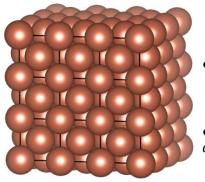
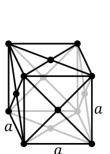
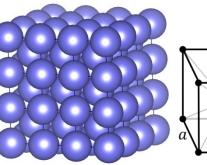

Lecture 11: *d*-electrons and Ligand Field Theory

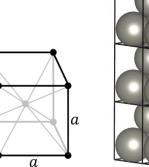
- Concept of oxidation state
- Oxidation states in *d*-block metal compounds
- Crystal field theory
- Ligand field theory
 - Jahn-Teller distortion
- Magnetic moments due to unpaired *d*-electrons

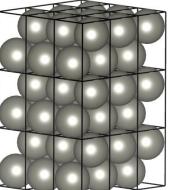
d

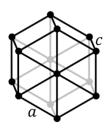

d-block metals

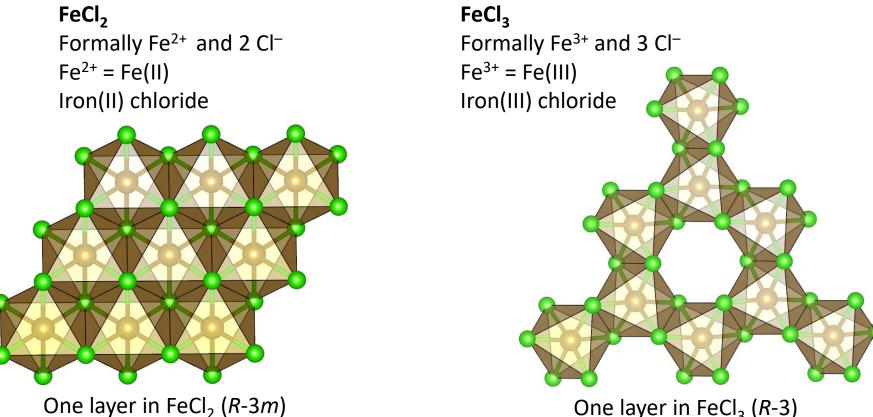

V·T·E	T · E Periodic table of electronegativity by Pauling scale → Atomic radius decreases → Ionization energy increases → Electronegativity increases →																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Group -	\rightarrow																	
↓ Period	ł																	
1	н																	He
	2.20		Mai	ny oxi	datio	n state	es, ve	ry rich	n chen	nistry								
2	Li	Be	Ma		anoti	m	00110	de (un	naira		octror		В	С	N	0	F	Ne
-	0.98	1.57	IVId	пуша	gneti	L COM	pound	us (un	paire	u <i>u</i> -ei	ectror	15)	2.04	2.55	3.04	3.44	3.98	
3	Na	Mg	Mai	ny col	orful	comp	ounds	due t	to d-d	trans	itions		AI	Si	Р	S	CI	Ar
Ŭ	0.93	1.31		_		-							1.61	1.90	2.19	2.58	3.16	
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	0.82	1.00	1.36	1.54	1.63	1.66	1.55	1.83	1.88	1.91	1.90	1.65	1.81	2.01	2.18	2.55	2.96	3.00
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
-	0.82	0.95	1.22	1.33	1.6	2.16	1.9	2.2	2.28	2.20	1.93	1.69	1.78	1.96	2.05	2.1	2.66	2.60
6	Cs	Ba	*	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
-	0.79	0.89		1.3	1.5	2.36	1.9	2.2	2.20	2.28	2.54	2.00	1.62	1.87	2.02	2.0	2.2	2.2
7	Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
	0.7	0.9																
													-					
		*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			1.1	1.12	1.13	1.14	1.13	1.17	1.2	1.2	1.1	1.22	1.23	1.24	1.25	1.1	1.27	
		**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			1.1	1.3	1.5	1.38	1.36	1.28	1.13	1.28	1.3	1.3	1.3	1.3	1.3	1.3	1.3	


