
Lecture 10: Main group compounds

- Some general trends and classifications for non-molecular main group compounds
- Allotropes
 - Group 14 elements
 - Group 15 elements
 - Group 16 elements
- Zintl phases
 - General principles
 - Typical examples
 - Zintl ions
 - Semiconducting clathrates

Figures: AJK

Literature

Main group elements

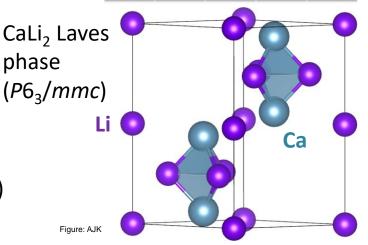

V·T·E	V·T·E Periodic table of electronegativity by Pauling scale																	
→ Atomic radius decreases → Ionization energy increases → Electronegati									ivity inc	reases –	→							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Group -	`																	
↓ Period																		
1	н																	He
	2.20																	
2	Li	Be											В	С	N	0		Ne
_	0.98	1.57						М	etal/	mota	lloid	line	2.04	2.55	3.04	3.44	3.98	
3	Na	Mg							etaij	meta	lioiu	inte	Al	Si	Р	S	CI	Ar
	0.93	1.31											1.61	1.90	2.19	2.58	3.16	
4	К	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	0.82	1.00	1.36	1.54	1.63	1.66	1.55	1.83	1.88	1.91	1.90	1.65	1.81	2.01	2.18	2.55	2.96	3.00
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1.1	Xe
	0.82	0.95	1.22	1.33	1.6	2.16	1.9	2.2	2.28	2.20	1.93	1.69	1.78	1.96	2.05	2.1	2.66	2.60
6	Cs	Ba	*	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ті	Pb	Bi	Po	At	Rn
Ť	0.79	0.89		1.3	1.5	2.36	1.9	2.2	2.20	2.28	2.54	2.00	1.62	1.87	2.02	2.0	2.2	2.2
7	Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
	0.7	0.9																
		*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			1.1	1.12	1.13	1.14	1.13	1.17	1.2	1.2	1.1	1.22	1.23	1.24	1.25	1.1	1.27	
		**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			1.1	1.3	1.5	1.38	1.36	1.28	1.13	1.28	1.3	1.3	1.3	1.3	1.3	1.3	1.3	

Figure: Wikipedia

Overview of main group compounds (1)

- Group 1+2 compounds
 - Not that relevant, but some interesting examples such as Laves phase CaLi₂
- Groups 1 + 17 and groups 2 + 17 (NaCl, MgCl₂, ...)
 - Typically simple salts (discussed previously)
- Halides known practically for all main groups 13-15
 - Mostly molecular for B, C, Si, Ge, Sn, group 15, and group 16 (*e.g.* SiCl₄, PCl₅, SF₆)
 - Mostly non-molecular for Al, Ga, In, Tl, Pb
 - Almost follows metal/metalloid line
- Oxides
 - Simple salts for groups 1 and 2 (e.g. MgO)
 - Stable oxides for groups 13-16, not for 17
 - Vast number of minerals
- Other chalcogenides (S, Se, Te)
 - Similarly to O, chalcogenides known practically for all main group elements (groups 1, 2, 13-15)

	Deviced		- 6 - 1 6		1. 14 - L	0	/ikipedia/AJK
				-		Pauling	
	1	2	13	14	15	16	17
	÷						
	н						
	2.20						
	Li	Be	В	С	N	0	F
	0.98	1.57	2.04	2.55	3.04	3.44	
-	Na	Mg	AI	Si	P	S	CI
5	0.93	1.31	1.61	1.90	2.19	2.58	3.16
	K	Ca	Ga	Ge	As	Se	Br
,	0.82	1.00	1.81	2.01	2.18	2.55	2.96
	Rb	Sr	In	Sn	Sb	Te	1
	0.82	0.95	1.78	1.96	2.05	2.1	2.66
	Cs	Ba	TI	Pb	Bi	Po	At
	0.79	0.89	1.62	1.87	2.02	2.0	2.2
	Fr	Ra	Uut	FI	Uup	Lv	Uus
	0.7	0.9					

Overview of main group compounds (2)

- Group 1/2 + 14: Carbides, silicides, germanides, ...
 CaC₂, Mg₂Si, CaGe₂, ...
- Group 1/2 + 15: Nitrides, phosphides, arsenides, ...
 - Li₃N, Li₃P, Li₃As, ...
- Main group compound semiconductors
 - 13-15 (BN, GaN, GaAs, etc.)
 - 14-16 (PbTe, PbSnTe, SnS, etc.)
 - 15-16 (Sb₂Se₃, Bi₂Te₃, etc.)
- Some elements are technologically extremely important as such or as simple alloys/compounds
 - Si, Ge, Si_xGe_{1-x}, SiC (semiconductors)
 - Al and Mg as structural metals

