Lecture 14: Semiconductors

- **Definitions**
	- Band structure, band gap
- Basic principles
	- Doping
	- Electrical properties
- Important semiconductor materials
	- Main group semiconductors
	- Metal oxide semiconductors
- Applications of semiconductors
- Organic semiconductors are **not** discussed here

Literature

EIGHTH EDITION

Introduction to **Solid State Physics**

CHARLES KITTEL

GRADUATE TEXTS IN PHYSICS

Peter Y. Yu **Manuel Cardona**

Fundamentals of Semiconductors

Physics and Materials Properties

Fourth Edition

Harald Ibach Hans Lüth

Solid-State Physics

An Introduction to **Principles of Materials Science**

2 Springer

ASHCROFT/MERMIN

Definitions

- A semiconductor is usually defined rather loosely as a material with electrical resistivity *ρ* lying in the range of $ρ = 10^{-2} - 10^{9}$ Ω cm.
	- Examples of materials that are **not** semiconductors: Cu metal: *ρ* = 1.7 x 10–⁶ Ω cm Fused quartz: ρ = 7.5 x 10¹⁹
- Alternatively, semiconductors can be defined as materials whose band gap (energy gap) lies between zero and about 4 eV (electron volts)
	- Materials with no gap are called metals
	- Materials with gap $>$ 4 eV are called insulators

Figure 1 Carrier concentrations for metals, semimetals, and semiconductors. The semiconductor range may be extended upward by increasing the impurity concentration, and the range can be ex-
Ref: Cardona p . 1 **Figure: Kittel p. 186** Figure: Kittel p. 186

Band structure and band gap

NaCl: **insulator**, large energy gap between occupied and nonoccupied bands Band gap: 8.75 eV (DFT)

 Γ

 U W

L

KIU X

 L

 -2

 -3

 -4

 -5

W K

 X^-

Copper: **metal**, partially filled bands

No band gap

Band gaps for various materials

Table 28.1

ENERGY GAPS OF SELECTED SEMICONDUCTORS

Sources: C. A. Hogarth, ed., Materials Used in Semiconductor Devices, Interscience, New York, 1965; O. Madelung, Physics of III-V Compounds, Wiley, New York, 1964; R. A. Smith, Semiconductors, Cambridge University Press, 1964.

Ref: Ashcroft & Mermin p. 566

Doping (1)

- Very pure semiconductors are called **intrinsic** semiconductors
	- Conduction band electron can only come from a valence band level, leaving holes behind (equal number of excited electrons and holes)
	- **Carrier concentration** is determined mainly by thermal excitations (at the room temperature, the available thermal energy is $k_B T \approx 0.0257$ eV)
	- $-$ For example, in intrinsic silicon with approximately 5 \times 10²² atoms per cm³, the carrier concentration at the room temperature is $\approx 10^{10}$ cm⁻³ ($\approx e^{-\Delta E/(2k_B T)}$).
	- Resistivity of intrinsic Si: $3.2 \times 10^5 \Omega$ cm

Doping (2)

- In an **extrinsic** semiconductor, impurities have been introduced either on purpose or by accident.
	- An extrinsic semiconductor can be *n***-type** (electrons as majority carriers) or *p***-type** (holes as majority carriers)
	- Doping silicon with P (donor) -> *n*-type
	- Doping silicon with B (acceptor) -> *p*-type
	- 10^{15} cm⁻³ would already be rather high doping level, 10^{17} cm⁻³ very high
	- $-$ Resistivity of B-doped Si (10¹⁵ cm⁻³): 13.5 Ω cm
- For semiconductors, resistivity **decreases** as *T* increases (more carriers)
- For metals, resistivity **increases** as *T* increases (more electron-phonon scattering)

Figure 28.12

Level density for a semiconductor containing both donor and acceptor impurities. The donor levels ε_d are generally close to the bottom of the conduction band, \mathcal{E}_c compared with E_g , and the acceptor levels, \mathcal{E}_a , are generally close to the top of the valence band, \mathcal{E}_v .

Doping (3)

- It is much easier to thermally excite an electron into conduction band from a donor level, or a hole into valence band from an acceptor level!
- In practical applications, the conductivity is controlled by external electric fields (see for example *field effect transistor*, FET)

Source: P. Aigrain and M. Balkanski, Selected Constants Relative to Semiconductors, Pergamon, New York, 1961.