Figure: Wikipedia


Elemental *d*-block metals


21	22	23	24	25	26	27	28	29	30	Figure: Wikipedi
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	
HCP	HCP	BCC	BCC	BCC	BCC	HCP	FCC	FCC	HCP	
39	40	41	42	43	44	45	46	47	48	
Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	
HCP	HCP	BCC	BCC	HCP	HCP	FCC	FCC	FCC	HCP	
	72	73	74	75	76	77	78	79	80	
	Hf	Та	W	Re	Os	lr –	Pt	Au	Hg	
	HCP	BCC/TETR	BCC	HCP	HCP	FCC	FCC	FCC	RHO	
	104	105	106	107	108	109	110	111	112	
	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	
	[HCP]	[BCC]	[BCC]	[HCP]	[HCP]	[FCC]	[BCC]	[BCC]	[HCP]	




Cu (fcc)

Fe (bcc)

Zn (hcp)

Oxidation state (1)

- **Oxidation state** is a key concept for understanding the chemistry of *d*-block metals
- Indicates the degree of oxidation (*loss of electrons*) of an atom in a compound
- Using FeCl₂ and FeCl₃ as examples (Pauling electronegativities: Fe = 1.83, Cl = 3.16):

One layer in FeCl₃ (*R*-3) 2-coordinate Cl

Both structures composed of 2D layers, top view along c-axis

3-coordinate Cl

Oxidation state (2)

- The exact definition of an oxidation state has been debated for a very long time
- IUPAC Technical Report *Toward a comprehensive definition of oxidation state:*
 - P. Karen et al. Pure Appl. Chem. 2014, 86, 1017–1081
 - "The oxidation state of a bonded atom equals its charge after ionic approximation"
 - "In the ionic approximation, the atom that contributes more to the bonding molecular orbital (MO) becomes negative"
- IUPAC Recommendation Comprehensive definition of oxidation state
 - P. Karen et al. *Pure Appl. Chem.* **2016**, *88*, 831–839
 - The oxidation state of an atom is the charge of this atom after ionic approximation of its heteronuclear bonds
- The sum of oxidation states in a compound must be zero!
- The oxidation state of an atom is a useful concept, but it is really just a concept
- In particular, the formal charges such as Fe²⁺ and Cl⁻ in FeCl₂ are not real!

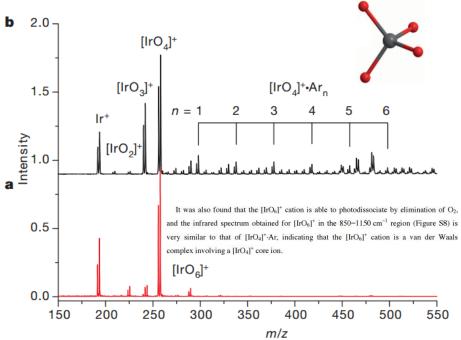
Known oxidation states for *d*-metals

4 <i>d</i>				Y	+1	+2	+3					
		-2		Zr	+1	+2	+3	+4				
	-3		-1	Nb	+1	+2	+3	+4	+5			
-4		-2	-1	Мо	+1	+2	+3	+4	+5	+6		
	-3		-1	Тс	+1	+2	+3	+4	+5	+6	+7	
-4		-2		Ru	+1	+2	+3	+4	+5	+6	+7	+8
	-3		-1	Rh	+1	+2	+3	+4	+5	+6		
				Pd	+1	+2	+3	+4	+5	+6		
		-2	-1	Ag	+1	+2	+3	+4				
		-2		Cd	+1	+2						

d-block metals show a larger number of oxidation states in comparison to main group elements or *f*-block elements

The most common oxidation states are shown in bold

Ref: <u>https://en.wikipedia.org/wiki/</u> List of oxidation states of the elements (based on Greenwood and Earnshaw + recent literature)