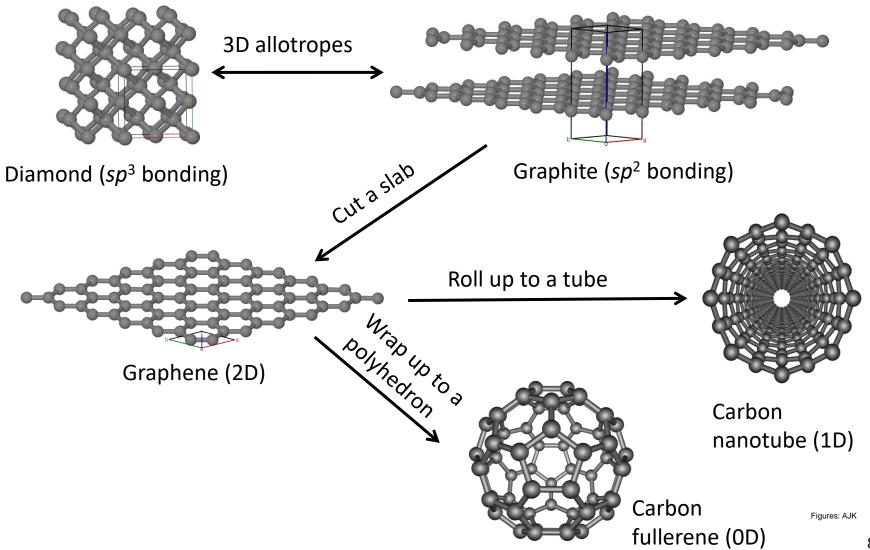
Period	ic table	of elect	ronegat	ivity by	Pauling	scale
1	2	13	14	15	16	17
•						
н						
2.20						
Li	Be	В	С	N	0	F
0.98	1.57	2.04	2.55	3.04	3.44	3.98
Na	Mg	AI	Si	P	S	CI
0.93	1.31	1.61	1.90	2.19	2.58	3.16
ĸ	Ca	Ga	Ge	As	Se	Br
0.82	1.00	1.81	2.01	2.18	2.55	2.96
Rb	Sr	In	Sn	Sb	Те	1
0.82	0.95	1.78	1.96	2.05	2.1	2.66
Cs	Ba	TI	Pb	Bi	Po	At
0.79	0.89	1.62	1.87	2.02	2.0	2.2
Fr	Ra	Uut	FI	Uup	Lv	Uus
0.7	0.9					

Figure: Wikipedia/AJK

Focus of the lecture: Allotropes and Zintl phases

- Several main group elements show very rich allotropy in ambient pressure
 - Different structural modifications of the same element (<u>IUPAC Gold Book</u>)
 - Highly interesting from fundamental scientific point of view, but also of high technological relevance (for example, allotropes of carbon)
 - Here we consider *atmospheric pressure* only!
- *Zintl phases* are an important class of main group compounds with connections to G14-16 allotropes
 - Include semiconductors with applications in thermoelectrics, etc.
- Key concept for the lecture: *isoelectronic principle*
 - Same number of valence electrons and the same structure (= number and connectivity of atoms), but different composition (CO vs. N₂)

13	14	15	16
В	С	Ν	0
Al	Si	Р	S
Ga	Ge	As	Se
Ga In	Ge Sn	As Sb	Se Te


Main groups 13-16, elements showing allotropy highlighted

Allotropy

- Knowledgedoor.com has a good listing of allotropes with original references
 - <u>http://www.knowledgedoor.com/2/elements_handbook/allotropes.html</u>
- Note that many are for high pressure
- "Textbook"-level information, the most recent research not included
- <u>http://www.knowledgedoor.com/</u> is actually a rather good source of physical data (references to original data available)
- Let's focus on few examples of group 14, 15, and 16 allotropes

The allotropy of carbon

The allotropy of silicon

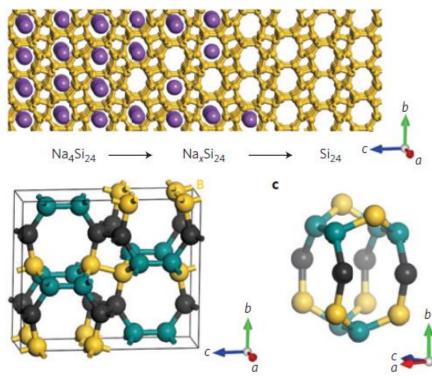
 Short overview available in: A. J. Karttunen, D. Usvyat, M. Schütz, L. Maschio, Dispersion interactions in silicon allotropes, *Phys. Chem. Chem. Phys.* 2017, 19, 7699 (DOI: <u>10.1039/c6cp08873b</u>)

Table 1 Silicon allotropes included in this study. The structures are ordered according to their relative energy ΔE at the LMP2/TZVPP level (see below) from the most to the least stable structure

