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Preface

The Seminar on Network Security, Seminar on Internetworking and Sem-

inar on Software Technology and Systems Research were previously sepa-

rate Master’s level courses in computer science at Aalto University. These

seminar courses have now merged into one seminar course. These sem-

inar series have been running continuously since 1995. From the be-

ginning, the principle has been that the students take one semester to

perform individual research on an advanced technical or scientific topic,

write an article on it, and present it on the seminar day at the end of

the semester. The articles are printed as a technical report. The topics

are provided by researchers, doctoral students, and experienced IT pro-

fessionals, usually alumni of the university. The tutors take the main

responsibility of guiding each student individually through the research

and writing process.

The seminar course gives the students an opportunity to learn deeply

about one specific topic. Most of the articles are overviews of the latest

research or technology. The students can make their own contributions in

the form of a synthesis, analysis, experiments, implementation, or even

novel research results. The course gives the participants personal con-

tacts in the research groups at the university. Another goal is that the

students will form a habit of looking up the latest literature in any area

of technology that they may be working on. Every year, some of the semi-

nar articles lead to Master’s thesis projects or joint research publications

with the tutors.

Starting from the Fall 2015 semester, we have merged the three courses

into one seminar that runs on both semesters. Therefore, the theme of the

seminar is broader than before. All the articles address timely issues in

security and privacy, networking technologies and software technology.

These seminar courses have been a key part of the Master’s studies in

several computer-science major subjects at Aalto, and a formative expe-

rience for many students. We will try to do our best for this to continue.

Above all, we hope that you enjoy this semester’s seminar and find the

proceedings interesting.
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Abstract

Fog computing and fog orchestration are growing areas of research as

controlling a geo-distributed system includes several challenges such as

increased network latencies, bandwidth variability and deployment man-

agement. This paper reviews recent modifications to Kubernetes, a cloud-

based orchestration tool, to solve the issue of geo-distributed orchestration.

The paper reviews four specific implementations and analyzes their capa-

bilities by comparing them to each other.

KEYWORDS: Kubernetes, Fog, Orchestration

1 Introduction

In recent years the need for decentralized computing has increased as a

result of applications such as self-driving cars and IoT devices which ben-

efit from having low-latency compute capabilities close to the end user.

With the increase of decentralized computing has also increased the de-

mand for a standardized way of controlling it. In cloud data centers or-

chestration, the control and management of computers, is more straight-

forward due to predictable and controllable variables and conditions. With

decentralized computing, or fog computing, there are different orchestra-



tion challenges related to network capabilities, heterogenous hardware

and geo-distribution [6]. Geo-distribution, as a characteristic of fog com-

puting means that the compute nodes are spread out geographically in

different places. This allows a fog based application to potentially provide

better Quality of Service (QoS) to users that are based in different places

and possibly far away from a cloud data center.

Kubernetes has been the de-facto standard for orchestration in the cloud

[4]. The purpose of this paper is to examine how Kubernetes can be modi-

fied to work in fog computing from the perspective of orchestration. More

specifically, how the geo-distributed system is controlled and what advan-

tages and disadvantages are introduced with distributed scheduling.

Geographic distribution raises challenges regarding how to host and ex-

ecute application instances in compute nodes [9]. Resource availability

can differ and it may be difficult to orchestrate which nodes to host ser-

vices in. Compute clusters can become full and need to relay capacity

information to other clusters. The QoS requirements can further compli-

cate the orchestration requirements by placing rules on how well the geo-

distributed system must behave by reacting and adapting to changing

network conditions. Varying network conditions and delays can quickly

change the environment to which the orchestrator must adapt seamlessly.

This paper presents different technologies that solve these issues, analy-

ses how each of them approach the geo-distributed orchestration problem

and compares them to each other. We will examine parameters such as

scheduling and deployment times, adaptivity and reactivity to network

changes, architectural approach for scheduling, and latencies.

The contents of this paper are as follows: Section 2 describes the back-

ground of Kubernetes and fog computing. Section 3 describes the meth-

ods of geo-distribution in Kubernetes scheduling. Section 4 describes the

advantages and disadvantages of each method described in Section 3. Fi-

nally, section 5 describes the conclusions and findings of this paper.

2 Background

In this section, we will look at an overview of some of the core concepts of

the paper.



2.1 Fog

Fog computing is a paradigm used to describe computing extending from

the cloud data centers right until the edge of the network. Unlike the

cloud, fog consists of heterogenous hardware with differing network con-

ditions and geo-locations. Fog-based processing can have superior latency

capabilities and QoS due to being on the network edge [1]. An example

use case for a fog edge device would be a real time application such as pro-

cessing sensor input from self-driving cars and returning data results to

the vehicles. In this example the system cannot suffer from delays caused

by distances to data centers.

2.2 Kubernetes

Kubernetes [3] is an open-source software system for managing container-

ized applications. It is widely adopted and extensible. Kubernetes has a

plethora of features to help manage a containerized system, including:

service discovery, load balancing and storage orchestration. A central fea-

ture in Kubernetes is the pod scheduler. To understand what the sched-

uler does a few definitions are needed. A Pod is a deployable unit which

is essentially one or more containers. A Node is a Virtual Machine (VM)

or physical machine where the pods are run. The purpose of the sched-

uler is to assign pods to nodes based on built-in principles such as scoring

and filtering. The default Kubernetes scheduler is centralized and easily

extensible to add custom scheduling logic or even to replace with an en-

tirely different scheduler. Kubernetes uses Kubelets, agents running on

the nodes to listen to the Kubernetes master for tasks to run on the nodes.

3 Control of a geo-distributed system

Masip et al. [8] describe three methods of orchestration control for the

fog: centralized, decentralized and distributed, as visualized in Figure. 1.

In centralized control, one main node controls the system. This is the de-

fault scheduler control mechanism in Kubernetes. It works well in a data

center environment where the scheduler has a holistic view of the entire

system and the compute conditions are predictable. In fog however, an

issue with this approach is that the main node is a single point of failure

for the entire control system. Also, a fully centralized control system can



have difficulties in determining optimal placements for pods in nodes and

making decisions regarding the entire system when the system is highly

distributed.

In decentralized control there is no single main node to control the entire

system, but rather several local main nodes that control smaller parts of

the larger system and that communicate with each other. In this method

exchanging information between nodes can be more difficult but the single

point of failure is addressed. Additionally, decisions about pod placement

and ranking is done closer to the fog nodes.

In distributed control there is no main node concept, but rather all nodes

make decisions for themselves and communicate with other nodes.

In the following sections we will look at custom implementations of Ku-

bernetes and its scheduler for fog environments and understand how they

control a geo-distributed system.

Figure 1. Three control methodologies where the black boxes represent main control
nodes and the white boxes are edge nodes. The lines represent connections
between nodes.

3.1 Agentified scheduler (MAS)

Casquer et al. [5] implemented a custom distributed scheduler for Kuber-

netes which uses the Multi Agent System (MAS) to distribute scheduling

tasks among agents in the processing nodes. This prevents the pod man-

agement decisions from being made completely by a central entity. Here

the MAS platform provides the deployment specification and tracks sta-

tuses and sends events. The Agentified scheduler works by modifying

core steps in the scheduling process: filtering and ranking. Node filter-

ing is the process of deciding whether a pod fits on a node or not. Node

ranking is the process of giving a priority score for fitting the pods on the

nodes. Both filtering and ranking in the Agentified scheduler are moved



to the MAS platform and away from the control plane. Node ranking re-

sult is based on negotiation between the worker nodes while filtering is

based on data retrieved from the MAS database. The scheduler watches

unscheduled pods, waits for the agents in the processing nodes to elect a

winner node which will then be used to make the binding, i.e. select which

node the pod is placed in.

To test the Agentified scheduler the researchers compared it to a cen-

tralized scheduler. The analysis was done based on the time it takes to

save a scheduling result. The tests were conducted by 20 repetitions of

differing pod count deployments on both scheduler types. The comparison

revealed that especially for the single pod deployment the scheduling time

is significantly lower for the Agentified scheduler. However this difference

decreases with increasing pod count. Thus the researchers conclude that

performance benefits can only be seen with low pod counts.

3.2 Ge-kube

Rossi et al. [9] proposed an orchestration tool called Ge-kube that extends

Kubernetes providing functionality for geo-distributed deployments. Ge-

kube implements a custom scheduler and deployment service to address

the geo-distribution challenges. The custom scheduler is deployed as a

pod. It can poll the status of other nodes and determine the placement

of pods. The custom scheduler works in conjunction with the deployment

service to determine placements for pods. In the case that new pods are

needed the custom scheduler retrieves monitoring information from the

system and sends a scheduling request to the deployment service. The

deployment service then utilizes placement policies to determine the pod

placements.

Ge-kube has self-adaptation and reactivity capabilities. The self-adaptation

uses monitoring, placement and other principles to monitor and execute

changes when needed. These changes are scaling actions that remove or

add new pods. Ge-kube scheduler periodically evaluates the application

deployment status and triggers placement policies if scaling is needed.

The researches evaluated Ge-kube by testing it in a geo-distributed en-

vironment. Utilizing the placement policies they had created and compar-

ing them to the default placement policy of Kubernetes: kube-scheduler.

The results show that the average number of used nodes was better in

all of the custom placement policies ranging from just over three to over

five nodes per pod. Kube-scheduler resulted in 2.85 as the average num-



ber of used nodes. Also the custom placement policies resulted in better

adaptation percentages and pod CPU utilization in almost all cases.

3.3 KubeEdge

KubeEdge is an orchestration platform built on top of Kubernetes to solve

the issue of deployment to cloud and edge [2]. KubeEdge uses a split de-

sign for managing nodes that are on the edge. First it uses a service called

EdgeController which runs in the cloud on behalf of the edge nodes it rep-

resents and listens to the master node for actions that are targeted for

the edge nodes. The EdgeController then sends the actions as metadata

to the edge nodes via a messaging bus called KubeBus. A system called

AppEngine then executes the actions on the node.

The researchers evaluated the KubeEdge platform with a setup consist-

ing of two edge nodes and two nodes running on the Kubernetes Mas-

ter. KubeBus was used to connect all of the nodes together. The analy-

sis was done via measuring network latency between edge and cloud and

deployment times. The researchers found no measurable impact to the

network latency. Deployment times were tested by Kubernetes Master

being deployed to the edge node resulting in a 3 second delay, which the

researchers deem to be at an acceptable level without providing any ref-

erence number. Edge node to edge node and edge node to cloud latencies

were also tested and resulted in negligible differences [10].

3.4 Geolocate

Vilaca et al. [7] propose a scheduler called Geolocate that is a generic

scheduler that can extend for example the KubeEdge platform. It at-

tempts to solve the geo-distribution issue with a custom scheduling algo-

rithm. The Geolocate scheduler consists of multiple parts. The scheduler-

core contains the algorithm for pod placement, which includes user-defined

rules that are either mandatory or preferential. The scheduler-implementation

integrates the scheduler-core with e.g. KubeEdge.

Geolocate was analysed with a setup of a data-producing service run-

ning at an edge node and a data-consuming node running in the cloud

which fetches the data from the edge node. Scheduling overhead was

compared between Geolocate and standard Kubernetes scheduler and the

results were similar with a 300 microsecond delay with a test repeated

20 times. Location aware scheduling was tested with a setup of small



and large distances between data-producing and data-consuming appli-

cations. The experiment was repeated 5 times and it resulted in 62 per-

cent gain for Geolocate in response time when compared to the regular

scheduler. In conclusion the researchers found that Geolocate has similar

scheduling planning times to the KubeEdge default scheduler but outper-

forms it in response time due to better geo-awareness. The researchers

noted that adaptation to workload changes needs further research and

was not tested.

4 Discussion

The Agentified scheduler solved the problem of centralized scheduling by

utilizing the processing nodes and agents in them for electing a winner

node. This scales well and addresses partially the single point of failure

issue with a centralized controller. When filtering and scoring take place

in the worker nodes, only the winner node result needs to be relayed to the

control plane which improves performance. The scheduler which makes

the pod binding still lies on the control plane and can act as a single point

of failure, even if it doesn’t have to make the ranking and filtering deci-

sions. It is also noteworthy that while the binding time was reduced with

the Agentified scheduler, the benefits were seen only with a single pod de-

ployment which limits the size of the deployment in terms of performance.

Ge-kube solves the geo-distribution problem with the master-worker

principle. It has an Elasticity Manager for determining whether new pods

are needed and a Placement Manager which determines the place for the

pod. With constant monitoring Ge-kube is well suited for agile adaptation

to the network utilizing the self-adaptation and custom placement poli-

cies. Average node utilization, adaptation percentage and pod CPU usage

was better with the custom placement policies when compared to default

policy of Kubernetes. It is worth noting that the placement policies tested

all had their own use cases and there was no general policy that works

in all situations. Also, here it also appears the monitoring and placement

components can be single points of failure.

KubeEdge boils the actual control logic into two parts. The EdgeCon-

troller runs in the cloud and listens to the Kubernetes master for tasks

to be executed for the edge nodes it represents. The EdgeController then

relays the tasks via KubeBus to the Nodes.

This architecture is better suited for a geo-distributed deployment than



the native Kubelet logic in Kuberentes. If the edge nodes are far away

from the Kubernetes master and behind poor bandwidth and network con-

ditions the communication from the edge nodes to the Kubernetes master

can be troublesome. This is what the EdgeController solves in KubeEdge

by listening and executing actions on behalf of the edge nodes but on the

cloud. The KubeEdge architecture is quite complex due to its cloud-edge

split design. This could be a challenge when the system is wanted to be

kept simple. Also the researchers evaluations and metrics provided were

a bit lacking. Deployment times and latencies were said to be acceptable.

Geolocate solves the geo-distributed problem by implementing geo-distribution

rules. A rule can be mandatory or preferential and determines where the

pod is deployed geographically and what to do if it does not fit on a node.

This is clearly a more configuration dependent solution that doesn’t scale

and adapt automatically but could be useful for geo-distributed deploy-

ment that has pre-set user-defined locations and rules. The 62 percent

gain in response time that the researchers found Geolocate to have, could

be significant reason to employ this system assuming the manual config-

uration requirement does not prevent this.

Table 1 presents the orchestrator technologies and their respective con-

trol methodologies.

5 Conclusion

The four implementations we reviewed all have some sort of master com-

ponent for monitoring/deploying pods to the fog nodes. None of the imple-

mentations are thus completely distributed but rather distributed with

centralized components. This could be argued to be a consequence of be-

ing a modification of Kubernetes which is inherently centralized. To be

completely distributed, a system would have to work in a sense, peer to

peer without any central mediator.

Based on this review The Agentified scheduler is the most distributed

of the compared technologies. Geolocate is in turn the most centralized of

the compared technologies, having no actual distribution of the manage-

ment/monitoring logic. Geolocate however can be used as an extension of

e.g. KubeEdge so it is not a clear distinction. KubeEdge and Ge-kube both

could be considered partially centralized and partially distributed having

elements of both.



Technology Control Methodology Control Methodology

Breakdown

Agentified Scheduler Distributed Node filtering and

ranking are decentral-

ized to worker node

agents

Ge-kube Distributed/Centralized Utilizes the master-

worker architecture

to have a centralized

state and view of the

system but the execu-

tion is decentralized

KubeEdge Distributed/Centralized Utilizes split design of

having parts of control

reside in worker node

and parts in the cloud

Geolocate Centralized A centralized con-

troller that solves the

geo-distribution prob-

lem by user-defined

geo-placement rules.

Table 1. Technologies and their control methodologies

References

[1] Firas Al-Doghman, Zenon Chaczko, Alina Rakhi Ajayan, and Ryszard Klempous.
A review on fog computing technology. In 2016 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), pages 001525–001530, 2016.

[2] KubeEdge Project Authors. Documentation, 2022.

[3] The Kubernetes Authors. Overview, 2022.

[4] Carmen Carrión. Kubernetes scheduling: Taxonomy, ongoing issues and
challenges. ACM Comput. Surv., may 2022. Just Accepted.

[5] Oskar Casquero, Aintzane Armentia, Isabel Sarachaga, Federico Pérez, Darío
Orive, and Marga Marcos. Distributed scheduling in kubernetes based on
mas for fog-in-the-loop applications. In 2019 24th IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA), pages
1213–1217, 2019.

[6] Breno Costa, Joao Bachiega, Leonardo Rebouças de Carvalho, and Aleteia
P. F. Araujo. Orchestration in fog computing: A comprehensive survey.



ACM Comput. Surv., 55(2), jan 2022.

[7] Ricardo Vilaca Joao Vilaca, Joao Paulo. Geolocate, 2022.

[8] Xavi Masip, Eva Marín, Jordi Garcia, and Sergi Sànchez. Collaborative
Mechanism for Hybrid Fog-Cloud Scenarios, pages 7–60. 2020.

[9] Fabiana Rossi, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli.
Geo-distributed efficient deployment of containers with kubernetes. Com-
puter Communications, 159:161–174, 2020.

[10] Ying Xiong, Yulin Sun, Li Xing, and Ying Huang. Extend cloud to edge with
kubeedge. In 2018 IEEE/ACM Symposium on Edge Computing (SEC),
pages 373–377, 2018.



Rootless containers

Aleksi Hirvensalo
aleksi.hirvensalo@aalto.fi

Tutor: Mario Di Francesco

Abstract

Containers are used to isolate applications at the operating system level.

However, that isolation can be escaped and currently the threat is am-

plified by how containers are being run. Most containers run as root by

default, which means that if they can escape the isolation, they are a root

user of the host machine. To tackle the issue, rootless containers have been

created. Rootless means to run the container and its runtime as non-root.

This paper introduces rootless containers and gives a general overview

of the topic. Furthermore, a practical example is given on how to attack

poorly configured containers and how to prevent the attack by enabling

rootless containers.

KEYWORDS: container, container security, docker, rootless containers, sand-

boxing

1 Introduction

Containers realize application virtualization at the operating system level

[6]. In particular, containers provide a lightweight mechanism to ensure

isolation, allowing multiple applications to run on the same host. They

also enable a specific application to always run the same, regardless of



the infrastructure. On a higher level containers do offer the same kind of

flexibility in deploying and running applications as virtual machines [19].

However, containers are different in a number of ways.

Virtual machines are an abstraction of the hardware whereas contain-

ers are an abstraction at the application layer [19]. In fact, containers

share the kernel of the host which allows for multiple containers to run

on the same operating system. By sharing the kernel, containers can

use the same resources and functions as the host machine, for exam-

ple, the filesystem and networking. However, the visibility and accessi-

bility of these resources are controlled. This is how the aforementioned

lightweight isolation is achieved.

Before defining containers more in depth, it must be noted that the fo-

cus of this paper is Linux containers. This simplification is made as most

often containers run on a Linux environment [10]. Containers are essen-

tially a technology that uses features of the Linux kernel, mainly con-

trol groups and namespaces. Containers are nothing more than processes

running on a Linux operating system. Control groups limit the resources

that a certain process is assigned to, for example, memory and CPU [10].

Namespaces limit the visibility of operating system resources for a given

process [10]. These resources can for example be file system structure and

process.

Containers have rapidly become popular in software companies due to

their benefits in performance compared to other means of virtualization

[12]. Containers allow for agile development and efficient operations [18]

and have been largely adopted in DevOps practices and building microser-

vices. One of the most popular tools for containers is Docker [1]. an

open-source project that can be run on Linux, macOS and Windows. On

Linux and macOS, Docker is mainly used through VMs. Moreover, on

Windows the user can choose between Windows containers or Linux con-

tainers through Docker desktop [8]. Docker is an open platform that can

be used throughout softwares lifecycle e.g. to develop, to deploy and to run

the software [5]. Docker also enables users to separate the applications

from the infrastructure, allowing quicker software delivery.

As new technologies are developed and introduced, new security con-

cerns and vulnerabilities often arise. Containers are no exception [10].

Compared to virtual machines, containers provide a weaker level of isola-

tion, as containers share the same kernel as the host machine. A stronger

level of isolation is preferred because it mitigates the risk of malicious



applications interacting with the host or other containers. This paper

focuses on rootless containers, a method to mitigate the aforementioned

threat. The goal is to introduce rootless containers to the reader and give

a technical overview of the topic. Also, a tutorial is given on how to use

rootless containers with Docker.

The paper starts with the background, where containers are described

and a motivation for rootless containers is given. Then it covers how root-

less containers are made and how to enable them in practice. Finally,

sandboxing is briefly covered followed by concluding remarks.

2 Background

Operating containers involves three important elements, the container

runtime, the container image and the container itself. The container run-

time takes care of running the containers, it makes sure that the con-

tainer is isolated accordingly and necessary resources are created for the

container to use, for example the filesystem and the container user are

configured. The runtime is able to create the needed resources by instruc-

tions that the container image provides. In fact, the container image’s

only responsibility is to describe how to run the container i.e. the con-

tainer environment. Regarding Docker, the container runtime is called

Docker daemon which is responsible for building, running and distribut-

ing containers [5]. Docker registry takes care of storing the images. A

Docker registry takes care of storing the images; Docker Hub is a public

registry, used by default [4].

In general, most containers run as root, which corresponds to the host

machine’s root [10]. This is the case in Docker as well [10]. In Docker,

one can configure the container to run as non-root but the runtime will by

default run as root.

Running containers as root is clearly a security risk; if the container

user manages to escape its isolation, it will be in control of the host ma-

chine. Therefore, it would be convenient to run containers as non-root if

possible. That is indeed possible through the so-called rootless contain-

ers, a term which broadly refers to running the containers and also the

runtime as non-root [11].

At a first glance, rootless containers seem like an unnecessary concept.

Why do containers even need to run as root by default? There are a few

reasons. One reason is that they introduce some level of complexity, es-



pecially with networking. Rootless containers cannot bind to privileged

ports and have limited access to the filesystem.

Another reason is that the container image needs to install software

using package managers. This is reasonable but only during the build

phase of the image [10]. After the dependencies have been installed the

container can be configured to run as non-root.

The last reason is that for some applications it makes sense to run as

root outside of containers, for example apps that bind to privileged ports

[10]. This has been then translated to containers as well where it does

not make much sense as the application can bind to any port and then the

port can be mapped to privileged ports. To conclude, the aforementioned

reasons can be circumvented at the cost of increasing complexity and few

restrictions with rootless containers. Besides complexity, performance can

be an issue with rootless containers, it has been shown that creating a

rootless container takes longer than a normal container [16].

3 Achieving rootless

How can one achieve rootless containers? It can be simply divided into two

main categories, creating containers as non-root and running containers

as non-root. As mentioned previously, the containers should be created

and run as non-root on the host machine. In the rest of the paper, non-

root user will specifically mean a non-root user on the host machine.

3.1 Creating rootless

Before going into creating rootless, Linux capabilities should be intro-

duced, they are an essential feature when considering rootless containers

at all as certain capabilities are required to create namespaces and con-

trol groups. Capabilities can be assigned to threads and they dictate what

operations the thread can perform. Capabilities can also be assigned to

files. Certain capabilities are also needed to create containers. For ex-

ample, CAP_SYS_ADMIN capability allows to create mount namespaces

[2]. Typically processes started by a non-root user do not have special

capabilities [10], whereas processes started by a root user basically con-

tains all of the capabilities [2]. To grant capabilities, one needs to have

CAP_SETFCAP capability which is automatically granted to root. Essen-

tially, capabilities offer a much more fine-grained access control compared



to just being root or non-root.

One will notice a problem when trying to create containers as non-root

because non-roots do not have the required capabilities. However, this can

be circumvented with the use of user namespaces. The user namespace

allows for a given process to have a different view of user and group IDs.

In practice this means that a pseudo-root can be created inside a specific

container. In this context pseudo-root means that the root user has admin

rights inside a specific container but on the host machine, wherein it is

actually a non-root user [10]. Within the user namespace the pseudo-root

user can then apply capabilities to the processes as a typical root user

would. However, these capabilities do not apply outside of the specific user

namespace [15]. This means that even though the user has a wide range

of privileges inside the namespace, it does not have them if it manages to

escape.

However, using the pseudo-root introduces some complexity and limi-

tations. One cannot expect an image that runs successfully as a root in

a normal container to do the same in a rootless container, even though

the rootless container might perceive itself to be running as root [10]. For

example, the CAP_NET_BIND_SERVICE capability allows processes to

bind to low-numbered ports but inside the rootless container the capabil-

ity just does not work [10]. That would require the container to exercise

the capability against host machines resources that it cannot see or have

access to. Finally, it is good to realise that most of the applications run-

ning in normal containers will run successfully inside rootless containers

as well [10].

3.2 Running rootless

How to run containers as non-root? A straightforward solution is to use

rootless image and/or to specify a non-root user to run a container. Re-

garding rootless container images, Bitnami maintains a broad collection

of non-root images [3]. Note that one can specify a pseudo-root to run the

container as well. The important aspect is that the user is not root on the

host machine.

As previously mentioned, running the containers as non-root is not root-

less; if the container runtime is operated by root there is still a potential

for outbreak. The running rootless section is quite irrelevant if the run-

time operates as non-root. As the runtime is responsible for running the

containers, it cannot elevate the containers to have root privileges if it is



running as non-root itself. To summarise, if the runtime is non-root, one

cannot run the container as root. Running the container as pseudo-root is

still possible.

3.3 Rootless Docker

Docker required to run its daemon with root privileges. This has recently

changed as Docker introduced rootless mode since version 19.03, and is

considered stable since version 20.10 [13]. Docker still runs as rootful (as

opposite to rootless) by default and just by running docker without sudo

does not mean one is running rootless. Therefore, one needs to install the

rootless mode and switch to it explicitly.

With rootless mode a new user namespace is created for the Docker dae-

mon to operate in. As of Linux 3.8, user namespaces can be created by

non-roots [15]. This effectively allows non-root users to work with Docker

completely without the root users help.

Running containers as non-root in Docker can be achieved by using the

USER directive to specify a non-root user to be used. The specified user

is then used for RUN command which will start the container. One can

also use the -user flag with docker run and then after the flag, specify a

non-root user id or group id. If one does not specify the user, it will be the

root. Rootless images can also be used through Docker Hub by searching,

for example Bitnami images [4].

Rootless mode can be observed with Docker, for example by running

docker run -it alpine sh and then in the terminal whoami. It will tell

that the user is root. However, running sleep 100 and then ps -fC sleep

on the host machine will reveal the truth. From the output it can be

observed that the process is not assigned to the actual root on the host

machine. Whereas if the previous commands are run in rootful docker, it

can be seen that the root inside the container is also the root on the host

machine.

Rootless docker contains some limitations [13]. For example, AppArmor,

checkpointing and overlay network cannot be used. Also, only certain

types of storage drivers are supported. Cgroup are only supported with

cgroup version 2 and systemd . However, one can use ulimit and cpulimit

to limit resources in a more traditional way.



3.4 Networking

Much of the rootless containers complexity comes from networking re-

quirements [7]. As mentioned previously, binding to a low-numbered port

cannot be done with non-root users as it requires capabilities that ap-

ply at the host machine level. Incoming internet connections cannot di-

rectly react to network namespaces. vEth pairs cannot be created with-

out privileges. Also, lower network performance occurs as the networking

system needs additional components to function as in privileged environ-

ments. Aforementioned problems are part of the reason networking tools

as RootlessKit and slirp4netns exist. Those help to setup rootless contain-

ers while providing the same functionality as in privileged environments.

RootlessKit is an open-source project created to run Docker as pseudo-

root, leveraging user namespaces [9]. slirp4netns provides networking

for unprivileged network namespaces by creating a tap device that acts

as a default route [9]. Slirp4nets is a component used in rootless contain-

ers to provide communication from inside a container to the outside [7].

It achieves this by using a tap device.

Network interfaces cannot be implemented with user namespaces alone

because vEth pairs need to be created between a container and a host [7].

RootlessKit helps with this as it relays communication from the outside

to an intermediate network namespace. Intermediate network names-

pace has a bridge that containers can connect to and create its vEth pair.

RootlessKit is also used for example, to make /etc writable.

4 Sandboxing

Running containers as root is not a problem itself, unless the root user is

able to escape the container and access the host machine. One approach

to tackle such problem is to use sandboxing. Sandboxing means to isolate

an application so that it has a limited access to resources [10]. The def-

inition overlaps with containers quite a bit as they also limit the access

and visibility of resources. However, limiting resources with sandboxing

means to limit what the actual code can do on the host machine.

There exists many sandboxing mechanisms [17]. But in this paper,

sandboxing is briefly covered through only one application, called gVisor.

gVisor is an application kernel developed by Google [10]. It can be viewed

as a layer between a running application and the host operating system.



Its task is to intercept system calls of the application and then to replace

or modify them to be executed on the host machine.

gVisor does not allow the application itself to control the system calls

[14]. This provides security as the system call API can occasionally be

exploited due to bugs and race conditions. gVisor does not just directly

relay the system call in the host machine but rather it might make mod-

ifications or limit the call. It is important to note that using system calls

through gVisor will still result in a system call on the host machine.

gVisor does still come with limitations. Mainly reduced performance

and incomplete features [10, 20]. It does not implement all of the Linux

system calls which obviously is a drawback as some of the system calls are

simply not available. If the sandboxed application makes frequent system

calls, it might significantly impact the performance, gVisor has been mea-

sured to have approximately 50% overhead in system calls compared to

bare-metal [17]. Finally, the gVisor is large and complex which increases

the likelihood of having vulnerabilites in itself [10].

5 Container outbreak

As mentioned previously, the main motivation for rootless containers is to

protect the host machine in the event of container outbreaks. Container

outbreak is an event where the container user is able to access or see

resources on the host machine. This might happen in multiple ways, often

due to poor configuration [10].

This section introduces a real life example of breaking out of a container

and taking malicious action. Before going into the example, confidential.sh-

script has been added as root under the /usr/bin-folder. Running the

script is only allowed by root and running it echoes "This is confidential.

This file cannot be modified.". Groups or others do not have any permis-

sions enabled for the file. For the rest of the section, a non-root user is

used.

An example of poor configuration is to mount a host directory to be avail-

able inside a container [10]. This can achieved with -v flag. One can run

docker run -it -v /bin:/rootbin ubuntu bash in host machine’s root

folder to map /bin on the host machine to rootbin-folder in the container.

Running ls inside the container shows indeed a rootbin-folder being present.

Inside the rootbin a confidential.sh-file is found and it can be read with

cat confidential.sh. The container was started with non-root user and



it is still able to read the file. This happens because the container user

is actually mapped to the root user on the host machine. This would

also mean that the user is able to edit the file, which is indeed possi-

ble and it can be edited with, for example, cat » confidential.sh echo

"This file has been modified.". Now executing the file outputs This

file has been modified on the last line. To be clear, the aforementioned

actions have been made inside the container.

On the host machine’s terminal confidential.sh can be executed again

and it can be observed that the file output has changed, on the last line

it reads This file has been modified. This is only one example of what

could be done with poor configuration. The container user could also mod-

ify other files in the bin file, for example, hide some scripts inside some

common executables like ls-command. The possibilities are limitless and

very severe damage can be done.

Now observe what happens when rootless context is enabled. Container

is run with the same command as before and rootbin-folder is created

and inside it is confidential.sh-file. However, executing the file outputs:

permission denied, the same applies when trying to read or write to the

file. Running whoami outputs root but this is not actually root on the

host machine and therefore the container user has no permissions on the

file. Still, mapping the bin-folder to the container reveals the existence of

confidential.sh-file, it would be best not to map the folder altogether if

not needed.

Note that gVisor does not help preventing the above exploit as it does

not concern about namespaces or cgroups. gVisor is only allowed to block

malicious system calls. It is advised to run rootless containers paired with

gVisor for maximum protection.

Mounting critical files to a container’s environment poses a very seri-

ous threat but an even bigger threat can be introduced with Docker’s

privileged flag. In Docker’s default environment root user is used to run

containers but it does not contain all capabilities [10]. The privileged-

flag effectively gives a much more wider range of capabilities for the con-

tainer user, the capabilities include CAP_SY S_ADMIN which can be

used to modify namespaces and mount filesystems. This means that a

malicious user is able to mount the /bin-folder by itself.