5 <i>d</i>		-2		Hf	+1	+2	+3	+4						
	-3		-1	Та	+1	+2	+3	+4	+5					
-4		-2	-1	W	+1	+2	+3	+4	+5	+6				
	-3		-1	Re	+1	+2	+3	+4	+5	+6	+7			
-4		-2	-1	Os	+1	+2	+3	+4	+5	+6	+7	+8		
	-3		-1	Ir	+1	+2	+3	+4	+5	+6	+7	+8	+9	
	-3	-2	-1	Pt	+1	+2	+3	+4	+5	+6			Yea	ar
	-3	-2	-1	Au	+1	+2	+3		+5				20:	14
		-2		Hg	+1	+2								

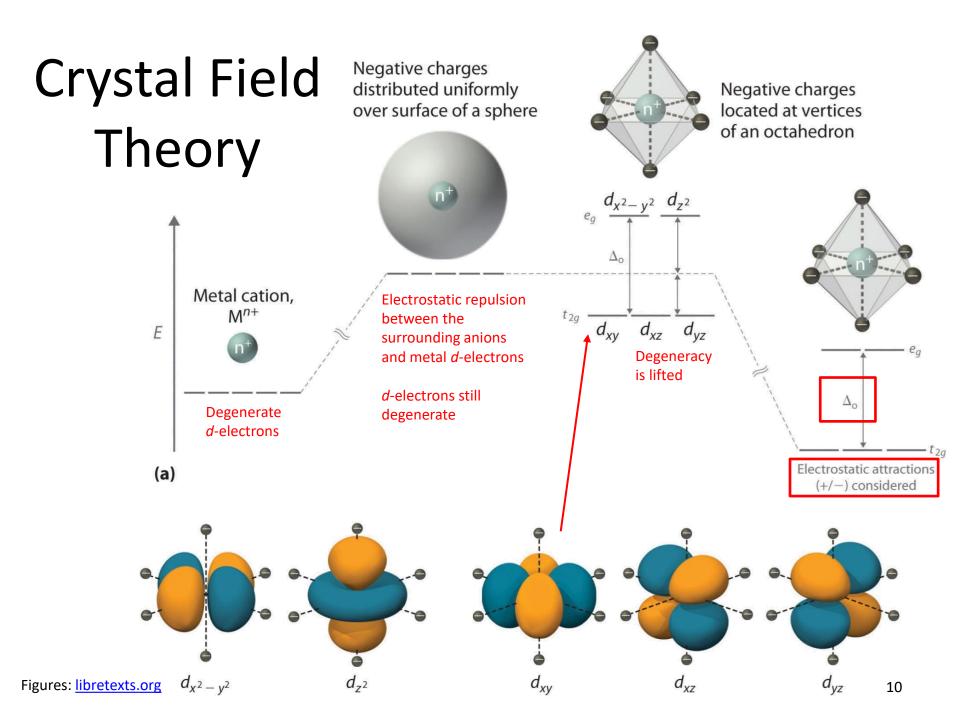
LETTER *Nature* **2014**, *514*, 475.

Identification of an iridium-containing compound with a formal oxidation state of IX

Guanjun Wang¹, Mingfei Zhou¹, James T. Goettel², Gary J. Schrobilgen², Jing Su³, Jun Li³, Tobias Schlöder⁴ & Sebastian Riedel^{4,5}

