# Lecture 3: Bonding in solids and description of crystal structures

- Bonding in solids
  - Electronegativity
  - Atomic and ionic radii
  - (Band theory in Lecture 4)
- Description of crystal structures
  - Coordination
  - Close packed structures
  - Metallic structures
  - Ionic structures with interstitial sites
- Concept of a structure type



# Strong chemical bonding

- The chemical bonds in solids are usually classified as **ionic**, **covalent**, or **metallic**.
  - The focus of the lecture is on these bonding types.
- Examples of weaker (non-covalent) bond types: hydrogen bonds, halogen bonds.



*Ionic bonding* (*e.g.* NaCl) Typically high symmetry and high coordination numbers.



**Covalent bonding** (e.g. Si) Typically highly directional bonds. Smaller coordination numbers than for ionic structures.



*Metallic bonding* (*e.g.* Cu) Delocalized valence electrons. Can result in high coordination and close packing of atoms.

#### Electronegativity

# Electronegativity

- The concept of *electronegativity* is an important tool for estimating how ionic or covalent a chemical bond is
- The electronegativity is a parameter introduced by Linus Pauling as a measure of the power of an atom to attract electrons to itself when it is part of a compound
- Pauling defined the difference of two electronegativities  $\chi_A$  and  $\chi_B$  in terms of bond dissociation energies,  $D_0$ :

 $|\chi_{A} - \chi_{B}| = \{D_{0}(AB) - \frac{1}{2}[D_{0}(AA) + D_{0}(BB)]\}^{1/2}$ 

- D<sub>0</sub>(AA) and D<sub>0</sub>(BB) are the dissociation energies of A–A and B–B bonds and D<sub>0</sub>(AB) is the dissociation energy of an A–B bond, all in eV units
- The expression gives differences of electronegativities
- To establish an absolute scale, Pauling set the electronegativity of **fluorine** to 3.98 (unitless quantity)

#### **Pauling Electronegativities**

| V·T·E    | Periodic table of electronegativity by Pauling scale |      |    |                 |                   |           |           |                       |            |            |                     |           |             |           |               |      |      |      |      |
|----------|------------------------------------------------------|------|----|-----------------|-------------------|-----------|-----------|-----------------------|------------|------------|---------------------|-----------|-------------|-----------|---------------|------|------|------|------|
|          |                                                      |      |    |                 | $\rightarrow$ Ato | mic radiu | s decreas | $ses \rightarrow lon$ | ization er | nergy incr | eases $\rightarrow$ | Electrone | gativity in | creases - | $\rightarrow$ |      |      |      |      |
|          | 1                                                    | 2    |    | 3               | 4                 | 5         | 6         | 7                     | 8          | 9          | 10                  | 11        | 12          | 13        | 14            | 15   | 16   | 17   | 18   |
| Group →  |                                                      |      |    |                 |                   |           |           |                       |            |            |                     |           |             |           |               |      |      |      |      |
| ↓ Period |                                                      |      |    |                 |                   |           |           |                       |            |            |                     |           |             |           |               |      |      |      |      |
| 1        | H<br>2.20                                            |      |    |                 |                   |           |           |                       |            |            |                     |           |             |           |               |      |      |      | He   |
| 2        | Li                                                   | Be   |    |                 |                   |           |           |                       |            |            |                     |           |             | В         | С             | N    | 0    | F    | Ne   |
| 2        | 0.98                                                 | 1.57 |    |                 |                   |           |           |                       |            |            |                     |           |             | 2.04      | 2.55          | 3.04 | 3.44 | 3.98 |      |
| 3        | Na                                                   | Mg   |    |                 |                   |           |           |                       |            |            |                     |           |             | AI        | Si            | Р    | S    | Cl   | Ar   |
| Ŭ        | 0.93                                                 | 1.31 |    |                 |                   |           |           |                       |            |            |                     |           |             | 1.61      | 1.90          | 2.19 | 2.58 | 3.16 |      |
| 4        | К                                                    | Ca   |    | Sc              | Ti                | V         | Cr        | Mn                    | Fe         | Со         | Ni                  | Cu        | Zn          | Ga        | Ge            | As   | Se   | Br   | Kr   |
|          | 0.82                                                 | 1.00 |    | 1.36            | 1.54              | 1.63      | 1.66      | 1.55                  | 1.83       | 1.88       | 1.91                | 1.90      | 1.65        | 1.81      | 2.01          | 2.18 | 2.55 | 2.96 | 3.00 |
| 5        | Rb                                                   | Sr   |    | Y               | Zr                | Nb        | Мо        | Тс                    | Ru         | Rh         | Pd                  | Ag        | Cd          | In        | Sn            | Sb   | Те   | 1.1  | Xe   |
|          | 0.82                                                 | 0.95 |    | 1.22            | 1.33              | 1.6       | 2.16      | 1.9                   | 2.2        | 2.28       | 2.20                | 1.93      | 1.69        | 1.78      | 1.96          | 2.05 | 2.1  | 2.66 | 2.60 |
| 6        | Cs                                                   | Ba   | *  | Lu              | Hf                | Та        | W         | Re                    | Os         | lr -       | Pt                  | Au        | Hg          | Т         | Pb            | Bi   | Po   | At   | Rn   |
|          | 0.79                                                 | 0.89 |    | 1.27            | 1.3               | 1.5       | 2.36      | 1.9                   | 2.2        | 2.20       | 2.28                | 2.54      | 2.00        | 1.62      | 2.33          | 2.02 | 2.0  | 2.2  | 2.2  |
| 7        | Fr                                                   | Ra   | *  | Lr<br>1 3[en 2] | Rf                | Db        | Sg        | Bh                    | Hs         | Mt         | Ds                  | Rg        | Cn          | Nh        | FI            | Мс   | Lv   | Ts   | Og   |
|          | 20.10                                                | 0.0  |    | 1.0             |                   |           |           |                       |            |            |                     |           |             |           |               |      |      |      |      |
|          |                                                      |      |    |                 | 0.0               | Dr        | NH        | Dm                    | - Com      | <b></b>    | 64                  | Th        | Du          |           | E.            | Tre  | Vb   |      |      |
|          |                                                      |      | *  | 1 1             | 1 12              | 1 13      | 1 14      | 1 13                  | 1 17       | 1 2        | 12                  | 11        | 1 22        | 1 23      | 1 24          | 1 25 | 11   |      |      |
|          |                                                      |      |    | Ac              | Th                | Pa        | 11        | Np                    | Pu         | Am         | Cm                  | Rk        | Cf          | Es        | Em            | Md   | No   |      |      |
|          |                                                      |      | ** | 1.1             | 1.3               | 1.5       | 1.38      | 1.36                  | 1.28       | 1.13       | 1.28                | 1.3       | 1.3         | 1.3       | 1.3           | 1.3  | 1.3  |      |      |
|          |                                                      |      |    |                 | 1.0               | 1.0       | 1.00      | 1.00                  | 1.20       | 1.10       | 1.20                | 1.0       | 1.0         | 1.0       | 1.0           | 1.0  | 1.0  |      |      |