6 Conclusion

Containers often run as root by default, for example, this is the case con-

sidering Docker’s default environment. Running containers as root is not

an issue in itself but it does leave a possibility of malicious user being able

to escape the container environment with root access on the host machine.

Rootless containers is a technology that mitigates the threat of container

outbreaks by running containers as pseudo-root. In the event of an out-

break the container user is not able to leverage root privileges on the host

machine. Rootless allows for unprivileged users to create, run and man-

age containers [11]. They do have added complexity compared to rootful

containers but this is rarely visible to the end-users as transferring rootful

containers to rootless usually only requires making sure that the runtime

is run by non-root on the host machine.

Rootless containers are relatively new technology and their large-scale

adoption is still underway. It is encouraged for everyone to use rootless

containers instead of rootful as there really is no reason for one to predis-

pose their infrastructure to container outbreaks.
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Abstract

With the increasing demand for faster and more efficient mobile networks,

research has been conducted on the sixth generation of mobile communi-

cations. 6G has been envisioned to solve the short comings that have been

noticed with current mobile communications. These include data rates, en-

ergy efficiency, dead zones and so on. With 6G networks, researchers have

noticed a challenge with highly varying wireless channels. To combat this,

research has been conducted on modifying the propagation environment.

A key technology for this is reconfigurable intelligent surfaces (RIS). These

surfaces can be used to modify the passing signals. A large aspect of these

surfaces is their energy consumption, as it is lower than traditional am-

plifiers for example. This paper reviews the related key technologies of 6G

and RIS. Then it studies how these RISs can be utilized in 6G and how

the deployment of RISs can be conducted. Finally, we discuss some of the

possible challenges and look at the future of RIS and 6G.
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1 Introduction

In today’s world, the demand for increasingly faster mobile networking

has grown as people consume and share more data constantly. In the past

few years, the use of wireless communication networks has been increas-

ing worldwide. Even though the fifth generation (5G) of mobile commu-

nication is not yet even fully used, the world is already looking at what

comes next. The next step in mobile networks is 6G. The 6G network is

planned to be more oriented towards connecting things and devices. Ap-

plications related to things and devices, such as the Internet of Things

(IoT) and the larger Internet of Everything (IoE) are highly related to 6G.

[1]

IoT plays a key role in providing opportunities in 6G and beyond net-

works [2]. IoT is a system with devices which have some levels of sensors

that can measure data. The system also has the ability to communicate

data to other systems. With the evergrowing energy consumption and the

current world’s energy problems, researchers have come up with unique

solutions, namely passive IoT solutions. The key feature of these devices

is that, they do not require an internal power source, rather they harness

energy from the wireless signals in there surroundings. These devices are

an essential part in building a power efficient wireless system, as power

consumption poses a huge issue with larger scale IoT. [3]

With the next generation of mobile networks, a key aspect to be studied

is how the radio waves and signals travel through the different mediums.

As there are big variations in these mediums, the results can be slightly

altered depending on the location of the transmitter and the receiver. To

combat this, a new technology called reconfigurable intelligent surfaces

(RIS) is being studied. The key idea behind RIS is to manipulate the sig-

nal phase or amplitude in such a way that the received signal strength is

maximized. These surfaces consist of several passive reflective elements

and a controller, which enable altering the incident signal. The RIS’s

reflective elements reflect electromagnetic waves in a manner that can

be controlled. Controlling the surfaces is achieved with programmable

controllers inside the surface. As the surfaces are configurable and con-

trollable, they can be attuned to specific environments, and they can be

responsive in regard to changes in the environment. [4] [5]

The aim of this paper is to study the use of RIS in wireless communi-

cation networks, mainly in 6G. Namely, how the surfaces can be imple-



mented and how can they improve the existing communications technolo-

gies. The paper is organized in sections. Section 2 presents the two main

technologies involved in the subject. Section 3 reviews the implementa-

tion of RIS into beyond 5G and 6G communication systems. Section 3 also

discusses the challenges and the future related to RIS. Finally, Section 4

includes a conclusion.

2 Technologies

In this section, we review the key technologies related to 6G networks

and reconfigurable intelligent surfaces. Sec. 2.1 emphasizes important

points of 6G and the current issues that are being addressed. Sec. 2.2

elaborates on technical and general information about RIS. Sec. 3 studies

the different use cases and advantages of using intelligent surfaces in 6G

networks.

2.1 6G

The use of the fifth generation of mobile networking is increasing and a

few short comings and limitations have been noticed. These limitations

are not necessarily related to personal communication and device use,

rather they have been noticed in upcoming use cases related to IoT, IoE,

augmented reality (AR), extended reality (XR) and so on. As some 6G

driving applications have been speculated to revolve around these con-

cepts [6]. Some key limitations in the current 5G networks revolve around

latency, capacity, energy consumption, reliability and coverage, these lim-

itations will be addressed with upcoming 6G networks [1] [4] . Some so-

lutions to this limitation are delayed behind upcoming complex network

applications. These technologies, such as 6G, have a highly varying wire-

less channel, i.e., the propagation environment. [7]

To combat the problems with the propagation environment, another key

technology has awoken interest in research. Earlier the propagation of

signals in the environment only depended on the transmitter and receiver

and no study has been conducted to alter the signal behavior while propa-

gating, however current research has been done in possibilities to config-

ure the signals in a way which better combats environmental effects. This

could be achievable with intelligent surfaces. With the help of these sur-

faces the passing signals could be modified to suit the environment better



[4]. Thus, eliminating some of the problems that structural or natural

objects might cause to signals. As mentioned before, the world’s energy

consumption is growing rapidly and the ever growing communication net-

works are contributing to this consumption as well. In this regard, the

use of intelligent surfaces that are targeted to be passive, can be used to

combat the excessive need for energy. These surfaces can also be used

to replace existing power amplifiers and repeaters that consume larger

amounts of energy. [8]

2.2 Reconfigurable intelligent surfaces

A variety of intelligent surfaces are coming up, as more efficient ways to

amplify and modify signals are being researched. RIS, intelligent reflect-

ing surfaces (IRS) and large intelligent surfaces (LIS) are the key can-

didates in combating problems in communications networks. RISs and

IRSs are the same technology but with different callings, and LISs are

the same technology but in a larger scale. [2][9] For this paper we will

focus on the intelligent surface technology as a whole, and we will use the

RIS abbreviation for clarity.

RISs have many potential use cases and environments. They can poten-

tially be installed almost anywhere, the installations can be done outside,

inside, on moving objects and even on people’s wearables. A few use cases

are improving cellular connections, indoor communications, and poten-

tially large scale IoE networks. [10] However, this paper will focus on the

subject of improving cellular networks.

The RISs work by having electromagnetic surfaces that have meta-atoms

in them, meta-atoms electromagnetic units that compose the surface. These

surfaces are also known as metasurfaces. The concept of metasurfaces is

that each of these surface elements can be modified individually where by

the elements reflection amplitude and phase shift can be changed. This

real-time configurability is a requirement for wireless network commu-

nications. The reconfigurable surfaces are composed from three layers,

the front layer contains the metasurface, the second layer is a back plate

made of copper. This copper plate’s function is to prevent signal leak-

age. The last layer is the control circuit board. This layer is linked to the

RIS controller as well, the controller and circuit board work together to

configure each of the metasurface’s elements properties according to the

changing needs.[2] [11]

One key aspect of the surfaces is the passivity of them. This requires



optimization of the passive beamforming techniques, which however has

some challenges to it. Beamforming is elaborated more in section 3.2.

These challenges relate to the tuning parameters of each element, which

is out of the scope of this paper [11]. The surfaces are not fully passive,

as they need some power source for the controller [2]. However, this en-

ergy can be harnessed from the environment with solar or other passive

sources. In addition, if the RIS does not need be configured in real time,

the surface can be fully passive [9]. Still the power need of these nearly

passive surfaces are significantly lower than the traditional methods that

use power amplifiers or repeaters.

3 Passive IoT with 6G

Current research in 6G has many different subjects, but in this paper,

we will focus on the wireless propagation environment research done for

beyond 5G and 6G communications. The propagation environment is cur-

rently an issue as it can be unpredictable. The RISs are envisioned to

combat this problem. The RIS deployment can combat many issues as

well. Such as, structural blockages, blind spots from signals and increased

signal strength. [7]

This section will be divided into subsections. Sec. 3.1 will elaborate on

the deployment of RIS and how they can be implemented to current net-

work architecture. Sec. 3.2 will focus on the possible problem areas of

implementing RISs into beyond 5G and 6G communications. Sec. 3.3 will

focus on the future of RIS.

3.1 RIS deployment for network communications

The research in RIS deployment strategies is already ongoing, and the

prospect of RISs being deployed for next generation network communi-

cations is very probable. There are two types of communication environ-

ments where intelligent surfaces can be beneficial, terrestrial and non-

terrestrial.[7] Fig. 1 is a simplified image of deployment scenarios.

The deployment strategies for terrestrial environments include a sin-

gle RIS and multi RIS deployment. A single RIS deployment is deployed

with a single surface that hold all of the reflective elements, a multi RIS

deployment is the opposite. Multiple RISs are used separately, these de-

ployments have differences in coverage, costs and optimization. [7]



Figure 1. Simplified terrestrial and non-terrestrial RIS deployments, red arrows indicate
blocked signals and green vice versa.

In addition, the locations of the RIS systems need to be considered. The

RISs can be deployed user-side, base station (BS) side, or as a hybrid de-

ployment. In a hybrid deployment the RISs are deployed in both user

and base station sides. User-side deployment is designed to enhance the

coverage in certain locations. In user-side deployment the surfaces are

deployed near the users, so locations where coverage is worse or the cov-

erage is nonexistent, or the network needs to be strengthened. Base sta-

tion side deployment is located near the base stations, rather than near

the users. This is used to strengthen and redirect the signals leaving the

base station. In a hybrid deployment, both of the deployments are taken

advantage of. [7][12]

Terrestrial deployment strategies are centered around unmanned aerial

vehicles (UAV). UAVs can be used to create an air-borne wireless coverage,

and they can be used as a sort of base station. However, for the scope of

this paper we will look at using an actual RIS with the UAV. These kinds

of movable aerial surfaces can be convenient for sudden network drops or

coverage issues. [7]

3.2 RIS challenges

The road to deploying RISs for 6G communications still has many chal-

lenges to overcome. This section lists some of the challenges that might

arise in the future of RIS assisted communication networks.



RIS deployment

As mentioned before there are two strategies for the locations of RIS de-

ployment, user-side and base stations side. Both of these have their own

challenges. User-side placement leads to a high number of RISs that all

require controllers, that increase the hardware and energy requirements.

However, when placing on BS-side, the line of sight for the channels are

not that optimal. The locations of the RISs need to be studied to identify

the optimal placement strategy .[13]

Channel state information

Channel state information (CSI) is critical knowledge for optimizing the

RISs coefficients and beamforming gains. Beamforming is a technique

that enables combining a “beam” of wireless signals, the signals are formed

to a beam that is focused to specific receivers. This technique results in

an enhancement of the signal directivity. With the passive nature of the

RISs, the surfaces cannot receive or send pilot signals on their own, which

means that channel estimation needs to be done with some assistance or

with estimation calculations. A optimal method needs to be researched to

combat this as CSI is critical for communications channels.[7][14]

Higher frequency bands

6G network requirements are expected to support higher data rate re-

quirements, which leads to the large increase in frequency bands versus

5G. It is envisioned that the frequency bands will expand to THz bands

and even above. [6][10] The increase in frequency leads to challenges with

channels without a line of sight (LOS). As the frequency of the channel is

higher, the signals are more prone to blockage by obstructions and obsta-

cles. This can cause large challenges in environments that lack LOS. In

addition the RISs need to be modified to suite the higher frequency bands,

which will lead to challenges in the manufacturing and costs of the RISs.

[7][10]

3.3 The future of 6G and RIS

The future of RIS in 6g networks is still very much in research. Despite

the advances that have been made in recent years, there are several chal-

lenges and open issues that need to be researched. Sec 3.2 mentioned

some of these but there is a lot more to research as well. Such as artificial

intelligence (AI) empowered optimization, power consumption, hardware



complexity and so on. There are many possible research directions for

different applications and use cases that are not inherent challenges, but

possibilities. One aspect to look at is how other technologies can be used

to empower RISs with 6G, and how other technologies can be empowered

instead. Some of these technologies are included in the next sub sections.

Unmanned aerial vehicles

The use of UAVs has grown increasingly in many different industries,

such as agriculture, military, logistics and so on. With increasing perfor-

mances in 5G and 6G networks the UAVs can be utilized in different and

more efficient manners. With RIS and 6G the LOS from the ground to

the UAVs can be very precise, this can be achieved with flight plans and

the beamforming gains from the RISs. [13] In addition to better connec-

tions between the ground and the UAV, introducing RISs also amplifies

the energy efficiency of the usage of UAVs[5].

AI-empowerment

As mentioned, there are a lot of challenges involved in optimizing dif-

ferent aspects of RIS assisted networks, such as beamforming, channel

estimation and phase-shift optimization. All of these optimization issues

should be researched with possible AI and deep learning methods as they

could prove beneficial. Channel estimation with AI based techniques has

already been researched with different techniques. The authors in [15]

adopted a neural network channel estimation with positive performances,

using the normalized mean square error as a performance metric. Adopt-

ing a deep learning method for the phase shift reconfigurations in the

RISs has also shown positive signs [16]. This shows a promising road

ahead for AI-empowered optimization.

4 Conclusion

In this paper, we reviewed and studied the use of RIS in network commu-

nications. Firstly, we studied the key technologies, 6G and the RIS itself.

We presented an overview of the upcoming 6G technology. This overview

pointed out several short comings in the current networking systems. As a

solution to some of these short comings, the RIS technology was presented

as an option. RISs can replace existing technology, such as power ampli-

fiers or repeaters, with additional benefits areas such as performance and



energy consumption. After reviewing the key technologies, we presented

different deployment strategies for introducing RISs to network commu-

nications. These consisted of different options for RIS locations, amounts

and so on. Finally, this paper discusses some of the potential challenges

for RISs, and presents some possible research directions for the future of

RISs and 6G networks.
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1 Introduction

With software that is publicly accessible, security is very important to

ensure that the runtime environment in which the program is executed

does not get compromised by an users malicious or unintentional actions

for example.

One way to improve security is containerization. Containers provide

an easy way to isolate projects and their dependencies from the host ma-

chine on which they run. However, the same security risks still exist for

example in the form of attackers that target access into private data [16,

Chapter 1]. Container sandboxing is one way to mitigate some of these

possible security concerns by improving the security of the container run-

time overall.

This paper will focus on three different ways of increasing container

isolation: SELinux, Seccomp and AppArmor. It will also focus on how

these can be implemented in containerized environments. The main focus

will be on Docker and Kubernetes.

In addition to this the paper will also consider the container runtime

support of Kubernetes and how different, common, container runtimes

support access limitation with Linux Security Modules or system call fil-

tering.

The goal of this paper is to provide an overview of how well the pre-

viously mentioned technologies are supported in containers (especially

Docker) as well as how an user can implement them in their project. This

is done in the form of summarizing the technologies and providing exam-

ples.

2 System calls and file permissions

Two possible ways to limit access to resources center around file permis-

sions (Linux Security Modules: SELinux, AppArmor) and system calls

(Seccomp) [16, Chapter 8].

In Unix, traditional file permissions are implemented in a way where a

file has permissions for three different permission classes: for the owner,

for the group and for all other users. It is possible to give these classes

three kinds of permissions: read, write and execute [18]. This means that

the possible permissions that can be given are somewhat limited in how

they can be configured. However SELinux or AppArmor can be used to



add an additional layer of file permissions on top of this permission model

[16, Chapter 8].

System calls on the other hand are the interface between applications

and the Linux kernel. They allow the application to use kernel functions

and are usually hidden from the developer by library wrapper functions

[2]. Seccomp acts on these calls and filters them based on the currently ac-

tive Seccomp profile. Through this, Seccomp can block unwanted actions

from happening [16, Chapter 8].

3 Sandboxing containers

Container sandboxing is important due to the way in which containers

are isolated.

Containers use two features of Linux to isolate their contents from the

host: cgroups and namespaces. Namespaces can be used to create multi-

ple isolated instances of available resources and cgroups (control groups)

can be used to limit resources [15, p.3]. Currently Docker for example

uses multiple namespaces to achieve process, filesystem, ipc and network

isolation and cgroups to achieve device isolation [15, p.4].

Containers often run as root by default and make system calls to the

same kernel as the host. This means that if the container isolation can

be broken, be it deliberately or by accident, code running within the con-

tainer can gain unintended permissions [16, Chapter 9]. This would then

lead to the host system being compromised.

3.1 Seccomp

Seccomp (secure computing mode) functions by filtering the systemcalls

the application can make [17, p.9]. When it was initially intruduced, it

was extremely restrictive allowing only very few system calls to be made,

and some of them only under special conditions. For example, file access

requires file descriptors to be opened before switching to secure mode [16,

Chapter 8].

Some years later a new implementation Seccomp-BPF was created to

allow system calls based on a Seccomp profile specific to the application.

This works so that when an system call is made, the filter can check based

on the profile whether the call is allowed or not, with different kinds of

possible actions depending on the result [16, Chapter 8].



For example, the default Docker Seccomp profile blocks tens of system

calls [17, p.10] with next to no ill effect on an average application. How-

ever this profile is not enabled by default on Kubernetes [16, Chapter 8].

3.1.1 Implementing Seccomp for an application

Seccomp profiles consist of an default action as well as defined exceptions

with different actions. These can either log (SCMP_ACT_LOG), prevent

(SCMP_ACT_ERRNO) or allow (SCMP_ACT_ALLOW) system calls. It

also supports limiting architectures. [1, 12]

A Seccomp profile has the following structure and might for example

contain limitations like this:

1 {

2 "defaultAction": "SCMP_ACT_ALLOW",

3 "architectures":

4 [

5 "SCMP_ARCH_X86_64",

6 "SCMP_ARCH_X86",

7 "SCMP_ARCH_X32"

8 ],

9 "syscalls":

10 [

11 {

12 "names":

13 [

14 "add_key",

15 ],

16 "action": "SCMP_ACT_ERRNO"

17 }

18 ]

19 }

This example allows all other system calls but prevents the container /

application from using the kernel keyring. This limitation is done through

the names section (add_key) which in this case is set to use the action

SCMP_ACT_ERRNO [12, 11].

Using Seccomp with Docker requires very little setup as there is already

an default profile available. However, it is possible to override it with the

1 --security -opt seccomp=/path/to/seccomp/profile.json

parameter [12].

Kubernetes supports Seccomp since version 1.19 and profiles can be au-

tomatically applied through configuration files. It is also possible to use

the default Seccomp profile by running the kubelet with the



1 --seccomp-default

parameter [11].

3.2 SELinux

SELinux (Security-Enhanced Linux) is a Linux Security Module (LSM)

that allows limiting the rights of a process in relation to its interaction

with resources like other processes or files [16, Chapter 8].

The file permissions of SELinux also differ from the classic Linux file

permissions by being based on file specific labels instead of user or group

specific permissions [15, p.5]. When using SELinux, an application would

have to pass both permission checks to function correctly. SELinux can

also be set to only track and log violations instead of blocking them [16,

Chapter 8].

SELinux can be difficult to use due to requiring an application specific

profile with comprehensive knowledge on what resources the application

in question needs for it to work properly and effectively. However some

vendors provide pre-made profiles, which somewhat mitigates this [16,

Chapter 8].

3.2.1 Implementing SELinux for an application

In Kubernetes it is possible to assign SELinux labels to containers through

the seLinuxOptions field of the securityContext. Currently, by default,

this causes the container runtime to apply the given label for all files

within the containers volumes [3].

3.3 AppArmor

AppArmor is also a Linux Security Module. It works in a similar way

as SELinux. It allows using profiles for limiting application access to

resources [20, p.130], with the difference to SELinux being that it uses

profile specific constraints instead of file specific labels [16, Chapter 8].

AppArmor also has a default Docker profile, but it is also not in use by

default in Kubernetes [16, Chapter 8].

3.3.1 Implementing AppArmor for an application

AppArmor profiles are written in a profile language that has an extensive

syntax for writing access rules. These are not only limited to file access



but also support restricting capabilities and networking to some extent

[13]. An example profile might look like this:

1 profile example-profile flags=(attach_disconnected) {

2 deny /** w,

3 }

This profile denies all file writes: deny is the rule modifier, /** matches

the files and w sets the permission the rule relates to [13, 14].

In Docker, a default profile is enabled by default. This provides an ac-

ceptable security baseline for applications out of the box, but it is also

possible to load a different profile with Docker [6].

To do this, the profile has to be loaded into AppArmor on the target

system, with:

1 apparmor_parser -r -W /path/to/your_profile

After that, the profile can be loaded with the –security-opt parameter as

follows:

1 --security -opt apparmor=your_profile

[6]

In Kubernetes AppArmor is not enabled by default. Support for AppAr-

mor is present in Kubernetes starting from version 1.4 [20, p.130] and

its options are set via annotations, older versions ignore AppArmor an-

notations silently. Currently the support is still in beta state, which is

the reason for annotations being used to set the required options. In the

future, they will be replaced with first class fields once stable [10].

Prerequisites for using AppArmor include enabling the AppArmor ker-

nel module on the node and ensuring that the container runtime that is

in use supports AppArmor [20, p.130].

Currently Kubernetes has no native mechanisms for loading AppArmor

profiles on nodes, therefore other methods such as SSH have to be used.

When the profile has been copied to the node, it needs to be loaded to

AppArmor in a similar way as when using Docker [10].

3.3.2 Automatic AppArmor profile generation

Generating new AppArmor profiles for containers by hand can be very

time consuming and result in profiles that are too permissive. Tools such

as Kub-Sec, Lic-Sec and Sysdig’s K8s Policy advisor exist and can help

with rule generation [20, p.1].

Lic-Sec, which is based on Docker-sec and LiCShield [19, p.3] works by



automatically generating AppArmor profiles for local Docker containers

based on the container’s behavior while the K8s Policy advisor generates

rules based on the Kubernetes pods configuration. [20, p.1].

However, Lic-Sec or the K8s Policy advisor do not help in generating

AppArmor rules based on the behavior of a container deployed with Ku-

bernetes. For this a solution named Kub-Sec has been proposed which

uses AppArmor audit logging and an separate API server running an au-

tomatic policy generator as well as other needed services to create and

load rules on a pod [20].

4 Kubernetes container runtime support

Kubernetes supports container runtimes that conform with its CRI (Con-

tainer Runtime Interface) [4] which is an API based on the gRPC protocol

[5].

As of Kubernetes 1.25 the default CRI version used is v1, with support

for the depricated version v1alpha2 having still been retained as a backup

[4].

The supported list of container runtimes for example includes runtimes

such as containerd, CRI-O, Docker Engine and Mirantis Container Run-

time [4].

4.1 Container runtimes and access limitation

Currently the support for AppArmor on Kubernetes is not limited to only

Docker. In addition, the other common supported container runtimes for

Kubernetes such as CRI-O and containerd also support AppArmor [10].

These container runtimes also support Seccomp, but the default profiles

of each container runtime differs [11].

For instance, containerd and docker seccomp profiles are by default quite

similar, but might temporarily get out of sync due to the timing of updates

in the future, while the cri-o seccomp profile is loaded (with some modi-

fications) directly from the Seccomp library files [9, 7, 8]. Therefore it

can be said that in some cases issues can arise from switching to another

container runtime due to these differences if Seccomp is being used.



5 Conclusions

Overall, it can be said that Kubernetes supports multiple common con-

tainer runtimes such as containerd, which in turn support access limita-

tion through AppArmor, Seccomp and SELinux.

It can also be concluded that using additional layers of security such

as AppArmor, Seccomp or SELinux with containers improves the overall

isolation of the container thus increasing its security from the host’s point

of view.

However, enabling such solutions does come with the cost of needing

additional configuration to be done, with the amount needed depending

on which solution or solutions are chosen to be enabled, and on which

platform (local or cloud environments etc.) the containerized application

runs.

The possibility to use automatic profile generation tools is something

that should also be considered when generating new profiles. It could

improve the quality of profiles while reducing the time needed for their

generation compared to doing it manually. Setting up such automatic

profile generation could also help in the future as the base configuration

needed for setting the tools up would not need to be done again in order

to leverage the tools with new projects.

Many platforms also provide decent default profiles that can improve

security with minimal need for additional reconfiguration. Enabling the

default AppArmor or Seccomp profile for example could be enough to stop

an security breach from happening, and considering the minimal time

needed to enable these default profiles would therefore be a good place

to start from if additional container sandboxing is desired in an environ-

ment.



References

[1] Seccomp rule add linux manual page. https://man7.org/linux/man-pages/
man3/seccomp_rule_add.3.html.

[2] Syscalls linux manual page. https://man7.org/linux/man-pages/man2/

syscalls.2.html.

[3] https://kubernetes.io/docs/tasks/configure-pod-container/security-context/,
Sep 2022.

[4] https://kubernetes.io/docs/setup/production-environment/container-runtimes/,
Nov 2022.

[5] https://kubernetes.io/docs/concepts/architecture/cri/, Nov 2022.

[6] Apparmor security profiles for docker. https://docs.docker.com/engine/
security/apparmor/, Oct 2022.

[7] Default seccomp profile for containerd. https://github.com/containerd/
containerd/blob/main/contrib/seccomp/seccomp_default.go, Oct 2022.

[8] Default seccomp profile for crio. https://github.com/cri-o/cri-o/blob/
main/internal/config/seccomp/seccomp.go, Nov 2022.

[9] Default seccomp profile for docker. https://github.com/docker/docker/
blob/master/profiles/seccomp/default.json, Aug 2022.

[10] Restrict a container’s access to resources with apparmor. https://kubernetes.
io/docs/tutorials/security/apparmor/, Oct 2022.

[11] Restrict a container’s syscalls with seccomp. https://kubernetes.io/docs/
tutorials/security/seccomp/, Aug 2022.

[12] Seccomp security profiles for docker. https://docs.docker.com/engine/

security/seccomp/, Oct 2022.

[13] Steve Beattie and John Johansen. Apparmor core policy reference. https:
//gitlab.com/apparmor/apparmor/-/wikis/AppArmor_Core_Policy_Reference,
Mar 2021.

[14] Christian Boltz and Steve Beattie. A quick guide to apparmor profile lan-
guage. https://gitlab.com/apparmor/apparmor/-/wikis/QuickProfileLanguage,
Aug 2021.

[15] Thanh Bui. Analysis of docker security. 2015.

[16] Liz Rice. Container Security. O’Reilly Media, Inc, 2020.

[17] Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou. Container security:
Issues, challenges, and the road ahead. IEEE Access, 7:52976–52996, 2019.

[18] Jack Wallen. Understanding linux file permissions. https://www.linuxfoundation.
org/blog/blog/classic-sysadmin-understanding-linux-file-permissions,
Sep 2022.

[19] Hui Zhu and Christian Gehrmann. Lic-sec: an enhanced apparmor docker
security profile generator. https://arxiv.org/abs/2009.11572, 2020.



[20] Hui Zhu and Christian Gehrmann. Kub-sec, an automatic kubernetes clus-
ter apparmor profile generation engine. In 2022 14th International Con-
ference on COMmunication Systems and NETworkS (COMSNETS), pages
129–137, 2022.



Survey of Modern Generative Modelling

Christian Montecchiani
christian.montecchiani@aalto.fi

Tutor: Vishnu Raj

KEYWORDS: Generative Models, Deep Learning, Generative Adversarial

Networks, Variational Autoencoders, Energy-Based Models, Autoregres-

sive Models, Normalizing Flows, Diffusion Models

1 Introduction

Generative Models are a class of unsupervised learning techniques of

Machine Learning. The objective of this class is, given training data, to

generate new samples from the same distribution.

However, it is not always possible to learn the exact data distribution,

especially in the case of high dimensionality, such as images. For this

reason, the most recent approaches leverage the power of Deep Neural

Networks to learn a distribution pmodel(·) similar to pdata(·).

There are many applications in which a generative model can be used:

- Generate synthetic data to increase the size of the dataset. An ex-

ample of this application is StyleGAN a generative model proposed

by Nvidia [9].

- Image inpainting that consists in reconstructing the missing re-

gions in an image. In particular, the reconstruction must be realistic

and context-based. An example of it is DeepFill [17].

- Denoising that consists in removing noise from a picture without

losing the important features. Important generative models for im-



age denoising is Autoencoders [15].

This survey will summarize the most known and used techniques in this

field. In Section 2, Generative Adversarial Networks will be presented.

Section 3 will go through the Variational Autoencoders. Autoregressive

Models and Normalizing Flows will be presented in Section 4 and 5, re-

spectively. Section 6 will introduce the Diffusion Models.

2 Generative Adversarial Networks (GAN)

Generative Adversarial Nets (GAN) is a framework in which two models

are trained simultaneously:

Generator G is a Neural Network that has the goal to generate new

plausible sample from the real data distribution pdata.

Discriminator D is a Neural Network that estimates the probability

that a sample comes from the training data (pdata) rather than being

generated by G.

The training procedure for G is to maximise the probability of D to com-

mit an error, while the training for D is to minimize it. These opposite

goals define the term adversarial nets. Both networks try to beat each

other and, doing so they are improving in their objective.

2.1 Mathematical Details

The mathematical formulation of GAN training, used in the original paper

[7], is discussed below. The generative network G is fed with a random

input z sampled from pz and G(z) is the output that should follow the

target distribution. On the other side, the discriminative network D is

fed with a sample that can be drawn from the real distribution or from

the generated one. The output is the probability of that sample to be a

sample of the true distribution. Fig. 1 summarized the aforementioned

procedure, which, from game theory, can be formulated as a minimax two-

player game of the following value function V (G,D):

min
G

max
D

V (G,D) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))]

The Nash equilibrium of the mentioned minimax game is obtained

when:



Figure 1. Summary of the training procedure. This figure was taken from [13].

- The data produced by the generator looks very similar to the data of

the training set.

- The discriminator classifies real and fake images completely ran-

domly: each class has 0.5 probability to be selected.

3 Variational Autoencoders (VAE)

The main component of Variational Autoencoders is an Autoencoder, which

is composed of two Neural Networks:

Encoder E It takes a high dimensional vector, x ∈ Rn, and compress it

in a smaller representation, E(x) ∈ Rm where m < n.

Decoder D It is the reverse process. So, it takes as input the encoded

representation and tries to reconstruct the original data, D(E(x)) ∈
Rn.

The goal is to find the pair of encoder-decoder that keeps the minimum

reconstruction error when decoding and the maximum information when

compressing.

The new aspect that the Variational Autoencoders introduce with re-

spect to the aforementioned Autoencoders is that: instead of encoding an

input as a single vector, encode it as a distribution over the latent space.

Fig. 2 shows a summary of the architecture of VAEs.

The encoded distributions are used for the generative purpose and are

chosen to be Gaussian so that the encoder can be trained to return the

mean and the covariance matrix. Then the loss function of the neural

networks is composed of two terms:

Reconstruction Error which is used to make the encoding-decoding scheme

as performant as possible.



Regularisation Term which generally is the Kullback-Leibler Divergence

(KL) [6], which is a measure of distance between distributions. In

VAEs it is used to make the distributions returned by the encoder

close to a Standard Normal N (0̄, I).

Figure 2. Architecture of VAEs.

The following equation represents the Loss used to train Variational Au-

toencoders:
Reconstruction Error︷ ︸︸ ︷
||x−D(E(x))||2 +KL[N (µx, σx),N (0, 1)]︸ ︷︷ ︸

Regularisation Term

This loss is called Evidence Lower Bound (ELBO) [16], is a core compo-

nent of the variational infererence, which is a paradigm to estimate the

posterior distribution when the direct computation is intractable.