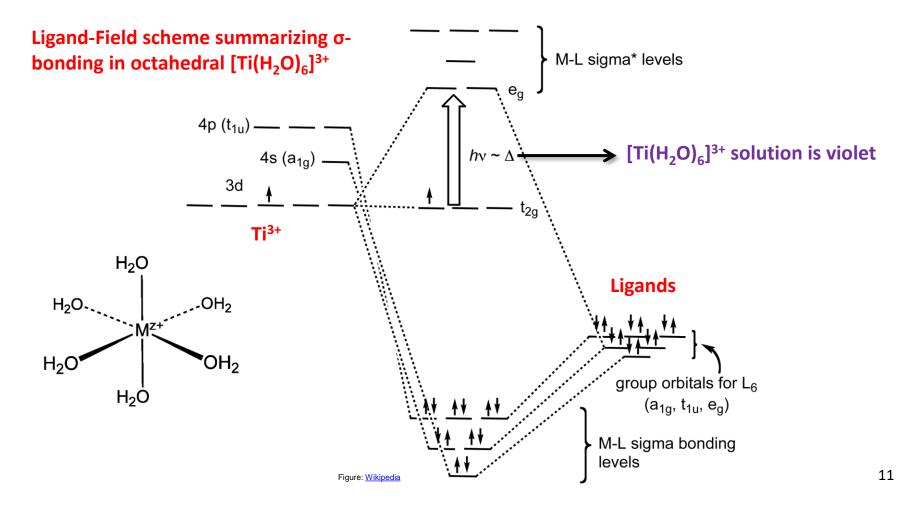
One of the most important classifications in chemistry and within the periodic table is the concept of formal oxidation states¹⁻⁴. The preparation and characterization of compounds containing elements with unusual oxidation states is of great interest to chemists⁵. The highest experimentally known formal oxidation state of any chemical element is at present VIII²⁻⁴, although higher oxidation states have been postulated^{6,7}. Compounds with oxidation state VIII include several xenon compounds⁸ (for example XeO_4 and XeO_3F_2) and the wellcharacterized species RuO₄ and OsO₄ (refs 2-4). Iridium, which has nine valence electrons, is predicted to have the greatest chance of being oxidized beyond the VIII oxidation state¹. In recent matrix-isolation experiments, the IrO4 molecule was characterized as an isolated molecule in rare-gas matrices⁹. The valence electron configuration of iridium in IrO_4 is $5d^1$, with a formal oxidation state of VIII. Removal of the remaining d electron from IrO₄ would lead to the iridium tetroxide cation ($[IrO_4]^+$), which was recently predicted to be stable¹⁰ and in which iridium is in a formal oxidation state of IX. There has been some speculation about the formation of $[IrO_4]^+$ species^{11,12}, but these experimental observations have not been structurally confirmed. Here we report the formation of $[IrO_4]^+$ and its identification by infrared photodissociation spectroscopy. Quantum-chemical calculations were carried out at the highest level of theory that is available today, and predict that the iridium tetroxide cation, with a T_d -symmetrical structure and a d^0 electron configuration, is the most stable of all possible $[IrO_4]^+$ isomers.

Figure 1 | Mass spectra of the iridium oxide cations. The cations are produced by pulsed-laser vaporization of an iridium metal target in an expansion of helium (**a**) or argon (**b**) seeded by dioxygen. The isotopic splitting of iridium can clearly be resolved with the relative peak areas matching the natural abundance isotopic distribution (¹⁹¹Ir, 37.3%; ¹⁹³Ir, 62.7%). *m/z*, mass/ charge ratio; intensity is shown in arbitrary units.


Electron configurations for 3d metals

Metal	Ζ	Group	The most common oxidation states
Sc	21	3	+3 (d ⁰)
Ti	22	4	+4 (d ⁰)
V	23	5	+2 (d ³), +3 (d ²), +4 (d ¹), +5 (d ⁰)
Cr	24	6	+3 (d ³), +6 (d ⁰)
Mn	25	7	+2 (d ⁵), +4 (d ³), +7 (d ⁰)
Fe	26	8	+2 (d ⁶), +3 (d ⁵)
Со	27	9	+2 (d ⁷), +3 (d ⁶)
Ni	28	10	+2 (d ⁸)
Cu	29	11	+1 (d ¹⁰), +2 (d ⁹)
Zn	30	12	+2 (d ¹⁰)

In compounds where the metal is oxidized, consider that it only has *d*-electrons left