Figure: Wikipedia

### **Allen Electronegativities**

- Pauling's electronegativity scale is the best known, but there are also others
- Allen determined his scale based on spectroscopic data (one-electron energies)
- Good correlation with Pauling electronegativities for the s- and p-block elements, but somewhat ambiguous for *d*- and *f*-metals

| V·T·E               | Electronegativity using the Allen scale |       |      |      |      |      |      |      |      |      |      |       |       |       |       |       |       |       |
|---------------------|-----------------------------------------|-------|------|------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|
| Group $\rightarrow$ | 1                                       | 2     | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12    | 13    | 14    | 15    | 16    | 17    | 18    |
| ↓ Period            |                                         |       |      |      |      |      |      |      |      |      |      |       |       |       |       |       |       |       |
| 1                   | н                                       |       |      |      |      |      |      |      |      |      |      |       |       |       |       |       |       | He    |
|                     | 2.300                                   |       |      |      |      |      |      |      |      |      |      |       |       |       |       |       |       | 4.160 |
| 2                   | Li                                      | Be    |      |      |      |      |      |      |      |      |      |       | В     | С     | N     | 0     | F     |       |
| 2                   | 0.912                                   | 1.576 |      |      |      |      |      |      |      |      |      |       | 2.051 | 2.544 | 3.066 | 3.610 | 4.193 | 4.787 |
| 3                   | Na                                      | Mg    |      |      |      |      |      |      |      |      |      |       | Al    | Si    | Р     | S     | CI    | Ar    |
| Ŭ                   | 0.869                                   | 1.293 |      |      |      |      |      |      |      |      |      |       | 1.613 | 1.916 | 2.253 | 2.589 | 2.869 | 3.242 |
| 4                   | K                                       | Ca    | Sc   | Ti   | V    | Cr   | Mn   | Fe   | Со   | Ni   | Cu   | Zn    | Ga    | Ge    | As    | Se    | Br    | Kr    |
|                     | 0.734                                   | 1.034 | 1.19 | 1.38 | 1.53 | 1.65 | 1.75 | 1.80 | 1.84 | 1.88 | 1.85 | 1.588 | 1.756 | 1.994 | 2.211 | 2.424 | 2.685 | 2.966 |
| 5                   | Rb                                      | Sr    | Y    | Zr   | Nb   | Мо   | Тс   | Ru   | Rh   | Pd   | Ag   | Cd    | In    | Sn    | Sb    | Те    | 1     | Xe    |
| , s                 | 0.706                                   | 0.963 | 1.12 | 1.32 | 1.41 | 1.47 | 1.51 | 1.54 | 1.56 | 1.58 | 1.87 | 1.521 | 1.656 | 1.824 | 1.984 | 2.158 | 2.359 | 2.582 |
| 6                   | Cs                                      | Ва    | Lu   | Hf   | Та   | W    | Re   | Os   | lr   | Pt   | Au   | Hg    | TI    | Pb    | Bi    | Po    | At    | Rn    |
| Ů                   | 0.659                                   | 0.881 | 1.09 | 1.16 | 1.34 | 1.47 | 1.60 | 1.65 | 1.68 | 1.72 | 1.92 | 1.765 | 1.789 | 1.854 | 2.01  | 2.19  | 2.39  | 2.60  |
| 7                   | Fr                                      | Ra    |      |      |      |      |      |      |      |      |      |       |       |       |       |       |       |       |
| '                   | 0.67                                    | 0.89  |      |      |      |      |      |      |      |      |      |       |       |       |       |       |       |       |