4 AutoRegressive Models

As mentioned in the previous sections to generate data we find the joint

distribution. Another way to do that is to use autoregressive models. They

do that by using the observations of the previous time steps to predict the

value at the current time step, this is called autoregressive property

[2]. Suppose we start with a data set D composed by a n-dimensional data

points and by the chain rule of probability:

p(x) =
n∏

i=1

p(xi|x1, x2, . . . , xi−1) =
n∏

i=1

p(xi|x<i)

Where x<i is a vector of random variables with index less than i. This

equation can be expressed by the Bayesian Network (BN) [4] in Fig.3. In

deep autoregressive generative model, the conditionals are specified as

parameterized functions, so they can be model using neural networks.



x1 x2 x3 xn

Figure 3. Representation of pdata using Bayesian Network.

4.1 Learning and Sampling

The main objective is to minimize the divergence between training distri-

bution pdata(x) and the model distribution pθ(x):

min
θ

DKL(pdata, pθ) = Ex∼pdata [log pdata(x)− log pθ(x)]

Since the minimization is with respect to the parameters of the neural

network, the previous equation is equivalently to the following:

max
θ

Ex∼pdata [log pθ(x)]

If points are independent and identically distributed drew from the dataset

D, then it corresponds to the Maximum Likelihood Estimators:

max
θ

1

|D|
∑

x∈D
log pθ(x) = L(θ|D)

Since the chain rule of probability holds the loss of the neural network is:

max
θ

1

|D|
∑

x∈D

n∑

i=1

log pθi(xi|x<i)

The disadvantage of this model consists in the sampling procedure be-

cause it is a sequential procedure. It consists in starting with a first sam-

ple x0, then sample x1 conditioned on x0 and so on. For high dimensional

data produce a synthetic sample is an expensive and time consuming pro-

cedure.

5 Normalizing Flow Models

The aim of Normalizing Flow Models is to start from simple distribu-

tion, which are easy to sample and evaluate, to get complex one which

are learned via data [3]. This is done by using the change of variables

formula as explained in Fig. 4.



Figure 4. Sequence of changing variables. [14]

If Z and X be random variables which are related by a mapping: f : Rn →
Rn such that X = f(Z) and Z = f−1(X). Then:

pX(x) = PZ(f
−1(x))

∣∣∣∣det
(
∂f−1(x)

∂x

)∣∣∣∣
︸ ︷︷ ︸

Jacobian Matrix

The Jacobian Matrix is responsible to normalize the distribution of Z after

applying the transformation f . It can be seen as change of volume.

Sequence of invertible transformations, fk : RD → RD. Starting with

a known distribution π(z0) = Z0 ∼ N (0, I) and apply sequentially the

invertible transformations to obtain a flexible distribution.

p(x) = π(z0 = f−1(x))

K∏

i=1

∣∣∣∣det
∂fi(zi−1

∂zi−1

∣∣∣∣
−1

5.1 How to model the Invertible Transformation?

Neural Networks can been used, but they must have two characteristics:

1. The transformations must be invertible.

2. Computation of
∑K

i=1 ln |Jfi(zi−1)| can be intractable for an arbitrary

sequence of invetible transformations.

In this survey I will present one of the most popular RealNVP [5]. It is

composed by two main building blocks: a Coupling Layer and Permu-

tation Layer.

Coupling Layer

Consider an input that is divided into two parts X = [XA, XB], where

XA = X1:d and XB = Xd:D. The transformation is defined as follows:

YA = XA

YB = exp(S(XA))⊙XB + T (XA)



where S(·) and T (·) are arbitrary neural networks. This transformation

is invertible by design:

XA = YA

XB = (YB − T (YA)⊙ exp(−S(YA))

The problem is that we process only half of the input, therefore, we must

think of an appropriate additional transformation a coupling layer could

be combined with.

Permutation Layer

An effective transformation that could be combined with a coupling layer

is permutation layer. It is done to change the order of the variables.

5.2 Training of Normalizing Flows

As the AutoRegressive models the objective function is, given a set of pa-

rametersM, maximize the expected log-likelihood:

argmax
θ∈M

Ex∼p(x)[log pθ(x)]

which can be transformed in the following equation by applying the change

of variables formula:

min
θ∈M

1

D
∑

x∈D

[
1

2
||Gθ(x)||22 − log |det∇xGθ(x)|

]

Where Gθ(x) is the output of the normalizing flow network.

5.3 Advantages of Normalizing Flows

There are two main advantages introduced by the Normalizing Flows

with respect to the GANs and VAEs:

1. The training process is more stable, with respect to find the Nash

Equilibrium of the adversarial training.

2. The convergence is easier and faster.

6 Diffusion Models

This section will present another kind of generative model which are the

Diffusion Models [8]. The general idea behind this new model is very

simple and it is basically can be represented by two steps:



1. Take a real image, x0, from the training distribution and succes-

sively add Gaussian noise. This first step can be graphically visual-

ized by Fig. 5. The q(xt|xt−1) is conditional probability of obtaining

image xt given image at step t− 1.

x0 · · · xt−1 xt · · · xT
q(xi|xi−1)

Figure 5. Injection of noise.

2. Then lean to recover the data any reversing the noising process.

The reverse process is often indicated with the following probability

pθ(xt−1|xt), as represented in Fig. 6.

xT · · · xt xt−1 · · · x0
pθ(xi−1|xi)

Figure 6. Denoising process.

After that the Diffusion Model can be used to generate data by simply

passing randomly sampled noise though the learned denoising process.

This "destroying process" continue until the image is asymptotically

transformed to pure Gaussian noise. When the added noise is sufficiently

low and it is drawn from a Gaussian distribution, combining this fact

with the Markov Chain rule to learn the reverse process leads to a simple

repatametrization.

The training process of the diffusion models consists in minimizing the

Variational upper bound on the negative likelihood of the training data,

which can be mathematically expressed as:

E[− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
= Lvlb

6.1 Example

A recent example of diffusion model is DALL-E 2 [12], which is a machine

learning model produced by OpenAI which is able to generate new syn-

thetic images starting from natural languages captions. It is a diffusion

model conditioned on the robust representation given by separate model

called CLIP (Contrastive language Image-Pre training) [11].



7 Energy Based Models (EBM)

In this section I will introduce the energy based models (EBMs) [10] which

leverage the power of the neural networks to learn an energy function

Eθ(x) that assign low energy values to inputs x in the data distribution.

Given a training datapoint x, let Eθ(x) ∈ R be the energy function, it

defines a probability distribution through the use of Boltzmann distribu-

tion [1]:

pθ(x) =
exp(−Eθ(x))

Zθ

where Zθ =
∫
exp(−Eθ(x))dx is the partition function which is used to

ensure that the probability integrates to 1.

As in the previous methods the goal is to maximize the maximum likeli-

hood estimator:

L(θ) = Ex∼pdata)[− log pθ(x)] = Ex ∼ pdata [− log(Eθ(x)− log(Zθ))]

This equation is well known to have the following gradient:

∇θL(θ) = Ex+ ∼ pdata[∇θE(x+)]− Ex−∼pdata [∇θEθ(x
−)]

This gradient decreases energy of the positive samples x+, while increas-

ing the energy of the negative samples x− from the model pθ.

The Energy Based Models have a simple and stable training. Despite this

advantage, EBM models suffer of the curse of dimensionality, so they are

difficult to train in high dimensional data domains.

8 Conclusion

In this survey I have summarized the main generative models techniques

that can be used to generate synthetic data, including GANs, VAEs, Nor-

malizing Flows, AutoRegressive and Diffusion models. Each of these mod-

els has its own strengths and weaknesses, and it is important to choose the

right model for the task at hand.

GANs are powerful generative models, but they can be difficult to train.

Since, they try to find the Nash Equilibrium of a minimax problem.

VAEs are trained to maximize the likelihood of the data and they use a

Gaussian prior for the latent variables, while GANs do not have a specific

prior.



Normalizing Flows are a type of generative model that is similar to

VAEs. However, instead of using a Gaussian prior, normalizing flows use

a transformation of the data to make it more Gaussian-like.

AutoRegressive models are another type of generative model. They are

similar to VAEs in that they use a latent variable model. However, Au-

toRegressive models are trained to predict the next value in a sequence.

EBMs use a energy function which defines the probability of a data point

x being generated by the model. A low energy means that the data point

is likely to be generated by the model, while a high energy means that the

data point is unlikely to be generated by the model.

Diffusion models have the ability to handle high-dimensional data and

the ability to learn complex distributions Additionally, diffusion genera-

tive models are relatively efficient to train, and can be trained on small

datasets.
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Abstract

Adopting a microservice-based application architecture introduces many

challenges around networking. In a Kubernetes cluster, features, such as

load balancing and end-to-end encryption, must be implemented for all

microservice components to ensure security and scalability. However, im-

plementing this functionality separately for each microservice is inefficient

to maintain and challenging to secure, as every component will accumulate

subtle implementation differences. This paper explores service meshes as a

solution that is able to consolidate and unify complex networking function-

ality in a Kubernetes environment. The paper analyzes the rising adoption

of and technology behind service mesh solutions, such as Istio and Cilium,

and identifies future development patterns for both adoption and the tech-

nologies.

KEYWORDS: Service Mesh, Istio, Cilium, Kubernetes, Networking, CNI,

SOA, Microservice

1 Introduction

The rising popularity of microservice-based application development mod-

els has brought new challenges in deploying and managing software, par-



ticularly in the cloud. While the shift from monolithic approaches to

distinct software components has implications for software development

practices, an often overlooked aspect of this migration are the changes

required to the infrastructure and platforms running these applications.

Compared to monolithic applications, an application consisting of mul-

tiple components, such as a database, a web backend, and a web frontend,

requires a platform that provides resource management, networking and

orchestration. A common solution is to package the application compo-

nents in software containers that can be orchestrated using container or-

chestration software, such as Kubernetes [1]. While these orchestration

platforms can provide the components with resources, networking and

scheduling, this support has traditionally been inflexible out of the box,

with extensibility being a main focus [2].

Particularly when desiring to scale the application, each component must

start integrating features that allow for example service discovery, traf-

fic encryption, load balancing, circuit breaking, and monitoring. Imple-

menting this functionality separately in each component of the applica-

tion leads to significant development overhead, duplicate effort, and po-

tentially even security vulnerabilities, as the component attack surface is

covertly increased [3].

To alleviate this issue, specialized service mesh software has been cre-

ated [4, 5] that offloads all service related tasks from the individual com-

ponents. This allows application developers to focus on the core business

logic of each component in isolation without worrying about about the re-

quirements and implications of direct service-to-service communication.

Service meshes can provide functionality for various purposes [4], includ-

ing transparent traffic encryption, automatic discovery of available com-

ponents and resources, monitoring of the health of the service, and load

balancing of service traffic without needing to adapt any of the individ-

ual services to the current scale and demands of the application. Despite

service meshes having broad compatibility with applications and envi-

ronments, adopting a service mesh implementation might still require

adaptation from existing systems [6]. Additionally, careful planning is re-

quired to avoid microservice applications becoming tightly coupled with a

particular service mesh implementation. However, as evidenced by the in-

creasing adoption of service meshes [7], the advantages of adoption seem

to outweigh these drawbacks.

This paper describes the rationale for the mass adoption of service mesh



backed microservice architectures as seen in the industry, and details the

internals of popular service mesh architectures. Section 2 defines the core

concepts and technologies related to a service-oriented architecture, while

Section 3 details the cloud native application development methods and

how service meshes can help solve key challenges. Furthermore, it de-

tails the integration of service mesh solutions with the networking layer.

The Istio [8] and Cilium [5] projects are used as case examples of practi-

cal service mesh solutions with differing architectures. Finally, Section 4

summarizes the core remarks of the paper and presents the future out-

look on service mesh adoption and development from the perspective of

the author.

2 Service-Oriented Architecture

In this section, the concept of a service-oriented architecture (SOA) is in-

troduced. Sec. 2.1 describes the need for modular applications in SOA

solutions. Sec. 2.2 generalizes the concept of modular applications to mod-

ern microservices. Finally, Sec. 2.3 describes how Kubernetes is used to

orchestrate microservices and compose SOA services.

2.1 Modular Applications

Service-Oriented Architectures (SOA) have recently attracted attention in

cloud software development. Instead of concentrating on the implemen-

tation of a monolithic software product, a service-oriented architecture

focuses on the development of services [9]. In order to enable fast itera-

tion and a short time to market, the services must consist of easily mal-

leable components that are modular and loosely coupled. Loose coupling

denotes that the components have no hard dependencies on each other,

i.e., they can be both developed and even fully replaced with other equiva-

lent components independently of each other. This requires shifting focus

on developing refined interfaces for inter-component interaction [9].

With standardized interfaces, it is also straightforward to re-use the

modular software components across different projects and even across

different organizations. By leveraging the high-quality open source soft-

ware ecosystem, SOA solutions can utilize existing software to provide the

functionality of many of the requires components of a modular applica-

tion, and focus on implementing the core business logic of the application



Figure 1. An illustration comparing loose and tight coupling

instead [10]. For example, the Apache Software Foundation [11] main-

tains a wide range of open source projects [12] that can perform tasks,

such as web serving or big data analytics, as part of an SOA solution.

These advantages have been a major driver in the adoption of SOA and

modular application architectures [13].

2.2 Microservices

Traditional monolithic applications are self-contained, indicating that they

bundle all of the application components into a single package that can be

deployed on a server without major platform or runtime requirements.

In contrast to loose coupling, monolithic applications heavily leverage the

induced tight coupling, where all components are able to directly interact

with each other and access the information provided by other components

in a direct way, without utilizing well-defined interfaces. This creates a

dense network of internal dependencies, which makes separating an in-

dividual component from the bundle non-trivial. This key difference be-

tween loose coupling and tight coupling is visualized in Figure 1.

The term microservice was coined to describe a single software compo-

nent that cooperates with other microservices to perform the tasks of a

traditionally monolithic application [14]. In a larger application, a single

microservice may fulfill the role of, for example, access control, business

logic, or data storage. For this purpose, the microservice is equipped with

the minimal amount of dependencies, often containing only the necessary

software libraries, with all other data and commands being externally

sourced. Microservices are thus by construction modular and loosely cou-

pled, as they only provide functionality and process data that is directly



related to the role, relying on standardized interfaces for all external com-

munication. In the example representation of a loosely coupled architec-

ture in Figure 1 each node in the graph could be realized as a microservice,

since each of them addresses a separate concern. While it is technically

possible to implement this kind of separation of concerns approach in the

tight coupling example, with each component depending on information

provided by almost all other components, the principle of loose coupling

starts to loose its meaning. As updating the interface exposed by one

microservice requires similar changes at the receiving ends of other mi-

croservices, updating a single microservice would in this kind of architec-

ture mandate changes in almost all components of the system.

2.3 Kubernetes

Compared to monolithic services, microservices carry an inherent com-

plexity in their architecture. With each of the components of a tradi-

tional web service divided into separate software containers, managing

the resource needs and communication between the components becomes

a challenge [15]. To manage this complexity, platform orchestration so-

lutions, such as Docker Swarm [16] and Kubernetes [1] were introduced.

Their purpose is to allow holistic deployment of microservice applications

by abstracting away resource management, networking, and workload

scaling. Kubernetes is currently the most widely used container orches-

tration platform [7]; consequently, this paper will focus on the deployment

and development of service mesh architectures targeting Kubernetes.

In order to be orchestrated by Kubernetes, a software container must be

distributed using images that follow the Image Format Specification [17]

specified by the Open Container Initiative (OCI) [18]. Subsequently, Ku-

bernetes manages containers sourced from these images by following the

OCI Runtime Specification [19]. Furthermore, inter-container communi-

cation is enabled by following the Container Network Interface Specifica-

tion [20].

These specifications denote the lowest common denominator between

Kubernetes and the containers, but the platform provided by Kubernetes

provides a set of abstractions to better adapt containers for SOA solu-

tions. In addition to providing platform level features, such as grouping,

resource management, and extensibility using APIs, Kubernetes provides

primitive abstractions for workload and service management. Instead of

a single container, the primitive form of workload in Kubernetes is called



a Pod [21]. A Pod consists of one or more software containers that share

a network namespace, i.e., to the workloads running the containers the

environment looks like they are running on the same host, and they can,

for example, access the ports exposed by each other directly. Containers

within a single Pod can thus be considered as tightly coupled [21], and are

most suitable for running individual sub-components of a single microser-

vice, which is represented by the Pod as a whole.

Kubernetes concerns itself with scaling Pods within and across a cluster

of compute nodes, such as physical servers. At the same time, downtime

should also be avoided if, for example, any server spontaneously shuts

down due to a hardware failure. The natural way to fulfill these require-

ments from the perspective of a Pod is to run multiple instances of it in

parallel, potentially across different availability zones [22]. As state man-

agement in a microservice architecture is typically delegated to a small

amount of microservices, such as the ones responsible for managing a

database, most microservice Pods can be replicated without side effects.

If the components of the application are sufficiently loosely coupled, this

replication is trivial, as any of the replicated instances can respond to a

query addressed to the component.

To expose the replicated pods through a single interface, Kubernetes

provides the Service abstraction [23]. A Service defines a single network

name or address for a Deployment [24] of Pod replicas. Crucially, a Service

is an abstraction for a set of Pods that run the same microservice, result-

ing in a mismatch between the definitions of a Kubernetes Service and a

service in the SOA model. Multiple Kubernetes Services, each abstracting

one microservice, are needed to compose a service fit for an SOA applica-

tion. This composition is performed by a dedicated software component

called a service mesh.

3 Service Meshes

Section 3 details the cloud native application development methods and

how service meshes can help solve key challenges. Furthermore, it details

the integration of service mesh solutions with the networking layer.

In this section, the cloud-native application deployment model is de-

tailed in the context of service management. Service meshes are pre-

sented as a solution to management challenges, and different service mesh

architectures are compared. Sec. 3.1 briefly describes the modern microservice-



based application development and deployment workflow. Sec. 3.2 focuses

the challenges involved with microservice networking and how the use of

service meshes can alleviate the them. Sec. 3.3 presents the high-level

architectures used by current service mesh implementations. Finally,

Sec. 3.4 and Sec. 3.5 and present the Istio and Cilium projects as service

mesh case examples, and briefly analyze the reasons for their popularity.

3.1 Cloud-Native Application Deployment

In order to realize how service meshes ease the management of cloud na-

tive applications, that is, applications built to run in cloud environments,

it is crucial to first understand how these microservice-based applications

are developed and deployed. Thanks to the loose coupling of microser-

vices, multiple different teams in an organization may work on different

application components simultaneously in parallel. When, for example,

the frontend team of a web application project developes a new UI feature

and the backend team adds support for that feature in the business logic,

both teams may independently build their solutions as microservices that

get independently tested and packaged into software containers. From

here, a Kubernetes Deployment is created with the desired new versions,

combined with other configuration that defines Services as well as collec-

tions of Services to form the services expected by the SOA model. The end

result is an updated application that can now be rolled out customers.

Note that this is an oversimplification that is sufficient for the purposes

of this paper. There are various tools and technologies involved in the de-

ployment and application composition pipeline, such as GitOps [25], that

are not discussed in detail here.

3.2 Service Management Challenges

Consider the above example of a backend and frontend microservice. By

definition, the microservices should be loosely coupled, and independent

of each other to the point that they could be individually replaced with

new components providing equivalent functionality. Since software con-

tainer environment provided by Kubernetes fundamentally only offers

raw networking capabilities to each microservice running in a Pod, a lot

of network-related functionality must be duplicated between the frontend

and backend microservice. Desired network features that should be im-

plemented by every microservice include, but are not limited to, encrypt-



ing incoming and outgoing communications using TLS to prevent sniffing,

load balancing between different instances of the microservice to prevent

overloading a single instance, automatic retries and failover within the

microservice to avoid downtime, and applying policies that, for example,

restrict communication to the intended subset of neighboring microser-

vices to avoid data exfiltration.

Notably, most of these networking features should be identical between

every microservice in the application, with potential differences only in

their configuration, such as rate limits and failover thresholds. This re-

alization is the core motivation behind service meshes [8]. Thus, the pri-

mary purpose of service mesh software is centralizing this functionality

to avoid the need for implementing it separately for each microservice.

This reduces the development and maintenance overhead of the different

teams working on separate microservices. As a consequence, the attack

surface of the whole application is reduced, as the amount of subtle differ-

ences that could introduce vulnerabilities in the networking code of each

microservice is reduced by simply having less code and simpler implemen-

tation requirements.

Service meshes can be though of as implementing separation of concerns

on the networking level, where the concern of network management is

delegated from the individual microservices to the service mesh.

3.3 Service Mesh Architecture

Since Kubernetes provides direct IP layer networking to each Pod, service

mesh software running on top of Kubernetes must utilize clever tricks

to apply the high-level networking features, such as traffic encryption,

to microservice Pods. Since Kubernetes mandates the use of CNI to im-

plement its network model [26] and the CNI specification only focuses on

enabling network connectivity between containers [20], injecting a service

mesh in between to provide high-level networking features is not trivial.

Currently, intercepting Pod communication to proxy its container traffic

through the service mesh involve either the deployment of sidecar proxies

or utilizing a Linux kernel feature known as eBPF.

Deploying sidecar proxies involves creating a new sidecar container for

each container in a Pod. The sidecar container, as the name implies, at-

taches to the side of the original container, and redirects all network traf-

fic of the original container through itself. Inside the sidecar container re-

sides a proxy, such as Envoy [27], that implements the advanced network-



Figure 2. A diagram depicting the architecture of the Istio networking solution [4]

ing functionality as requested by the service mesh configuration. This ap-

proach is used by, for example, the Linkerd service mesh [28] as well as

the popular Istio service mesh [4].

The other approach of utilizing eBPF on the other hand requires no side-

car injection or other invasive modifications to the application. Currently,

this approach is solely implemented by the Cilium networking solution

[29]. Consequently, this paper will focus on the use of eBPF from the per-

spective of Cilium. eBPF itself is a sandboxed execution environment in

the Linux kernel that essentially enables the implementation of applica-

tion logic at kernel level [30]. By implementing the proxy system from

the sidecar model in eBPF instead, Cilium can provide advanced network

functionality significantly more transparently.

To analyze these two approaches in more detail, Sections 3.4 and 3.5

will detail the design of Istio and Cilium respectively. Importantly, these

sections highlight the key service mesh features behind their popularity,

as well as discuss future aspects of development in these service mesh

solutions.

3.4 Case Example: Istio

The Istio service mesh [4] is currently the most widely deployed service

mesh solution with about a 33% usage rate in production environments

[7]. Istio is at its core divided into a control plane and a data plane [4].



The control plane is implemented using the Kubernetes controller pattern

[31], where the control plane applications of Istio run in containers inside

the Kubernetes cluster and constantly watch for (changes in) Kubernetes

objects [32] that are relevant for configuration of the service mesh. The

control plane is then responsible for applying this configuration to the

data plane, which consists of the individual Envoy [27] proxies running

in the sidecars. The whole architecture is visualized in Figure 2. For

example, when enabling mutual TLS (mTLS) traffic encryption between

two endpoints in the service mesh, the control plane shares the relevant

secrets with the proxies, enabling end-to-end security between the end-

points.

In addition to streamlining the microservice development workflow, Is-

tio has seen a rise in popularity due to the observability it enables [8].

Observability in the context of cloud environments is the ability to ob-

serve and monitor the health and state of the individual components of

a cloud system. Observing network data flows is a crucial indicator for

workload characteristics, such as service health, performance, and load,

especially for distributed microservice-based applications. Since observ-

ability features offered by CNI implementations are often limited due to

the simplistic focus of the specification, service meshes in general have a

unique position to provide this type of additional functionality in a global

context in addition to the networking extensions.

3.5 Case Example: Cilium

Cilium, as mentioned in Section 3.5, is not a service mesh in the tradi-

tional sense. Instead, it is more akin to an advanced CNI networking im-

plementation that contains the functionalities expected from a traditional

service mesh, such as transparent encryption, load balancing of services

and high-level service traffic observability [5]. Compared to Istio, Cilium

leverages eBPF [30] for providing proxy-like functionality in the Linux

kernel context instead of relying on sidecar containers. Due to this ar-

chitecture, which depicted in detail in Figure 3, leveraging the advanced

features provided by Cilium mandates also mandates that it acts as the

CNI implementation of the Kubernetes cluster. This makes adoption of

Cilium more complicated compared to Istio, which can be installed on top

of any existing CNI solution the target cluster may have.

However, the unified networking and service mesh architecture pro-

vided by Cilium also offers unique advantages, notably the lack of sidecar



Figure 3. A diagram depicting the architecture of the Cilium networking solution [29]

containers. Injecting the sidecar containers as performed by Istio requires

network administration privileges in the target pod [33]. This causes is-

sues in, for example, clusters that enforce strict security policies. In con-

trast, providing all networking and service mesh functionality through

CNI sidesteps these issues entirely as the native Kubernetes networking

behavior is left unchanged from the perspective of containers.

Despite Cilium still being a CNCF incubation level (first stage of matu-

rity) project, it is already widely used by large-scale cloud vendors, such

as Google and AWS [5]. As it resides on a comparatively low abstrac-

tion level in the networking stack, Cilium has detailed visibility into the

traffic flowing between workloads in the cluster, which enables detailed

observability metrics required for large-scale deployments. Performance

measurements also indicate Cilium to be competitive with other CNI solu-

tions, particularly when considering the inter-host routing performance.

4 Discussion

This section presents the author’s view and opinions.

The continually increasing adoption of microservice architectures paired

with the rising popularity of cloud applications presents many new chal-

lenges related to deploying, orchestrating and observing software. How-

ever, rather than abandoning these daring new concepts, the community



and companies continue advancing the technologies and finding solutions

to the incurred problems. Kubernetes and its networking model CNI have

established a scalable platform for deploying cloud-native containerized

software, although the exposed interfaces and interactions demand more

depth to be practical for many real-world environments. Service meshes

enrich these interface while simultaneously delegating the complexity of

network management to themselves, enabling individual microservices to

focus on the core application logic. The advantages of this approach are

evident on both the organizational and cluster level, where the service

mesh can reduce development and maintenance overhead for individual

microservice development teams and provide them with better observabil-

ity in the cluster.

The introduction of the Cilium service mesh with its eBPF-based archi-

tecture might be the start of a paradigm shift in service mesh technology.

Unifying the currently distinct network and service mesh components in

a Kubernetes cluster eliminates the need for sidecar injection, which, in

addition to being a “hack”, introduces issues in security-critical environ-

ments. With the distinct advantages of making service mesh features,

such as load balancing and transparent encryption, unconditionally avail-

able to the whole cluster, not only is the overhead of enabling secure and

scalable deployments reduced, the cluster configuration is also simplified

and the number of separate components is decreased. Assuming that uni-

fied CNI and service mesh implementations can prove themselves as se-

cure and performant, companies around the world will likely begin mass

adopting them in the near future.
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Abstract

Upside Down Reinforcement Learning (UDRL) is recent Reinforcement

Learning (RL) method, which turns the reinforcement learning upside down.

This is achieved by rather than predicting rewards, UDRL maps rewards

to actions. Experiements with UDRL look promising, as it already can out

perform other RL methods in some machine learning problems. As a recent

advance in the field, the material about the subject is limited.
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1 Introduction

Commonly machine learning can be categorized to supervised-, unsupervised-

and reinforcement learning. Reinforcement learning (RL) is an area of

machine learning where the agent to be trained attempts to find the best

action that maximizes rewards. Data sets that the agent uses for learn-

ing, are not labeled like in supervised learning, nor does the agent get

feedback to indicate whether a decision is correct or not [3]. Rather the

agent learns by interacting with the environment. Training the agent to

make correct decisions in different situations can be difficult. And as RL



focuses on maximizing short term rewards, it in its standard form is not

enough in some cases. Upside down machine learning is recent alteration

of RL where the agent is not trained to just find highest rewards, but to

follow commands such as obtain X amount of reward in Y time [7].

This paper first explains what reinforcement learning is and where it

can be applied. This is followed by description of UDRL, explanation of

how agents are trained in UDRL and brief look where it can be applied.

The research was done as a literature review.

2 Reinforcement Learning

One of the most common ways of learning, is by trial and error. This

means attempting repeated and varied actions until success is achieved,

or the practicer gives up. Process requires the practitioner to learn from

failures, and improve their future actions. Luckily for every action, there

exists a wealth of information about cause, effect and consequences of that

action [8]. Such effects and consequences can be roughly categorized into

positive rewards and negative punishments. By interacting with the en-

vironment, one can learn optimal actions that lead to most positive out-

comes. Furthermore, one can predict future outcomes based on actions

taken in similar states of the environment.

In this section, the paper explains the basic idea of Reinforcement Learn-

ing, and some notable applications.

2.1 Basic Idea

Decision making environments are characterized by three main elements

[2]. First: state space, which describes the current state of the environ-

ment. For example, the current locations of chess pieces on the chess

board. Second: actions, these are the possibilities of how decision-maker

can affect the state space, and they produce an outcome [2]. On a chess-

board, actions would be the legal moves players pieces can make. Third:

outcomes, they are the consequences of actions that are assumed to have

numerical utilities that can change according to the motivational state of

the decision-maker [2]. In the chess board example, capturing pieces are

the positive outcomes, and losing pieces the negative. Value of those gains

and losses depend on the piece, but also the strategy the player is going

for (motivational state). Reinforcement learning algorithm then takes a



state, and learns the best possible action that maximizes the reward. In

essence RL is "how to map situations to actions" [8]. In RL process, the

learner is not told which actions to take, but instead discover actions with

most rewards by trying them [8].

2.2 Q-learning and memory replay

Most RL problems can be formulated via a Markov Decision Process (MDP).

Given an MDP environment, one can use dynamic programming algo-

rithms to compute optimal policies, which lead to the highest possible

sum of future rewards at each state. Dynamic programming then can

be split into two main branches: value iteration and policy iteration. As

UDRL sources which are referenced later focus on value iteration, it is

more suitable to explain. One of the most common reinforcement learn-

ing algorithm is the Q-learning. Q-learning is based on value iteration,

and is defined by:

Qnew(St, At)← Q(St, At) + α[Rt+1 + γmaxaQ(St+1, a)−Q(St, At)] [8].

Where S is state, A is action, Q(St, At is the current value, α is learning

rate, r reward, γ discount factor maxaQ(St+1, a) estimate of optimal fu-

ture value. In other words, Q function finds the action which maximizes

the immediate reward plus maximum future reward for the next state.

Q-learning is usually most suitable for smaller discrete problems.

Also worth noting, one possible way to improve reinforcement learn-

ing is to add technique Experience replay [4]. This allows the RL agent

to learn from earlier memories to decrease the learning time, and the

chances of encountering undesirable situations resulting in a more stable

learning process [4]. In standard RL algorithms previous experiences (e.g.

tuple of (state, action, reward, new state)) are removed from memory once

the algorithm reaches the next state. Experience replay adds a memory

buffer to the algorithm that stores n amount of experiences before they

are discarded.



2.3 Applications

Reinforcement learning can be applied to a variety of fields such as: rec-

ommender systems, finance, games, healthcare systems, robotics and more.

Although applying RL to real world problems can be difficult. Li [3]

presents 7 step procedure of how to utilize RL:

Figure 1. [3]

To apply RL to real life application, first the RL problem needs to be

formulated. Environment, the agent, states, actions and rewards must be

properly defined. Necessary amount of data also must be provided for the

learning to happen. If collecting real world data becomes difficult or in-

feasible, it is possible to gather data through simulations. If needed data

preparation is followed by feature engineering, in which data is trans-

formed to form which is easier to interpret. Followed by how to represent

the problem. Choices such as: Should neural networks be used, or what

kind of neural networks represent the value functions or the policy the

best [3]. After this, the most suitable algorithm is selected. There are

many RL algorithms to choose from, online or offline, on- or off-policy,

model-free or model-based, etc. [3]. Once these steps are completed, ex-

periments are conducted to tune parameters in order to improve perfor-



mance. Previous steps can also be altered iteratively to improve results.

Once decent performance is reached, a trained RL model is deployed. In

this step, it is also possible to iterate steps before it to improve the model.