Non-bonding *d*-electrons

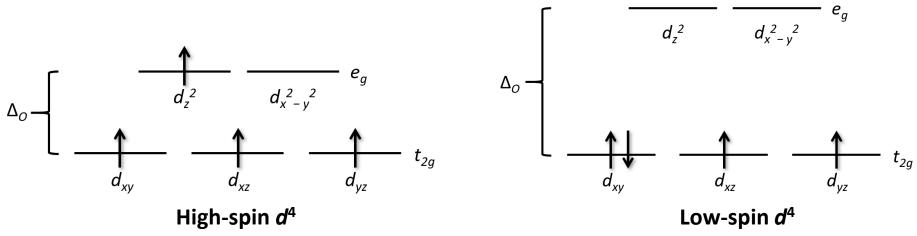
- The mutual interaction between *bonding* electron pairs is similar in *d*-block metal compounds and main group compounds
- However, *d*-metals can possess *nonbonding d*-electrons in their five *d* orbitals.
- *d* electron configurations can be determined with *ligand field theory* (LFT)
 - 1. Attain a minimum repulsion with other *d*-electrons
 - 2. Attain a minimum repulsion with the bonding electron pairs (ligands)
- In its original version by Hans Bethe, it was formulated as crystal field theory (CFT)
 - Ligands are treated as point-like ions
 - Only consider electrostatic repulsion between the *d*-electrons and the ligands
- LFT is in principle superseded by the *molecular orbital theory*
 - LFT is still is a convenient and simple tool to understand the bonding and magnetism of *d*-metal compounds

Ligand field theory (1)

- In ligand field theory, the ligands are not just considered as negative point charges, but the covalent nature of the σ-bonding is also taken into account
- The basic concept of the *d*-orbital splitting remains

Ligand field theory (2)

Ref: Müller p. 74

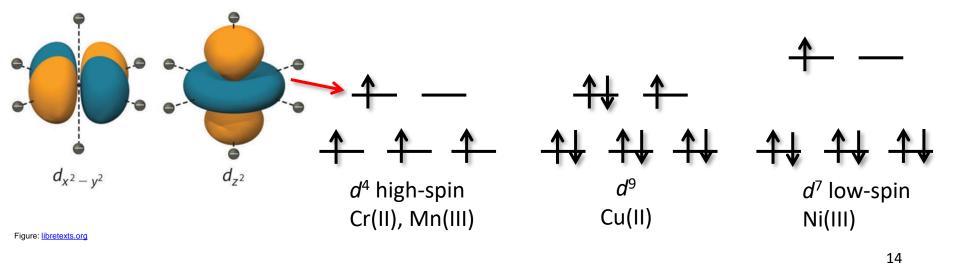

12

- In an octahedral geometry, the t_{2g} and e_g orbitals are separated by energy Δ_0
 - $-\Delta_0$ depends on the repulsion between the bonding electron pairs and *d* electrons
- Δ_0 decreases when the ligand electronegativity increases
 - Bonding electrons are pulled further from the metal *d* electrons -> less repulsion
- Δ_0 decreases when the size of the ligand atom increases
 - Bonding electrons are distributed over a larger space -> less repulsion
- Δ_0 is large for ligands that form multiple bonds with the metal atom (e.g. CO, CN⁻)
 - More bonding electrons -> more repulsion with the d electrons
- Δ_0 can be measured with spectroscopic methods and the *spectrochemical series* is obtained by ordering different ligands according to decreasing Δ_0 :
 - − CO (strong field, large Δ_0) > CN⁻ > PR₃ > NO₂⁻ > NH₃ > NCS⁻ > H₂O > RCO₂⁻ ≈ OH⁻ > F⁻ > NO₃⁻ > Cl⁻ ≈ SCN⁻ > S₂⁻ > Br⁻ > I⁻ (weak field, small Δ_0)
- 4*d* and 5*d* orbitals have larger overlap with ligand orbitals and larger Δ_0 than 3*d*