Pearson ^a	Name(s) ^b	Space group	$a^{c}(\mathbf{\mathring{A}})$	$b^{c}(\mathbf{\mathring{A}})$	$c^{c}(A)$	k-Grid ^d	Notes
<i>cF</i> 8	Alpha (α)/3C	Fd3m	5.43			$12 \times 12 \times 12$	Diamond structure. Most stable Si allotrope under STP conditions.
hP8	4H	<i>P</i> 6 ₃ / <i>mmc</i>	3.83		12.59	$12 \times 12 \times 4$	Hexagonal polytype of 3C. 4H-Ge has been synthesized as a bulk material starting from <i>m</i> -allo-Ge. ^{62,63}
hP4	2H	<i>P</i> 6 ₃ / <i>mmc</i>	3.83		6.32	$12 \times 12 \times 6$	Hexagonal polytype of 3C. 2H-Si has been fabricated on GaP nanowire templates. ⁶⁴
<i>tP</i> 12	cdp/T12	$P4_2/ncm$	5.19		9.24	$8 \times 8 \times 4$	Hypothetical allotrope, topology the same as in CdP ₂ . ^{16,65}
oP32	GAa4	Pbcm	7.85	11.29	7.45	$4 \times 4 \times 4$	The most stable building block of stacking-faulted <i>m-allo</i> -Ge (synthesized as a bulk material structure starting from $\text{Li}_7\text{Ge}_{12}$). ^{17,63}
<i>hP</i> 6	unj/NGS	<i>P</i> 6 ₁ 22	5.44		5.08	$8 \times 8 \times 8$	Hypothetical allotrope, topology the same as for the Ga–Sn network in NaGaSn ₅ . ^{17,66}
<i>tP</i> 24	tum1	$P4_2/nmc$	7.42		9.15	$6 \times 6 \times 4$	Hypothetical allotrope, topology the same as for the B–Si network in LiBSi ₂ . ⁶⁷
oC24	CAS	Стст	3.82	10.68	12.66	$8 \times 8 \times 4$	Has been synthesized from Na ₄ Si ₂₄ . ⁶⁸
<i>cF</i> 136	Clathrate II	Fd3m	14.65			$4 \times 4 \times 4$	Has been synthesized from Na_xSi_{136} , ^{4,5} also known for Ge. ⁷
<i>cI</i> 46	Clathrate VIII	I43m	10.04			$4 \times 4 \times 4$	Hypothetical allotrope, experimentally known in type-VIII Ge and Sn clathrates. ^{13,69,70}
<i>cP</i> 46	Clathrate I	Pm3n	10.16			$4 \times 4 \times 4$	Hypothetical allotrope, experimentally known in Na ₈ Si ₄₆ type-I clathrate. ^{13,69,70}

Open-framework allotrope of Si

mature materials


LETTERS

PUBLISHED ONLINE: 17 NOVEMBER 2014 | DOI: 10.1038/NMAT4140

Synthesis of an open-framework allotrope of silicon

Duck Young Kim^{1†}, Stevce Stefanoski^{1†}, Oleksandr O. Kurakevych^{1,2†} and Timothy A. Strobel^{1*†}

Silicon is ubiquitous in contemporary technology. The most stable form of silicon at ambient conditions takes on the structure of diamond (cF8, d-Si) and is an indirect bandgap semiconductor, which prevents it from being considered as a next-generation platform for semiconductor technologies¹⁻⁴. Here, we report the formation of a new orthorhombic allotrope of silicon, Si₂₄, using a novel two-step synthesis methodology. First, a Na₄Si₂₄ precursor was synthesized at high pressure⁵; second, sodium was removed from the precursor by a thermal 'degassing' process. The Cmcm structure of Si24, which has 24 Si atoms per unit cell (oC24), contains open channels along the crystallographic *a*-axis that are formed from sixand eight-membered sp³ silicon rings. This new allotrope possesses a quasidirect bandgap near 1.3 eV. Our combined experimental/theoretical study expands the known allotropy for element fourteen and the unique high-pressure precursor synthesis methodology demonstrates the potential for new materials with desirable properties.