Personalized web services are one example where RL models can be ap-

plied. To increase relevance of news articles or advertisements shown to

users, RL model can be trained to use users’ interests and preferences

for better recommendations. This problem has been formalized as a con-

textual bandit problem, with objective to maximize total number of clicks

on a website, and so apporiate policies exists. Although policies derived

from contextual bandit formulation are greedy in the sense that they only

care about short term results [8]. Issue being that the policy treats ev-

ery user of certain website as new user, while the user may be revisiting

user. For example, it could be profitable for enterprise to alter discounts

or displayed items based on whether the user is new user, or is frequent

user of their online store. Theocharous et al. [9] compared the results

of two algorithms. First algorithm was greedy algorithm that maximized

probability of immidiate clicks. Second one was a reinforcement learning

algorithm based on a Markovian decision problem formulation, which was

aimed to take into account multiple visits to a website [9]. The greedy al-

gorithm was based on mapping click probability with user features. The

mapping was learned by using random forest (RF) algorithm with super-

vised learning. The RL algorithm used fitted Q iteration (FQI) and the

same random forest algorithm. RF was used for greedy optimization, and

the FQI evaluated best policies using a validation training set [9]. Fi-

nal policy was then the one with best policy produced by FQI with the

initialaction-value function set to the mapping produced by the RF for the

greedy optimization approach [9]. Result proved to be promising as Adobe

announced in 2016 that the second algorithm would be a standard compo-

nent of the Adobe Marketing Cloud as the policy was more likely to yield

higher returns then the one focusing on short term results [8].

3 Upside Down Reinforcement Learning

Upside Down Reinforcement Learning is one recent alteration on Rein-

forcement Learning. While standard RL focuses on maximizing rewards,

UDRL can be modified to focus on different commands. As UDRL is very

recent, there is not a lot of existing literature on the subject. This section



discusses basics of UDRL and provides an application example.

3.1 Basic Idea

As already mentioned, standard RL takes actions and observations as in-

puts, and transforms those into predictions of expected rewards of said

actions [5]. RL agents get feedback about how useful actions are, but no

information about which actions are best for a given situation [7]. Upside

Down Reinforcement Learning (UDRL) instead takes observations and

commands (desired rewards and time horizons) as inputs, and outputs

actions [5]. This could mean in the chess board example gaining value

lead of R (desired reward), in T turns (time horizon). UDRL would then

output actions that lead to desired outcomes. Compared to standard RL

this allows the agent to follow commands, rather than attempting to max-

imize rewards in any given situation [7]. Usage of commands as inputs

allows the agent to perform more flexible actions. For a simple exam-

ple, one could train an electric vehicle to reach a specific destination from

some starting location. Standard RL agent could learn to do this in least

amount of time or by achieving the goal with as much battery life left as

possible (or both). While UDRL agent could be taught for example to ar-

rive to destination in under t minutes, while having battery life over x%.

Although that is not all UDRL is suitable for. Pilot versions of UDRL suc-

cessfully outperformed standard RL models on some challenging issues.

Figure 2. [5]

3.2 Training the agent

Schmidhuber [5] split training the agents based on the environment to:

deterministic, probabilistic and partially observable environments.



They consider deterministic environments as such that there exists a

Markovian interface between the controller and the world. In other words,

this means that the controller knows everything about the current state,

and can compute probabilities of next actions and their rewards [5]. This

also means that a simple feedforward neural network (FNN) is enough for

the controller.

Schmidhuber [5], introduces a high level algorithm for UDRL in a de-

terministic environment. It contains two algorithms running parallel ex-

changing information. Algorithm 1’s object is to "Generalizing through a

copy of C (with occasional exploration)", and algorithm 2’s "Learning lots

of time cumulative reward-related commands" [5]. Algorithm 1’s func-

tion is to increase algorithm 2’s training set by find paths in horizon(t)

"the remaining time", that complete desire(t) "the desired cumulative re-

ward" in time t. Controller C then outputs probability distribution out(t)

of next possible actions. Algorithm 1 then chooses the most probable ac-

tions from out(t) as out’(t) if not set into exploration mode. If algorithm 1

is set to exploration mode it can choose random action to create diversity

in the training set. Occasionally algorithm 1 transfer latest observations

to algorithm 2 to increase A2s training set [5]. Algorithm 2 then uses

this training set with Replay-based training on previous behaviors and

commands compatible with observed time horizons and costs [5]. Replay-

based learning in this context means that the algorithm stores and re-

peatedly presents the previous behaviors and commands to the gradient

descent-based backpropagation, to improve the data-efficincy of the algo-

rithm [5] [1]. Before and after this, the algorithm 2 synchronizes with

algorithm 1.

In probabilistic environments the algorithm remains mostly the same.

The desired cumulative reward desire(t) instead becomes expected imme-

diate rewards, and the reward is independent of the history of previous

actions [5]. Unless the randomness is affecting not only the next imme-

diate rewards, but also affecting the next state, then it is possible to esti-

mate cumulative expected rewards [5].

Partially observable environments are non Markovian environments, where

the controller has incomplete information of the current state of the world

[5]. This also means that the simple feed forward neural networks may

no longer be sufficient, and recurrent neural networks (RNN) or similar

general purpose computer is needed [6]. With RNN the it is possible gen-

erate meaningful representation of the current enviroment by translating



entire history of actions and observations [5]. By utilizing RNN, the algo-

rithm 2 can and must be modified to take into account the entire history

to certain time step.

3.3 Applications

While no papers of UDRL being used in real world application were found,

it has been applied to common learning settings such as LunarLander

problem. LunarLander problem is a task to control lander to land in the

landing pad. Landing pad stays in some fixed location, and the lander

has possibilty to use 4 actions: do nothing, fire the left orientation engine,

fire the main engine, fire the right orientation engine. By moving away

from the landing pad the agent loses reward, and gains it by closing the

distance or depending on how much of the lander in on the landing pad

once the episode ends (the lander crashes or comes to rest). Srivastava

et. al. [7] compared performance of URDL in this problem against Double

Deep Q-Networks (DQN) and Advantage Actor-Critic (A2C). They note

that UDRL performed similar to DQN but both algorithm were behind

of A2C in sample complexity and final returns. But when running addi-

tional experiements with sparse delayed rewards (In this case delaying

all rewards until last step of each episode and while rewards in all other

time steps being zero), results showed that UDRL was unaffected by the

change, while other algorithms became unstable and slow [7].

Figure 3. [7]

As can be seen in figure 3, DQN performed poorly and A2C had large

variations in performance, while UDRL achieved good and stable perfor-

mance.

Aside from experiements with machine learning problems, as an concept



example of real world application, Schmidhuber [5] presents use of UDRL

in trainining a robot. This is done by making the robot imitate a human

by recording humans movements. The recording would then be divided

into separate frames. These frames act as sequential commands and are

transformed into tuples of extra(), desire(), horizon(), and work as input to

an RNN controller resulting in supervised learning which the robot must

learn to imitate [5]. Controller then maps the tasks as rewards to corre-

sponding actions. Once robot has learned to execute command, it can be

set to refine learned behaviour, or test how well robot obeys by series of

trials [5].

4 Conclusion

UDRL shortcuts traditional RL methods by replacing reward predicting

with mapping rewards to actions. UDRL experiement results are promis-

ing, and they show that UDRL can outperform other RL algorithms in

some situations. Also while similar behaviour can be taught with other

RL methods, UDRL can provide simpler alternative to develop. Unfor-

tunately UDRL still lacks any real world applications, and most of the

papers about the subject are from the same author.
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Abstract

This seminar paper aims to introduce Reinforcement Learning (RL), and

more specifically Offline RL, such that the reader can familiarise them-

selves with the recent advances in this field. Research in Offline RL has

seen exponential growth over the recent years, where dealing with the in-

herent issue of distributional shift has been, and remains one of the main

challenges. Addressing distributional shift can be done in several fash-

ions, such as policy constraint methods and uncertainty estimation, both

of which are described in this paper alongside their corresponding state of

the art methods. To conclude this paper, a potentially promising research

direction is suggested to the reader.
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1 Introduction

Reinforcement Learning (RL) is a branch of Machine Learning (ML), where

an agent aims to maximise a specified reward function, which defines

what an agent is supposed to do, by trial and error [12]. Such an agent

will therefore interact with the environment and observe the reward that



Figure 1. Figure from Prudencio et al.’s survey on Offline RL [12]. Visualisation of the
number of publications in RL and Offline RL per annum, from Google Scholar
data. The exponential growth in number of publications for Offline RL is clear.

his actions produce. This corresponds to an online learning paradigm,

which makes applying RL methods to safety-critical domains such as the

autonomous driving and healthcare industries impractical due to the high

cost and safety implications of interacting with these environments [12].

Offline RL (equivalent to Batch RL [12]) on the other hand is a data-

driven paradigm which learns a policy solely from static datasets of prior

experiences, with no further interaction with the environment. This area

of RL has experienced consistent exponential growth in the number of

published papers over the past five years as Prudencio et al. [12] display

in their survey on Offline RL (Fig. 1 visualises this publication growth).

However, Offline RL faces inherent issues. As described in Levine et al’s.

[8] tutorial article on Offline RL, distributional shift is the main challenge

since the distributions under which the learning model is trained and

evaluated might differ.

This paper will review the recent advances in Offline RL, and more

specifically address the issue of distributional shift. This paper is orga-

nized as follows. Section 2 will cover the essential background knowledge

required to understand the paper by defining concepts and notation. Sec-

tion 2.1 will highlight some recent applications in which Offline RL has

proven itself to be useful. Section 2.2 will point out the shortcomings and

issues which Offline RL faces. Section 2.3 will briefly discuss the focus

areas of research in RL over the recent years. Section 3 will cover the

main methods used to deal with distributional shift. Section 3.1 will dis-

cuss policy constraint methods and current state of the art. Section 3.2

will explain briefly how uncertainty estimation works and highlight re-

cent methods. Section 4 will summarise the seminar paper and discuss a



Figure 2. Figure from Levine et al.’s tutorial article on Offline RL [8]. The illustration
depicts notable differences between online RL, off-policy RL and offline RL.

potentially promising research direction for Offline RL.

2 Concepts and overview of (Offline) RL

RL relies heavily on the concept of Markov Decision Processes (MDP),

since the environment with whom an agent interacts is modelled as such.

An MDP is defined as a tuple of five elements (S,A, ρ, r, γ), where S is the

state space, A is the action space, ρ(st+1|st, a) is the transition function

which defines the dynamics of the MDP [3], r(st) is the reward function,

and γ is the discount factor. In a RL setting, an agent will aim to maximize

the discounted sum of rewards (Eq. 1) in order to learn an optimal policy

π∗(at, st). In this equation, L is the length of a trajectory τ(s1, a1, ..., sL, aL)

corresponding to a sequence of states st ∈ S and actions at ∈ A.

max
π

Es,a∼ρ,π

[
L∑

t=1

γtr(st)

]
(1)

In an Offline RL setting this remains largely similar, the only difference

being that the objective must be optimised without further data collection

on the fixed set of transitions τ [14].

The differences between online and offline RL can be visualised clearly

through fig. 2. Figure 2 a) illustrates classic online RL, whereas c) illus-

trates offline RL. In online RL the policy (πk) "is updated with streaming

data collected by πk itself" [8].

Offline RL however, uses a dataset which is collected by some policy πβ

which doesn’t have to be known, and on which the policy will be trained

and deployed only once the training is complete. In other words, training

a policy in offline RL does not involve any interaction with the MDP. [8]



2.1 Applications of Offline RL

Applying standard RL methods can be impractical in many domains such

as healthcare and robotics due to safety and cost issues when interacting

with the environment.

Offline RL however, is a promising candidate in the healthcare industry

[4], in robotics [16, 8] where some recent workflows for using it have been

proposed [7], and in other domains such as advertising and recommender

systems [8, 21].

Some concrete examples within the healthcare industry are the long

term planning of treatment plans for schizophrenic patients [15], lung

cancer treatment [17] and learning When-to-Treat policies [10]. There re-

mains one major downside to using offline RL in healthcare, which is that

most data that is collected pertains to patients with more severe outcomes

since treatment for less severe cases might not always be needed [4]. An

extreme bias such as this one in the data used to train policies means

that an agent could jump to false conclusions as it only knows data about

severe outcomes.

In robotics, Levine et al. mention in their tutorial article [8] that appeal-

ing tasks for offline RL include robotic grasping, robotic manipultion skills

and robotic navigation. Oftentimes model-based methods in robotics are

trained on real or simulated data (e.g. in the autonomous driving indusry,

it would be simulated), where the policy which will be applied to the real

system will be extracted from within those models [8].

2.2 Shortcomings of Offline RL

A central issue with Offline RL is distributional shift [8]. The shift be-

tween distributions of data a model learns on and those on which it is

evaluated is "due both to the change in visited states for the new policy

and, more subtly, by the act of maximizing the expected return" [8].

Fujimoto et al.’s [3] Batch-Constrained RL indicates that by inducing

a data distribution that is entirely contained within the data on which

the model learns (the batch), policies could eliminate extrapolation error

entirely for deterministic MDPs. This policy constraint approach to distri-

butional shift mitigation is simple in theory, but in practice such a policy

will not be able to improve the behaviour policy (the policy used for data

collection) without deviating from it [8].



2.3 Recent advances in Offline RL

The focus of research in Offline RL over the recent years has mostly been

around the inherent issue of distributional shift, as discovering new and

improved ways of dealing with it would open up more possibilities for ap-

plying Offline RL in many domains. Methods which deviate from Fujimoto

et al.’s [3] simple idea of Batch-Constrained RL - in the sense that they

allow for improvement over the behaviour policy - are being published

frequently.

3 Addressing distributional shift

There are two main ways in which this can be done, either by constrain-

ing the distribution which a policy will be evaluated on to be close to the

distribution which it has been trained on, or by estimating the epistemic

uncertainty as a measure of distributional shift [8]. In a mathematical

context such as the one presented in this paper, epistemic uncertainty

refers to the uncertainty of which probability distribution is being dealt

with [18]. The following sections (3.1, 3.2) will cover in more detail how

the mentioned methods do indeed mitigate distributional shift, as well as

review some state of the art methods.

3.1 Policy constraint and policy penalty methods

Two potentially useful methods for addressing distributional shift are pol-

icy constraints and penalty methods. Recently, new solutions have been

proposed to address distributional shift by utilising policy constraint and

penalty methods. Some of which are the focus of this section.

Policy constraint methods

Policy constraint methods aim to ensure that the evaluation policy dis-

tributions are close to the behaviour policy distributions. Achieving this

would reduce the amount of out of distribution actions when computing

the expected value of the Q-function. The Q-function refers to the function

which assigns a value to a state-action pair.

Various policy constraint methods differ mostly by the probability metric

they use to evaluate how close the distributions are [8].

Such methods can be described formally with a constrained objective

function to be maximised (Eq. 2), once the aforementioned probability



Figure 3. Figure from Lyu et al.’s paper on MCQL [9]. OOD Penalisation is clearly con-
servative as the estimated value dips very low when OOD. Policy Regularisa-
tion over-generalises as the estimated value is much below the optimal value.
Mild Conservatism makes the most out of the conservatism and generalisation
balance.

metric P (·, ·) has been defined [12],

J(θ) = Es∼dπθ ,a∼πθ(·|s)[Q
π(s,a)] (2)

such that the probability distributions are close enough with respect to

P (·, ·).
P (πθ, π̂β) ≤ ϵ (3)

Where π̂β is an estimate of the behaviour policy πβ which is not necessarily

known [8] and could be extremely hard to estimate due to its complex

nature (data could be collected by humans, it could be made of multiple

different policies, etc.). Several methods have been proposed to estimate

this behaviour policy, such as training a parametric model with behaviour

cloning [19], or using conditional variational autoencoders [6].

Policy penalty methods

Penalty and policy constraint methods differ because of their intentions.

With penalty methods, the intent is not only to reduce the deviation from

the behaviour policy at each state, but also to avoid actions who will lead

to additional deviation from this policy at future time steps [8]. This can

be done by adding a penalty term to the reward function, which is con-

venient when using constraints such as the KL-divergence constraint or

other f-divergences [11, 8].

Generalisation and conservatism

Policy constraint and penalty methods mainly suffer from one thing, which

is to find the adequate balance between generalisation and conservatism.

There is a natural trade off between the two, as increasing generalisa-



tion is done by avoiding querying out of distribution samples, and conser-

vatism is exacerbated by penalising out of distribution actions. Figure 3

from Lyu et al.’s recent paper on MCQL [9] illustrates this concept and

proposes an innovative method to address this balance of conservatism

and generalisation.

Mildly Conservative Q-Learning (MCQL) is designed such that it "in-

duces a policy that behaves at least as well as the behavior policy and

no erroneous overestimation will occur for OOD (out of distribution) ac-

tions" [9]. This model is arguably among one of the most advanced recent

models in Offline RL due to its state-of-the-art performance in the D4RL

benchmarks [2].

3.2 Uncertainty estimation

Uncertainty estimation to deal with distributional shift basically func-

tions as such, "if we can estimate the epistemic uncertainty of the Q-

function, we expect this uncertainty to be substantially larger for out-of-

distribution actions, and can therefore utilise these uncertainty estimates

to produce conservative target values in such cases" [8].

In recent years, many methods using uncertainty estimation have been

proposed such as MOReL [5], MOPO [22], EDAC [1] and UWAC [20], all of

which achieved state of the art performance on industry standard bench-

marks when published.

Among these methods, UWAC has shown great promise by outperform-

ing previous state of the arts (MOPO, MOReL, BEAR, etc.) [20] with its

Monte Carlo dropout for uncertainty estimation. Additionally, Wu et al.’s

Uncertainty Weighted Actor-Critic paper uncovered the fact that enforc-

ing trajectory-wise consistency is incompatible with Offline RL, as the

dataset on which the policy is trained does not have to contain full trajec-

tories.

4 Conclusion

This paper has concisely introduced the field of (Offline) RL and has re-

viewed recent promising methods aiming to mitigate distributional shift

in Offline RL, both by policy constraint and by uncertainty estimation.

Seeing as most research has focused on how to limit distributional shift

during offline training, switching directions and exploring how to recover



from out of distribution states as Reichlin et al. have begun doing [13]

could be of substantial value to the field, as this area of RL has not been

researched extensively yet.
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Abstract

Since the invention of Bitcoin in 2008, the scientific community has tried to

model the behaviour of cryptocurrencies price by studying relevant factors

and their effects on the markets. The identification of the most important

effective factors on price has been a dynamic process, continuously updated

through collected historical data analysis and new discoveries. This paper

aims to summarize and describe the most common factors shared by all

cryptocurrency markets, as well as to introduce new others not considered

by previous research, such as energy prices, stock market indexes and in-

flation.

KEYWORDS: Cryptocurrency Price, Effective Factors, System Dynamic

Model

1 Introduction

Starting in 2008 with the invention of Bitcoin, cryptocurrencies have gained

widespread interest from different communities ranging from private in-

vestors to financial institutions and regulators. They represent digital

financial assets, whose ownership and management is supported by dis-

tributed cryptographic protocols called blockchains. Such technologies



build on top of a peer-to-peer overlay network architecture to enable un-

trusted participants to exchange tangible/intangible assets or a unit of

value that represents the currency itself. Transactions or digital events

taking place can be collectively verified by a majority agreement of the

participating community members, who then save those records in a chrono-

logical order.

Although blockchains provide cryptocurrencies with significantly better

results in terms of traceability, transparency and decentralization than

traditional currencies , high price volatility bears many implications and

concerns for investors and regulators as well [1]. Small investors will-

ing to pursue an investment in crypto assets mostly follow either a buy-

low sell-high strategy, realizing returns during bull market periods, or

through "mining" specific currencies [2]. However, cryptoexchanges now

make the investment process easier, and the market capitalization of the

two main coins (i.e., BTC and ETH) was above $500 billion in September

2022. These factors attract large investment companies, mutual funds,

edge funds and private investors who have increasing interest in mod-

elling behaviours of such new technologies.

The research literature has therefore focused on defining price predic-

tion models and effective factors, i.e, factors usually related to such price

changes. For digital assets, high volatility is mainly responsible for uncer-

tainty regarding future expected returns [3], making it difficult to define

predictive models. Furthermore, by considering the investor’s risk aver-

sion, portfolio management policies need to determine whether and in

what measure invested capital should be allocated to them.

The purpose of this paper is to clarify some key factors involved in cryp-

tocurrency price change by using System Dynamic Modelling on Vensim®,

a software that provides user-friendly graphical modeling interface. This

work also aims to help constructing more accurate models for crypto price

prediction, by highlighting the properties of price changes, as well as to

suggest new factors to consider in future research.

The structure of this paper is the following: the next chapter summarizes

some common effective factors along with their description and compo-

sition. Chapter 3 provides then a graphical representation of a model

using these effective factors, by means of System Dynamic Modelling on

Vensim® software. Chapter 4 analyses past research literature and ex-

plains the reason why some new factors could be included in the model to



improve its accuracy. It the end, chapter 5 draws some conclusions and

future research challenges.

2 Common Factors

This chapter analyses some common factors usually related to price changes

in cryptocurrencies. In order to understand the internal dynamics shared

by all blockchain technologies, supply and demand are presented first,

together with competition, which provides inter-blockchain relationship

analysis . Then, Investor Sentiment and policy-related components fol-

low, providing an overview of the external forces shaping market price.

2.1 Supply and Demand

Contrary to many other products or commodities, the total supply of cryp-

tocurrencies is usually fixed and directly specified in the protocol of each

specific coin [4]. In this way, price dynamics do not exhibit cyclical fluc-

tuations as per common livestock markets, and more reliable model pa-

rameters that accurately track price changes are easier to define. More-

over, the upper limit on supply together with a fixed hashrate increases

the "mining" marginal cost (i.e., the cost of "mining" one more unit of

cryptocurrency) and reduces revenue streams. On the other hand, de-

mand is influenced by other factors, including transaction costs (i.e, fee

to pay when exchanging currency between wallets) and forks (i.e, when a

blockchain splits into two separate branches) [5].

In addition, lottery-like behaviour has been found in many cryptocoins

market [6], suggesting that speculation may also be an important factor

affecting demand.

2.2 Competing Cryptocurrencies

Cryptocurrencies attractiveness also depends on competition. On one

side, newborn coins usually introduce new features to solve problems of

earlier blockchain architectures and provide better quality in their imple-

mentations. On the other, older cryptocurrencies, which have been longer

on the market, are more familiar to investors and benefit from time ad-

vantage: a key factor supporting their reliability expectations [7]. Since

both these aspects affect market price, it is difficult to establish a general

rule to retrieve either a positive or negative effect, even though competi-



tion created by newer succeeding cryptos usually redistributes capital al-

location on the market, therefore generating negative effects on the older

ones.

2.3 Investor Sentiment

Investor Sentiment probably represents the most difficult factor to ana-

lyze, because of its many different factors involved. Although the number

of holders for each specific coin is directly measurable, their sentiment

is related to different effects, including profit and panic. The former is

generated when the coin is traded in the cryptomarket and exchanged for

real money. The latter refers to the phenomena of large-scale selling of

the digital assets, causing a sharp decline in prices. It has been widely

analyzed by current research which usually relates it to social media cov-

erage. In particular, English tweets on the online social media Twitter [8]

and users replies/comments posted on relevant online cryptocommunities

[9] are effective price predictors for most cryptocurrencies, when enough

data is available for collection.

2.4 Policy and Regulation

Attempts or implementations of regulatory measures on blockchain tech-

nologies by governments and financial institutions has been demonstrated

to impact cryptocurrencies prices [10]. In particular, tightening mone-

tary policies, such as anti-money laundering, exchange or issuance regu-

lation, have "economically significant negative effect on the market" [10],

whereas relaxation of policy measures brings appreciation in value. This

explains why considering cryptocurrencies as a financial asset is still not a

straightforward topic, especially when regulation generates depreciation

and market forces are towards unregulation .



3 System Dynamic Model

The image above shows a graphical representation of the System Dy-

namic Model by means of Vensim®. The representation is similar to a

Stock and Flow diagram, where the Price stock is determined by its in-

flows and outflows. In this case, according to the classical definition [11],

market price is directly coupled with demand and inversely with supply,

which correspond to respectively an inflow and an outflow. Each one of

these two flows is correlated to different factors, either negatively (-) or

positively (+), and such correlations are represented by signed arrow con-

nections. Moreover, as mentioned in Chapter 2.3, investor sentiment is

hereby deconstructed into its three main factors, namely panic, profit and

number of holders or investors.

Considering all the effective factors, Demand is negatively correlated with

almost all of them, excluding profit. Regulation and policies, together with

new competition in the market, contribute to decrease the demand of the

existing cryptocurrencies, especially in case of investor panic. Profit, in-

stead, is the only positively coupled factor, hence incrementing demand

when profit opportunities rise for investors.

On the supply side of the model, the discussion is mainly confined to the



profit, which has both direct and indirect effects on supply. The direct

effect is positively correlated, since high profit opportunities imply that

many investors are selling their assets and generating revenue streams,

therefore increasing cryptocoins availability on the market. The indirect

effect, instead, has negative correlation through the factor "number of

holders". Indeed, low supply phenomena are caused by the increased

number of holders who buy the digital assets following their increased

future profit expectations.

4 Literature overview

The latest research in cryptocurrencies has highlighted interesting con-

siderations not analyzed by earlier studies. During the last three years,

starting from 2020 with the Covid-19 pandemic, until the higher inflation

period characterizing the year 2022, these events have shaped at differ-

ent levels and in different ways cryptocurrencies behaviours on financial

markets. Unprecedented events have led to alternating periods of pros-

perity and distress, thus giving stage to abnormal events which could not

have been observed and studied otherwise.

The first consideration to be mentioned is the alleged hedging role that

cryptos should play during economic turndowns [12]. Hedge assets are

normally used by investors to protect against uncertainty or restrictions

in traditional assets markets, but this was not the case for many coins,

including Bitcoin [13].

Secondly, cryptos are increasingly integrating themselves into the global

financial market, and becoming subject to the same macroeconomic fac-

tors influencing stock markets and market indexes [14]. This trend was

surprisingly not true during the pre-Covid era, when cryptocurrencies

were unrelated to traditional commodities and assets [3]. Furthermore,

the recent increase in global energy prices is also proving to be an impor-

tant factor leading such new transformations.

5 New factors

The idea of relating cryptocurrencies models to normal stock markets

is already emerging in latest research [15]. These changes are mainly

brought either by changes in the world global economy as well as by the



development of new blockhain technologies, and the private financial sec-

tor is already offering to clients crypto-backed securities as financial in-

struments. Stablecoins represent an example: they are pegged digital

currencies linked to a reference asset, which may be cryptocurrencies, fiat

money or exchange-traded commodities [16]. Therefore, gold-pegged or

USD-pegged stablecoins, which have already existed in the market for a

few years at the moment of writing, represent a direct connection between

the two markets. In addition, new hedging methods against volatility are

implemented in form of derivatives, such as crypto options and futures

[17], hence raising many concerns about the urgency for regulation of such

digital assets [18].

For these reasons, this chapter suggests new factors that will be impor-

tant for future research to elaborate more accurate systems and models

for cryptocurrencies price analysis, since, at the moment of writing, no

substantial work has been done in this direction.

5.1 Energy prices

Energy consumption cost figures as the main source of expense for cryp-

tocurrency miners [19] who should buy, build and maintain an infrastruc-

ture of highly efficient and costly hardware to perform hard calculations.

Together with carbon cost (i.e., the cost of produced CO2 dismantlement

from such infrastructres), it drives the profitability of the entire business,

especially during times of globally high energy prices, as for year 2022.

A more accurate model for cryptocoins price could implement an analysis

of energy prices using publicly available data on energy indexes, such as

the European Union Consumer Price Index (EUCPI) or the Global Price

of Energy index (PNRGINDEXM). Considering that high energy prices

have not been common after the invention of first cryptocurrency Bitcoin

in 2008, evaluating or builing a new model based on previous historical

data is a difficult process, but research could head in this direction and

use year 2022 data for the purpose.

5.2 Stock market indexes

As mentioned at the beginning of chapter 5, as a consequence of the in-

creasing number of investors and the rise of new financial instruments

in the business, the cryptomarket is becoming much more correlated and

tied to the stock market than it was before [15][13]. In fact, the assump-



tion that this new market is unaffected by global financial cycles is no

longer accurate [14], and better models should be further investigated.

For example, global financial flows and effects could be included in forms

of technological stock markets indexes, such as S&P500 or NDXT, influ-

encing directly or indirectly cryptocurrencies price.

5.3 Inflation

A last important factor which has been influencing cryptos price during

the whole year 2022 is inflation [14]. Altough the effect of inflation is not

relegated to the cryptomarket alone, it represents an important macroeco-

nomic factor influencing stock markets and energy prices as well. There-

fore, classical approaches to estimate inflation, such as future interest

rates expectations or energy futures/options price, could also be used to

improve cryptomarkets price model accuracy by future research.

6 Conclusion

Overall, although other effective factors could have been considered in the

discussion, the purpose of this paper was to provide a simple model for

cryptocurrency price analysis on the market, as well as to introduce new

potentially interesting ones for future research. The latest developments

in these blockchain technologies and their implementation into regular

financial instruments are signs of a new changing condition, where claim-

ing isolation between normal stock markets and the crypto counterpart is

no longer accurate, and therefore new reliable models should be able to

pictures such new changes.
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Abstract

This seminar paper focuses on the useful application of model checking

on the Maeslantkering storm surge barrier system, especially targeting the

crucial component of Beslis en Ondersteunend - BOS, which is the safety-

critical mechanism ensuring that the barrier is closed or open in time. The

investigation mainly targets the study of a Radboud University Nijmegen

team, who conducted a formal verification on the determine excessive water

level (DEW) component of BOS and, eventually, detected mismatches be-

tween the component’s specification and code implementation. Also, there

were deeper errors that occurred during the model checking process. As a

result, the example clarifies the usefulness the idea of using formal verifi-

cation in system development as its usage can help find potential flaws in

the early stage of development.

KEYWORDS: model-checking, formal verification, storm surge barrier

1 Introduction

Formal verification is a practice of verifying the consistency between a

system design and its formal specifications, or properties, by utilizing

mathematics or formal methods. For the last twenty years, progress in



formal methods has enabled many promising verification techniques that

can detect implementation flaws in complex systems. Furthermore, with

the help of potential and powerful software instruments, these verifica-

tion techniques are even more useful when the possibility for automation

is even clearer. Catastrophic cases such as Ariane-5 missile [6], Therac-25

radiation therapy [9], etc., would have been prevented if there had been

better formal verification at that time [2]. Among the exisiting verifica-

tion techniques, model-checking emerges as a reliable tool for automati-

cally verifying the specifications, pointing out several subtle defects and

unexpected behaviors in the early stage of system design, thus, acting as

a safety net against disastrous events [4].

For a long time, coastal areas have been a target of natural hazards such

as land erosion, seawater intrusion, hurricanes, floods, etc. Moreover,

climate change also adds to the severity of these disasters one key effect:

sea level rise [12]. Therefore, there is a critical request to have a better

solution to increase safety in coastal zones. One interesting solution to

this problem is the Maeslantkering storm surge barrier in Rotterdam,

the Netherlands. However, when it comes to a sophisticated and complex

system, which is responsible for the safety of a city of more than half

a million of people, the correctness and reliability of that system needs

to be thoroughly checked. With the help of model-checking verification,

many defects and inconsistencies have been found, thus, increasing the

robustness and trustworthiness of the system [8] [11] [15]. In the end,

the paper points out the importance of using formal verification during

the early stage of every system development, which can help detecting

possible bugs.

2 Model checking

2.1 Software and hardware formal verification

Because of the growing complexity of software and hardware, a large per-

centage of time and effort are spent on verifying the correctness of the

system. To reduce the verification time as well as ease the stressful effort

of the checking process, formal verification is introduced as a method to

evaluate the correctness of a program by applying mathematics in mod-

eling [2]. After a long period of development and research, formal ver-



ification has come up with many approaches to increase automation in

verification and detect early-stage defects, such as deductive verification,

program derivation, or model checking, which is the main approach for

verifying the use case of storm surge barrier at Rotterdam.