$$\Delta_{O} \left[\begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\$$

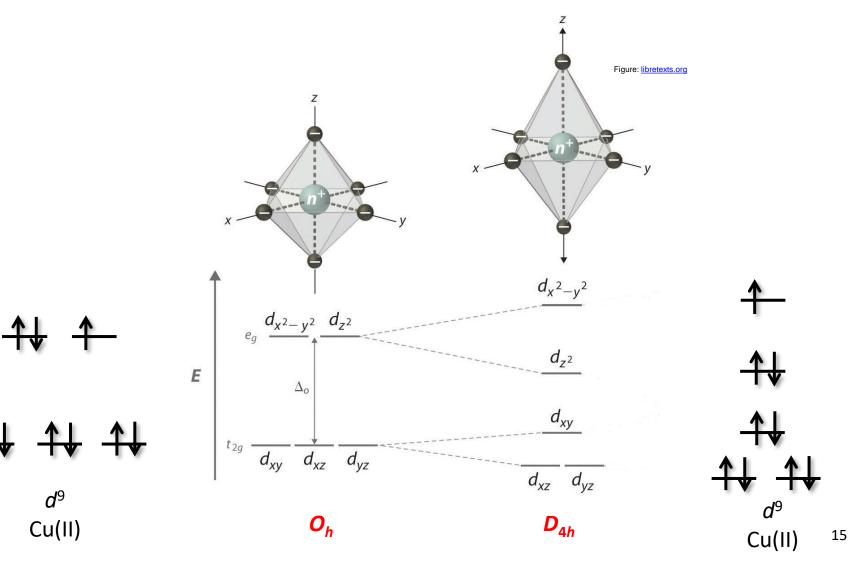
Ligand field theory (3)

- LFT can be used to explain the magnetism of transition metal compounds
- Because of the splitting of the *d*-orbitals, there is an energetical competition between *high-spin* and *low-spin* configuration of the *d*-orbitals
- The first three *d* electrons occupy the t_{2q} orbitals in accordance to *Hund's rule*
- When four *d* electrons are present, there are two alternatives for the fourth electron
 - The energy for putting a second electron in an already occupied orbital is called the electron pairing energy P
 - If $P > \Delta_0$, the fourth electron will occupy an e_q orbital (high-spin)
 - If $P < \Delta_0$, the fourth electron will occupy a t_{2q} orbital (low-spin)

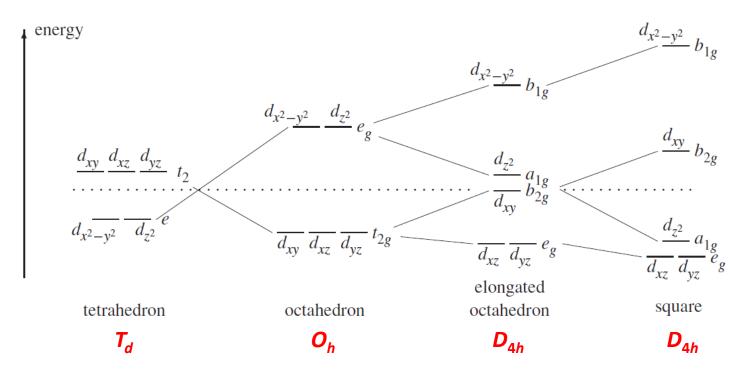


13

Jahn-Teller effect (1)


Ref: Müller p. 76

- In a high-spin d^4 complex only one of the two e_q orbitals is occupied
- If d_z^2 is occupied -> repulsion on the bonding electrons of the ligands on the z axis
- The axial ligands are pushed back and the octahedron elongates along the z axis
 - This effect is known as the *Jahn–Teller effect*
- The d_{x-y}^{2-2} orbital could have been occupied, elongating bonds along x and y axes
 - The energy cost of elongating four bonds is higher, and this is less common (but still possible!)
- The J-T effect occurs when degenerate orbitals are unevenly occupied
- **Strong** J–T effect can be observed for the following electronic configurations:


Jahn-Teller effect (2)

• Illustration of tetragonal distortion (elongation) for an octahedral *d*⁹ complex

Other coordination geometries

- The splitting of the *d*-orbitals is different for other coordination geometries
- The figure below shows the most typical geometries for *d*-metals

Relative energies of electrons in *d*-orbitals for different coordination geometries

Most common coordination polyhedra for coordination numbers 2-6

		electron		
polyhedron	c.n.	config.	central atom	examples
linear	2	d^{10}	Cu(I), Ag(I),	Cu_2O , $Ag(CN)_2^-$,
arrangement			Au(I), Hg(II)	AuCN [*] , AuCl ⁻ ₂ , HgCl ₂ , HgO [*]
triangle	3	d^{10}	Cu(I), Ag(I),	$Cu(CN)_{3}^{2-}, Ag_{2}Cl_{5}^{3-},$
_			Au(I), Hg(II)	$\operatorname{Au}(\operatorname{PPh}_3)_3^+, \operatorname{HgI}_3^-$
square	4	d^8	Ni(II), Pd(II),	$Ni(CN)_4^{2-}, PdCl_2^*,$
			Pt(II), Au(III)	PtH_4^{2-} , $Pt(NH_3)_2Cl_2$, $AuCl_4^{-}$
tetrahedron	4	d^0	Ti(IV), V(V),	$TiCl_4$, VO_4^{3-} ,
			Cr(VI), Mo(VI),	$CrO_3^{*}, CrO_4^{2-}, MoO_4^{2-}, WO_4^{2-}$
			Mn(VII), Re(VII)	Mn_2O_7, ReO_4^-
			Ru(VIII), Os(VIII)	RuO_4 , OsO_4
		d^1	V(IV), Cr(V),	VCl_4 , CrO_4^{3-} ,
			Mn(VI), Ru(VII)	MnO_4^{2-} , RuO_4^{-}
		d^5	Mn(II), Fe(III)	$MnBr_4^{2-}$, Fe_2Cl_6
		d^6	Fe(II)	FeCl ₄ ²⁻
		d^7	Co(II)	$CoCl_4^{2-}$
		d^8	Ni(II)	NiCl ₄ ²⁻
		d^9	Cu(II)	$CuCl_4^{2-\dagger}$
		d^{10}	Ni(0), Cu(I),	$Ni(CO)_4$, $Cu(CN)_4^{3-}$
			Zn(II), Hg(II)	$Zn(CN)_4^{2-}, HgI_4^{2-}$
square	5	d^0	Ti(IV), V(V),	$\text{TiOCl}_4^{2-}, \text{VOF}_4^-,$
pyramid			Nb(V),	$NbSCl_4^-$,
			Mo(VI), W(VI),	MoNCl ₄ ⁻ , WNCl ₄ ⁻
		d^1	V(IV), Cr(V),	$VO(NCS)_4^{2-}, CrOCl_4^{-},$
			Mo(V), W(V),	$MoOCl_4^-, WSCl_4^-,$
			Re(VI)	ReOCl ₄
		d^2	Os(VI)	OsNCI ₄
		d^4	Mn(III), Re(III)	$MnCl_5^{2-}$, Re_2Cl_8
		d^7	Co(II)	$Co(CN)_5^{3-}$
trigonal	5	d^2	V(IV)	VCl ₃ (NMe ₃) ₂
bipyramid		d^8	Fe(0)	Fe(CO) ₅
octahedron	6			(II), Pt(II), Au(III), Cu(I)
* endless chai	in	[†] Jahn–T	eller distorted	

endless chain Jahn–Teller distorted

Magnetic moments (1)

- Unpaired electrons of *d*-block metal complexes give rise to magnetic properties
- Magnetic properties are often expressed in terms of the magnetic moment μ, which is directly related to the number of unpaired electrons
- μ arises from electron spin (μ_s) and electron orbital motion (μ_L)
- Electron may be considered as a bundle of negative charge spinning on its axis.
- Spin magnetic moment μ_s for a single electron can be calculated with

$$\mu_S = g\sqrt{s(s+1)}$$

where s is the spin quantum number, $\frac{1}{2}$, and g is the gyromagnetic ratio (~2.00). Substituting for s and g gives $\mu_s = 1.73$ BM for one electron.