Si_{136} and Ge_{136} allotropes

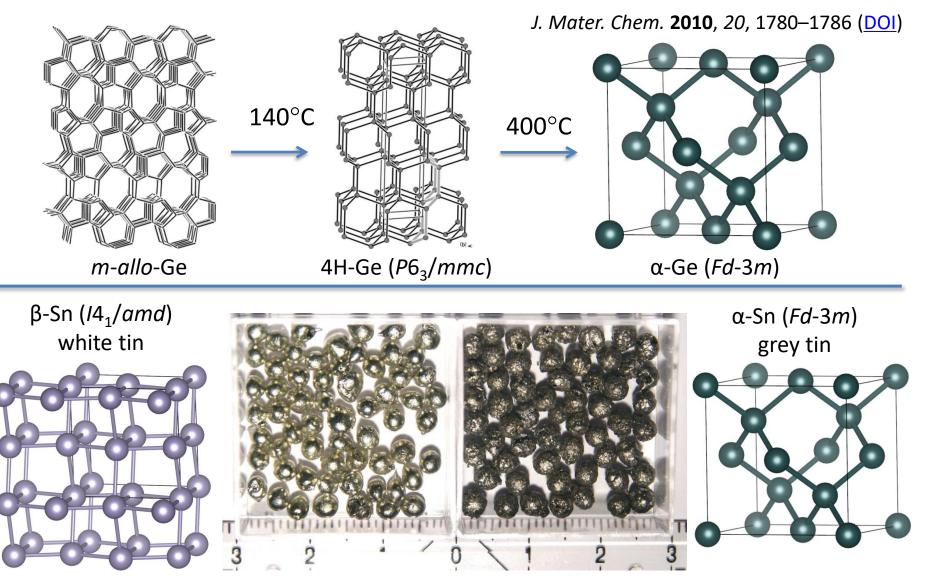
On the clathrate form of elemental silicon, Si₁₃₆: preparation and characterisation of Na_xSi₁₃₆ ($x \rightarrow 0$)

Abdelaziz Ammar^{a,1}, Christian Cros^{a,*}, Michel Pouchard^a, Nicolas Jaussaud^a, Jean-Marc Bassat^a, Gérard Villeneuve^b, Mathieu Duttine^b, Michel Ménétrier^a, Edouard Reny^a Vacuum route Solid State Sciences 6 (2004) 393–400

NATURE|Vol 443|21 September 2006

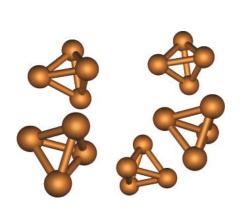
A guest-free germanium clathrate

LETTERS

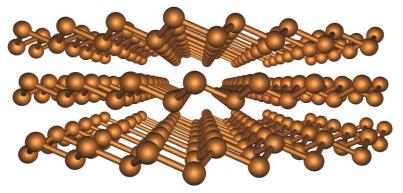

Ionic liquid route, discussed in a later slide

Arnold M. Guloy^{1,2}, Reiner Ramlau¹, Zhongjia Tang^{1,2}, Walter Schnelle¹, Michael Baitinger¹ & Yuri Grin¹

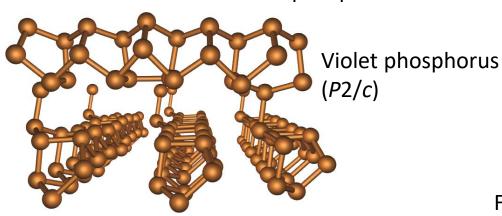
Clathrate-II (Fd-3m) Known for: Si_{136} Ge_{136} M_{28} cage M_{28} cage M_{20} cage


(**M** = Si, Ge) Normally the cages are occupied by guest atoms (Na, K, etc.), but the guests can be removed

Ge and Sn allotropes


https://crystallography365.wordpress.com/2014/11/23/a-failed-campaign-alpha-and-beta-tin/ https://en.wikipedia.org/wiki/Tin_pest#Napoleon.27s_buttons

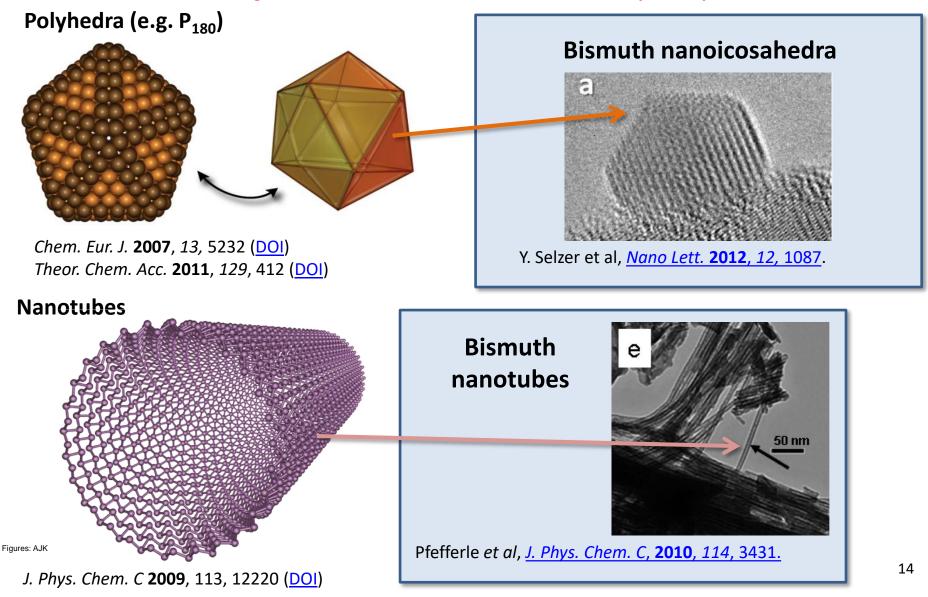
Group 15 allotropic modifications



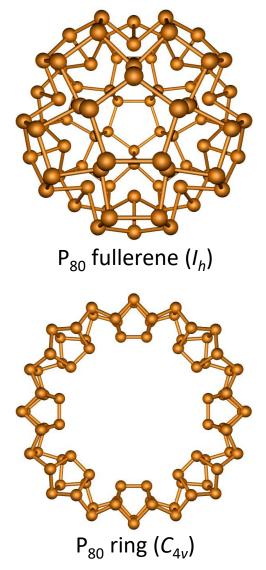
Tetrahedral molecules (P₄, As₄, Sb₄) White phosphorus