Figure: Wikipedia

# Using electronegativities ( $\chi$ )

- Electronegativities can be used to estimate the *polarity* of a bond
- There is **no** clear-cut division between covalent and ionic bonds!
- Note that the electronegativity difference  $|\chi_A \chi_B| = 0$  both for **fully covalent** (*e.g.* C–C) and **fully metallic** bonds (*e.g.* Li–Li)
- Quantum chemical calculations can help to understand the nature of the bonding better
  - Even then, many controversies about various analysis methods exist
  - More discussion about the analysis methods in Lecture 4

| Bond A-B | $ \chi_A - \chi_E $ | в              |
|----------|---------------------|----------------|
| Cs–F     | 3.19                | Ionic          |
| Na–Cl    | 2.23                |                |
| H–F      | 1.78                | Polar covalent |
| Fe–O     | 1.61                |                |
| Si–O     | 1.54                |                |
| Zn–S     | 0.93                |                |
| C–H      | 0.35                | Covalent       |

### van Arkel-Ketelaar Triangles

- The electronegativies can be used to arrange binary compounds into so-called van Arkel-Ketelaar Triangles
- Very illustrative concept for estimating the nature of a chemical bond



# What really determines $\chi$ ?

- Pauling determined the  $\chi$  values from bond dissociation energies
- Allen used one-electron energies from spectroscopic data
- The periodic trends of electronegativity (and chemical bonding) can be discussed in terms of *effective nuclear charge*  $Z_{eff}$  experienced by the valence electrons
- $Z_{eff} = Z \sigma$ , where Z is the atomic number and  $\sigma$  is **shielding** by other electrons
- The shielding can be determined from simple rules such as Slater's rules or from quantum chemical calculations
  - Clementi, E.; Raimondi, D. L., "Atomic Screening Constants from SCF Functions", J. Chem. Phys 1963, 38, 2686–2689
- Higher the  $Z_{eff}$ , the tighter the valence electrons are "bound" to the atom

| Element          | Li   | Be   | В    | С    | Ν    | 0    | F    | Ne     |
|------------------|------|------|------|------|------|------|------|--------|
| Ζ                | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10     |
| Z <sub>eff</sub> | 1.28 | 1.91 | 2.42 | 3.14 | 3.83 | 4.45 | 5.10 | 5.76   |
| Х                | 0.98 | 1.57 | 2.04 | 2.55 | 3.04 | 3.44 | 3.98 | (4.8)* |

\* Allen electronegativity

# $\chi$ vs. $Z_{eff}$ for the 2nd period

- χ and Z<sub>eff</sub> do actually show a beautiful correlation when moving from left to right in the periodic table
- However, Z<sub>eff</sub> of the valence electrons actually *increases* when moving down in periodic table (e.g. Z<sub>eff</sub> (Cl) = 6.1 e<sup>-</sup>), while electronegativity *decreases*
- Full consideration of orbital shapes *etc.* required to understand the χ values
- The moral of the story: simple explanations of complex manyelectron systems may sound nice, but are probably not right

Electronegativity vs. Z<sub>eff</sub>



#### Atomic radii

### Atomic radii

- When the crystal structure of a material is available, the distances between atoms are often a very useful measure of the possible bonding between them
- However, the size of an atom or ion is not easy to define because there is not clear-cut definition for the "border" of an atom
- Various definitions for **atomic**, **ionic**, **covalent**, and **van der Waals** radii exist, here the following datasets are discussed:
  - Atomic radii of neutral atoms from quantum chemical calculations (E. Clementi *et al. J. Chem. Phys.* **1967**, *47*, 1300).
  - Ionic radii from experimental data (R. D. Shannon, Acta Cryst. 1976, 32, 751)
  - Covalent radii from quantum chemical calculations (P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 186)
  - van der Waals radii from experimental and quantum chemical data (Bondi, A. J. Phys. Chem. 1964, 68, 441; Truhlar et al. J. Phys. Chem. A, 2009, 113, 5806;
     S. Alvarez, Dalton Trans. 2013, 42, 8617).

#### Atomic radii for neutral atoms

- Radii decrease when moving from left to right ( $Z_{eff}$  increases)
- Radii increase when moving down in the group (principal quantum number *n* increases, orbitals become more expanded)
- Useful for the illustration of periodic trends, but not that valuable otherwise



#### Shannon ionic radii

Ionic Radii of the most common ionic states of the s-, p-, and d-block elements. **Gray** circles indicate the sizes of the ions shown; **colored** circles indicate the sizes of the neutral atoms. Data available at: <a href="http://abulafia.mt.ic.ac.uk/shannon/ptable.php">http://abulafia.mt.ic.ac.uk/shannon/ptable.php</a>).



# Applications of the ionic radii

- The ionic radii have been derived from a large number of experimental data
- They can be used for example:
  - To investigate whether a new crystal structure shows ionic bonding
  - To investigate whether a bond that is expected to be ionic has a reasonable length (even pointing out possible problems with the crystal structure)
- For example: The Na-Cl distance in solid NaCl is 282 pm, this compares well with the sum of the ionic radii: of Na<sup>+</sup> (102 pm) and Cl<sup>-</sup> (181 pm) = 283 pm
- Another application is the *radius ratio rules* for ionic structures
- Note that the radii depend on the formal charge and the coordination of the ion!
  - The charge is more important than the coordination (there is not data for all coordination numbers)
  - Figure on the previous slide shows only the most common ionic state. The full dataset at <u>http://abulafia.mt.ic.ac.uk/shannon/ptable.php</u> has more details.