2.2 Model checking

A finite state model is a model that can only contain one of a finite number

of states at any given time. Model checking (also known as property check-

ing) is an approach to clarify if a finite state model of a system respects, or

matches the system specifications. Usually, the specifications of the sys-

tem are defined in temporal logic, which can be simply known as logic of

time, and the model of the system is determined as a state-transition dia-

gram. Despite its reliability and practicality in formal verification history,

model checking is perceived to be less popular than software validation

techniques such as integration testing, system testing, etc.

Figure 1. Overview of model checking technique.

Figure 1 above depicts an overview of how model-checking approach is

performed. Initially, requirements need to be formalized to determine an

unambiguous specification. After that, the system is carefully modeled

as a system model then both property specification and system model are

fed into the model checker for verification. There would be three possible

outcomes after the model-checking phase. First, a satisfying result means



the system model accepts the property specification. However, this does

not mean the system can satisfy the property, because the input of the sys-

tem model when doing the modeling phase can be bad, thus resulting in a

bad system model – also known as the garbage in, garbage out concept -

a poor quality data input will produce a poor quality data output. There-

fore, there is an assumption that the model-based verification technique

is only as good as the model of the system [2].

Second, the result could be when the property we are checking is vio-

lated, then the model-checking technique will produce useful and diag-

nostic information as a counterexample for debugging. With the support

of a simulator, the system can be rewound to the violating case and then,

the property or model can be fixed accordingly.

Third, a possible outcome would be when there is insufficient memory,

which means the model we are checking is too big to be handled, for exam-

ple, the state explosion problem [5]. In this scenario, it is recommended

to reduce the size of the model and repeat the entire procedure again.

Model checking has been widely applied to multiple fields where it can

not only reduce the market release time but also act as a guarantee for

avoiding catastrophic failures [10], provided that the modeling process is

correctly carried out. For example, the Therac-25 Radiation overdose case

which made at least 6 cases of overdoses and resulted in three cancer

patients dying, or the Ariane 5 missile crash in 1996 due to a data con-

version flaw are clear examples of how defects in software and hardware

can produce such disasters. By using model-based verification technique,

many design flaws in the control system of the storm surge barrier at

Maeslantkering have been revealed, therefore, reduced the likelihood of

these disasters from happening.

3 Storm surge barrier control system

3.1 Maeslantkering storm surge barrier

The Netherlands have long been famous for their surface below sea level.

Almost one-third of its area has this low elevation characteristic. As a

result, this country has encountered many flooding disasters. One exam-

ple is the North Sea flood in 1953, which caused the death of 1836 people

and widespread destruction [1]. Therefore, there are multiple solutions



to mitigate these natural disasters such as storm surge barriers, closure

dams, or tidal barrages, but the first one is considered to be a better so-

lution towards tidal intervention for big cities [13] because of its mobility

and advanced technology.

Figure 2. Maeslantkering - Storm surge barrier at Rotterdam, the Netherlands

Figure 2 above showcases the impression of the Maeslantkering storm

surge barrier in Rotterdam, one of the biggest harbor cities in the world.

It has two hollow floating arms (or walls) which are controlled to close and

open when there is a threat of flooding. This operation is closely related

to the safety of the whole city, and consists of tasks and maneuvers with

complexity, therefore, it is safer to let computer systems take control of

the barrier operation [3].

3.2 The BOS system - Beslis en Ondersteunend

BOS is a control system for making decision on when to close or open the

barrier developed by RWS - a division of the Dutch Ministry of Transport,

Public Works and Water Management. When the expected water level

from the sea is so high that it could cause flood in the city, there will

be an automated mechanism to close the barrier. However, Rotterdam

is a crowded port, so every hour of closed entry would mean tremendous

economic loss, so it is critical that the system only closes the barrier when

actually needed.



3.3 Radboud University Nijmegen study - a useful case of
model-checking

Z notation is a formal specification language which uses simple mathe-

matics for describing computer systems [14]. Z has a type checker tool -

ZTC, which is used for detecting syntax and typing errors of the Z speci-

fication [7]. Although the BOS system is complied with the use of formal

methods with Z formal language associating with the ZTC type checking

tool, and also some submodules of the system were also verified by using

SPIN model checker - a tool for verifying the correctness of asynchronous

system models, the BOS system can be even more rigorously checked with

better approaches from formal verification.

Therefore, three years after the first time BOS automatically closed

the barrier in 2007, a research group (Ken Madlener, Sjaak Smetsers,

and Marko van Eekelen) from Radboud University Nijmegen, the Nether-

lands, conducted a project to increase confidence in the safety of the soft-

ware under the request from NRG (the Nuclear Research and consultancy

Group) and RWS. An important module - DEW - of BOS system with 800

lines of C++ code was selected and verified by using model checking tech-

nique. When developing the project, the authors manually sketched a

Z specification of the component and a lightweight model from the C++

codebase. Then the model is used to prove its consistency with the speci-

fication.

3.3.1 The selected component – DEW

Closing barrier procedure of the BOS system is decided by the excessive

water level predictions calculated by meteorological and hydrological in-

formation. When these levels are too high and can cause damage to the

inner land area, the BOS system will send commands to the barrier sys-

tem to start the closing procedure, and related departments will also be

informed about the incident. During the operation, BOS will execute a

code script that constantly performs calls to native functions. These func-

tions are in charge of the process of sending a command, requesting for

status, or making final decisions, whether to close or open the barrier. De-

termine excessive water level (DEW) is one of the components that are

responsible for the crucial part of making decisions. The water level pre-

dictions are computed based on locations in the cities: Rotterdam, Dor-

drecht, and Spijkenisse, and are forecasted in one day advance with 10

minutes intervals. Predictions are saved in the database and queried by



DEW at a certain time through the hydraulic-model evaluator to compare

with the maximum water level among the three locations. If the water

level extends over the prediction, DEW will make it a flag to determine

that there is an excess. Besides, the excess must be classified as critical

to be considered for closing the barrier, and it is defined when one of the

maximum water levels is surpassed, and within 20 minutes since the level

is surpassed, the predicted water level is still as that high or more.

3.3.2 The Z specification

In the project, the authors formalized the requirements of DEW compo-

nent into Z specification. Z specification can be seen as a literate spec-

ification whereas the Z specification source code contains constructions

such as schemas and constraints [15]. The main schema of the component

specification is defined below:

DEW == SetEvaluationParams≫ DetModelEvaluation≫

(EvaluationFailed ∨ CoreDEW )
(1)

In the main schema, the parameters such as the location’s maximum

water level or the forecast evaluation interval are formalized correctly

through SetEvaluationParams. Then, the output is passed on to DetMod-

elEvaluation schema. After that, if DetModelEvaluation produces an un-

successful result, EvaluationFailed schema is selected, and if successful,

the CoreDEW schema is chosen instead [11].

During checking the origin formal Z specification of the DEW compo-

nent, the authors found two inconsistent points between the Z specifica-

tion and the C++ codes:

- First, the specification does not take into consideration the definition of

evaluation interval but on the other hand, specified in the code implemen-

tation. This could demonstrate a possibility of unawareness of the imple-

menter, and the specification was not updated correspondingly. - Second,

the prediction database is specified to be able to store many predictions

for each location (or run-id), but on the implementation side, there is only

one prediction for every location/run-id. This is another mismatch be-

tween the specification and code implementation.

3.3.3 Modeling the DEW component and verification

This section explains how the project team crafted the model for the DEW

component and applied this model to verify the formalized specification.

The idea of the modeling process is to convert the current C++ of into a



lightweight PVS model. To add more clarification, PVS is a specification

language that is associated with an autonomous theorem prover as well

as many supporting tools such as checkers for types, and built-in theory.

Consequently, many applications have applied PVS to provide formal ver-

ification support for their system properties. Back to the project, due to

the non-existence of object orientation or pointer arithmetic, it is safe to

structure a simple PVS model from the C++ codebase.

During the conversion from C++ to PVS, datatypes are modeled as closed

as the genuine code with lifted types are prefixed with L as a naming rule.

For example:

LInt : type = LType WITH [# iVal : int #]

For functions, the C++ functions are translated directly into PVS func-

tions with the same naming convention and input parameters. For exam-

ple:

static flag CoreDEWC (

const LInt [] cLocList, // in

const Interval& cInterval, // in

flag& Excess, // out

LTime& ExpTime // out

)

is converted into:

CoreDEWC_pvs (

cLocList: [Loc → LInt],

cInterval: Interval

) : [flag, flag, LTime]

After modeling the codebase, both specification and implementation (ex-

pressed in functions) are compared through SPIN model checker. Both

functions return an array of value [flag, flag, LTime] (flag, Excess, Exp-

Time respectively) and after the verification, a flaw was found in the code

when the last two elements in the arrays (Excess and ExpTime) are not

put into effect. Therefore, the team fixed the code, re-run the model check-

ing again, and there was no more error found, as well as the theorem, is

verified perfectly. This could prove the usefulness of using model checking

in detecting defects and verifying a crucial component of a system, DEW

in this case.



3.4 Other related studies

Before the study at Radboud University, there had been multiple works

that aimed to verify the correctness of the BOS system and its dependen-

cies.

The communication between BOS and BESW (the barrier hardware

operator) is defined through an interface, which is called BOS-BESW-

Interface (BBI). In Ruys’s project, from 1997-1998, model checking was

used for proving whether the BBI was implemented precisely. The project

owner modeled the BBI protocol in PROMELA, which is a process-modeling

language, and then utilized SPIN model checker, especially with the SPIN

simulator, to validate the model implementation. As a result, one critical

timing flaw was discovered as well as several mismatches in the specifica-

tion of BBI [15]. Thus, proving that formal approach actually has its own

value when system design can expose many defects, vulnerabilities, and

inconsistencies.

Before Ruys, there had been another project conducted by Pim Kars in

1996, who used the same technique with PROMELA and SPIN to validate

the BOS-BESW interface. As a surprise, most of the errors were spotted

during the analysis step, while a few of them were found in the verification

phase. Therefore, the system design was also proved to be erroneous and

had to be redesigned [8].

4 Conclusion

Defects in software or hardware system can be hazardous to human safety

and cause fatal losses. And it would be very difficult to guarantee the cor-

rectness of a system by just human effort without the aid of computer

checking. By using formal verification, many flaws in hardware and soft-

ware can be exposed in the early stage, which increases confidence in sys-

tem consistency and correctness. The storm surge barrier at Rotterdam,

the Netherlands, is an interesting use case of model-based formal verifica-

tion. Although it had been verified by many studies such as Kars’ (1996)

and Ruys’ (1997), which already spotted multiple mismatches and errors

in the system, there were still places for improvement as during the study

of Radboud University team, when many inconsistencies between the sys-

tem design and predefined specifications were found, and also even a flaw

was discovered.



As a result, formal verification in general, or model checking in specific,

can add great value to big projects . And since the checking process does

not need human interaction, model checking can be fully automated in

testing workflow in collaboration with other validation methods such as

unit test, system tests, thus, reduces the testing team workload.
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Abstract

Passwords are the most widely used digital authentication method [11].

Conklin et al. [1] note that authenticating subjects based on a person-

alised id along with a password was convenient when less digital systems

were implemented and their user bases were smaller. Since then, people

use more internet accounts, thus needing more credentials. The amount of

passwords and password-based systems combined with the lacking secu-

rity they provide makes passwords susceptible to different kinds of attacks.

The brute-force attack is the most time-consuming, but it is also bound to

crack a short password. The dictionary attack is more efficient in terms of

time but does not perform as well as the brute-force attack when cracking

random passwords. The rainbow table attack is the most efficient of the

three attacks in terms of time and success rate. It performs faster than

the brute-force or the dictionary attack because the attack is based on a

precomputed lookup table, thus no hashes are computed during the attack.

We find increasing the time used to calculate hashes is a good defence

against brute-force and dictionary attacks. Time can be increased by using

longer passwords, hash functions that take longer to compute or limita-

tions to how often a password can be attempted.

KEYWORDS: password, hash function, brute-force attack, dictionary at-

tack, rainbow tables, password spraying, password managers, salts



1 Introduction

Passwords are the most widely used digital authentication method [11].

Conklin et al. [1] note that authenticating subjects based on a person-

alised id along with a password was convenient when less digital sys-

tems were implemented and their user bases were smaller. The situation

has changed since. Today, people use more internet accounts, thus need-

ing more credentials. Remembering all of them becomes a chore, leading

users to choose easy to guess passwords. The amount of passwords and

password-based systems combined with the lacking security they provide

makes passwords susceptible to different kinds of attacks. The attacks

can range from sophisticated and complex attacks on networks to social

engineering, in which the user is tricked to disclose their password.

In this paper, we present three different attacks on passwords. All the

attacks target systems with password-based authentication, so no phish-

ing or network attacks are discussed. The first attack is the brute-force

attack. Alongside with the strengths and weaknesses of the brute-force

attack we will briefly discuss password spraying. The second attack pre-

sented is the dictionary attack. The third and final attack is the rainbow

table attack. The attacks will be discussed in terms of efficiency in time

and attack target.

I also introduce common practices with passwords chosen by humans

and machines as well as the concepts of hash functions along with pass-

word complexity to help investigate the attacks and their efficiency. After

the attacks, we introduce time and randomness as ways for the user as

well as the systems to complicate and prevent such attacks.

This paper is organised as follows. Section 2 presents both human and

machine aspects of passwords as well as password complexity. Section 3

presents the different password attacks, while Section 4 discusses ways

to prevent such attacks. Finally, concluding remarks are presented in

Section 5.

2 Passwords Usage

This section discusses why and how passwords are used as well as some

technical aspects concerning the implementation of password-based sys-

tems. Implementations will lead to defining hash functions and exploring

their usage with passwords. Additionally, password complexity is dis-



cussed in terms of information entropy. Finally, the potential targets of

attacks are discussed.

2.1 Passwords

According to NIST [10], the official definition of a password is "a string of

characters (letters, numbers, and other symbols) used to authenticate an

identity or to verify access authorization". Commonly, passwords are used

by people to authenticate themselves to different digital systems. Despite

passwords not being a very efficient or secure way of authentication, their

usage is still very prevalent. This is because implementing systems with

password authentication is easier and less expensive than authentication

with biometrics or physical security tokens. Biometrics and physical to-

kens require certain hardware solutions so incorporating them would re-

quire the development of a large feature for a smaller amount of devices.

For the rest of the users to use new authentication systems would require

acquiring a new device. However, using a password works on all devices

and only requires the system’s ability to recognise what is typed.

As with most security related practices, passwords are not immune to

the dilemma of security vs. usability. Many issues with passwords stem

from the need for users to remember their passwords. This leads to users

writing down their passwords to physical or digital notes, reusing their

passwords in multiple different services and selecting simple passwords.

All these practices can be exploited by password-cracking systems. For ex-

ample, if an adversary manages to get a user’s password to some service,

they might also try to use the same password to gain unauthorised access

in other services that the user has credentials to. This is called credential

stuffing [9].

To make passwords easier to remember, people also tend to make their

passwords more vulnerable by following some patterns. It is shown by

Miessler and Haddix [3] that the most common passwords are lacking

in complexity. Within the ten most used passwords, six are a string of

consecutive numbers starting from "1". None of the ten most common

passwords are combinations of letters, symbols, and numbers. According

to Tatlı [14], the most common human-chosen passwords only consist of

letters, the second most common pattern consists of only numbers and

the third most common pattern is some letters followed by numbers. The

above implies that many machine-chosen or default passwords consist of

numbers. This significantly reduces the search space the adversary has



to operate in. Thus, a random password of a certain length is more secure

than a password of the same length following a pattern.

2.2 Hash functions

Passwords should never be stored as plaintext. This is because in case

of a leak, all sets of credentials could be used as is. Thus, passwords are

stored as hashes, created with hash functions. According to Menezes et

al. [8], a hash function h has at least the following two properties:

1. Compression. Given an input x of arbitrary length, h will output to h(x)

of fixed size.

2. Computational simplicity. A hash value h(x) is easy to compute, given

function h and input x.

Hash functions can be divided into two categories: keyed hash functions

and unkeyed hash functions. The difference between the two is that while

unkeyed hash functions only take one parameter, the message, keyed

hash functions also take a secret key as parameter. [8]

In the context of password security, there are three more properties ex-

pected from hash functions. These properties are

1. Pre-image resistance. Given a hash function h and an output y, it is

hard to find any x to which applies that h(x) = y.

2. Second pre-image resistance. Given a hash function h and an input x,

it is hard to find an x′ to which applies that h(x) = h(x′).

3. Collision resistance. Given a hash function h, it is hard to find any to

inputs x and x′ to which apply that h(x) = h(x′).

Some commonly used hash functions include Message Digest (MD) and

Secure Hashing Algorithm (SHA) [2], [12].

2.3 Password complexity

Many password-based services have password policies that demand the

user to choose a password fulfilling certain criteria. The password might



need to be of a certain length, include upper and lower case letters, num-

bers or symbols. Making a password more complex increases the time the

adversary must use to crack a password, making complex passwords more

secure than simple ones. One metric to measure password complexity is

information entropy. Password entropy H is calculated as follows:

H = L log 2
logN ,

in which L is the length of the password and N is the number of possible

symbols. When calculating entropy log can be in any base.

Although password entropy is a good starting point for assessing com-

plexity, it is often lacking. As Ma et al. [7] show, a more intricate model

called Password Quality Indicator (PQI) considers how similar the pass-

word is to a dictionary word as well as its effective length. Effective length

is the standardised length of the password, and it considers the different

character sets used to form the password. For example, a password with

letters, symbols, and numbers would have a longer effective length com-

pared to an equal sized string of only numbers.

2.4 Passwords as attack targets

Attacks on passwords have different success rates depending on their tar-

gets. That is, attacks perform differently if they attempt to find a cer-

tain user’s password, any password, or all passwords. Attacking a certain

password is necessary if the adversary requires an admin level authori-

sation in some service. Cracking any password is useful in cases when all

users have some sensitive information saved on their accounts. For exam-

ple, if every user of a service has a payment method saved, the adversary

could crack any password to gain access to some payment method. Finally,

attacks aimed to crack all passwords could be executed if the adversary

wants to sell credentials on the dark web, for example.

3 Attacks

This section presents three different attacks on passwords. First, we will

present the brute-force attack along with mentions of password spraying.

The second attack is the dictionary attack and finally, the rainbow table

attack will be presented. Attacks are presented with strengths and weak-

nesses as well as suitability for different targets.



3.1 Brute-force Attack

In a brute-force attack, the adversary tries all possible passwords in order

to eventually guess the correct one. Because brute-force attacks are com-

prehensive and systematic, they can be efficient for short passwords and

PINs. With enough time and resources, the brute-force attack is bound to

crack a password eventually. However, brute-force becomes increasingly

time-consuming with longer passwords. In fact, the average time needed

for a successful brute-force attack grows exponentially as the length of the

password grows linearly.

The brute-force attack is limited because of its time-consumption. It

even has a physical restriction against really long passwords. For exam-

ple, the attack is useless against a random 128-bit password as it takes

too much energy. According to the Landauer principle [6], the theoretical

lower limit for energy needed to erase a bit is ln 2 ∗ kT , in which T is the

machine temperature expressed in kelvins and k is the Boltzmann con-

stant. Assuming a computer would operate in around room temperature,

just flipping through the 128-bits would take

(2128 − 1) ∗ ln 2 ∗ 1.380649 J
K ∗ 298K ≈ 9.7 ∗ 1017J .

This corresponds to around 0.17% of the worlds annual energy consump-

tion.

There are a few aspects to consider still. This hypothetical scenario only

considers flipping through the bits without any consideration on whether

it is optimal or even required. Furthermore, the Landauer limit is theo-

retical and it is uncertain whether the energy level could be reached in a

real life setting. In reality, a random 128-bit password would be close to

unusable as it is practically impossible to remember.

Another form of the brute-force attack is password spraying, in which

the adversary attempts a common or default password against all user-

names. This way the adversary does not need to compute as many hashes.

Additionally, the adversary is not limited by safety mechanisms set for ac-

counts. For example, some services only allow a limited number of log in

attempts. Password spraying is common because manufacturers choose

easy passwords for initial setups. According to Knieriem et al. [5], com-

mon default passwords include "password", "admin", and "dba". Some

applications had an empty string as password, meaning they were not

protected at all.



3.2 Dictionary Attack

A dictionary attack is a guessing attack in which the adversary uses a

list of words instead of all possible strings. Usually these lists comprise

of common passwords but they can also include personalised information

such as names or phone numbers. Other potential lists include celebrities,

fictional characters, or films. [4]. Finally, lists can also include variations

of the original words. One common way to derive variations is using leet.

In leet, certain letters are replaced with a similar looking number. For

example "Hello" could become "H3ll0".

If it is enough for the attacker to gain any credentials to the system, a

dictionary attack can be highly efficient. Many users choose easy to re-

member passwords for systems and all of them can be considered points

of failure for the system. Moreover, the search space is only a fraction of

that of the brute-force attack. For example, there are a bit over a million

words in the English language and even if there were ten variations for

each word, the adversary would have to iterate through a bit over ten mil-

lion potential passwords. However, there are 268 = 208827064576 different

eight letter combinations.

3.3 Rainbow table attack

A rainbow table is a precomputed lookup table from which plaintext pass-

words can be retrieved during an attack [4]. Compare this to an adver-

sary trying to crack a password using the brute-force attack. Most of their

time would go into computing the hashes. Now, what if they stored all the

plaintext strings they had tried into a table alongside with their hash?

The next time the adversary tried to crack password hashes, they only

need to see if their rainbow table has a match with the list of password

hashes. This lookup, even from a very large table, is significantly more

efficient in terms of computational time than computing the hashes. So,

rainbow tables remove the most time-consuming part of password crack-

ing, making it even more efficient than a dictionary attack. This is not

to say that an attack would be successful within an instant. Lookups can

be incredibly time-consuming, but they are generally more efficient than

calculating an equal amount of hashes.

The used hash function restricts the rainbow table attack. Each hash

function requires its own table and it is difficult to tell from the hashes

which hash function the system uses. However, some of the hash func-



tions are more common than others. For example, MD5 is commonly used

although it has been proven to not be collision resistant [13].

4 Preventing attacks on passwords

This section provides two defence mechanisms against password attacks:

time and randomness. Both mechanisms are presented from different par-

ties of the authentication, such as the user and the system. Applications

of both mechanisms are also mentioned.

4.1 Prolonging the attack

A simple way to make password cracking more difficult for the adversary

is to increase the required computational time. There are multiple ways

to do this. First, having the system use a hash function that is more

time-consuming can massively slow down the attack. This can be done by

using a hash function that natively uses more time. The computing of a

hash can also be artificially slowed down. For example, the system under

attack can be configured to wait for some time before accepting a login.

Another way to increase the time required for the attack is to limit the

times an adversary can attempt different credentials. This is common in

mobile phones. The SIM card PIN code can only be attempted a limited

number of times until a more secure PUK is needed. Passcodes used to

unlock smartphones do not have as extreme measures, but they can lock

the user out for a shorter period of time. For example, an iPhone will allow

five incorrect attempts. After the sixth incorrect attempt, the phone will

be disabled for one minute. Seven incorrect attempts will result in the

phone being disabled for 5 minutes and the disable time will increase fast

after more wrong attempts. Finally, after ten incorrect attempts restoring

the phone will require another authentication method.

As the brute-force attack was the most time-consuming, prolonging the

attack time will be the most effective against those attacks. Online at-

tacks in general are less successful when time-consumption is increased.

4.2 Randomness

Randomness is something a user can use to their advantage regardless

of the system used. As discussed in Section 2.3, using random passwords

will dramatically increase the search space the adversary must operate



in. This makes the password more difficult to crack as well as defends it

from personalised attacks using family names or hobbies. Randomness

comes with a downside, remembering. Remembering a single long, ran-

dom password can be difficult but the task becomes near impossible when

having to remember different passwords for all systems.

Password managers are storages for a user’s own passwords. The pass-

words are accessed using one master password, meaning all passwords

can be used when remembering one. Many password managers come with

browser extensions making it easier for the user to log in. Selecting a cor-

rect set of credentials instead of typing them removes the risk of typos. Of

course, using a password manager creates a single point of failure for the

user. This is why it is important to use a very secure master password.

There is also a way for the system to add randomness: salts. Salts are

random strings that are concatenated with the password to create a more

random input for the hash function [4]. When using salts, the system

stores the hash value as well as the salt. Because the salt is stored as

plaintext, salting does not increase the password security if the adversary

is attacking a certain user’s password with the help of a leaked database

table. They can simply copy the salt and use it while conducting a classic

dictionary attack. However, if the goal of the adversary is to find any or all

passwords, their workload is significantly increased. With such targets,

salts do well when defending passwords against dictionary and rainbow

table attacks.

5 Conclusion

In this paper, we studied attacks on passwords and ways to prevent these

attacks. We presented the brute-force attack, the dictionary attack and

the rainbow table attack and investigated their efficiency with different

attack targets. Afterwards, we discussed ways to prevent such attacks.

The brute-force attack is systematic and bound to have results when

attacking short enough passwords. The dictionary attack is less time-

consuming but will not work against random passwords as it only targets

passwords that are common or follow certain patterns. The rainbow ta-

ble attack is more efficient than a simple brute-force attack because of

the precomputed lookup table. It is also more comprehensive than the

dictionary attack because random strings are also included.

Two ways to prevent or complicate such attacks were presented. These



mechanisms included time and randomness. The time an adversary uses

to crack a password could be increased by the system by prolonging the

time it takes to compute a certain hash or limiting the allowed attempts

with time. In addition, the user can extend the required time by select-

ing a longer password. Another way to prevent these attacks was to add

randomness. By avoiding simple, low entropy passwords, the users can

improve their password security significantly. Using a password manager

removes the usability issue of remembering long and complex passwords

as well as password repetition.
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Abstract

The need for fast and accurate user modelling methods is in high demand

across various domains. A traditional method used for modelling human

behaviour has been reinforcement learning (RL). This paper reviews the

current status of RL methods for the task of user modelling. Based on re-

cent literature, the benefits of RL in modelling human behaviour agents

are the natural similarities between motivation-based decision making

and the task of optimizing a reward function in reinforcement learning

framework. The challenges in implementing RL in user modelling are

often the lack of initial data to initialize the reinforcement learning al-

gorithm. Three recent case studies show that reinforcement learning can

be effectively used for the user modelling requirements of modern software

systems and applications, but there are still problematic areas that the

framework can not yet cover without future research.

KEYWORDS: reinforcement learning, user modelling, inverse reinforce-

ment learning, offline reinforcement learning



1 Introduction

Systems that run applications of artificial intelligence (AI) are increas-

ingly engaging with the vast majority of human population. Simulta-

neously, modern AI breakthroughs are still accomplished in applications

where social co-operation is not required: modern AI applications have

had immense success in applications such as 1-to-1 games, image recogni-

tion and self-driving pilot. These applications are attractive targets for AI

applications, as plenty of data is available and generating more data is not

a problem. However, as AI applications starts increasing their presence

in the natural world, it creates threats and opportunities that require ex-

tending the collaborative capabilities of an AI. For example, a self-driving

AI may excel at navigating across natural world, but it still has very lim-

ited possibilities for interaction with other agents in the environment,

such as pedestrians or other cars [3].

A crucial part of social interactions is the ability to infer the internal

state of other agents (theory of mind) in order to predict and understand

their actions correctly [12]. Simulating the internal state of a human

is known as cognitive modelling, which is already widely used in artifi-

cial applications such as expert systems, natural language processing and

robotics. Some aspects of human nature are still difficult for a cognitive

model to predict, such as the impact of fatigue, stress, distraction, or emo-

tion in decision-making [4]. Cognitive modelling faces more difficulties as

the individual differences need to be taken into consideration [6]. Such

example could be user modelling, where variety of behavioural strategies

in information processing as well as the approximation of individual in-

terests and capabilities need to be embedded into the predictive model,

often with very limited amount of useful data [13].

One particular challenge in the progress of human-AI cooperation is the

lack of data that could be used to generate accurate user models. Collect-

ing data of humans is costly and includes issues related to privacy that

restrict the quality of data that can be used in the user model. For these

reasons, most cognitive models are based on parameters drawn from ex-

isting research and offer very little adjustability to individual differences

in users. De Peuter et al. [4] describe the current situation of AI-based

design tools as such where useful predictions can only be inferred if there

is either great amount of data available or excessive contribution from the

user to train the model. De Peuter et al.[4] suggest that modern machine



learning methods and tools can be used to improve user modelling within

the current context.

This paper is a literature survey on contemporary approaches to user

modelling with RL. The paper focuses on finding an answer whether or

not viable methods exist to the problem of inferring a useful user model

without a need to collect excessive amounts of data of the user. In specific,

the paper considers applications of RL methods to the task of user mod-

elling. The paper first presents background to what makes RL interesting

method for the use of user-modelling and which examples of modern RL

methods are proposed for the task, and then analyses studies where such

methods have been implemented for user modelling.

2 Background

When modelling a user without previous knowledge of their behaviour,

it is necessary to design the methods used based on certain properties.

Albrecht et al. [1] proposed that such properties include the level of de-

terminism in the users’ action choices, the model’s behaviours variability,

the availability of the knowledge used in the decision-making process, the

independence of the decision-maker as well as different goals that agents

may have. Some use-cases may also require modelling of the environ-

ment of the agent, which increases the demands of the method further.

The environment sets requirements for the order of actions, simultaneous

or alternating, representation of the actions and the observability of the

actions. These form the initial requirements for the methods that shall be

reviewed.

2.1 Reinforcement learning

A commonly used approach to user-modelling is reinforcement learning

(RL). In RL, the AI agent seeks to form a reward-maximizing policy through

trial-and-error interactions in its environment as shown in figure 1. The

policy can then be used to model near-optimal behavioural skills. How-

ever, applying RL methods to train the capability to reason human be-

haviour requires a large amount of learning activity, which is difficult,

costly, or otherwise non-feasible to obtain [7]. In order to overcome this

issue, the demand has increased for methods that may somehow avoid

the costly data-collection stage [7]. Examples of such methods could be



Figure 1. Reinforcement learning framework

data-driven reinforcement learning methods that provide techniques of

pre-teaching the AI before it interacts with its environment [7], as well

as inverse reinforcement learning (IRL), which can use very minimal and

generic data records for learning.

The suitability of RL algorithms for the task of user modelling lies in

their suitability for solving problems of bounded optimality. Determining

optimal actions is similar to the concept of human rationality, where the

assumption is that the actions of a rational agent are determined by the

perceived maximal utility in its operating environment. The goals of com-

putational simulation of rationality thus line up with the basic elements

of RL: utility (or reward) function, environment and a bounded learning

agent.[9] Usage of RL in the context of modelling human behaviour is

common practice in computational rationality framework, which has re-

cently emerged as a new direction for understanding interaction between

human and computer [10].

2.2 Inverse reinforcement learning

One of the most well-studied approaches to user-modelling with AI is in-

verse reinforcement learning [4]. Compared to regular RL, the inverse

method attempts to infer the reward function which resembles the be-

haviour of the agent under inspection, and then proceeds to behave ac-

cording to it [5]. Whereas in regular RL the AI learns by observing the

consequences of different actions, the algorithm in IRL makes an assump-

tion that the agent under observation is already following an optimal re-

ward function, thus it only needs to deduce the policy that is followed.

The inherent drawback of such method is the reward model of the tar-



get may not be the reward model that the AI should use, and thus some

conversion needs to be defined [5]. IRL in user modelling is not as sim-

ple as it may sound, since the reward models in human behaviour can

be complex or intractable, which is proven to be often impossible to infer

a reward function from undirected demonstrations [7]. Some variations

of IRL, such as collaborative IRL (CIRL), attempt to solve this issue by

introducing more feedback from the user in the modelling process [4].