Orthorhombic layered structure, *Cmca* (P, As) Black phosphorus Individual sheets can be cleaved -> phosphorene

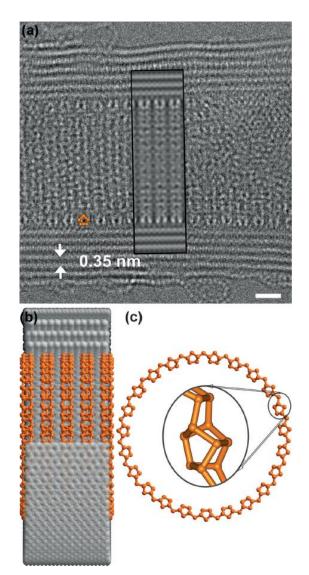
Trigonal layered structure, *R*-3*m* (P in high pressure, As, Sb, Bi)


Phosphorus: The Allotropes Stability, Synthesis, and Selected Applications T. Nilges, P. Schmidt, R. Weihrich, DOI: <u>10.1002/9781119951438.eibc2643</u>

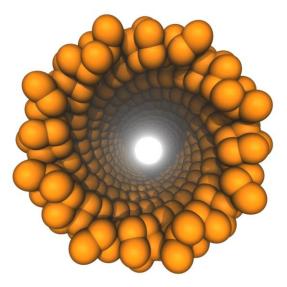
Fibrous red phosphorus (P-1)


Figures: AJK

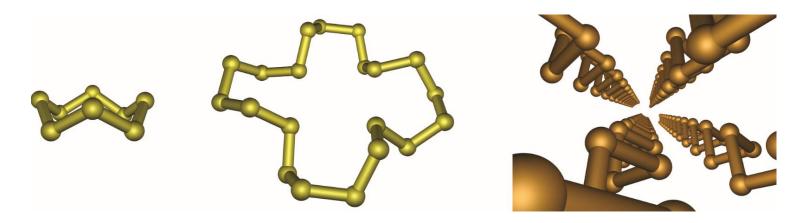
Group 15 nanostructures


Analogous to the carbon fullerenes and nanotubes, but possess puckered atomic structure

Phosphorus nanostructures


Icosahedral and Ring-shaped Allotropes of Phosphorus Karttunen, A. J.; Linnolahti, M.; Pakkanen, T. A. *Chem. Eur. J.* **2007**, *13*, 5232–5237 (DOI).

Assembly of Ring-Shaped Phosphorus within Carbon Nanotube Nanoreactors, Zhang *et al. Angew. Chem. Int. Ed.* **2017**, *56*, 1850-1854 (DOI).


Red phosphorus helices

One-dimensional Phosphorus Nanostructures: from Nanorings to Nanohelices Sansone, G.; Maschio, L.; Karttunen, A. J. *Chem. Eur. J.* **2017**, *23*, 15884–15888. (DOI).

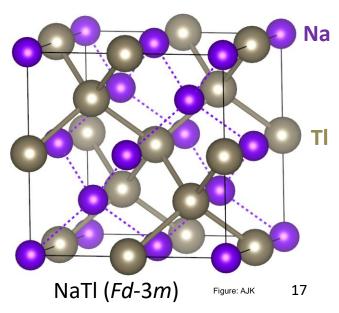
Group 16 allotropes

- Whereas the allotropes of group 15 elements are three-coordinate, the additional valence electron of group 16 elements makes their allotropes two-coordinate
- This imposes limits on the capability to form infinite structural networks, but the elemental chemistry of S and Se is still very rich
- The only known crystalline form of Te at room pressure is similar to gray Se

 α -cyclo-S₈ (*Fddd*)