| 1          | 2                                      | 3           | 4            | 5      | 6            | 7            | 8                    | 9      | 10           | 11      | 12     | 13           | 14           | 15      | 16     | 17          | 18         |
|------------|----------------------------------------|-------------|--------------|--------|--------------|--------------|----------------------|--------|--------------|---------|--------|--------------|--------------|---------|--------|-------------|------------|
| 1 11       | 1                                      |             |              |        |              |              |                      |        |              |         |        |              |              |         |        |             | 0 U        |
| I H        | Duulukä Calf Consistent Coursiant red: |             |              |        |              |              |                      |        |              |         |        |              |              | 2 He    |        |             |            |
| 32         | 21                                     | VVK         | KO 🕻         | Seit   | '-LC         | onsi         | ste                  | ητ (   | JOV          | alei    | ητ r   | aa           |              |         |        |             | 46         |
| -          |                                        |             |              |        |              |              |                      |        |              |         |        |              |              |         |        |             | -          |
| -<br>0 I:  | 4 D-                                   | 1           |              |        | 7            | D l:         |                      | C 1 1  | 1            |         |        | E D          | c (          | 77 N    |        |             | -<br>10 N- |
| 3 Li       | 4 Be                                   |             |              |        | 2            | Radu         | 1s, r <sub>n</sub> : | Symbol |              |         |        | <u>а</u> В   | ° C          |         | 8 0    | 9 F         | 10 Ne      |
| 133        | 102                                    |             |              |        |              | 1            | 1                    |        |              |         |        | 85           | 75           | 71      | 63     | 64          | 67         |
| 124        | 90                                     |             |              |        |              | 1            | 2                    |        |              |         |        | 78           | 67           | 60      | 57     | 59          | 96         |
| -          | 85<br>10 M                             | -           |              |        |              | 1            | 3                    |        |              |         |        | 73           | 60           | 54      | 53     | 53          | -          |
| 11 Na      | 12 Mg                                  |             |              |        |              |              |                      |        |              |         |        | 13 AI        | 14 51        | 15 P    | 10 5   | 17 CI       | 18 Ar      |
| 155        | 139                                    |             |              |        |              |              |                      |        |              |         |        | 126          | 116          | 111     | 103    | 99          | 96         |
| 160        | 132                                    |             |              |        |              |              |                      |        |              |         |        | 113          | 107          | 102     | 94     | 95          | 107        |
| -<br>10 V  | 127                                    | 01 C        | 00 TT:       | 00 V   | 04 C         | or M         | ac P                 | 07 (1- | 00 N:        | 00 C    | 20 7   | 111          | 102          | 94      | 95     | 93          | 90         |
| 19 K       | 20 Ca                                  | 21 Sc       | 22 11        | 23 V   | 24 Cr        | 25 Mn        | 20 Fe                | 27 Co  | 28 N1        | 29 Cu   | 30 Zn  | 31 Ga        | 32 Ge        | 33 As   | 34 Se  | 35 Br       | 30 Kr      |
| 190        | 171                                    | 148         | 130          | 134    | 122          | 119          | 110                  | 111    | 101          | 112     | 118    | 124          | 121          | 121     | 110    | 114         | 117        |
| 195        | 147                                    | 110         | 117          | 112    | 111          | 105          | 109                  | 103    | 101          | 115     | 120    | 117          | 111          | 114     | 107    | 109         | 121        |
| -<br>27 DL | 133                                    | 114<br>20 V | 108          | 100    | 103<br>49 Me | 103<br>42 T- | 102                  | 90     | 101<br>46 DJ | 120     | -      | 121<br>40 In | 114<br>50 Cm | 100     | 107    | 110<br>52 I | 108        |
| 37 KD      | 38 Sr                                  | 39 Y        | 40 Zr        | 41 ND  | 42 MO        | 45 1C        | 44 Ku                | 45 Kn  | 40 Pd        | 47 Ag   | 48 Ca  | 49 m         | 50 Sn        | 51 SD   | 52 Ie  | 100         | 54 Ae      |
| 210        | 185                                    | 163         | 154          | 147    | 138          | 128          | 125                  | 125    | 120          | 128     | 136    | 142          | 140          | 140     | 136    | 133         | 131        |
| 202        | 157                                    | 130         | 127          | 125    | 121          | 120          | 114                  | 110    | 117          | 139     | 144    | 136          | 130          | 133     | 128    | 129         | 135        |
| -          | 139                                    | 124         | 121<br>70 Hf | 116    | 113          | 110          | 103                  | 106    | 112<br>70 Dt | 137     | -<br>- | 146          | 132          | 127     | 121    | 125         | 122        |
| 55 CS      | 50 Ba                                  | La-Lu       | 72 HI        | 73 Ta  | 74 W         | 75 Re        | 76 Os                | 11 Ir  | 78 Pt        | 79 Au   | 80 Hg  | 81 11        | 82 PD        | 83 Bi   | 84 Po  | 85 At       | 86 Rn      |
| 232        | 196                                    |             | 152          | 146    | 137          | 131          | 129                  | 122    | 123          | 124     | 133    | 144          | 144          | 151     | 145    | 147         | 142        |
| 209        | 161                                    |             | 128          | 126    | 120          | 119          | 116                  | 115    | 112          | 121     | 142    | 142          | 135          | 141     | 135    | 138         | 145        |
| -          | 149                                    |             | 122          | 119    | 115          | 110          | 109                  | 107    | 110          | 123     | -      | 150          | 137          | 135     | 129    | 138         | 133        |
| 87 Fr      | 88 Ra                                  | Ac-Lr       | 104 Rf       | 105 Db | 106 Sg       | 107 Bh       | 108 Hs               | 109 Mt | 110 Ds       | III Rg  | 112    | 113          | 114          | 115     | 116    | 117         | 118        |
| 223        | 201                                    |             | 157          | 149    | 143          | 141          | 134                  | 129    | 128          | 121     | 122    | 130          | 143          | 162     | 175    | 105         | 157        |
| 218        | 173                                    |             | 140          | 136    | 128          | 128          | 125                  | 125    | 116          | 116     | 137    |              |              |         |        |             |            |
| -          | 159                                    |             | 131          | 126    | 121          | 119          | 118                  | 113    | 112          | 118     | 130    |              |              |         |        |             |            |
|            |                                        |             | 50 C         | 50 D   | CO 11        | C1 D         | co. 0                | 60 E   | CL (1)       | 07 (71) | CC D   | 67 H         | 60 D         | co. T   | 70 3/1 | 771 I       | 1          |
|            |                                        | 57 La       | 58 Ce        | 59 Pr  | 60 Nd        | 61 Pm        | 62 Sm                | 63 Eu  | 64 Gd        | 65 TD   | 66 Dy  | 67 Ho        | 68 Er        | 69 Tm   | 70 Yb  | 71 Lu       |            |
|            |                                        | 180         | 163          | 176    | 174          | 173          | 172                  | 168    | 169          | 168     | 167    | 166          | 165          | 164     | 170    | 162         |            |
|            |                                        | 139         | 137          | 138    | 137          | 135          | 134                  | 134    | 135          | 135     | 133    | 133          | 133          | 131     | 129    | 131         |            |
|            |                                        | 139         | 131          | 128    | 00 11        | 00 N         | 04 D                 | 05.4   | 132          | 07      | 00.05  | 00 5         | 100 5        | 101.101 | 100 N  | 131         |            |
|            |                                        | 89 Ac       | 90 Th        | 91 Pa  | 92 0         | 93 Np        | 94 Pu                | 95 Am  | 96 Cm        | 97 Bk   | 98 Cf  | 99 Es        | 100 Fm       | 101 Md  | 102 No | 103 Lr      |            |
|            |                                        | 186         | 175          | 169    | 170          | 171          | 172                  | 166    | 166          | 168     | 168    | 165          | 167          | 173     | 176    | 161         |            |
|            |                                        | 153         | 143          | 138    | 134          | 136          | 135                  | 135    | 136          | 139     | 140    | 140          |              | 139     | 159    | 141         |            |
|            |                                        | 140         | 136          | 129    | 118          | 116          |                      |        |              |         |        |              |              |         |        |             |            |