• BM = Bohr Magneton (SI units):

$$1 \text{ BM} = \frac{e\hbar}{2m_e}$$

where *e* is the charge, \hbar is the reduced Planck constant, m_e is the electron rest mass.

Ref: West p. 451

Magnetic moments (2)

• In atoms or ions with more than one unpaired electron, the overall spin moment is

$$\mu_S = g\sqrt{S(S+1)}$$

where S is the sum of the spin quantum numbers of the individual unpaired electrons.

• For high-spin Fe³⁺ with five unpaired electrons: $S = 5 \times \frac{1}{2} = \frac{5}{2}$ and $\mu_s = 5.92$ BM.

lon	No. of unpaired electrons	$\mu_{S(calc)}$	$\mu_{(ext{observed})}$
V ⁴⁺	1	1.73	~1.8
V ³⁺	2	2.83	~2.8
Cr ³⁺	3	3.87	~3.8
Mn^{2+}	5 (high spin)	5.92	\sim 5.9
Fe^{3+}	5 (high spin)	5.92	\sim 5.9
Fe^{2+}	4 (high spin)	4.90	5.1–5.5
Co ³⁺	4 (high spin)	4.90	~5.4
Co ²⁺	3 (high spin)	3.87	4.1–5.2
Ni ²⁺	2	2.83	2.8-4.0
Cu ²⁺	1	1.73	1.7-2.2

Table 9.3 Calculated and observed magnetic moments (BM) for some transition metal ions

Source: data taken from F. A. Cotton and G. Wilkinson (1966), Advanced Inorganic Chemistry: a Comprehensive Text, 2nd edn, John Wiley & Sons, Inc., New York.

Magnetic moments (3)

• The motion of an electron around the nucleus may give rise to an orbital moment (the expression is applicable to free atoms or ions):

$$\mu_{S+L} = g\sqrt{4S(S+1) + L(L+1)}$$

• *L* is the orbital angular momentum quantum number for the metal ion:

$$L = \hbar \sqrt{l(l+1)}$$

where *I* is the azimuthal quantum number ($s \rightarrow 0$, $p \rightarrow 1$, $d \rightarrow 2$, $f \rightarrow 3$, ...)

- In practice, *L* is often completely or partially quenched in cases where the electric fields on the surrounding atoms or ions restrict the orbital motion
 - In such cases, the observed moments are similar to predicted spin-only values

lon	No. of unpaired electrons	$\mu_{S(ext{calc})}$	$\mu_{S+L(calc)}$	$\mu_{(ext{observed})}$
V ⁴⁺	1	1.73	3.00	~1.8
V ³⁺	2	2.83	4.47	~ 2.8
Cr ³⁺	3	3.87	5.20	~ 3.8
Mn^{2+}	5 (high spin)	5.92	5.92	\sim 5.9
Fe ³⁺	5 (high spin)	5.92	5.92	~ 5.9
Fe ²⁺	4 (high spin)	4.90	5.48	5.1-5.5
Co ³⁺	4 (high spin)	4.90	5.48	\sim 5.4
Co ²⁺	3 (high spin)	3.87	5.20	4.1-5.2
Ni ²⁺	2	2.83	4.47	2.8-4.0
Cu ²⁺	1	1.73	3.00	1.7-2.2

 Table 9.3
 Calculated and observed magnetic moments (BM) for some transition metal ions

Source: data taken from F. A. Cotton and G. Wilkinson (1966), Advanced Inorganic Chemistry: a Comprehensive Text, 2nd edn, John Wiley & Sons, Inc., New York.