 $Cyclo-S_{20}(Pbcn)$

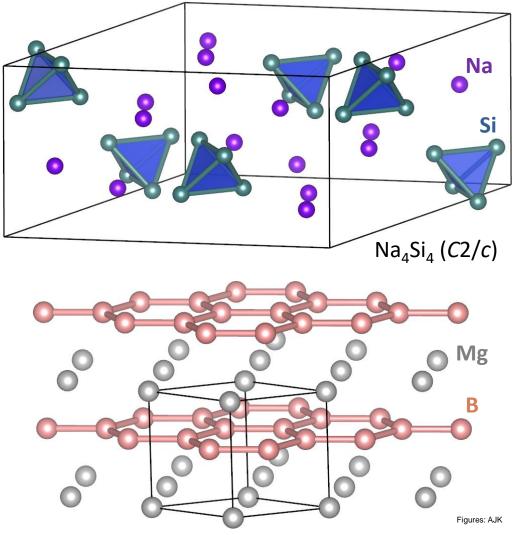
Gray selenium consisting of helical chains (*P*3₁21)


Figures: AJK

Zintl phases

- Zintl phases are *valence-balanced* semiconductors
 - Charge transfer from Group 1 or 2 elements to Group 13-16 elements
- For example, NaTl (sodium thallide)
 - Each Na atom donates 1e⁻
 - Each TI atom accepts 1e⁻
- The electron configuration of the anionic TI network is now **analogous to group 14 elements**
 - Tl atoms adopt 4-coordinated diamond structure
 - The Na⁺ ions are packed as diamond, too
 - Covalent bonding within the TI network, ionic bonding between the anionic network and the cations (or mixed ionic / covalent)
- Basically, the 8-electron rule in action
- Ideally, Zintl phases should be semiconducting
 - However, in reality many are metallic (e.g. NaTI)
 - Bonding is more complex than the ideal "valencebalanced" (or there are impurities)

Period	lic table	of elect	ronegat	ivity by	Pauling	scale
1	2	13	14	15	16	17
н						
2.20						
Li	Be	В	С	N	0	F
0.98	1.57	2.04	2.55	3.04	3.44	3.98
Na	Mg	AI	Si	P	S	CI
0.93	1.31	1.61	1.90	2.19	2.58	3.16
К	Са	Ga	Ge	As	Se	Br
0.82	1.00	1.81	2.01	2.18	2.55	2.96
Rb	Sr	In	Sn	Sb	Те	1
0.82	0.95	1.78	1.96	2.05	2.1	2.66
Cs	Ba	TI	Pb	Bi	Po	At
0.79	0.89	1.62	1.87	2.02	2.0	2.2
Fr	Ra	Uut	FI	Uup	Lv	Uus
0.7	0.9					


Figure: Wikipedia/AJK

Examples of Zintl phases (1)

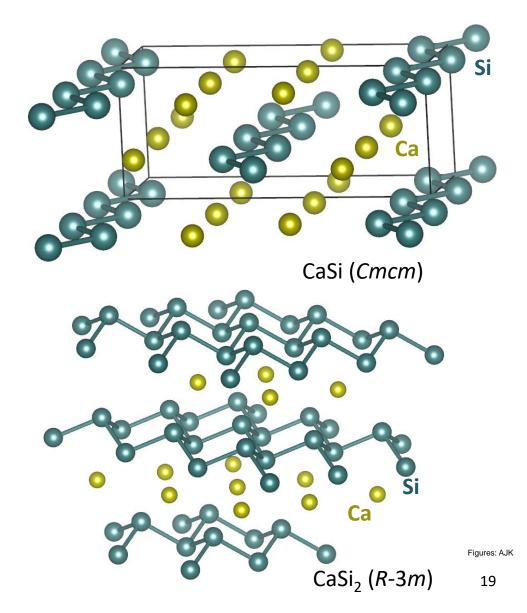
$NaSi (Na_4Si_4)$

- Each Na atom donates 1e⁻
- Each Si atom accepts 1e⁻
- [Si₄]^{4–} tetrahedra are isoelectronic with P₄ tetrahedra (white phosphorus)

MgB₂ (*P*6/*mmm*) 18

 MgB_2

- Each Mg atom donates 2e⁻
- Each B atom accepts 1e⁻
- The resulting two-dimensional Bnetwork is isoelectronic with graphene

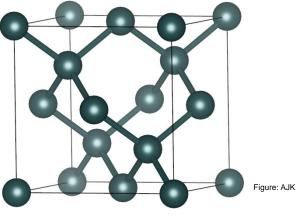

Examples of Zintl phases (2)

CaSi

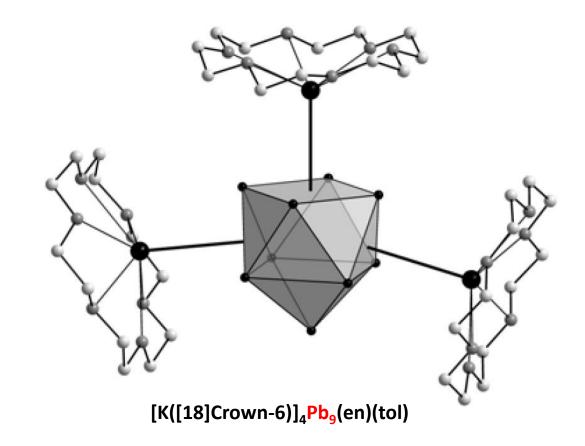
- Each Ca atom donates 2e⁻
- Each Si atom accepts 2e⁻
- The resulting one-dimensional Sichains are closely related to Sechains (but planar, not helical)