# Self-Consistent Covalent Radii

- The Pyykkö Self-Consistent Covalent radii have been derived from a large number of experimental and computational data
- Similar to ionic radii, the covalent radii can be used for example:
  - To check whether a new crystal structure shows covalent bonding
  - To check whether an bond that is expected to be covalent has a reasonable length (even pointing out possible problems with the crystal structure)
- For example: The C-C distance in diamond is 154 pm, this compares well with the sum of the single-bond covalent radii 75 + 75 = 150 pm
- The availability of double and triple bond radii makes the data set useful for interpreting new crystal structures
- Original papers:
  - P. Pyykkö, M. Atsumi, *Chem. Eur. J.* **2009**, *15*, 186.
  - P. Pyykkö, M. Atsumi, *Chem. Eur. J.* **2009**, *15*, 12770.
  - P. Pyykkö, S. Riedel, M. Patzschke, *Chem. Eur. J.* **2005**, *11*, 3511.
- Another (experimental) set of radii: Alvarez et al. Dalton Trans., 2008, 2832.

#### van der Waals radii

- Significantly larger than covalent radii
- Can be used to check for weak interactions / contacts in a crystal structure
- The dataset of A. Bondi (J. Phys. Chem. 1964, 68, 441) was a major milestone
- Historically vdW radii have been rather difficult to determine for *d*-/*f*-metals
- The values below are a combination of experimental and quantum chemical values



**TABLE 12:** Consistent van der Waals Radii for AllMain-Group Elements<sup>a</sup>

| 1    | 2    | 13   | 14   | 15   | 16   | 17   | 18   |
|------|------|------|------|------|------|------|------|
| Н    |      |      |      |      |      |      | He   |
| 1.10 |      |      |      |      |      |      | 1.40 |
| Li   | Be   | В    | С    | Ν    | 0    | F    | Ne   |
| 1.81 | 1.53 | 1.92 | 1.70 | 1.55 | 1.52 | 1.47 | 1.54 |
| Na   | Mg   | Al   | Si   | Р    | S    | Cl   | Ar   |
| 2.27 | 1.73 | 1.84 | 2.10 | 1.80 | 1.80 | 1.75 | 1.88 |
| Κ    | Ca   | Ga   | Ge   | As   | Se   | Br   | Kr   |
| 2.75 | 2.31 | 1.87 | 2.11 | 1.85 | 1.90 | 1.83 | 2.02 |
| Rb   | Sr   | In   | Sn   | Sb   | Te   | Ι    | Xe   |
| 3.03 | 2.49 | 1.93 | 2.17 | 2.06 | 2.06 | 1.98 | 2.16 |
| Cs   | Ba   | T1   | Pb   | Bi   | Ро   | At   | Rn   |
| 3.43 | 2.68 | 1.96 | 2.02 | 2.07 | 1.97 | 2.02 | 2.20 |
| Fr   | Ra   |      |      |      |      |      |      |
| 3.48 | 2.83 |      |      |      |      |      |      |