Ref: Ashcroft & Mermin p. 580

Group 14 elemental semiconductors

- Silicon and germanium are both prototypical semiconductor materials
- Silicon is by far the most important semiconductor material
- Germanium has in principle better semiconducting properties
	- Higher electron and hole mobility -> higher operating frequencies
- However, Si dominates due to its **abundance** and **processability**
	- $-$ From lecture 9: Si:Ge ratio in the Earth's crust is almost 10^6 :1!

Details of silicon band structure

Band structure from quantum chemical calculation (DFT-PBE0/TZVP)

Experimental values at 300 K:

Indirect band gap Photon absorption must be coupled with a lattice vibration (*phonon***)** $E_{gap-i} = 1.1 \text{ eV}$

Direct band gap Direct absorption of a photon E_{gap-d} = 3.4 eV

Discovery of an easily accessible silicon modification with a direct band gap could have huge technological impact for silicon optoelectronics (solar cells, LEDs)

Group 14 compound semiconductors

- $Si_{1-x}Ge_{x}$
	- Diamond structure
	- Adjustable band gap (by tuning *x*)
	- Highly reliable thermoelectric devices (running for > 40 years on Voyager missions)
- SiC
	- High temperatures and high voltages
	- Mechanically very hard
	- Uses in early LEDs, power electronics
	- Very rich polymorphism, over 250 polymorphs are known
	- 3C, 2H, 4H, 6H are examples of simple polymorphs

- **SiGe** radioisotope thermoelectric generator (RTG)
- The thermopile composed of the SiGe unicouples on both sides of the 238 PuO₂ heat source converts the heat into electrical energy
- 157 W of electrical power (6.5% efficiency)
- Voyager 1 and 2 probes launched in 1977 are powered by three RTGs
- 11 • Each RTG had a total weight of 37.7 kg including about 4.5 kg of Pu-238 (half-life 87.7 years)

Group 13-15 semiconductors

- Adopt either the **zincblende** (ZB) or **wurtzite** (W) structure
- **ZB**: BP, BAs, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb
- **W**: AlN, GaN, InN
- Various ternary, quaternary, and even pentanary alloys (InGaN, InGaAsP, GaInAsSbP, …)
- Numerous applications in electronics and optoelectronics, for example:
- GaAs: second most used after Si. Some superior properties, but less abundant, more difficult to fabricate with high purity
	- In theory, CPU clock frequencies that are 100 times higher than for Si
- GaN: Blue LEDs

(*F*-43*m*)

 $(P6_3mc)$

Group 12-16 semiconductors

- $ZnO(W)$
	- Discussed later (oxide semiconductors)
- ZnS (ZB , W)
	- Phosphor material (ZnS:Mn), electroluminescent displays (ALD)
- ZnSe (ZB)
	- Blue lasers and LEDs
- ZnTe (ZB)
	- Versatile semiconductor: blue LEDs, solar cells, microwave generators, …
- CdS (ZB, W)
	- Used in first solar cells, CdS/Cu₂S
- CdSe (ZB, W)
	- Quantum dots (luminescence)
- CdTe (ZB)
	- Thin-film solar cells, quantum dots

Group 14-16 semiconductors

- PbS (mineral Galena, rocksalt structure)
	- One the first semiconductor materials in practical use (already in the late $19th$ century, before semiconductors were really understood, see [Cat's-whisker detector\)](https://en.wikipedia.org/wiki/Cat)
	- The oldest material used in infrared detectors
- PbSe, PbTe (rocksalt structure)
	- Mid-temperature thermoelectric materials

Group 15-16 semiconductors

- $Bi₂Te₃$
	- Layered material
	- Room-temperature thermoelectric material
	- Alloyed with Sb / Te
	- $-$ Also Sb₂Te₃, Sb₂Se₃, Bi₂Se₃

 $ZT =$ **thermoelectric figure of merit -> The higher the better**

Oxide semiconductors (1)