CaSi₂

- Each Ca atom donates 2e⁻
- Each Si atom accepts 1e⁻
- The resulting two-dimensional Sinetwork is isoelectronic and structurally analogous with As / Sb / Bi


Group 14 Zintl ions (Si, Ge, Sn, Pb)

Many solid-state Zintl phases contain discrete anions

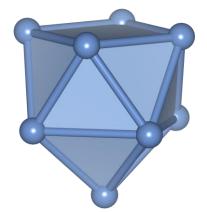


Strained bond angles in comparison to diamond-like bulk α -Si / α -Ge / α -Sn with 109.5° angles

Zintl Ions, Cage Compounds, and Intermetalloid Clusters of Group 14 and Group 15 Elements, S. Scharfe, F. Kraus, S. Stegmaier, A. Schier, T. F. Fässler, *Angew. Chem. Int. Ed.* **2011**, *50*, 3630–3670 (DOI).

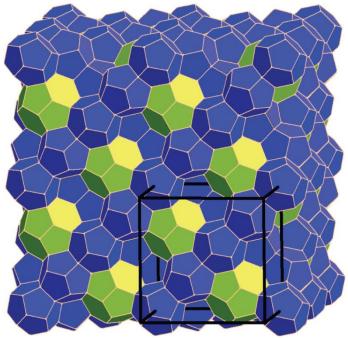
Zintl ions can be crystallized from solution

S. Scharfe, Dissertation, Technical University of Munich, 2010


Zintl phases as precursors for preparing novel materials

NATURE|Vol 443|21 September 2006

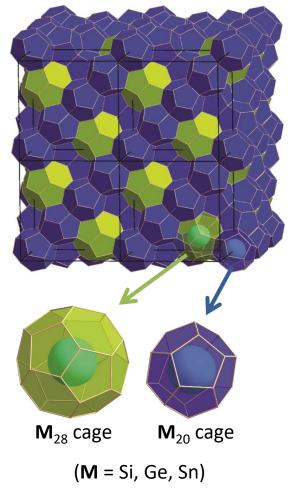
LETTERS


A guest-free germanium clathrate

Arnold M. Guloy^{1,2}, Reiner Ramlau¹, Zhongjia Tang^{1,2}, Walter Schnelle¹, Michael Baitinger¹ & Yuri Grin¹

Mild oxidation in ionic liquid

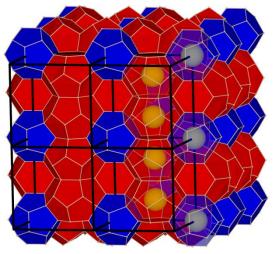
 $[Ge_9]^{4-}$ (in Na₄Ge₉)

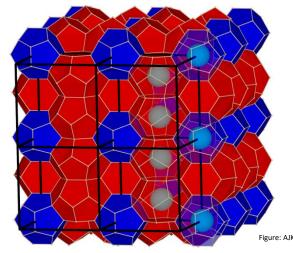

Ge₁₃₆ Clathrate-II (*cF*136)

Zintl phases: Semiconducting group 14 clathrates (1)

- The microporous 3D framework of the group 14 clathrates is composed of fused atomic cages
- The cages are normally occupied by guest atoms, but guest-free Si- and Geframeworks are known, as well
- The group 14 clathrates are excellent thermoelectric materials¹
 - Great thermal properties
 - Good electronic properties

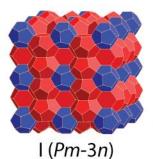
¹ G. S. Nolas et al. *Phys. Rev. Lett.*, **1999**, *82*, 779.
G. S. Nolas et al. *J. Mater. Chem.*, **2008**, *18*, 842.
B. B. Iversen et al. *Dalton Trans.*, **2010**, *39*, 978.

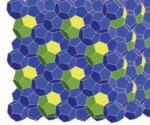

Clathrate-II (Fd-3m)


Zintl phases: Semiconducting group 14 clathrates (2)

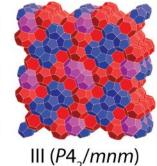
- Charge transfer occurs between the guest and the framework
- The charge is (usually) balanced by heteroatoms in the framework
 - Metallic systems such as Na₂₄Si₁₃₆ are also known
- The atomic composition and properties are somewhat tunable

Clathrate-I (Pm-3n, 46 framework atoms in the unit cell)

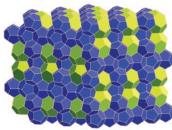

- Ba₈[Ga₁₆Ge₃₀] (anionic framework)
- Each Ba atom donates 2e⁻
- Ga atoms have 1e⁻ less than Ge, so the 4 coordinated framework needs 16e⁻