Ref: Truhlar et al. J. Phys. Chem. A, 2009, 113, 5806

#### Alvarez van der Waals radii

- S. Alvarez, A cartography of the van der Waals territories, *Dalton Trans.* **2013**, *42*, 8617 (<u>link</u>).
- The most recent and the most comprehensive set of vdW radii
- Analysis of more than five million interatomic "non-bonded" distances in the Cambridge Structural Database
- Proposal of a consistent set of vdW radii for most naturally occurring elements
- Paper available in MyCourses (Materials -> Scientific papers)
- See  $r_{vdW}$  values in Table 1. Bondi values are given for comparison:

| Z      | Е       | Bondi        | Batsanov    | $r_{\rm vdW}$  | $ ho_{ m vdw}$ (%) | Data               |
|--------|---------|--------------|-------------|----------------|--------------------|--------------------|
| 1      | Н       | 1.20         |             | 1.20           | 66                 | 9888               |
| 3      | Li      | 1.40         | 2.2         | 2.12           | 76                 | 12 11 067          |
| 4<br>5 | Be<br>B |              | 1.9<br>1.8  | $1.98 \\ 1.91$ | 90<br>70           | 3515<br>152 194    |
| 6<br>7 | C<br>N  | 1.70<br>1.55 | 1.7<br>1.6  | 1.77<br>1.66   | 82<br>52           | 385 475<br>187 967 |
| 8<br>9 | O<br>F  | 1.52<br>1.47 | 1.55<br>1.5 | 1.50<br>1.46   | 73<br>66           | 420 207<br>497 497 |
| 10     | Ne      | 1.54         | 1.0         | [1.58]         | 00                 | 12                 |

# Descriptive structural chemistry and structure types

# Descriptive structural chemistry and structure types

- We have already discussed the structure of crystalline materials from the perspective of the unit cell and lattice parameters (Lecture 1)
- The nature of the chemical bonding affects how a certain structure is described
  - For example, structures with metal cations can typically be described using coordination polyhedra
  - This also works the other way around: the local structure of a solid can immediately suggest a certain type of chemical bonding
- Typical concepts used in descriptive structural chemistry
  - Coordination
  - Linked (coordination) polyhedra
  - Close-packed structures (possibly with interstitial sites)
- Whenever possible, solid state structures are assigned to some structure type
  - Some examples of structure types: rock salt, zinc blende, wurtzite, ...
  - Summary of structure types: <u>https://wiki.aalto.fi/display/SSC/Structure+types</u>

# Coordination (1)



### Coordination (2)







7: capped trigonal prism [6p1c]

- 8: cube [8*cb*] or [*cb*]
- 8: square antiprism [8*acb*]



8: dodecahedron [8do] or [do] (dodecahedral = 12 faces. The polyhedron shown is actually a *snub disphenoid*)







12: anticuboctahedron [12*aco*] or [*aco*]



12: cuboctahedron [12co] or [co]

# Close Packing (1)

- Many metallic, ionic, covalent, and molecular crystal structures can be described using the concept of **close packing** (*cp*)
- The structures are usually arranged to have the maximum density and can be understood by considering the most efficient way of packing **equal-sized spheres**
- The most efficient way to pack spheres in *two* dimensions is shown below
- Each sphere, *e.g.* **A**, is in contact with six others -> six **nearest neighbours** and the **coordination number**, **CN** = 6 (the largest possible for a planar arrangement)
- MyCourses -> Materials -> Data files for lectures -> Lecture 3 -> Close-packing



A *close-packed* layer of equal-sized spheres. Three close packed directions xx', yy', and zz' occur. A non-*close-packed* layer with coordination number 4

# Close Packing (2)

- The most efficient way to pack spheres in *three* dimensions is to stack *cp* layers on top of each other
- There are two simple ways to do this, resulting in hexagonal close packed and cubic close packed structures
- The most efficient way for two *cp* layers A and B to be in contact is for each sphere of one layer to rest in a hollow between three spheres in the other layer (**P** or **R**)
- Addition of a third *cp* layer can also be done in two ways:
  - Hexagonal close packing (*hcp*): Third layer at **S**, layer sequence ...ABABAB...
  - Cubic close packing (*ccp*): Third layer at **T**, layer sequence ...ABCABC...



Alternative positions **P** and **R** for a second *cp* layer



Two cp layers A and B. The B layer occupies the **P** positions

Ref: West p. 20

# Close Packing (3)

- The simplest layer stacking sequences *hcp* and *ccp* are the most important ones
- More complex sequences with larger repeat units, e.g. ABCACB or ABAC can occur and some of these give rise to the phenomenon of **polytypism**.
- Each sphere is in contact with **12** others (figure: middle atom of the B-layer)
- **74.05%** of the total volume is occupied by spheres (maximum density possible in structures constructed of spheres of only one size)



# *ccp* arrangement corresponds to face-centered cubic Bravais lattice



# hcp

- *hcp* structure of Zn metal (space group  $P6_3/mmc$ )
  - The structure is slightly distorted, with 6 neighbors at 2.66 Å and 6 at 2.91 Å





#### Structures of common metals

- Most metals crystallize in one of the three arrangements: *ccp* (*fcc*), *hcp*, or *bcc* 
  - bcc is not a close-packed structure!
- It is still not well understood why particular metals prefer one structure type to another
- Quantum chemical calculations reveal that the lattice energies of *hcp* and *ccp* metal structures are comparable
- Therefore, the structure observed in a particular case probably depends on fine details of the bonding and the band structure of the metal

| C     | ср     |       | hcp    |        | bcc   |        |  |  |
|-------|--------|-------|--------|--------|-------|--------|--|--|
| Metal | a/Å    | Metal | a/Å    | c/Å    | Metal | a/Å    |  |  |
| Cu    | 3.6147 | Be    | 2.2856 | 3.5842 | Fe    | 2.8664 |  |  |
| Ag    | 4.0857 | Mg    | 3.2094 | 5.2105 | Cr    | 2.8846 |  |  |
| Au    | 4.0783 | Zn    | 2.6649 | 4.9468 | Mo    | 3.1469 |  |  |
| Al    | 4.0495 | Cd    | 2.9788 | 5.6167 | W     | 3.1650 |  |  |
| Ni    | 3.5240 | Ti    | 2.9506 | 4.6788 | Та    | 3.3026 |  |  |
| Pb    | 4.9502 | Zr    | 3.2312 | 5.1477 | Ва    | 5.019  |  |  |