2.3 Offline reinforcement learning

The previous description of traditional reinforcement learning requires

the agent to interact directly with the target user and environment, mak-

ing it essentially an online learning method. Compared to online RL,

offline RL refers to reinforcement learning that can be taught before it is

deployed into the target environment. Essentially, this reduces the risk

and cost involved in the process of learning policies, which makes offline

RL particularly interesting in domains such as robotics and healthcare

[8]. However, the limitations of current machine learning tools hinder the

use of pre-existing data difficult for reinforcement learning. Also, the lack

of successful actual offline RL methods has been bypassed with alterna-

tive offline methods such as using a simulator to obtain policies. [8].

The immediate limitation of offline learning is the variety of available

data, since a data set may not cover some important aspects of the agent’s

behaviour, or it may not perform well in new environments or agents with

different behaviour. Second important issue is the nature of offline learn-

ing, which requires forming hypothesis that performs better than what

the behaviour presented in the dataset is. In order to achieve such perfor-

mance, it is required to mix orders of actions, which is not possible with

the currently available machine learning tools due to the resulting shift

in distribution. [8]

3 Examples of using reinforcement learning in user modelling

This section discusses some case studies where reinforcement learning

has been applied in user-modelling. The studies were picked based on

their recency, application of reinforcement learning methods and the focus

on the problem of creating an accurate user model to provide the user

better value.



3.1 Case study 1: Personalized task difficulty in MOOC

The first case study by Zhang et al. [14] reviews the application of rein-

forcement learning methods to personalize the task difficulty in Massive

Open Online Course (MOOC) system. Goal was to implement a dynamic

machine learning algorithm, which could capture the individual differ-

ences between the users’ skill levels and adjust the difficulty of the tasks

to suit individual user’s capabilities. The study showed that a machine

learning based method would significantly help slower users in complet-

ing their tasks, but it provided no benefits in slowing down faster users

with increased difficulty. The results are that with machine learning

methods, the automatic difficulty adaptation worked better than the tra-

ditional methods. This can provide better engagement of users into the

learning platform, which the study shows to hold true especially on play-

ers of lower competency level.

The RL algorithm was based on one-step Markov Decision Process where

the actions are completed tasks, difficulty of which correlates negatively

with the grade the user receives. In order to make the algorithm respon-

sive, the study used policy learning method called Bootstrapped Policy

Learning, which provides a guaranteed unbiased convergence to an op-

timal difficulty level in a noisy environment. The responsiveness was

also increased by predicting an initial ranking with an offline clustering

method, which would take place before applying the online reinforcement

learning.

3.2 Case study 2: Reducing user fatigue in Virtual Reality
applications

The paper from Cheema et al.[2] studies the use of RL methods for user

modelling in virtual reality application. Goal was to find out how to re-

duce unnecessary "mid-air movement", which refers to the VR-users arm

movement when using the controllers. The motivation is that having too

much mid-air movement causes fatigue, which could be minimized with

an accurate user model. The results provide more efficient and relaxed

posture policies for the users.

The study was conducted by using offline reinforcement learning method

called Proximal Policy Optimi, which uses neural network to optimize the

policy. The training of the algorithm was done without having any real-

world data available. Instead, the training data was created by creat-



ing randomized movement patterns and predicting the movements that

would require the least effort. User models were then created by gauging

the users in a virtual environment based on estimates from literature.

3.3 Case study 3: Learning user models in energy sharing
systems

In a case study by Timilsina et al. [11] RL method was implemented

to model user preferences in energy sharing systems (ESS). Goal was to

optimize the performance of an ESS with realistic user behaviour model

in terms of preferences, engagement, and bounded rationality. In the cur-

rent state-of-the-art implementation, the system matches and recommend

users who are willing to share or requesting energy based on the amounts

provided or requested with the potential transmission losses included.

The study attempted to solve the problem by implementing a recommen-

dation system based on the users’ behaviour models, which could provide

more shared energy by increasing the engagement from the users into

the system. Results showed that including user modelling and RL pro-

vides significant performance improvements compared to state-of-the-art

approaches with 25% higher efficiency and 27% more transferred energy.

The study applied two algorithms, User Preference Learning (UPL) and

BiParTite-K (BPT-K), both of which rely on RL to form the user model.

The study addressed an issue with initialization time that slowed down

both RL algorithms and proceeded to calculate the initial weights with

Faster Initialization Algorithm. The initialization phase was required to

work based on preferences collected from the users, so there seemed to be

no possibility to train the model with pre-collected data.

4 Discussion

All three analysed case studies showed success in implementing a RL

method to the task of user-modelling, as can be seen on table 1. The

first case study showed an approach to the issue of slow responsiveness

with reinforcement learning and offline clustering. The study by Cheema

et al. [2] showed that taking advantage of deep RL with neural networks

can turn offline RL into a very powerful tool to generate valid approxima-

tions of ground truth human data. Most importantly, each of the studies

succeeded in applying RL methods to user models without excessive pre-



Table 1. Results of reviewed case studies

Application RL method Reported result

Personalized task difficulty

in MOOC [14]
Bootstrapped Policy Learning

Significant increase in helping students

with difficulties

Reducing user fatigue

in Virtual Reality applications [2]

Proximal Policy Optimi

(Unity toolbox)

The fatigue measurements decreased

as the user’s input efficiency increased

Learning user models

in energy sharing systems [11]

User Preference Learning,

BiParTite-K

Significant performance improvements

over the state-of-the-art methods

liminary data requirements, which could encourage more research on the

subject.

Compared to the initial expectations, the state of user modelling with

reinforcement learning has not yet reached a point where it could be eas-

ily applied to create realistic user models with ease. There seems to still

remain a blind spot in the research where psychological user behaviour

model could be applied for potentially greater results of the methods [11].

It has also been noted that the implementation of RL methods to pre-

dict human behaviour still requires efforts to understand how to model

human motivations, contexts, learning, and social interactions[10]. This

could provide a starting point for further research on the subject. For

modelling certain narrow snapshots of human behaviour, reinforcement

learning seems to be a feasible method that can provide good results with-

out excessive costs.

5 Conclusion

This paper showed that applying RL to modern demanding user modelling

tasks can be done successfully. Some of the drawbacks of conventional RL

algorithms, such as need for costly training data, can be avoided by using

offline RL, inverse RL or other assisting algorithms as shown in the case

studies. User modelling can. The research could be continued here to

cover how a more embedded application of behavioural psychology can

improve user modelling with reinforcement learning algorithms
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Abstract

In the fifteen years since the emergence of Neuroscience applied to Inform-

ation Systems (NeuroIS) as a field, research has been conducted on sev-

eral topics relating to security. These topics include habituation to security

warnings and the role of self-control in security policy violations. How-

ever, the results of these studies are not used within the security education,

training and awareness (SETA) field. This paper explores the NeuroIS re-

search on habituation and self-control and current SETA research. The

paper discusses how the NeuroIS research can be used to improve SETA

and indicates several research gaps where the two fields can be combined.
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1 Introduction

Users are often the weakest link in a security system. User behaviour

plays a part in many security failures [11]. Users forget their passwords,

share them with colleagues, or leave their computers unlocked [8]. Edu-

cating users can improve their security behaviour. Security education,

training and awareness (SETA) is commonly employed by organisations



for security governance. The implementations and effectiveness of SETA

vary widely between organisations.

The field of neuroscience applied to information systems (NeuroIS) was

proposed in 2007 to study information systems using methodologies and

theories from cognitive neuroscience [3]. NeuroIS research has been con-

ducted within the context of security as well, with studies on the effect of

habituation on human responses to security warnings [1, 12] and on how

self-control affects intention to break security policy [7]. The studies on

habituation have shown that as users are exposed to the same warning

multiple times, their response to the warning decreases [12]. When the

user sees a warning for the first time, a mental model is created about

the warning. Upon repeated exposure to the same or similar warnings,

the user automatically and unconsciously compares the warning to the

mental model that the user has of the warning. The study on self-control

found lesser neural engagement in the decision making process for low

self-control individuals compared to high self-control.

The results from NeuroIS research have not yet being implemented

in SETA. This paper explores the current research within the fields of

SETA and NeuroIS, and proposes several possibilities for bridging the

gap between the two fields.

Section 2 summarises current literature on SETA. Section 3 summar-

ises three NeuroIS studies that focus on security, in particular on habitu-

ation and self-control. Section 4 combines these two fields and makes sev-

eral suggestions for future works. Finally, Section 5 provides concluding

remarks.

2 Security education, training and awareness

The weakest link of security changes with the development of the com-

puter and internet. Acre [2] states that at the main security concern

of mainframes was flaws within the operating system and its security

controls. Physical access to mainframes was limited due to physical ac-

cess control and security clearance requirements. As such, opportunistic

attacks were rare. Physical access to computers became more straight-

forward with the rise of personal computers due to the lack of physical

access control. With physical access control no longer being a deterrent,

the predominant threat was computer viruses. Virus spread was minimal

due to limited bandwidth. Virus spread increased with the emergence



of hard-disk technology, as now viruses could spread between otherwise

isolated computers by the use of floppy disks.

With the emergence of the internet, computers were open to the world

[2]. Different technologies emerged to withstand the new threats, includ-

ing firewalls, encrypted connections, authentication systems, and virtual

private networks (VPN). As technology emerged and posed new threats,

new technologies were developed to protect against those threats.

The aforementioned technologies make up the technological infrastruc-

ture of an organisation. This infrastructure is typically implemented and

managed by trained IT specialists [2]. However, individual workstations

are usually the responsibility of end users, who are often the least trained

individuals within an organisation. As such, it is important to train, edu-

cate, and make end users aware of security measures that they can take.

End users make security mistakes for many reasons. Sasse et al. [11]

identified several issues that lead to unsafe password behaviour, includ-

ing password sharing among colleagues being seen as a sign of trust in

them, users thinking they will not be targeted, users thinking they will

not be held accountable, or users thinking that someone getting into their

account will not be able to cause serious harm.

Despite users often behaving unsafely with passwords, passwords are

commonly used for authentication. Passwords typically have to adhere to

rules that restrict the characteristics of a password. Complex password

rules that require unique passwords for each system and need to be regu-

larly updated cause users to create weaker passwords, repeat passwords,

create passwords with patterns in them, or write down passwords on pa-

per or in unprotected electronic files [8, 11]. Users are only willing to

spend a reasonable amount of effort on security-related tasks [9]. Redu-

cing the effort needed to perform security-related tasks by reducing the

cognitive load is effective at getting users to adopt more secure habits.

One method of user compliance is to increase awareness, education, and

training related to security. McCrohan et al. [8] investigated whether giv-

ing users extensive information influenced the strength of the passwords

chosen by the users in the study. The group of users that was given extens-

ive information on why password strength is important selected stronger

passwords two weeks after the lecture than the group who received a gen-

eral background on passwords. This research highlights the importance

of educating users on the threats of internet use and the steps the users

can take to mitigate some of the risk.



Increasing awareness alone might not be effective. Guo and Yuan [6]

studied the effect of the organisational level of sanctions on their effects

on the intention of security policy breaking by users. The researchers

found that sanctions that came from the immediate peers of users and

from users themselves were more effective at dissuading security policy

breaking intentions than sanctions that were made on an organisational

level. Guo and Yuan attribute the effectiveness personal self-sanctions

to the individuals feeling accountable for their actions, and the effective-

ness of peer sanctions to the disapproval of peers when individuals en-

gage in non-compliant behaviour. Additionally, the authors conclude that

organisational level sanctions do not affect the actions of individuals sig-

nificantly. Next to that, Guo and Yuan found that the more senior an

employee is, the more likely the employee is to violate security policies.

Guo and Yuan suggest to focus on peer-sanctions and self-sanctions as an

alternative to deterrence-based research.

Furnell and Vasileiou [4] plead that security education and training

should shift from what users should know to how to get the users to know

what they should know. Rather than tailoring security training to the sec-

tor of work, the authors argue that security training should be tailored to

the individual based on five parameters: role, prior knowledge, barriers,

learning style and security perception. These parameters determine the

attitude of an individual towards security awareness. The individual atti-

tude should shape how the personal security training plan is put together,

e.g., whether push- or pull-based influence should be used.

3 NeuroIS research

NeuroIS is a relatively young field, with the term coined in 2007 by Dimoka

et al. [3]. They proposed using methods from cognitive neuroscience when

studying information systems, allowing an "objective, reliable and un-

biased measurement of thoughts, beliefs, and feelings and link them to

specific human processes" [3].

A 2020 systematic review [10] of 200 papers in 2008-2017 NeuroIS re-

search highlights several trends. First, the increase in completed em-

pirical studies indicates the maturity of the field. Second, the main top-

ics studied within the first decade of NeuroIS are emotion, stress, atten-

tion, trust, and technology acceptance. Third, more NeuroIS research has

been conducted on the autonomic nervous system than on the actual brain



activity. The autonomic nervous system can be measured using pupil dila-

tion, heart rate, skin conductance, fEMG, and blood pressure. Measuring

brain activity requires the use of functional magnetic resonance imaging

(fMRI) or electroencephalography (EEG). Riedl et al. [10] argue that the

higher cost of MRI and EEG machines could play a role in this. They

suggest that intrusiveness of fMRI and EEG is a more likely reason, due

to its restriction of freedom of movement, natural position or invasive-

ness compared to eyetracking, heart rate monitoring or skin conductance

measurements.

Using EEG, Hu et al. [7] examined difference in self-control affected

event-related potentials (ERPs) whilst participants deliberated over viol-

ating security policies. Hu et al. [7] define event-related potentials as "an

index of the activity of populations of cortical neurons measured at the

scalp to sensory, cognitive, or motor stimuli".

Hu et al. [7] investigated whether the self-control theory of criminology

is also applicable in information security. The theory of self-control states

that whilst all humans have the same potential to commit crimes, it is

the difference in self-control that determines whether someone becomes

a criminal. The participants of the study were screened on self-control

using the scale by Grasmick et al. [5]. Twenty participants per group were

chosen from the 25% highest and lowest scoring participants, respectively.

Hu et al. [7] proposed and validated a "novel ERP paradigm for studying

individual behavior in the context of information security". The paradigm

is a combination of a scenario that permits security violations to occur,

whilst at the same time being able to be used in a laboratory setting, and

motivating participants to truthfully respond to the stimuli. The stim-

uli were one of three types: control, minor, and major. Control stimuli

presented routine decisions with no relation to information security that

were usually inconsequential. The minor and major violation stimuli were

both related to information security, with minor and major possible con-

sequences, respectively.

Whilst Hu et al. [7] found no significant difference in the reported an-

swer to the stimuli between the high and low self-control groups, the EEG

data showed lesser neural recruitment of the right and left prefrontal cor-

tex in the low self-control group. The authors suggest that this may in-

dicate that both high and low self-control engage similar processes for de-

liberating security violations, but that the low self-control group engages

these processes less or engages them more superficially. These results



lend "some support to the idea that self-control is a stable characteristic of

an individual, formed early in life, and remains relatively stable through-

out the life span" [7]. This finding is significant for information security

and will be further discussed in Section 4.

A second NeuroIS study that focused on information security is the

study by Anderson et al. [1] on the habituation to security warnings,

as well as the follow-up study by Vance et al. [12]. In the initial study,

Anderson et al. [1] analysed habituation to security warnings using eye

tracking and defined habituation as "decreased response to repeated stim-

ulation". To decrease the effects of habituation, the researchers proposed

polymorphic security warnings. The security warnings have nine vari-

ations, visible in Fig. 1: color of text, highlight of text, signal word, pictorial

signals, ordering of options, background color, size of warning pop-up,

contrast, and border. The polymorphic security warnings caused lesser

habituation compared to the static warnings. However, due to the ex-

periment set-up where the participants got to see 200 warnings in a row

in a laboratory setting, the authors remark that "results may differ from

habituation in actual practice" [1].

Vance et al. [12] addressed the cross-sectional aspect of the previous

study. The researchers conducted a three-week longitudinal field study

in which the participants were asked to install three applications per day

and rate them. The applications were installed through a third-party app

store controlled by the researchers. One group of participants was presen-

ted with static security warnings and another with polymorphic security

warnings. The participants were asked to install only the apps without

risky permissions. The results showed that the participants habituated

more to the static warnings than to the polymorphic ones.

Vance et al. [12] also conducted a longitudinal eye tracking and fMRI

study. Whilst lying in an MRI machine, participants were presented with

80 static warnings, 80 polymorphic warnings, 80 general software images,

and 20 unique general software images for that day. The 260 images were

displayed in a random order over two blocks. For each image, the parti-

cipants rated the severity of the content on a four-point scale. This process

was repeated for five consecutive days at the same time-of-day. The fMRI

data showed that the left and right ventral visual processing streams dis-

played habituation effects.



Figure 1. The static security warning (a) and the nine polymorphic variations (b-j) as
proposed by Anderson et al. [1].



4 NeuroIS applied to SETA

Furnell and Vasileiou [4] state that "there is potentially a lot to be learned

from broader fields such as education, marketing and communications"

which can be applied to how security education, training and awareness

is implemented. Next to these fields, NeuroIS, and perhaps the wider

neuroscience discipline, can provide novel insights into teaching security.

The field of NeuroIS studies the subconscious ways in which humans

interact with technology with the use of neuroscience research methods.

Studying the subconscious decision-making processes provides a better

understanding for how the human mind works in the face of security. A

better understanding of the decision-making processes allows for better

security education and training.

This paper focused on three NeuroIS studies, by Hu et al. [7], Anderson

et al. [1] and Vance et al. [12].

Hu et al. [7] concluded that self-control affects the decision-making

process, as the group with low self-control participants showed lesser

neural recruitment of the right and left prefrontal cortex than the high

self-control participants. Whilst both groups engage similar processes for

evaluating whether to commit security violations, the low self-control par-

ticipants engage these processes less or more superficial. Security educa-

tion and training should be tailored to the self-control aspects by provid-

ing clear consequences of the security risks taken by the users. These

consequences should highlight both the security-implication of their ac-

tions and the company policies for dealing with such infractions.

McCrohan et al. [8] showed that the level of information users have

influence the strength of passwords chosen by them. The study did not

investigate the role of self-control in the selection of passwords. As such,

there is a research gap on how self-control and information levels interact

when it comes to user behaviour. Possible interplay between self-control

and information ought to be researched, as this could open up new ways

to tailor SETA to the individual.

Anderson et al. [1] and Vance et al. [12] determined that users ha-

bituate to security warnings. The habituation effect is stronger for static

warnings than for polymorphic warnings. When not presented with se-

curity warnings, the habituation recovers to some extent though never to

the original level.

The habituation effect is important to SETA in three ways. First, the



way security warnings are designed matter. Users habituate faster to the

static warnings. Implementing the polymorphic warning artefact of An-

derson et al. [1] and Vance et al. [12] is one method to lower the habitu-

ation to the warnings. Another possibility is to vary the security warnings

between different systems or different types of warnings within a single

system. This option combines the polymorphic approach for the overall

set of security warnings seen with static designs for individual ones. How-

ever, this approach does not work if a user predominantly sees one type of

warning. The polymorphic warning artefact has drawbacks as well. One

drawback is that users are taught that interfaces look one particular way

and to look for specific indicators of authenticity. The polymorphic warn-

ing design increases the cognitive load of this task, as the users have to

remember the indicators for several variants of the interface. Another

drawback is that polymorphic security warnings are easier to mimic, as

a non-matching interface can be interpreted by users as a polymorphic

instance rather than an actual security risk. As such, the feasibility of

polymorphic security warnings in practice should be researched.

Secondly, the habituation effect should be taken into account for security

education and training as well. If users have to repeat the same security

education and training material regularly, with the same material presen-

ted in the same manner, users will habituate to this training material by

relying on their prior mental model, rather than fully paying attention to

the material at hand.

Thirdly, habituation can be useful. As humans get more used to some-

thing, the cognitive load of that task lowers. The decrease in cognitive

load means that the task takes less out of the compliance budget. The

lesser impact of a task on the compliance budget, the more likely the user

is to comply with the safety regulation. As such, habituation is useful in

certain situations.

5 Conclusion

Studying how humans interact on a subconscious level with computers

and information systems allows insight into the underlying decision-making

processes. Visualising these decision-making processes gives researchers

a better understanding in why users interact with security systems in a

particular way. Understanding how users interact with systems is funda-

mental to developing good teaching material and methodologies on how



to get users to behave more securely.

This paper explored how three studies from the field of NeuroIS can and

should influence security education, training and awareness. Within the

field of SETA, research has been conducted on the social aspect of secur-

ity, such as at what company level sanctions are the most effective [6],

and that informed users make better security decisions [8]. As Furnell

and Vasileiou [4] indicated, the ‘what’ of SETA is often known, and the

focus should shift to the ‘how’. SETA research should focus more on the

methods of teaching users to behave more securely and for that under-

standing how users act on a subconscious level is crucial. However, the

results from the NeuroIS studies discussed are not yet being implemen-

ted in SETA. This is a research gap that ought to be addressed. This

paper proposed two particular instances that should be investigated: a

feasibility study of polymorphic security warnings in real systems, and

the interaction between levels of self-control and information on security

behaviour.
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Abstract

This paper reviews and compares the different cryptographic proof as-

sistants that have been developed and used. These proof assistants are

grouped together based on what general proof assistant they rely on and

whether they operate in the computational or the symbolic model. Coq

is the most common base prover to be used by cryptographic proof assis-

tants, but many do not utilize a base prover at all, implementing everything

themselves. Computational model is more used than symbolic model, but

not by a large factor, as computational model is generally more practical,

but in contrast symbolic model is easier to incorporate into computer-aided

cryptography. This paper concludes that cryptographic proof assistants

have very varying approaches in implementing tools for computer-aided

cryptographic proofs, each with their own capabilities.
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1 Introduction

In his paper, Halevi [17] introduces the reader to computer-aided crypto-

graphic proofs. He states that over the past, cryptographic protocols have

become increasingly complex and long. Showing the security and correct-

ness of cryptographic implementations manually is difficult and prone to

many errors, and furthermore verifying that the proof is valid is a cum-

bersome process [17] [4]. This may result in the possibility of vulnerable

cryptographic implementations being used in practice. For example, the

new TLS 1.3 standard is over a hundred pages long [24]. As a result of

some proofs of correctness of cryptographic implementations or security

assumptions being so long and complex, too few will bother to verify the

proofs made by their peers. In the worst-case scenario, this might even en-

courage creators of cryptographic implementations to not write the proof

at all.

To address this problem of increasing complexity of cryptographic proofs,

computer-aided cryptography (CAC) has become a growing research area

[4]. CAC utilizes the automation and functionality of computers and pro-

gramming languages to programmatically verify the correctness of a cryp-

tographic proof, possibly revealing flaws in the proof or finding attacks

against the implementation. There are many tools created for these pur-

poses, such as EasyCrypt or CryptoVerif, with varying approaches, such

as the computational and symbolic models. A brief introduction is given

to the most notable tools to find the main similarities and differences be-

tween them.

This paper reviews what kind of cryptographic proof assistants have

been developed and what they aim to solve. These tools are categorized

based on whether they work in the computational or symbolic model and

on the general proof assistants behind them. The papers and tools are

included in this paper based on their relevance and whether they have

evidence of being useful. A good indicator of a cryptographic prover’s us-

ability is whether it has been useful in the proof of some cryptographic

statement.

The second chapter introduces important general proof assistants Coq

and Isabelle/HOL used by many computer-aided cryptographic proof as-

sistants. In the third chapter, the most important cryptographic proof

assistants are introduced. Finally, the discussion and conclusions based

on the findings of the third chapter are in the fourth chapter.



2 Preliminaries

2.1 Game-based proofs

Game-based proofs are a method of proving the security of a cryptographic

primitive, where a threshold is defined for the probability that an adver-

sary gives a certain output after interacting with the game. The term

game hopping means that the goal of game-based proofs is to modify the

games slightly, so that the games are indistinguishable. The goal of this

is to reach a game, for which the security is easier to prove than for the

original one.

2.2 Protocol models

Security protocols can be modelled in the symbolic model or the computa-

tional model. The symbolic model, often called Dolev-Yao model, assumes

perfect cryptography [10] meaning that an adversary should not be able

to break the security property of a protocol with any probability. The sym-

bolic model is a method of modelling cryptographic primitives which are

represented as black-box function symbols, where the messages consist of

terms based on these primitives [10]. The adversary can only utilize these

primitives in its computation [10].

The computational model is a more realistic and widely used, but com-

plicated alternative to the symbolic model for cryptographic proofs [10].

In the computational model the cryptographic primitives are described as

functions from bitstrings to bitstrings, where the adversary is a proba-

bilistic Turing machine [10]. The security parameter specifies the length

of keys used in a protocol. To prove a security property in the compu-

tational model, one must prove that the probability for it not holding is

negligible in the security parameter [10]. An important remark is that

both of these models ignore physical attacks such as side-channel attacks

[10].

2.3 Cryptographic system security

Information theoretic security and computational security are methods to

separate cryptographic systems. A directly stronger assumption than per-

fect cryptography is information-theoretic security or unconditional secu-

rity which holds for a cryptographic system if even with infinite comput-



ing power the possibility of breaking the system is zero [20].A more prac-

tical definition of computational security is weaker in the sense that it can

be broken with unlimited computing power, i.e. it is enough that breaking

the security of the system is computationally infeasible [20]. For exam-

ple, to achieve perfect secrecy, a secret key equal in length to the plain

text is needed [20], which further acts as evidence of the impracticality of

information theoretic security.

3 General proof assistants

Proof assistants are tools which are used to help create and verify proofs

of mathematical problems. By verifying proofs with machines, users gain

considerable confidence in the correctness of the proofs in contrast to

proofs generated and checked by humans [18]. This chapter briefly in-

troduces Coq and Isabelle/HOL, the general proof assistants mostly used

by the cryptographic proof assistants considered in this paper.

3.1 Coq

As is described by the Coq documentation [18], Coq is a tool for proving

theorems where users can describe mathematical concepts, after which

Coq is used to interactively create proofs for these theorems that are then

checked by Coq. To generate a proof with Coq, a sequence of tactics is

entered by the user, which construct the steps of the proof [18]. Given

a theorem statement as a goal, tactics are used to transform the goal to

subgoals, which can also be transformed to further subgoals and then all

the subgoals are verified instead [18]. The correctness of definitions and

proofs are automatically verified by the Coq compiler [22].

3.2 Isabelle/HOL

The most used instance of Isabelle is Isabelle/HOL which is a proof assis-

tant with a higher-order logic theorem proving environment, which sup-

ports both automatic reasoning tools, and interactive operation modes [1].

Isabelle uses Isar as its formal proof language [1]. Isabelle provides tools,

such as the classical reasoner, which can be used to prove formulas by

performing long sequences of reasoning steps, and the simplifier, which

reason about equations and utilize equations in its reasoning [1]. Exe-

cutable specifications can be turned directly into code in SML, OCaml,



Haskell, and Scala [1].

4 Cryptographic proof assistants

4.1 CertiCrypt and EasyCrypt

In their paper, Barthe et al.[6] present CertiCrypt which is a framework

built on top of the Coq proof assistant in the computational model, utiliz-

ing the game-based techniques for proving the security of cryptographic

systems by creating and verifying code-based cryptographic proofs. As its

formalism, CertiCrypt adapts pWhile, which is an imperative program-

ming language often used in describing games, utilizing structured data

types, procedure calls, and random assignments [6]. CertiCrypt provides

exact security, which is used to produce exact bounds for the advantage

and execution time of the adversary compared to the common approach of

showing a negligible advantage for an adversary [6]. The proofs created

with CertiCrypt are verified automatically and independently by a proof

checking engine utilizing Coq [6]. Relational Hoare Logic (RHL) is formal-

ized by CertiCrypt to utilize tactics to support the code-based reasoning

of CertiCrypt [6]. As an example, CertiCrypt has been successfully used

to develop the proof of existential unforgeability under adaptive chosen-

message attacks for the Full Domain Hash signature scheme [25].

In their paper, Barthe et al. [5] present EasyCrypt which is a tool in

the computational model [3] that automatically creates proofs of the secu-

rity of cryptographic systems from proof sketches. Proof sketches are first

verified by chosen satisfiability modulo theory (SMT) solvers and theorem

provers, producing Coq files, which are then checked by CertiCrypt [5].

The properties of a security proof are captured as a sequence of games

and hints [5]. With EasyCrypt, the games are represented as programs

in an imperative language, and adversaries are described as abstract pro-

cedures, which have access to a defined list of oracles[5]. According to

the comparison of CertiCrypt and EasyCrypt by Barthe et al.[5], Easy-

Crypt proofs generally require less than a third of the code compared to

CertiCrypt, and EasyCrypt proofs run approximately twice as fast. As

EasyCrypt utilizes CertiCrypt, and EasyCrypt is easier to use, EasyCrypt

can be thought of as a successor for CertiCrypt. As an example given by



Barthe et al. [5], EasyCrypt has been used in developing proofs of security

for Hashed ElGamal encryption and the Cramer-Shoup cryptosystem.

4.2 The Foundational Cryptography Framework

In their paper, Petcher and Morrisett [23] introduce The Foundational

Cryptography Framework (FCF) which is a foundational framework in

the computational model built on top of the Coq proof assistant. FCF is

inspired by CertiCrypt, where the key difference between them is that in-

stead of using deep embedding of a probabilistic programming language,

FCF uses a shallow embedding with the functional programming lan-

guage Gallina [23]. This allows the easy extension of the language and

better utilizes Coq’s tactic language and its current automated tactics

[23]. The goal of this is to lighten the workload required when developing

proofs [23]. As an example, FCF has been used to verify the cryptographic

properties of an OpenSSL implementation of HMAC with SHA-256 such

that the expected cryptographic properties are guaranteed by its func-

tional specification [8].

4.3 CryptoVerif and ProVerif

In his paper, Blanchet [12] presents CryptoVerif which uses the compu-

tational model to analyse security protocols [12]. Utilizing game hop-

ping, CryptoVerif converts the initial protocol with transformations into

an ideal game, where the security property is easy to verify [12]. These

game transformations are organized based on advice to prove protocols;

if a transformation is unsuccessful, other transformations i.e., simplifica-

tions and expansions of assignments are suggested to reach the wanted

transformation [12]. This property often allows protocols to be proved

completely automatically [12]. The transformations can also be applied

manually [12]. CryptoVerif can prove correspondences including authen-

tication, and secrecy [13]. CryptoVerif has been used to verify the Full-

Domain Hash (FDH) [15] signature scheme and Kerberos [9].

In turn ProVerif, an alternative tool developed by Blanchet [11] uses the

Dolev-Yao model [14]. As its input ProVerif takes a model of the proto-

col, and the security properties that are to be proven [11]. ProVerif auto-

matically converts the protocol from its input into a set of Horn clauses,

and the properties to be proved are converted into derivability queries on



these clauses [11]. To find out if there may be an attack against the input

protocol, ProVerif attempts to derive a fact from the clauses, where a suc-

cessful derivation of a fact may mean there exists an attack against the

security property [11]. But because some abstractions are made by the

Horn clause representation, the derivation might correspond to a false at-

tack [11]. As an example, ProVerif has been used to successfully analyse

the protocol Just Fast Keying (JFK) [2].

4.4 CryptHOL

In their paper, Basin et al. [7] present CryptHOL which is a framework

built on top of the Isabelle/HOL theorem prover by combining the accu-

racy of HOL with the structure of game-based proofs and utilizes mechan-

ical theorem proving. CryptHOL operates in the computational model [3].

In CryptHOL, generative probabilistic values (GPVs), which are compu-

tations with input and probabilistic output, are combined with a func-

tional programming language to model game-based proofs [7]. Isabelle is

used to mechanically check all proof steps and definitions, to guarantee

soundness and correctness [7]. CryptHOL attempts to keep the ideas of

the main proof clear from low-level technical details in a declarative way

with the help of the user, utilizing the structuring techniques and proof

automation of Isabelle [7]. In addition, Isabelle’s proof automation is ex-

tended with theory of relational parametricity, which is used to justify

whether a game is equivalent to the game constructed by a game trans-

formation in game-based proofs [7]. CryptHOL also gives users the ability

to add new rules in which proofs are constructed to achieve extensibility

[7]. As an example given by Basin et al. [7], CryptHOL has been used to

prove the INS-CCA security of a symmetric encryption scheme built from

an unpredictable function and a pseudo-random function.