- I₈[As₈Ge₃₈] (**cationic** framework!)
- Each I atom accepts 1*e*[–]
 - As atoms have 1e⁻ more than Ge, these extra electrons are donated to the I atoms ²⁴


Examples of clathrate frameworks

Very rich structural chemistry (all frameworks are not yet known for group 14 clathrates)

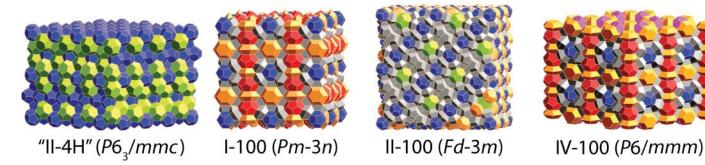


II (Fd-3m)

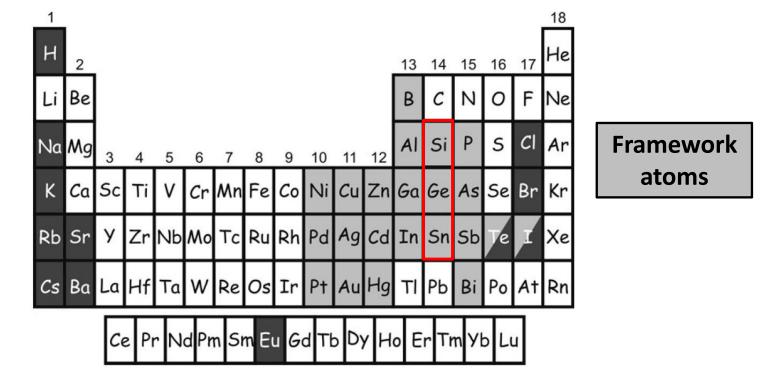
IV (P6/mmm)

V (P6₃/mmc)

VI (*I-*43*d*)


VII (*Im*-3*m*)

VIII (1-43m)



H (P6/mmm)

A. J. Karttunen, T. F. Fässler, M. Linnolahti, T. A. Pakkanen Inorg. Chem. 2011, 50, 1733.

Currently known group 14 clathrates

200+ phases are currently known. Typical synthesis routes:

• Shake & Bake

Guest

atoms

- Flux method
- Czochralski pulling

Shevelkov, A. V.; Kovnir, K. Struct. Bond. 2011, 139, 97.

Recent review: Dolyniuk, J.-A.; Owens-Baird, B.; Wang, J.; Zaikina, J. V.; Kovnir K. *Materials Science and Engineering*, **2016**, *R108*, 1–46

Examples of clathrate phases

Si-based

 $Na_{8}[Si_{46}]$ $Na_{8-x}Ba_{x}[Si_{46}]$ $Na_{x}Ba_{6}[Si_{46}]$ $K_{7.62}\square_{0.38}[Si_{46}]$ $Rb_{6.15}\square_{1.85}[Si_{46}]$ $K_{8}[Ga_{8}Si_{38}]$ $Rb_{8}[Al_{8}Si_{38}]$ $Rb_{8}[Ga_{8}Si_{38}]$

Ge-based

 $K_8[Al_8Ge_{38}]$ $Rb_8[Al_8Ge_{38}]$ $K_8[Ga_8Ge_{38}]$ $Rb_8[Ga_8Ge_{38}]$ $Cs_8[Ga_8Ge_{38}]$ $K_8[In_8Ge_{38}]$ $Rb_8[In_8Ge_{38}]$ $Cs_8[In_8Ge_{38}]$

Ge-based

 $I_{8}[Ge_{38}P_{8}]$ $Br_{8}[Ge_{38}P_{8}]$ $Cl_{8}[Ge_{38}P_{8}]$ $I_{8}[Ge_{38}As_{8}]$ $Br_{8}[Ge_{38}As_{8}]$ $Cl_{8}[Ge_{38}As_{8}]$ $I_{8}[Ge_{38}Sb_{8}]$ $Br_{8}[Ge_{38}Sb_{8}]$ $Br_{8}[Ge_{38}Sb_{8}]$ $I_{8}[Ge_{14}Ga_{12}Sb_{20}]$

Sn-based

 $\begin{array}{l} K_{1.6}Cs_{6.4}[Sn_{44}\square_2] \\ Rb_8[Sn_{44.6}\square_{1.4}] \\ Cs_8[Sn_{44}\square_2] \\ K_8[Al_8Sn_{38}] \\ Rb_8[Al_8Sn_{38}] \\ Rb_8[Al_8Sn_{38}] \\ Rb_8[Ga_8Sn_{38}] \\ Rb_8[Ga_8Sn_{38}] \\ Cs_8[Ga_8Sn_{38}] \\ Cs_8[Ga_8Sn_{38}] \\ Cs_8[Zn_4Sn_{42}] \\ Cs_8[Cd_4Sn_{42}] \\ \end{array}$

Kovnir, K.; Shevelkov, A. V. Russ. Chem. Rev. 2004, 73, 923.