 Table 1.3
 Structures and unit cell dimensions of some common metals

### Periodic table of crystal structures

| 1     |     |      |           |           |         | \ <b>`</b> | $\sqrt{ N }$ |       |       | $\succ$                 | $\Lambda$ |      |       |       |        |       | 2     |
|-------|-----|------|-----------|-----------|---------|------------|--------------|-------|-------|-------------------------|-----------|------|-------|-------|--------|-------|-------|
| н     |     |      |           |           |         |            | ╸╽┡          |       | ≠ 1V  | $\overline{\mathbf{X}}$ |           |      |       |       |        |       | He    |
| HEX   |     | Lege | end:      |           |         |            |              |       | L X   | $\wedge \times$         |           |      |       |       | 1      |       | HCP   |
| 3     | 4   |      |           |           |         |            |              |       | a 🖣   |                         | a         | 5    | 6     | 7     | 8      | 9     | 10    |
| Li    | Be  | /.   | . = mixed | l structı | ıre " 🔰 |            |              |       |       |                         |           | В    | С     | N     | 0      | F     | Ne    |
| BCC   | HCP |      |           |           | ·       | а          | •            | а     | -• •  | а                       |           | RHO  | HEX   | HEX   | SC     | SC    | FCC   |
| 11    | 12  | []   | = predict | ed        |         | •          |              | (1    |       | - / (                   |           | 13   | 14    | 15    | 16     | 17    | 18    |
| Na    | Mg  | stru | cture     |           |         | Ρ          | /            | (DCC) |       | г (јсс)                 |           | Al   | Si    | Р     | S      | CI    | Ar    |
| BCC   | HCP |      |           |           |         |            |              |       |       |                         |           | FCC  | DC    | ORTH  | ORTH   | ORTH  | FCC   |
| 19    | 20  | 21   | 22        | 23        | 24      | 25         | 26           | 27    | 28    | 29                      | 30        | 31   | 32    | 33    | 34     | 35    | 36    |
| K     | Ca  | Sc   | Ti        | V         | Cr      | Mn         | Fe           | Co    | Ni    | Cu                      | Zn        | Ga   | Ge    | As    | Se     | Br    | Kr    |
| BCC   | FCC | HCP  | HCP       | BCC       | BCC     | BCC        | BCC          | HCP   | FCC   | FCC                     | HCP       | ORTH | DC    | RHO   | HEX    | ORTH  | FCC   |
| 37    | 38  | 39   | 40        | 41        | 42      | 43         | 44           | 45    | 46    | 47                      | 48        | 49   | 50    | 51    | 52     | 53    | 54    |
| Rb    | Sr  | Y    | Zr        | Nb        | Мо      | Тс         | Ru           | Rh    | Pd    | Ag                      | Cd        | In   | Sn    | Sb    | Те     | l I   | Xe    |
| BCC   | FCC | HCP  | HCP       | BCC       | BCC     | HCP        | HCP          | FCC   | FCC   | FCC                     | HCP       | TETR | TETR  | RHO   | HEX    | ORTH  | FCC   |
| 55    | 56  | 57*  | 72        | 73        | 74      | 75         | 76           | 77    | 78    | 79                      | 80        | 81   | 82    | 83    | 84     | 85    | 86    |
| Cs    | Ba  | La   | Hf        | Та        | W       | Re         | Os           | lr    | Pt    | Au                      | Hg        | TI   | Pb    | Bi    | Po     | At    | Rn    |
| BCC   | BCC | DHCP | HCP       | BCC/TETR  | BCC     | HCP        | HCP          | FCC   | FCC   | FCC                     | RHO       | HCP  | FCC   | RHO   | SC/RHO | [FCC] | FCC   |
| 87    | 88  | 89** | 104       | 105       | 106     | 107        | 108          | 109   | 110   | 111                     | 112       | 113  | 114   | 115   | 116    | 117   | 118   |
| Fr    | Ra  | Ac   | Rf        | Db        | Sg      | Bh         | Hs           | Mt    | Ds    | Rg                      | Cn        | Nh   | FI    | Мс    | Lv     | Ts    | Og    |
| [BCC] | BCC | FCC  | [HCP]     | [BCC]     | [BCC]   | [HCP]      | [HCP]        | [FCC] | [BCC] | [BCC]                   | [HCP]     |      |       |       |        |       | [FCC] |
|       |     |      |           |           |         |            |              |       |       |                         |           |      |       |       |        |       |       |
|       |     |      | 58        | 59        | 60      | 61         | 62           | 63    | 64    | 65                      | 66        | 67   | 68    | 69    | 70     | 71    |       |
|       |     | *    | Ce        | Pr        | Nd      | Pm         | Sm           | Eu    | Gd    | Tb                      | Dy        | Но   | Er    | Tm    | Yb     | Lu    |       |
|       |     |      | DHCP/FCC  | DHCP      | DHCP    | DHCP       | RHO          | BCC   | HCP   | HCP                     | HCP       | HCP  | HCP   | HCP   | FCC    | HCP   |       |
|       |     |      | 90        | 91        | 92      | 93         | 94           | 95    | 96    | 97                      | 98        | 99   | 100   | 101   | 102    | 103   |       |
|       |     | **   | Th        | Pa        | U       | Np         | Pu           | Am    | Cm    | Bk                      | Cf        | Es   | Fm    | Md    | No     | Lr    |       |
|       |     |      | FCC       | TETR      | ORTH    | ORTH       | MON          | DHCP  | DHCP  | DHCP                    | DHCP      | FCC  | [FCC] | [FCC] | [FCC]  | [HCP] |       |