4.5 VerifPal

In their paper, Kobeissi et al. [19] describe Verifpal which is an auto-

mated modelling framework and verifier that operates in the symbolic

model, utilizing Coq. The goal of Verifpal is to be much easier to use

than other tools with symbolic security analysis in order to alleviate the

learning curve [19]. The protocols are modelled in a more intuitive man-

ner with Verifpal, with the goal that the descriptions created are close

to how they could be described in an informal conversation, but while



still being accurate and meaningful for formal modelling [19]. Because

Verifpal only allows using built-in cryptographic functions, the modelling

effectively avoids user errors [19]. Verifpal is compatible with Coq and

the models can also be translated into ProVerif models [19]. As an exam-

ple given in [19], VerifPal has been used in modelling and verifying un-

linkability, freshness, confidentiality and message authentication in the

Decentralized Privacy-Preserving Proximity Tracing (DP-3T) protocol.

4.6 Tamarin Prover

In their paper, Meier et al. [21] describe Tamarin, a prover that can ex-

ecute symbolic analysis of security protocols automatically. However the

automated option might not terminate [21]. If it terminates, it will re-

turn a proof of correctness or a counterexample, which can be for example

an attack [21]. The tool can also be used in interactive mode, where the

user can investigate the different states of the proof, view the graphs for

attacks, and most importantly guide the proof manually alongside the

automatic proof search [21]. As an example, Tamarin Prover has been

successfully used to analyse the TLS 1.3 revision 10 specification [16].

5 Discussion

Based on the previous chapter, the proof assistants can be categorized

based on whether they use Coq, Isabelle or something else as the base

proof assistant, and in which model they work in. These results are sum-

marized in Table 1.

Table 1. Summary of cryptographic provers

name base prover model

CertiCrypt Coq computational

EasyCrypt Coq computational

FCF Coq computational

CryptoVerif Own computational

ProVerif Own symbolic

CryptHOL Isabelle/HOL computational

VerifPal Coq symbolic

Tamarin Prover Own symbolic



Cryptographic provers are more commonly built on top of general proof

assistants i.e., they translate their input to be used by the general proof

assistant e.g., Coq or Isabelle/HOL. Having an established underlying

proof assistant such as Coq will increase the trustworthiness and confi-

dence of the results output by cryptographic proof assistants. Utilizing

general proof assistants seems to be the most common approach; no point

in implementing a totally new proof assistant just for cryptography when

there are more general ones for math. But seems to not always be the

case, as there are tools such as CryptoVerif, ProVerif and Tamarin Prover

that seem to implement the underlying prover themselves. A possible ex-

planation for this could be that the creators of these cryptographic provers

sought after some feature that is not provided by the base provers, forcing

them to implement more themselves.

As of the model in which the provers operate, the computational model is

the favourite, but not by a large factor. Computational model’s popularity

may be explained by the practicality of it, but in contrast symbolic model’s

popularity may be explained by the fact that it is easier to incorporate into

computer-aided cryptography.

In conclusion, the field of computer-aided cryptography is yet quite young

and far from the final stages of development, as the tools in the field have

very different approaches in implementing tools for computer-aided cryp-

tographic proofs. There might even never be a single best approach to

implementing these tools, as different cryptographic problems and imple-

mentations might always require different approaches when analysing

them.
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Abstract

Traditionally network configuration has been a human-centric manual

process. The constant need to improve operational costs and resource al-

location has led to the emergence of Intent-Based Networking (IBN). IBN

seeks to improve network management through automation. This paper

provides an overview of IBN concepts and analyzes its strengths from a

network management perspective. We find that the IBN addresses the sig-

nificant issues of manual configuration.
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1 Introduction

In the IP networks routers and switches enable the flow of information

by relaying packets of data. Even though IP networks have been adopted

widely by the Internet, the management of traditional network equip-

ment is hard. In order take into use high level network policies, oper-

ators need to configure individual network devices using low-level and

vendor-specific methods. The static nature of configuration makes it hard

to adapt networks to dynamically changing fault and load conditions. [7]

A network can be modeled to encompass two logical planes: the control



plane and the data plane. The control plane consists of rules that dictate

what actions (e.g., drop, modify, forward, etc.) to apply to the traffic. The

data plane applies the rules of the control plane to the traffic. Traditional

networking devices are vertically integrated, meaning that the control

plane and the data plane are bundled together in the devices. That inte-

gration reduces flexibility and innovation. [7]

Software-Defined Networking (SDN) aims to resolve the limitations in

current network infrastructures. SDN breaks vertical integration by re-

moving the control plane from switches and routers. That results in sim-

ple networking devices that only forward traffic. The control is performed

in the logically centralized controller, simplifying enforcement of policies,

(re)configuration, and evolution. It is essential to notice that centralized

control doesn’t imply physically centralized control. Production systems

commonly deploy a physically distributed control plane to meet perfor-

mance, scalability, and reliability requirements. [7]

A well-defined API between an SDN controller and a switch realizes the

separation of control and data planes. Through the API, the controller

has complete control over the operation of a data plane switch. One of the

most notable SDN protocols is OpenFlow[11]. In OpenFlow, the API be-

tween the controller and the switch is called Southbound API, whereas

the Northbound API provides an interface to the controller itself. An

OpenFlow switch has one or many tables of rules (flow tables) that control

the flow of packets through the switch. Rules, for example, drop, forward,

and modify packets. Depending on the configuration of flow tables, an

OpenFlow switch can act as a firewall, switch, router, or perform other

operations like load balancing or traffic shaping. [7]

5G networks are expected to expand network services beyond mobile

devices. Services like remote health care, autonomous vehicles and ad-

vanced robotics will benefit from ultra reliable, low latency and high-

speed communications provided by 5G. [6] 5G supports a diverse set of

services with very different communication requirements. Manual config-

uration of services is time-consuming, error-prone, and requires a great

deal of expertise. Furthermore, the manual approach doesn’t result in

an optimal allocation of resources among services. Hence, it’s necessary

that network resources can be allocated automatically in an optimal con-

figuration according to the demands of services. With current systems,

the issue is that it’s impossible to make significant configuration changes

on-demand due to the complexity of traffic patterns. [1]



Intent-Based Networking (IBN) is a promising framework for automated

network management [12, 1]. IBN builds on the programmability of the

SDN controller. It enables the operator to define what policies are en-

forced in the network instead of defining how network equipment should

be configured to meet those policies. The network intents provide a sim-

ple declarative approach to configuring complex networks. For example,

the operator could declare that hosts A and B are allowed to communicate

with a bandwidth capacity X without having detailed knowledge about

network topology or switch configuration. [12] Ultimately IBN enables

networks to organize, assure, heal and configure themselves. [1]

In this paper, we present the problems that arise in the management

and operation of present networks. We present the core concepts of IBN

and evaluate IBN as a solution to recognized problems. We also show how

the concepts of IBN manifest themselves in a practical system.

The rest of this paper is structured as follows. In section 2, we discuss

the challenges of present networks. The Section 3 presents the core con-

cepts of the IBN. In Section 4 a practical system is presented. The findings

of the paper are discussed in section 5. Finally, conclusion is in the section

6.

2 Challenges of present networks

The operation of networks (e.g. ISP, enterprise, data center, campus,

home network) is ruled by high-level network policies that are derived

from network-wide requirements. Policies consider connectivity, security

and performance requirements. Policies can be of static or dynamic na-

ture. Dynamic policies are the ones that are triggered on demand. Tradi-

tionally, network administrators have translated high-level network poli-

cies to low-level device configuration commands that are provisioned to

routers, switches, and specialized middleboxes, like firewalls and proxies.

The translation process is in a large part a manual activity performed by

experienced network administrators. In large organizations, many par-

ties, like server administrators, network engineers, and DNS adminis-

trators, define policies concerning their responsibility area to be applied

organization’s network components. It requires manual coordination be-

tween the parties to ensure that the combined set of policies is conflict-free

and it implements high-level policies set by each party. [9]

In the current distributed policy management, it takes from days to



weeks to plan and implement new policies. The slow and partly man-

ual process of cross-checking the policies of different parties is required

to ensure the correctness and consistency of the new policy. Despite the

careful checking of policies, problems still arise after the deployment of

the policies. Users might lose connectivity, security breaches might result

from vulnerable components, and the performance of applications might

degrade. It would be ideal to automatically recognize conflicts between

policies and to form a conflict-free policy set before provisioning it to the

physical infrastructure. Furthermore, if there were a high-level abstrac-

tion layer for defining policies, that were decoupled from the infrastruc-

ture, it would ease the burden on administrators and users for implement-

ing policies. [9]

3 Intent-Based Networking

RCF9315 recognizes that it is infeasible to manage modern networks by

configuring individual network devices with low-level methods. Keeping

device configurations consistent across a network is challenging, not to

mention that configurations must remain consistent with respect to the

needs of services provided by the network. Further challenges are im-

posed by the requirement for the network to adapt dynamically to the

changing needs in a scalable way. Also, there is a constant need to au-

tomate network operations more in order to lower operational costs but

also to enable fast reconfiguration of networks on the sub-second scale.

Automation also helps to ensure that network is working as intended. [2]

To address these issues, autonomic networks have gained much atten-

tion by the discussions in the ANIMA Working Group of the IETF. The

goal of autonomic networks is to lower operational costs and to simplify

management of the networks in general. Even though autonomic net-

works have self-management properties they still need information about

the purpose and goals of the network. That information is commonly re-

ferred as an intent and a network that accepts input from operators in

form of intents is called an Intent-Based Network. To implement the

functionality, there is a centralized and a distributed approach. In the

centralized approach there is a control application running on a set of

servers whereas in the distributed approach the functions are distributed

to network nodes and they in a cooperation implement the functionality.

[2]



Intents are not just a form of interaction in a higher-level of abstrac-

tion. They let operators to focus more on what they want to achieve in-

stead of focusing on the implementation details. The ability to focus on

desired outcomes results in a better operational efficiency and flexibility,

and shorter time scales. It also reduces dependence on error-prone human

activities. Combing Intent-Based Networking with artificial intelligence

can eventually bring network automation to the next level. [2]

3.1 Intent and Intent-Based Management

RFC9315 defines intent as a declarative set of operational goals and out-

comes. The declarative nature means that the intent doesn’t specify how

to achieve or implement it. The term "intent" appeared first in the context

of autonomic networks, where it meant guidance information that a user

provided to an autonomic network, which operated otherwise without hu-

man intervention. The goal of Intent-Based Management is to simplify

network management and operation so that networks require only mini-

mal user intervention. Even autonomic networks need information about

what is required from them, e.g., what policies they must enforce or what

services they must provide. That information constitutes an intent. [2]

The declarative nature of intents implicitly applies several important

concepts. First of all, it provides data abstraction. The users don’t need to

be aware of low-level device configuration details. Secondly, the functional

abstraction frees the user from figuring out how to achieve the given in-

tent. The Intent-Based System (IBS) derives the required course of action

by applying an algorithm or translation rules to the intent. [2]

Ideally, autonomic networks would translate the intent into a course

of action and apply it by themselves. The centralized orchestrator that

processes the intent would not be needed and the network devices would

use distributed algorithms and local device abstractions to take the intent

into the use. Because the intent applies to the network as a whole, ideally,

the intent would be automatically distributed across network devices and

the devices themselves would decide the required actions. [2]

In practice, complete decentralization is not desired. Users, for exam-

ple, require a single logical point of interaction through which they make

requests to the network in the form of intent and receive updates about

the network status. Also, most network devices can be simple packet-

forwarding devices without any intent processing capabilities, or their

processing power could be too low for intent processing. In those cases,



there needs to be a separate system that performs the required actions to

fulfill the intent. [2]

A logically centralized system would also be useful if particular intent

requires a complete view of the network. Due to the sheer size of data

describing the network or time lags related to the propagation of infor-

mation across the network, it might be infeasible to maintain a complete

view in each network device. [2]

Whether the implementation is decentralized or centralized an Intent-

Based Network is a network that is managed using intent. The network

takes input from the user in form of intent, translates it into course of

action and achieves the desired outcome. The outcome is achieved with-

out getting any technically detailed information concerning required steps

from the user. [2]

The functionality of taking an intent as a input from a user and apply-

ing it to a network is called the intent fulfillment. This functionality is

described in section 3.2.

3.2 Intent fulfillment

Intent fulfillment functionality consists of interfaces that users utilize to

enter an intent into the system and functions that perform the required

actions to achieve the intent. Algorithms that derive the required actions,

functions that continuously learn to optimize network operation, and or-

chestration that coordinates the provisioning of configuration commands

to the network are also part of this functionality. [2]

Functions of intent fulfilment can be divided into three categories: in-

tent ingestion, intent translation, and intent orchestration.

Intent ingestion

The process of fulfilling an intent begins with intent ingestion. Here the

system obtains the intent from the user and possibly lets the user refine

the intent until it is actionable by the IBS. Usually, the user interface in-

volves intuitive workflows that guide a user through the process of enter-

ing an intent, ensuring that all required information for intent modeling

and subsequent translation has been gathered. Instead of only prompt-

ing the user for input, the user interface may provide user clarifications,

explain ramifications and trade-offs, and facilitate refinements. [2]

The ultimate goal is that the IBS is as natural as possible for the user

to use. The expectation is that IBS doesn’t involve a steep learning curve,



for example, in form of requiring users to learn a new "language" of the

system. Ideally, the system will learn from the user and not the other way

around. [2]

Intent translation

The intent translation is concerned with translating the user intent into

network configuration commands that can be provisioned to the network.

The translation may result in multiple alternative configurations, which

all achieve the intent. To choose the optimal alternative, translation may

involve algorithms that learn about optimal configurations over time. [2]

Intent orchestration

Intent orchestration provides functions that orchestrate the provisioning

of configuration commands across the network. Configuration commands

are produced by intent translation. [2]

4 Lumi

Lumi[3] is a Intent-Based System that takes input from an operator as

an intent in natural language. Lumi translates the intent into network

configuration commands and deploys them to the network. Lumi consists

of four modules which are executed in succession: information extrac-

tion, intent assembly, intent confirmation, and intent deployment. Each

module can be replaced in a plugin-and-play fashion with an alternative

solution. [3] In the subsections each module is described in detail.

4.1 Information Extraction

The entry point to Lumi is in the information extraction module. The en-

try point is based on a chatbot interface. The entities are extracted from

the natural language intents using Named Entity Recognition (NER)[5].

Due to the popularity of personal assistants like Amazon’s Alexa and

Google Assistant, Lumi’s goal is to serve users with little technical know

how (e.g. home users) in addition to traditional network operators. Pro-

viding a natural language interface for the traditional user base of net-

work operators is beneficial as the teams are often composed of operators

with different levels of expertise and experience. [3]

Lumi solves the NER problem using Recurrent Neural Networks (RNN)[8].

Lumi’s NER process is a supervised learning algorithm. The training data



is a set of input-output pairs where input is an intent expressed in nat-

ural language, and output is a set of entities and their labels. Although,

NER is in general considered as a solved problem, practical challenges

still remain. It requires careful entity engineering, which refers to se-

lecting appropriate entities for the given problem, in order to achieve an

acceptable accuracy. [3]

The output of the NER is a set of labeled entities that are parsed from

the intent. In other words, entities are the set of operations supported by

the system. In Lumi, entities are organized hierarchically. Raw textual

values are at the bottom, forming the vocabulary Lumi understands and

are referred to as common entities. For example, values for @middlebox

are network functions like firewall, traffic shaping, and packet inspection.

Intermediate level entities are composite entities that are formed by ag-

gregating prepositions to common entities. For example, the @origin class

contains composite values "from @location" and "from @service". The top

of the hierarchy consists of immutable entities, and they form the core of

Lumi. @operations class, for instance, expresses operations supported by

Lumi. [3]

4.2 Intent Assembly

The input for the intent assembly module is a set of extracted entities

from the information extraction module. For example, if the input to the

chatbot were "Please add a firewall for the backend.", the intent assembly

module would be given these entities: {middleboxes: ‘firewall’}, {target:

‘backend’}. Clearly, these entities alone don’t enable checking the correct-

ness of the intent. For that purpose, Lumi assembles extracted entities

into a structured and well-defined intent. Lumi utilizes Network Intent

Language (Nile)[4] as the intent definition language. The Nile grammar

lets Lumi to check that the assembled intent is syntactically correct and

contains all required information. If some information is missing, Lumi

can prompt the operator to provide missing information through the chat-

bot interface. For example, if the operator had issued a "Please add a

firewall." intent without specifying the target, the intent assembly mod-

ule would not construct a Nile intent but would ask the operator to specify

the target. [3]

The intent definition language also enables the operator to easily con-

firm the assembled intent. The operator could write the intent directly

in the intent definition language, but it is less burden for operators to



use natural language and confirm the assembled intent afterward. It’s

well known that a person who understands a sentence is not necessarily

capable of producing one. [3]

As an example, below is the Nile intent for input like “Add firewall and

intrusion detection from the gateway to the backend for client B with at

least 100mbps of bandwidth, and allow HTTPS only” as shown in [3]:

define intent qosIntent:

from endpoint (’gateway’)

to endpoint (’database’)

for group (’B’)

add middlebox (’firewall’), middlebox (’ids’)

set bandwidth (’min’, ’100’, ’mbps’)

allow traffic (’https’)

4.3 Intent Confirmation

The challenge of using natural language as input is that it is inherently

ambiguous. The same intent can be expressed in many different ways.

Despite the recent advances in natural language processing, it is prone to

produce false positives or false negatives. Lumi addresses this issue with

intent confirmation. The intent is presented to the operator for confirma-

tion before provisioning it to the network. [3]

4.4 Intent Deployment

The last stage of intent processing is the compilation of the Nile intent

into a code that can be deployed to appropriate network devices. Lumi

compiles the intent into a Merlin[10] program. Merlin was chosen over

other network configuration languages, because it is a good match to Nile

in terms of supported network features, it performs well and the source

code is available. After the compilation to a Merlin program, there still

exist unresolved logical handles, such as low-level IP addresses, VLAN

IDs and IP prefixes, in the program. Lumi uses information provided

during the bootstrap process to resolve the handles to actual values. Once

handles are resolved, Merlin compiles the Merlin program into OpenFlow

rules. [3]



5 Analysis

IBN enables network operators to work on a higher level of abstraction

in the form of intents. This leads to better operational efficiency as op-

erators can focus on desired outcomes instead of implementation details.

The intents are automatically checked for conflicts and errors by the IBS,

which means that the risk of facing issues after provisioning the intent

is lowered. The autonomic operation of the IBN enables the network to

optimize its operation over time. That also enables the automatic scaling

of resources in response to the demand.

6 Conclusion

We reviewed the problems that arise with present networks from man-

agement and operation perspectives. We find that manual configuration

is, in general, time-consuming and error-prone, and it doesn’t allocate re-

sources optimally. In addition, configuration errors can go unnoticed in

the manual review of the configuration, resulting in connectivity issues,

security breaches, and performance degradation after the deployment of

the configuration. We showed that the autonomic nature of the Intent-

Based Network and the interaction with the network in the form of intent

addresses the significant issues of manual configuration.

We gave an overview of an Intent-Based Network and its functions. As

a practical example of an IBN, we showed how the core functions, namely

intent ingestion, intent translation, and intent orchestration, are imple-

mented in Lumi[3].
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Abstract

A microservice architecture has become a popular choice over a traditional

monolithic architecture. However, overall it is not typically clear when the

microservice approach is better than the monolithic alternative. A litera-

ture survey was conducted to figure out which characteristics of microser-

vices support the shift from the monolithic architecture to the microservice

architecture.

We determined better scalability and maintainability in addition to suit-

ability for agile development processes to be the most significant factors to

promote the microservice architecture. On the other hand, microservices

introduce additional complexity which defends monolithic approaches. We

concluded that to gain benefits of the microservice architecture a large

enough application is required, and the team’s experience of the microser-

vice architecture impacts the adoption complexity. Still the monolithic ar-

chitecture is well-suited for example for small load applications.

KEYWORDS: microservice architecture, monolithic architecture



1 Introduction

A microservice architecture has become a popular approach to design

services and has taken a foothold from traditional monolithic architec-

ture. Monolithic architecture is a software architectural pattern where

all server-side software components are packed to one program [11]. Mi-

croservice architecture is another architectural approach where the single

service application is split to multiple modularized services which typi-

cally communicate via Representational State Transfer (REST) Applica-

tion Programming Interface (API) [9]. The microservice architecture has

evolved over the last decade, when the next generation of software devel-

opment tools like containerization, monitoring and continuous delivery

has emerged [9], finally leading to introduction of the term microservice

in 2011 [11].

Traditional monolithic architecture has many problems concerning on

scalability, technology lock-in, resilience, deployment and large codebase,

for instance [12]. In addition, the shift to agile world in software devel-

opment field even highlights the issues related to the monolithic architec-

ture as it may not suit well for agile processes such as high deployment

cycle. Microservice architecture aims to solve problems of the monolithic

architecture for example by improving scalability and allowing faster de-

ployments, in addition to being better architecture for today’s cloud envi-

ronments [9]. While the microservice architecture tackles some problems

of the monolithic architecture, there is no clear winner that suits in every

case.

This paper aims to evaluate when the microservice architecture is more

suitable choice over the monolithic architecture. The paper performs this

by collecting the main forces towards the microservice architecture over

the monolithic architecture, and on the other hand the reasons to still use

the monolithic architecture.

First this paper in Section 2 presents the relevant background of the

microservice and the monolithic architectures. Section 3 discusses the

benefits and drawbacks of adopting the microservice architecture over the

monolithic architecture. In Section 4 we discuss observations concerning

the topics presented in this paper. Finally, Section 5 summaries the main

findings of this paper.



2 Microservice and monolithic architectures

Martin Fowler [6] raises the foggy definition of a software architecture

noting that there exists different opinions in the field how the architec-

ture should be defined. He emphasizes Ralph Johnson’s idea that the ar-

chitecture is "the shared understanding that the expert developers have

of the system design" [6]. This definition allows us to recognize different

patterns to implement the software architecture such as monolithic and

microservice architectures, which this paper focuses on. Next Sections 2.1

and 2.2 present the main ideas of the monolithic architecture and the

microservice architecture respectively in order to perform comparison in

Section 3.

2.1 Monolithic architecture

A software application relying on the monolith architecture consists of

"tightly coupled" components, which together implement the functional-

ity and logic of the application [2]. All of these components are required

at build or execution time. The literature uses the term monolith both for

the application, which is compiled to the single executable and for the ap-

plication that consists of modules [5]. In case of a modularized monolith,

modules depend on the shared underlying resources such as database and

memory, indicating that an individual module can not be executed inde-

pendently.

To tie the term monolith to the application stack we can consider the

typical enterprise application [11]. There exists three main units that

form the enterprise application: a client-side user interface, server-side

application and database. Here the server-side application is the monolith

that handles database and HTTP connections, performs the business logic

and serves the frontend files to the client. This kind of monolith runs all

logics related to a request in a single process [11]. An example of the

monolith architecture is given in [17, Fig. 1]. Note the modular structure

of the monolith, which is the server-side component described by a gray

rectangle boundary.

2.2 Microservice architecture

Microservice architecture can be seen as a subtype of service-oriented ar-

chitecture (SOA) [9], and thus it is relevant to briefly define SOA before



Figure 1. An example of monolithic architecture of E-Commerce Application [17].

diving into microservices. SOA can be defined as an architecture that

aims to be a loosely coupled system consisting of self-contained units or

on the other words services which communicate with each other forming

an application [13]. A self-contained unit has responsibility of one func-

tionality of the application and these services can be written in different

languages. However, Fowler [11] for example says that SOA as a term is

ambiguous and has different meanings for different experts. That is the

reason why it is best to consider microservice architecture as an individ-

ual term also in this paper.

Defining microservice architecture is also difficult as it includes mul-

tiple concepts and different implementations. Thus, instead of defining

it, Lewis and Fowler [11] try to express the microservice architecture us-

ing generally recognized characteristics. They outline that microservices

consist of independent service components, which communicate for exam-

ple via web service requests, and the service is responsible for one busi-

ness capability. Another characteristic relates to the communication of

services. Where SOA approaches rely on Enterprise Service Bus (ESB)

communication mechanism, microservices on the other hand handle the

communication inside the service using REST or some lightweight mes-

sage bus such as RabbitMQ. Namely, the service itself receives a request

or consumes a message, performs the requested logic and produces the

response. One common and concrete characteristic they mention is decen-

tralizing the data management, which in simply implies that each service

uses separate service specific databases. In addition, a few other charac-

teristics related to broader context of the microservice architecture were

discussed, but we will return to those in Section 3 when performing the

comparison.

Figure 2 [17] presents the E-Commerce application utilizing the mi-



Figure 2. An example of microservice architecture of E-Commerce Application [17].

croservice architecture. Compared to the monolithic version of the appli-

cation in [17, Fig. 1], here we can note the decomposition of the application

to independent services and databases.

3 Microservice architecture compared to monolithic architecture

Monolithic and microservice architectures differ in multiple ways, both

having numerous benefits and drawbacks. Since it would not be possible

to discuss all of them in this short paper, we will focus on specific topics

which were highlighted in multiple literature sources. Namely, we review

performance, scalability, complexity, development process, reliability and

security aspects. Naturally many topics interleave and multiple factors

are considered under following subsections.

3.1 Performance

A choice between the monolithic and the microservice architecture may

affect on the performance and efficiency of the application [8]. Perfor-

mances of these two architectures were examined by performing HTTP

request tests against two applications, which had similar functionalities.

The first application relied on the monolithic architecture while another

implemented the microservice architecture. The monolithic architecture

clearly overcame the microservice architecture when 30 000 requests were

sent at once. On the other hand, when the same test was performed with

300 000 requests, the microservice architecture handled more requests

per second compared to the monolith.

In the previous study researchers concluded the monolithic architecture

to be the better choice for businesses where the application load is rela-



tively small [8]. Correspondingly, the microservice architecture was re-

ported to be more suitable for a software that is required to serve larger

number of customers. While another research [1] concluded a similar re-

sult that monolith architecture overcame the microservice architecture

with insignificant load such as less than 100 users, it discovered that mi-

croservice architecture outperformed the monolith only slightly when in-

creasing the load. After all, evaluating the architectures simply by per-

formance is difficult as performance depends on e.g., chosen scaling ap-

proach. In addition, performance may be measured by different metrics

depending on the situation.

3.2 Scalability

In general, runtime scalability is frequently interpreted to be one of the

main forces towards microservice architecture over monolithic architec-

ture [16, 11]. Typically, vertical scaling is discussed in context of the

monolithic architecture and horizontal scaling correspondingly with the

microservice architecture. In vertical scaling more resources are allocated

for the provided single server. However, physical hardware restricts ver-

tical scaling. On the other hand, in horizontal scaling the service or appli-

cation is replicated to multiple servers and e.g., load balancer is utilized

to route the traffic. Horizontal scaling may be implemented for both ar-

chitectures as Figure 3 [11] illustrates. Nonetheless, the problem is that

horizontal scaling of monolith requires scaling of the entire application

while microservice architecture allows scaling of the most demanding ser-

vices [11].

Improved scalability was reported to be one of the highest motivations

for transforming to the microservice architecture from the monolith ar-

chitecture [16]. In addition, required infrastructure and scaling affect the

running costs of the application. Researchers conducted that microser-

vice architecture is more affordable approach in cloud environments such

as Amazon Web Services (AWS) compared to monolithic architecture [18].

They noted that microservices implemented with serverless functions are

the most cost-efficient solution when considering the infrastructure costs.

Nonetheless, for a low demand application monolith architecture with a

single virtual machine in cloud may be more affordable solution, as the

research focused on large applications.



Figure 3. Illustration of horizontal scaling of monolithic and microservice architectures
[11].

3.3 Development process and complexity

Semantically monolithic refers to something that is too large and un-

changeable [4]. Monolithic architecture, at the first glance, is simple to de-

velop, deploy and scale [15]. However, problems arise when the size of the

monolith or the team grows. When the codebase of the monolith grows, it

is more laborious to understand. Possible module boundaries tend to fade

away, modifying the application becomes difficult and development pro-

cess decelerates [15]. As a result the quality decreases and involving new

developers becomes challenging. On the other hand, microservice archi-

tecture tries to tackle these problems by relying on multiple small services

[14]. Smaller services are easier to understand and modify than monolith,

also for new team members. Though, Martin Fowler [7] resembles that a

large and well modularized monolith may be a proper choice instead of

microservices as theoretically well modularized monolith should be easy

to handle.

Both Richardson [14] and Fowler [7] discuss complexity. According to

Fowler the microservice architecture suits for services with high com-

plexity, otherwise a monolith is the optimal choice. Both of them how-

ever remind that while microservices reduce the complexity of an appli-

cation, microservices also introduce the development complexity of dis-



Figure 4. Development process productivity comparison of monolithic and microservices
in function of complexity [7].

tributed systems. For example, Richardson [14] mentions increased im-

plementation complexity related to communication between services, re-

quests which depend on multiple services and testing service interactions.

Fowler [7], in addition, mentions for instance automated deployment, fail-

ure handling and monitoring, as a source of complexity that microservice

architecture introduces.

Figure 4 [7] illustrates how development team is required to address

the additional complexity of microservice architecture in the beginning of

the project, which decrease the development speed. On the other hand,

when such an initial investment is completed and complexity begins to

increase, the advantages of the microservice architecture help to main-

tain productivity better than the monolithic architecture. Although new

businesses, like startups seeking to optimize time-to-market, may bene-

fit high productivity of the monolithic architecture in the beginning [14].

However, when considering the mature project, microservice architecture

allows faster time-to-market for new features due to continuous deploy-

ment [3]

Presently, continuous delivery and deployment are crucial parts of the

development process. Monolithic architecture allows easy deployment as

only a single executable or a package is deployed [15]. A drawback of the

microservice architecture is that multiple services require deployments

increasing complexity [14]. On the contrary, continuously deploying a



monolith can be difficult as the whole application deployment is required

despite the scope of the implemented change [15, 11]. Richardson [15]

mentions e.g., the risk that deployment of an entire application may pro-

duce bugs in components which were not modified, and as a result the

courage to perform future deployments may decrease reducing the de-

livery cycle. Though, Lewis and Fowler [11] mention that automated

pipeline for testing and deployment of monolith may be established quite

easily and thus subsequent deployments are safer. However, microser-

vice architecture enables deployment of services independently [14] and

thus support faster deployment cycle. For example, different teams can

perform deployments separately. Thus, selecting the best option in the

context of the continuous delivery depends on the situation; for example,

is it a problem to deploy an entire application at time, or is the team ready

to handle the increased complexity that microservices produce.

There exist also remarks related to a technology stack. Monolithic archi-

tecture tends to force the team to use the technology stack selected at the

beginning of the project, and updating to newer stack can require substan-

tial amount of work [15]. Contrastingly, small loosely coupled microser-

vices allow usage of different technology stacks in different services, and

also renewing an old stack is easier in context of small units [14]. Lewis

and Fowler [11] characterize this as a decentralized governance where the

team has more freedom to choose the tools they use for building the soft-

ware. Although they mention that monoliths allow this in some extent, it

is more restricted.

3.4 Reliability and Security

According to literature, microservices achieve better reliability compared

to a monolith [8, 14, 3]. While a single fault in the monolith may stop the

entire application, fault in one microservice breaks only the correspond-

ing microservice, but other services continue to serve customers [3]. To

achieve that, microservices ought to be well-designed to handle failures

and be able to isolate those. Lewis and Fowler [11] also list "design for

failure" as one characteristic of the microservice architecture.

Another factor to consider is testability, and both architectures have

their own pitfalls related to it. Monoliths are easier to test due to a single

codebase and the fact that the entire application runs in a single process

[3]. However, running tests takes a long time for a large monolith. Mi-

croservice architecture allows faster tests as only modified services can



be tested [14]. On the other hand, as mentioned before there exists some

complexity e.g., related to service interaction testing [14, 3].

