waves:

w? — czski - CikQ _CZSkJ_k” 601 -0
—ctkok w? — gk ) \ 503 ’

wh— (C?q + 025)1620.12 + cicékaﬁ =0,

W = 5[+ B) + \( + )2 — etk oK.

Those are the fast (+) and the slow (—) magnetosonic waves.

@ The names “fast” and “slow” are related to their phase velocity, which depends on
the propagation angle 9 with respect to the background magnetic field,

Uph w

= = ).

ca cak

0. Maj (IPP-Garching) MHD lectures IPP Summer University Sept. 19, 2016 52/56



Basic MHD processes w
MHD waves: Phase velocities

@ Phase velocity as a function of the angle 9:

90°

Shear Alfven
Fast magnetosonic
Slow magnetosonic

v3=1.0

270°

@ Note the strong anisotropy of the wave dispersion.
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Basic MHD processes
MHD waves: Nonlinear shear Alfvén waves

@ Ideal incompressible MHD (p = constant):
1 2
-1
4mp 8T
B+u-VB—-B-Vu=0,

V-u=0.

@ Elsasser variables:

z+ =ut

Otz+ + 25 - Vze = =VP,
=
V-zL=0.

&

dmp’

@ In presence of a (uniform) guide field By,

B = By + 0B, z4 = +eca + 0z, ca = \/Z%p = Alfvén velocity,
016z+ Fca-Vizs +0z5 - Vozy = —VP,
V.-6z+ =0.

This is not a linearization. The only nonlinear termis dz - Vz+.
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Basic MHD processes W
MHD waves: Nonlinear shear Alfvén waves - cont'd

@ Large-amplitude shear Alfvén waves:

dz_ =0, 6z4 =0,
Otz —ca-Vzy =0, Otz— +ca-Vz_ =0,
V-zy =0, V.-z_=0.

(“regressive” Alfvén wave) (“progressive” Alfvén wave)

@ Dispersion relation:

(5Z:|: — Ciefi(wtfk-:z:) ,

wFca - k= 0,
w® = cAkj, kj = Bo-k/By=kcosd.

@ Polarization:

0z_ =0, = ov = 0B/+\/4mp, when w = —cak,
6zy =0, = v = —(5B/\/47T s when w = CAkH'
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