- Indium-Tin-Oxide (ITO) *n*-type large bandgap semiconductor (close to 4 eV)
	- $-$ Parent oxide In₂O₃
	- $-$ Typical composition 74% In, 18% O_2 , and 8% Sn by weight
	- Most common transparent conducting oxide (TCO) for touch screens etc.
- ZnO (wurtzite structure)
	- Doped with Al (*n*-type) and possibly Ga
	- *p*-type doping not successful despite decades of efforts
	- Possible replacement of ITO (ZnO:Al)
	- High-*T* thermoelectric material
- $TiO₂$ (rutile and anatase structures)
	- Solar cell material (dye-sensitized solar cells)

In₂O₃ (Ia-3) *Bixbyite* structure, (Mn,Fe)₂O₃

Figure: AJK

Oxide semiconductors (2)

- $Cu₂O$
	- p-type semiconductor
	- Historically very important, many basic semiconducting properties discovered for $Cu₂O$ (e.g. diodes)
	- Band gap of 2.1 eV, potential thermoelectric p-type oxide
- CuO
	- p-type semiconductor
	- Narrow band gap of 1.2 eV, potential thermoelectric p-type oxide
- Many perovskites and spinels
	- E.g. SrTiO₃ as n-type thermoelectric material
	- $-$ Copper aluminate CuAl₂O₄ as TCO or p-type thermoelectric material

Cu2O (*Pn-3m*) Copper(I) oxide, cuprous oxide Diamagnetic

Copper(II) oxide, cupric oxide Antiferromagnetic

Figures: AJK

Other main group semiconductors

- Zintl compounds (Lecture 10)
- In particular semiconducting clathrates
	- $-$ Tunable band gap (\degree 0.5 eV in Ba₈[Ga₁₆Ge₃₀]) *via* controlled atomic substitution
	- Low thermal conductivity (good for thermoelectrics

13 gram single crystal of $Ba_8[Ga_{16}Ge_{30}]$

- **Clathrate-I** (*Pm*-3*n*, 46 framework atoms in the unit cell)
- Ba₈[Ga₁₆Ge₃₀] (anionic framework)
- Each Ba atom donates 2*e* –
- Ga atoms have 1*e* less than Ge, so the 4 coordinated framework needs 16*e* –

Thermoelectric clathrates of type I

Mogens Christensen, Simon Johnsen and Bo Brummerstedt Iversen* Dalton Trans., 2010, 39, 978-992

Brief history of semiconductors

- Transistor invented at Bell Labs in 1947
	- Required detailed understanding of the quantum theory of solids
	- Nobel prize in Physics in 1956 (Shockley, Bardeen, Brattain)
- The first transistors were made out of Ge, but by mid-50s Si became preferred
- First version of an integrated circuit (IC) invented at Texas Instruments 1958
	- Nobel prize in Physics in 2000 (Kilby)
- Moore's law 1965/1975: exponential increase of transistors within an IC (doubling every two years)
	- The "law" does not really hold any more. Transistors have become too small to shrink any further (feature widths smaller than 10 nm)

Replica of the first transistor

First integrated circuit $\frac{1}{19}$

Figure: [Wikipedia](https://en.wikipedia.org/wiki/File:Kilby_solid_circuit.jpg)

Applications of semiconductors

- **Transistors**
- Integrated circuits
	- Set of electronic circuits on one chip of semiconductor material
	- Can include billions of transistors
	- Commercial production: the smallest feature widths below 10 nm in 2023
- Practically all microelectronics
	- Computers, mobile devices, …
- Energy conversion
	- Solar cells
	- Thermoelectrics
- Light-emitting diodes
- **Lasers**
- Power-control applications

Intel 4004, the first commercial microprocessor (1971)

Fabrication of semiconductor devices

- The value of the [semiconductor market i](https://en.wikipedia.org/wiki/Semiconductor_industry)s $>$ 500 x 10⁹ EUR (yearly sales in 2021)
- A single semiconductor device **[fabrication plant](https://en.wikipedia.org/wiki/List_of_semiconductor_fabrication_plants)** ("fab") can cost 1-10 x 10⁹ EUR
- Numerous state-of-the-art technologies are involved in the fabrication of semiconductor devices (possibly the most advanced technological process there is)
- For example, Intel with revenue of $>$ 70 x 10⁹ EUR spent $>$ 13 x 10⁹ EUR on R&D in 2021
- Lots of solid state chemistry! See the appendix material: **Intel 2011 - Sand-to-Silicon**
- <https://www.halbleiter.org/en/> (Semiconductor Technology from A to Z)