Figures: Wikipedia

# Close packing in ionic materials

- When the anion is larger than the cation in an ionic material:
  - The structures often contain **close-packed layers of anions**
  - The cations occupy **interstitial sites** between the close-packed layers
- For example: NaCl, Al<sub>2</sub>O<sub>3</sub>, Na<sub>2</sub>O, and ZnO.
- In such structures there are several variables:
  - Anion stacking sequence (*hcp* or *ccp*)
  - Number and type of interstitial sites occupied by cations.
  - Tetrahedral and octahedral interstitial sites are present in cp structures
- Summary of structure types: <u>https://wiki.aalto.fi/display/SSC/Structure+types</u>







**Figure 1.23** Tetrahedral and octahedral sites between two cp anion layers, seen from different perspectives. (a, b) Projection down threefold axis of  $T_+$ ,  $T_-$  sites. (c, d) Tetrahedral sites edge-on. (e) Projection down threefold axis of octahedral site and (f) seen edge-on. (g, h) Conventional representation of octahedral site. (i) Distribution of  $T_+$ ,  $T_-$ , O sites between two cp layers.

T<sub>+</sub>, T\_, and O sites

Ref: West p. 27

# Octahedral interstitials in NaCl structure

- Close-packed layers of Cl<sup>-</sup> anions
- Na<sup>+</sup> cations in the octahedral interstitials
- <a href="https://wiki.aalto.fi/pages/viewpage.action?pageId=165132721">https://wiki.aalto.fi/pages/viewpage.action?pageId=165132721</a>



#### Examples of interstitial sites

Ref: West p. 28

• It is rare that all the interstitial sites in a *cp* structure are occupied

Table 1.4 Some close packed structures

• Often one set is full or partly occupied and the remaining sets are empty

|                                       |                | Interstitial sites |     |                                            |
|---------------------------------------|----------------|--------------------|-----|--------------------------------------------|
| Anion arrangement                     | T <sub>+</sub> | T_                 | Ο   | Examples                                   |
| сср                                   | _              | _                  | 1   | NaCl, rock salt                            |
|                                       | 1              | _                  | _   | ZnS, blende or sphalerite                  |
|                                       | 1/8            | 1/8                | 1/2 | $MgAl_2O_4$ , spinel                       |
|                                       | _              | _                  | 1/2 | $CdCl_2$                                   |
|                                       | _              | _                  | 1/3 | CrCl <sub>3</sub>                          |
|                                       | 1              | 1                  | _   | $K_2O$ , antifluorite                      |
| hcp                                   | _              | _                  | 1   | NiAs                                       |
|                                       | 1              | _                  | _   | ZnS, wurtzite                              |
|                                       | _              | _                  | 1/2 | Cdl <sub>2</sub>                           |
|                                       | _              | _                  | 1/2 | TiO <sub>2</sub> , rutile <sup>a</sup>     |
|                                       | _              | _                  | 2/3 | $Al_2O_3$ , corundum                       |
|                                       | 1/8            | 1/8                | 1/2 | Mg <sub>2</sub> SiO <sub>4</sub> , olivine |
| <i>ccp</i> 'BaO <sub>3</sub> ' layers | _              | -                  | 1/4 | BaTiO <sub>3</sub> , perovskite            |

#### <sup>a</sup>The hcp oxide layers in rutile are not planar but are buckled; the oxide arrangement may alternatively be described as tetragonal packed, tp. <sup>34</sup>

#### Cation sites in an fcc anion array





*Figure 1.24* Available cation sites, 1–12, in an fcc anion array.

The various cation positions in Fig. 1.24 have the following coordinates:

| octahedral                  | $1: \frac{1}{2}00$                                                                     | $2:0^{1}/_{2}0$                                                                         | $3:00^{1}/_{2}$                                                                         | 4: 1/2 1/2 1/2                                                                         |
|-----------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| tetrahedral, T <sub>+</sub> | 5: <sup>3</sup> / <sub>4</sub> <sup>1</sup> / <sub>4</sub> <sup>1</sup> / <sub>4</sub> | 6: <sup>1</sup> / <sub>4</sub> <sup>3</sup> / <sub>4</sub> <sup>1</sup> / <sub>4</sub>  | 7: <sup>1</sup> / <sub>4</sub> <sup>1</sup> / <sub>4</sub> <sup>3</sup> / <sub>4</sub>  | 8: <sup>3</sup> / <sub>4</sub> <sup>3</sup> / <sub>4</sub> <sup>3</sup> / <sub>4</sub> |
| tetrahedral, T_             | 9: 1/4 1/4 1/4                                                                         | 10: <sup>3</sup> / <sub>4</sub> <sup>3</sup> / <sub>4</sub> <sup>1</sup> / <sub>4</sub> | 11: <sup>1</sup> / <sub>4</sub> <sup>3</sup> / <sub>4</sub> <sup>3</sup> / <sub>4</sub> | 12: 3/4 1/4 3/4                                                                        |