Ensuring application security requires more considerations in microser-

vice architecture compared to the monolithic architecture [10]. Former

has multiple smaller attack surfaces while the latter one has one large

attack surface to secure. In case of microservices, more work e.g., related

to encryption is required to secure the REST API connections between dif-

ferent services [5]. Monoliths, on the other hand, may implement the re-

quest validation at API level and after that pass messages between func-

tions within the monolith [10]. Choosing the certain architecture does not

secure the application. That is why extra attention is required to imple-

ment security in both cases but especially with microservices.

4 Discussion

While both microservice and monolithic architectures have multiple ad-

vantages and drawbacks, it is typically difficult to argue that for specific

reason one option would overcome another. One reason may be that defin-

ing architectures itself is complicated, and many implementations may be

labeled under a specific architecture. Literature also uses metrics which

may be difficult to quantify, and evaluating the difference between archi-

tectures may be challenging with these metrics. For example increased

complexity was frequently used to determine whether switch to microser-

vices will emerge benefits. However, complexity itself is ambiguous and

depends on the situation.

After all, main reasons why especially large businesses are adopting

microservice architecture are improved scalability, maintainability and

suitability of microservices for agile development process. In addition,

an interesting motivation for adopting microservice architecture was "be-

cause everybody does it" [16]. Companies may not actually understand

the benefits of microservices prior to adopting, but they follow the main-

stream and possibly notice benefits after the adoptation. Nonetheless,

replacing a monolith with microservices requires a substantial effort as

splitting a monolith to microservices is a non-trivial task. It is interesting

that this motivation gathered multiple mentions because transform in-

vestment takes time and money and could be supposed that the decision

to transform would have been made after a careful evaluation.

While benefits and issues of the microservices are recognized and suc-



cessfully compared to the monolith, frequently it is fuzzy when to start us-

ing microservices over a monolith. Monoliths have drawbacks and while

microservices try to address these they meanwhile introduce new issues

and complexities. Rather than focusing only on the possible benefits, the

company or the team should consider which drawbacks they are ready

to live with. For example the team experience may be the most signifi-

cant criteria when choosing the architecture. Like presented in Section 3

monolithic architecture may still be the best choice, especially if the team

does not have experience of microservices.

5 Conclusions

We have evaluated differences between the microservice architecture and

the monolith architecture. The purpose was to collect the reasons when

the currently popular microservice architecture produces more value com-

pared to traditional monolith architecture. We performed the literature

survey to be able to present the most reported benefits and drawbacks of

both architectures to provide a general picture of the topic.

We found e.g., better scalability, maintenance and modern DevOps prac-

tices like continuous deployment to be main forces to adopt the microser-

vice architecture over the monolithic. On the other hand, we identified

that monoliths perform better on small scale as microservices introduce

overhead and reduce pure performance. In addition, more effort is re-

quired to establish microservice infrastructure compared to the mono-

lithic option.

Frequently there exists a counterargument to both directions and op-

timal architectural choice depends on the specific business and its scale.

Research in the field of microservices is quite an empirical due to histor-

ical emergence of microservices in practical business. We suggest more

research to determine better metrics to quantitative determine the opti-

mal architectural choice for different use cases.

After all, we have showed that as hard as it is to define the microser-

vice architecture as it is to compare it to the monolithic architecture, not

even speaking of selecting the winner. The microservice architecture and

software architectures in general evolve continuously. Thus, we may soon

notice many leaves of the microservice architecture which do not fit to

generally agreed definition of microservices.
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Abstract

Adversarial examples are maliciously crafted images that can deceive deep

neural network (DNN) classifier systems into misclassifying objects. Re-

search on adversarial examples seems to suggest that the existence of ad-

versarial examples in the input space is an inherent part of DNN classi-

fiers. This paper introduces some of the most prominent attack methods for

generating adversarial examples, and defenses that can be utilized to miti-

gate the effects of those attacks. The paper also illustrates how adversarial

examples are a threat in different threat models, such as in the physical

world.

KEYWORDS: adversarial attack, adversarial defense, deep neural net-

work, classifier

1 Introduction

Deep neural networks (DNNs), such as image classifiers, are widely used

in real-world applications. Image classifiers take images as inputs and

output class probabilities, which can be used to classify an object in the

image. Neural network image classifiers have been used early on for

handwritten zip code detection with a size of just 1256 nodes [13], whereas



current classifier DNNs can comprise 650 000 nodes and be able to classify

the ImageNet database [4] of a thousand classes [10]. Modern classifier

systems are seemingly very capable of image recognition tasks with high

accuracy.

However, the input image for DNN classifiers can be altered by introduc-

ing small perturbations, making the classifier misclassify the adversarial

example image [23]. The perturbations can be so small that the adversar-

ial examples are indistinguishable from the original images [23]. These

perturbed images create an attack vector for attacking classifier systems

and a challenging problem for defenders. Ilyas et al. [9] propose that the

misclassification of adversarial examples is an inherent feature of DNN

models, rather than a bug. Similarly, Goodfellow et al. [6] suggest that

the excellent results from DNN classifiers are a facade due to the fact

that outside of naturally occurring data (such as adversarial examples)

the systems perform misclassifications.

When machine learning systems are introduced to real-world tasks, such

as autonomous vehicles, healthcare, and other safety-critical systems [1],

the significance of adversarial attacks and defenses becomes apparent.

For example, street signs can be physically modified with stickers such

that they are classified as another street sign by image classifiers [5]. Fig-

ure 1 shows the pipeline for creating adversarial examples in the physical

world. Whereas street signs perturbed by other physical obstacles, such

as snow or vandalism, could be misclassified, the possibility of adversar-

ial attacks in the physical world in safety-critical systems presents a clear

threat.

Figure 1. Figure depicting the pipeline of crafting an adversarial example in the physical
world to change the classification of a stop-sign into a speed limit sign [5].



This paper gives an overview of adversarial attacks and defenses against

them. The paper also aims to present the practical consequences of these

attacks and motivate the need for robust defenses.

This paper is structured as follows. Section 2 illustrates the different

kinds of adversarial attacks and the theory of various attack methods.

Section 3 presents the standing defenses that have emerged to defend

against the known attacks. Section 4 discusses the implications of adver-

sarial attacks on machine learning systems, the continuing race between

attacks and defenses, and known theories for the causes of this flaw. Sec-

tion 5 presents the conclusions of the paper.

2 Attacks

A neural network classifier is a highly non-linear function from the in-

put to the output, and when trained with a softmax activation function,

the output layer represents a probability distribution of a label being as-

signed to the input [23]. These networks work on the idea of generaliza-

tion, where inputs similar to the training data on one label result in the

same label such that, for example, images of dogs from different perspec-

tives are still labeled as dogs. The theory for creating adversarial exam-

ples was first formulated by Szegedy et al. [23]. They remark that there

are areas in the input space that would result in an incorrect label, but

they are hard to find with random sampling [23]. Yet these areas could

be found by solving an optimization problem. This optimization is essen-

tially gradient descent with the loss function of the DNN in order to find

the positions of the input space that produce the adversarial label. The

loss function essentially tells the difference between the predicted out-

put and the actual output of the DNN. While the loss function of a DNN

is minimized in training to have the best output from the system, the

adversarial loss function is maximizing the error. Despite the different

available attacks, many of them are based on this same idea.

Many prominent attacks are so-called white-box attacks, meaning that

the attacker has access to the entire trained network. Alternatively, black-

box attacks include attacks that have only partial or no information about

the network.



Figure 2. Example of the FGSM-attack on ImageNet-based GoogLeNet network, where
an imperceptible perturbation is applied to an image of a panda to generate an
adversarial example labeled as a gibbon [6].

2.1 Types of attacks

L-BFGS

Szegedy et al. [23] formalized the adversarial examples in the following

way as minimization of two terms. This is an approximation with box-

constrained L-BFGS.

• Minimize c|r|+ lossf (x+ r, l) where x+ r ∈ [0, 1]m

Here f : Rm → {1...k} is the classifier that maps the input pixel values

to the label set. This classifier function f has a continuous loss function

lossf : Rm × {1...k} → R+. For an adversarial example, the term x + r is

the nearest input to x that maps to the adversarial label l. The first term

minimizes the perturbation to keep it visually equivalent to the input

image, whereas the second term minimizes the loss of the adversarial

label. The constant c > 0 controls the balance between the terms and is

used for performing the line search until the adversarial label is reached.

The L2 norm was used by Szegedy et al. [23] however any norm, such as

L∞ or L0, can be used that can measure the distance between the original

image and the adversarial example.

The minimization can also be formalized with x′ being the adversarial

example input:

• Minimize c|x− x′|+ lossf (x
′, l) where x′ ∈ [0, 1]m



Fast Gradient Sign

The fast gradient sign method (FGSM) aims for the simple and fast gen-

eration of adversarial examples [6]. The method doesn’t necessarily aim

at making the perturbed samples minimally different from the original

images [6]. Kurakin et al. [11] have also suggested an iterative version of

the algorithm, which uses the same idea but iterates several times with

small step sizes and clipping of intermediate results. The regular fast

gradient sign method is as follows

• x′ = x+ ϵsign(∇xJ(θ, x, y), where x is the original image and the second

term is the perturbation with θ being model parameters [6]

The required gradient can be computed with backpropagation as long

as the model parameters, input, and output are known [6]. The gradient

gives the direction and the epsilon gives the magnitude of descent along

the direction. Figure 2 shows how FGSM can be applied to change the

classification of a panda to a gibbon with ϵ = 0.007.

PGD

The Projected Gradient Descent (PGD) -attack is an iterative attack, which

resembles the FGSM-attack in that the method for finding x′ with FGSM

is similar to a single step in PGD [16]. The multi-step iterative variant of

FGSM [11] is thus effectively PGD with a negative loss function [16]. The

main difference to normal gradient descent using the loss function is that

in PGD, the maximization of the loss happens subject to a selected con-

straint. PGD has been argued to be the best attack, which uses first-order

information about a network [16].

JSMA

The Jacobian-based Saliency Map Attack (JSMA) introduced by Papernot

et al. [20] is an iterative method based on the forward derivative and

an adversarial saliency map of the DNN. The adversarial saliency maps

indicate the features that should be perturbed in order to get adversar-

ial examples efficiently [20]. The forward derivate is evaluated over the

network directly, allowing the use of the forward propagation [20]. The

resulting algorithms use these components to identify the most easily per-

turbed features and then modify them.



DeepFool

DeepFool is an iterative method, which models the boundary between the

original class and other classes as a set of hyperplanes [19]. The algo-

rithm is used to find the closest boundary and thus find the minimum

perturbation required to change the classification.

CW

The CW-attack continues upon the work of Szegedy et al. [23] by changing

the constant c to be a balancing factor in the second term [2]. They also

insert a confidence parameter κ into the minimization. There are several

versions of the CW attack based on which distance metric is used, for

example, the attack with L2 is the CW2-attack. The different distance

metrics may not be differentiable fully, such as with the CW∞-attack, in

which case the attack is performed iteratively [2].

2.2 White-box and black-box attacks

The introduced attacks have assumed full access to the target model. This

is not necessarily unrealistic, since for example Szegedy et al. [23] noticed

that adversarial examples could be transferred to other models. However,

in a different attack model, the attacker can have a variable level of ac-

cess to the original network and its outputs. When considering attacks on

commercial models, each query usually costs money, which leads to a mon-

etary limit on queries that can be made in the generation of adversarial

examples [8].

Attackers can also have limited visibility into the model’s outputs, such

as just seeing probabilities for the top k classes [8]. In the label-only

setting, only the output labels in order of probability are shown to the

attacker [8]. Ilyas et al. [8] produced reliable adversarial examples with

just the top label visible to the attacker. Thus even in an extremely lim-

ited information threat model, the adversary could be able to generate

adversarial examples if the network is not adequately defending against

the attacks.

2.3 Transferability

Szegedy et al. [23] created two different models, which were trained using

the same training data, and found that an adversarial example generated

on one model transferred to the other model as well, causing misclassi-

fication. When they partitioned the training data to create two differ-



ent models, the adversarial examples generated on one transferred to the

other [23]. Therefore the adversarial examples can be transferrable be-

tween different models even when the training data is different. Thus the

attacker may not need the target model but can create adversarial exam-

ples on one accessible model, and transfer the inputs to the target model.

Resistance against transferability can be improved by increasing network

capacity and using adversarial examples in the training data [16].

3 Defenses

Adversarial defenses are mainly based on modifying the network during

training to be more robust to adversarial examples during training. Many

defenses have been broken soon after publication due to new or modified

current attacks being released, or due to failures to evaluate the proposed

defenses extensively enough. Intuitively if DNNs are trained on images

to divide into classes, but adversarial examples result in the wrong la-

bel, the examples can be fed to the network during training to increase

robustness against an attack. This is essentially the idea behind Adver-

sarial training.

3.1 Adversarial training

Adversarial training [16, 12] is the process of feeding generated adversar-

ial examples to the DNN during the training phase. This process was

noticed to reduce the effect of adversarial examples by Szegedy et al.

[23] when they first formulated adversarial examples. Further research

[6, 16, 12, 7] has shown how this process can be additionally honed to

reach lower error levels on different kinds of networks and attacks.

Goodfellow et al. [6] were able to reduce the error rate from 89.4% to

17.9% on a DNN using adversarial training and FGSM to generate the

examples. However, Madry et al. [16] proposed that using single-step

methods such as FGSM left the networks vulnerable to multi-step iter-

ative methods such as PGD, which indicates that the strongest attacks

should be used in the training instead. Additionally, Kurakin et al. [12]

proposed that larger high-capacity networks are by default more robust

to adversarial attacks.

Huang et al. [7] built on top of the work by Goodfellow et al. [6] by focus-

ing on maximizing the classification error with the adversarial examples



and minimizing it with the classifier in training. This is essentially giv-

ing the worst examples to the network to prepare it for the worst-case

scenario [7].

3.2 Randomized Smoothing

Randomized smoothing for DNNs is a defense technique, where the in-

puts are smoothened using Gaussian noise [3]. Cohen et al. [3] propose

that using randomized smoothing is advantageous for large models (such

as ImageNet) and proves a robustness guarantee for its results. Using

smoothness and noise for robustness has also been extensively studied by

others, such as [14, 15]. Whereas randomized smoothing may prove to be

theoretically efficient, its practicality against black-box attacks has been

questioned [18].

3.3 Barrage of Random Transforms

Transforms on input images have been used in the training of neural net-

works to fortify them against data not completely covered by the training

images. The barrage of Random Transforms (BaRT) method [21] com-

bines several of these weaker transforms into a randomized large set of

transforms applied on the input images. By introducing randomness, the

attack attempts to make it harder for the attackers to predict the specific

transforms used on the images [21]. Thus the attacker can not predict

directly which gradient to attack and is forced to use, for example, aver-

ages of transformed gradients. Raff et al. [21] used the ImageNet dataset

and beat the accuracy provided by Adversarial training when the model

is under attack, resulting in 24 times the accuracy of previous defenses.

The robustness of random transformation defenses has been contested

by Sitawarin et al.1 [22], who claim that it has not been rigorously tested.

They propose that random transformation defenses have been evaluated

with attacks that are not adequate to beat the defense [22]. Thus it re-

mains unclear whether BaRT is a viable defense after all. BaRT has also

been evaluated in the black-box setting, [17] in which it did not achieve

notable defense accuracy.



4 Discussion

The plethora of available adversarial example generation methods, which

stand undefeated against scrutinous review obviously indicates a need for

robust defenses against them. Many defenses have been produced, but

not many of them have been able to adequately defend against common

attacks. Some attacks are also transferable between models, which makes

the white-box attack threat model very viable, as attackers can use other

models in a white-box setting to attack their target model.

DNN classifiers (and other DNNs) are vulnerable to attacks, which can

be transferred between models and used in real-life threat models. Cur-

rent safety-critical DNN classifiers can be fooled into making false pre-

dictions, which alters the perceived reliability and safety of these sys-

tems. Thus it is questionable whether these DNN classifiers can be used

in safety-critical domains without reasonable doubt over their vulnerabil-

ities.

While adversarial training and other defenses may increase the robust-

ness of a network, new attacks could find adversarial examples, which the

network has not been trained against, and thus bypass the defense. By

using the strongest known attacks, this problem could be mitigated.

The cause for adversarial examples existing for classifier networks re-

mains still somewhat unclear. Some suggest that the adversarial exam-

ples are a feature [9]. There have been several suggestions for the reasons

for adversarial examples existing. It seems like the existence of adversar-

ial examples is an inherent part of a DNN classifier, but the specific reason

for this remains an intriguing topic to explore in future research.

5 Conclusion

This paper has given an overview of adversarial attacks, and defenses.

The paper also considered the practical consequences of adversarial at-

tacks. Adversarial attacks present a clear threat to DNN classifiers both

in the digital and the physical world. While training a DNN classifier, one

must consider the possibility of adversaries being able to fool the system,

and thus use strong defenses, such as Adversarial training.

It may be that adversarial examples are an inherent part of DNN clas-

sifiers. Strong attacks such as PGD and the CW attack can be utilized in

the training phase to achieve better robustness against the attacks. As



new attacks are introduced, new defenses must be considered, and old

defenses must be updated to match the new threat profile.
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Abstract

With fingerprints and face recognition being widely used for authentica-

tion in phones and laptops, the use of biometric based identity verification

has seen an exponential increase. Hence, there is a significant demand

for development of biometric systems which can further enhance security

and privacy. Recent research has demonstrated that EEG is a suitable

psychometric signal for biometric verification, and possesses key charac-

teristics, including resilience to spoofing attempts and impossibility to use

under stress. This paper provides a brief introduction to the field of EEG

based biometric authentication and discusses some of its benefits, draw-

backs, constraints and related privacy concerns.

KEYWORDS: EEG, Authentication, User identification

1 Introduction

User identification and authentication has always been an important topic

in the world of information security. In recent years, there has been an

increase in the use of biometrics for authentication. This method of au-

thentication involves using user’s distinct biological traits as passwords.

The uniqueness of these traits make biometric authentication highly ef-



fective.

Traditional methods of biometric authentication include the use of fin-

gerprints, iris or voice as the authentication factor. However, simple spoof

attacks are able to break these methods [1]. To overcome these challenges,

several researches have focused on the possibilities of using biometric sig-

nals, such as EEG, ECG or EMG for authentication.

This paper reviews the use of electroencephalogram (EEG) biometric for

authentication and its benefits and challenges. The remainder of this

document is structured as follows. Section 2 discusses the genetic traits

of brain signals and authentication based on them. Section 3 enumerates

the benefits of using EEG signals as an authentication factor. Section 4

presents the challenges involved in EEG based authentication. Section 5

reviews the current state of the system in a real world setup and the scope

for future research. Finally, Section 6 discusses the drawn conclusions.

2 EEG

EEG is the electrical recording of brain activity, represented as voltage

fluctuations resulting from ionic current flows within the neurons of the

brain [2]. Based on their frequency and voltage, these signals are clas-

sified into five separate frequency bands: theta, alpha, beta, gamma and

delta waves respectively. These waveforms from the different parts of

brain give some indication about a person’s mental or physical states [3].

The delta waves fall in the frequency band between 0.5-4 Hz and are

the slowest EEG waves with amplitudes ranging between 75-200 µV [4].

They reflect the brain of an unconscious person and are observed during

deep sleep in adults. Theta waves have a frequency of 4-8 Hz with am-

plitude less than 100 µV . They are associated with memory recalling.

The most dominant frequency band is the alpha band with its frequency

ranging between 8-14 Hz and amplitude less than 50 µV . They are ob-

served during the state of relaxed awareness. Beta waves are associated

with increased alertness and active concentration. These waves are ob-

served while executing body movements. The frequencies of beta waves

normally range from 14-30 Hz, and their amplitude is normally less than

30 µV . Brain waves with frequency over 30 Hz are classified as Gamma

waves. They are observed during multiple sensory processing. They have

the lowest amplitude among all, i.e., less than 2 µV . Thus, in general, it

can be assumed that the low frequency waves are associated with inactive



state of the brain whereas, the high frequency waves are associated with

active information processing.

2.1 EEG traits

The synaptic activation of the brain’s neuron creates electric fields, which

generates EEG signals. If these signals are obtained in response to visual

or emotional stimuli, then they can be classified as behavioural biomet-

rics [1]. To be suitable for authentication purpose, every biometric factor

needs to meet a certain set of requirements: universality, distinctiveness,

permanence, and collectability [5].

Studies have shown that EEG is compliant with these quality measures

[6]. Universality means that every person should posses the trait, and

EEG satisfies this requirement as the absence of EEG is a clinical sign of

brain death [7]. Distinctiveness requires the biometric to be unique for

each person. Permanence requires the trait to stay sufficiently invariant

over a period of time. Berkhout and Walter [8] demonstrate the stability

and individuality of the EEG signals. The collectability criteria refers

to the requirement that it should be easy and comfortable to collect and

measure the trait. La Rocca et al. [9] argues that the major limiting factor

in the collectablility is the number of electrodes used, as a large array of

electrodes is needed to achieve an identification accuracy of more than

90%. However, Armstrong et al. [6] performed biometric identification

with only three electrodes and has showed that it is possible to maximize

the collectability with a minimum number of electrodes.

2.2 Biometric authentication based on EEG

The authentication factors used in the identity verification process are

often some previously known, specific information about the user. There

are typically three different kind of authentication factors, which include

something that a person knows, something that a person has or something

that a person is. EEG based authentication belongs to the third category

[10].

The first step in constructing an EEG based authentication is the EEG

acquisition. Abo-Zahhad et al. [1] discusses the four categories of EEG

acquisition protocols. The first category is recording EEG signals during

relaxation with eyes open or closed. The next is visual simulation where

the brain activity is recorded during reaction to a visual stimuli. The



Figure 1. Commercial EEG headsets [1]

Figure 2. EEG biometric authentication system [1]

third group of acquisition protocol involves performing mental tasks, like,

imagination of a body part movement or performing mental mathematical

calculations. The last group includes EEG signals based on emotional

stimuli where the subjects are asked to focus on the emotions linked to a

personal circumstance.

The authentication system records these with the help of EEG head-

sets. Examples of some commercially available devices for this are shown

in Figure 1. These signals are then preprocessed to remove noise and en-

hance the quality. Features extraction is done from these preprocessed

signals, which is then used to train a classifier model. There are two

separate modes in EEG based authentication. The first one is identifica-



Biometric Study Entropy (bits)

Fingerprint Li et al. [12] 48

Face Feng and Yuen [13] 75

Iris Kanade et al. [14] 94

Retina Arakala et al. [15] 17

EEG Bajwa and Dantu [16] 82

Table 1. Entropy of different biometrics

tion mode, which answers the question, who is the user, and the model

tries to identify the user’s class by receiving their EEG records. The sec-

ond mode is verification mode where the user claims an identity and the

model should grant or reject access based on it. Both modes contains an

initial recording phase called registration phase during which the model

is trained. After this, the users will be able to verify or identify using the

system by performing the same task which they performed during the ini-

tial recording phase. This signal, which is captured by the EEG headset

is then processed and classified by the model for identification or verifica-

tion. An overview of the processes involved in EEG-based authentication

is shown in Figure 2, for both modes.

3 Benefits of using EEG

Brain biometrics potentially have many advantages over current conven-

tional biometrics, such as fingerprints and retinal scans [11]. Studies

show that the entropy of EEG is approximated to be around 82 bits, which

is far superior than the other commonly used biometrics, such as finger-

print, face, iris and retinal scan. Furthermore, it is important to note

that the entropy of human chosen passwords is usually only around 20-

22 bits, which makes EEG a better candidate for authentication. Table 1

summarizes the entropy of some of the most commonly used biometrics.

EEG signals are inherently more privacy complaint than other popular

biometrics, like, face, iris and fingerprints, since they occur as a result of

cerebral activity and therefore are not exposed and cannot be captured

from a distance. Biometrics, like, fringerprints are very common these

days in devices, such as mobile phones and laptops. These can be easily

forged as they can be left on these devices itself and can be recreated from

those using various techniques [17]. However, EEG signals are immune



to these kind of spoofing attacks as they are recordings of brain activity

in response to a particular task during a certain mental state and are not

left on the devices or objects. Moreover, with other biometrics an attacker

can use a dead body to authenticate their access to a system, but with

EEG biometrics this is not possible as a dead brain would not generate

EEG singals. Thus, the liveness detection, which is a major challenge in

conventional biometrics, is naturally overcome using EEG.

Another benefit of using EEG for authentication is that it prevents the

hackers from forcing the users to authenticate without their consent. With

other common biometrics, like, fingerprint or face recognition it is eas-

ier for an intruder to make the user authenticate by using force, but

with brain biometrics this is not case. If forced, the measured EEG sig-

nals would show signs of stress and would not match with the previously

recorded EEG signals during relaxed state and thus it will prevent access

[4]. All these benefits show that EEG is a viable candidate for biometric

authentication as it guarantees that the users are alive and are authenti-

cating by their own will.

4 Open challenges

The above discussions show that EEG is a leading biometric authentica-

tion with many advantages over other existing systems. However there

are still several open challenges in the field. All the studies were con-

ducted in controlled environments and this is not the case in real life. For

example, if users are running to catch a bus then their stress level would

be high and in between if they try to unlock their phone which uses EEG

based biometric then it would result in denial of access. This is not an

ideal or desired behaviour for an authentication system. In this section

we will examine some of the main challenges in employing an EEG based

biometric system for personal authentication in real life.

4.1 Universality

Current studies have mostly been done on limited set of subjects who are

healthy and young and this is not sufficient to guarantee universality in

real life scenarios for users belonging to different age groups or having

other medical conditions [11]. Moreover, almost all the researches have

focused on a classifier learning from the recorded EEG signals of a set



of subjects, and then this model is used to identify the users. The major

drawback for with this kind of a system is that to add a new user to the

system, it will require at least one EEG sample of the new user and the

whole model will have to be re-trained with it from scratch [11].

4.2 Permanence

Another issue with EEG based biometric is that there is a language de-

pendency on the part of the brain, which is activated with response of lin-

guistic stimuli. Reiterer et al. [18] show that the native language process-

ing in adults mostly involves left hemisphere, whereas foreign language

processing is more distributed over both left and right hemispheres. Fur-

ther, with increasing proficiency in the secondary language, the linguistic

processing shifts more towards the left hemisphere. This will result in

an inconsistency in the recorded EEG pattern over the scalp over time.

Thus, the authors believe that if pass thoughts going to be used are words

or songs then it should be in the user’s native language.

4.3 Acceptability

The success of a practical biometric system depends mainly on the accept-

ability of the system, i.e., are users willing to use the system. This puts

forward certain challenges for EEG based authentication. As EEG signals

represent the mental state of a person, it reveals several private informa-

tion about the individual. A solution for this is to use either encryption

or hashing. In case of encryption the user’s information will be compro-

mised if the attacker gains access to the encryption key. Furthermore, the

conventional hashing methods used for storing passwords cannot be em-

ployed in case of EEG based authentication, as the EEG signals recorded

over different sessions are never exactly the same for a user. These small

changes in input to the hash functions will result in different outputs

thus the system would not be able to verify the user’s claimed identity

[11]. These privacy concerns poses a major barrier towards acceptabil-

ity of EEG based authentication and further research is needed in this

direction to make EEG based biometric systems practical in real life.



5 Discussion

Using a commercial dry-electrode EEG headset, Yang et al. [19] demon-

strated the viability of EEG-based authentication in a real-world, outside-

of-lab environment. The accuracy levels of the demonstration were lower

than those attained in previous studies performed in controlled environ-

ments using clinical-grade EEG equipment. This shows that the EEG

biometrics requires further improvements on its accuracy before it can be

used for practical system implementation.

Despite the many benefits of EEG biometrics, the main barrier to the

adoption of these systems is the cumbersome acquisition setup for users,

which entails a number of electrodes put on the scalp and typically the use

of conductive gel to lower skin impedance. Therefore, reducing the num-

ber of electrodes in use is an important problem that should be solved

in order to enhance the user experience. However, currently, there are

several EEG-based products on the market, primarily for entertainment

purposes, that use only a few number of electrodes. These devices are

not used for authentication; nevertheless, they serve as a proof of con-

cept for how the number of electrodes can be decreased. Additionally, dry

electrodes that do not require conductive gel have lately been made avail-

able on the market. These electrodes would reduce the discomfort of the

user wearing the headsets. On the contrary, these devices are more ex-

pensive. This would increase the overall cost of the system, making it

less suitable for commercial use. The main disadvantage of dry devices

is that their accuracy is not as precise as other Brain Computer Inter-

face devices used in medical areas. Therefore, it is worth researching that

whether portable devices with dry electrodes are appropriate choices for

recording EEG data for identifying individuals.

6 Conclusion

This paper reviewed biometric authentication using EEG signals. The

brain wave characteristics associated with different frequency bands were

discussed in the paper. In addition, the paper highlighted the EEG traits,

which make them a suitable candidate for biometric authentication. An

overview of the steps involved in EEG-based authentication system have

been detailed. Further, the paper summarised the benefits and open chal-

lenges in EEG based authentication by reviewing existing studies. Addi-



tionally, the performance of the system in real world, outside of lab envi-

ronment, was discussed, along with topics for further research.
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Abstract

Characters in video games have complex behaviors. Different types of

characters, such as bipedal and quadruple-legged characters, and their in-

teraction with the environment, offer a wide range of possibilities for creat-

ing controllers. A variety of behaviors can be displayed by these characters,

ranging from different modes of locomotion, such as walking and running,

to different actions, such as sitting and carrying objects. In many fields,

neural network-based deep learning methods are now widely applied, and

character controllers are no exception. A survey of different methods for

creating controllers for video game characters is presented in this paper,

including five state-of-the-art neural networks for creating controllers for

bipedal and quadrupedal characters.

KEYWORDS: Animations, Video Games, character control, deep learning,

neural networks

1 Introduction

In video games, the character control system (or controller for short) is

an important and critical module, which is responsible for controlling the

movement of the player’s character. Creating a controller that is both ro-



bust and responsive can be a challenging task for developers. In order for

a character to appear natural, it must perform a variety of actions, includ-

ing different modes of locomotion, avoiding obstacles, and interacting with

objects and other characters in the scene. In order to accomplish these ac-

tions, a variety of animation clips are needed. Conventionally, animation

graphs and state machines are used to develop such controllers. However,

since there are many animations to include all the actions, designing such

a controller using state machines would result in a very complex anima-

tion system that is difficult to maintain and expand.

Clavet [3] introduced motion matching to address the problem of dense

state-graphs complexity. In motion matching, at each frame, the best pose

of the character is chosen from an unstructured animation database us-

ing a scoring system. Motion matching suffers from two major problems.

First, it finds the best matching pose by brute-forcing the database at each

frame, which grows linearly as the database grows. In this approach, to

search the database, the database must exist in memory, which results in

high memory consumption. The second problem is that motion matching

cannot synthesize new animations since it only uses the poses available

in the database. Holden et al. [7] introduced learned motion matching

to overcome the problem of memory usage by replacing different compo-

nents of motion matching with its learned alternative ones. However, the

problem of not synthesizing new animations still exists.

This paper aims to introduce the state of the art animation controllers

that use supervised machine learning approaches.

This paper first introduces motion matching as it is currently one of the

most used frameworks for creating character controls and animations sys-

tems in the game industry. Then, we study the state of art of synthesizing

animation and character controller by comparing different deep learning

approaches for creating character controllers.

This paper is organized as follows. Section 2 describes the related work

done using neural networks. Section 3 provides a preliminary introduc-

tion to motion matching and neural networks. Section 4 studies five dif-

ferent neural network architectures for creating character controllers. Fi-

nally, Section 5 offers concluding remarks.



2 Related work

In recent years, data-driven approaches which have benefited from super-

vised machine learning models such as neural networks have been used

to create character controllers.

Holden et al. [8] used a phase variable which represents the phase of

the motion cycle for a humanoid character. This variable is then given to

a function called phase function which outputs the weight of the neural

network. Zhang et al. [15] proposed a novel neural network called Mode-

Adaptive Neural Networks, which produces a new pose for quadruped

characters based on previously given frame input. Starke et al. [11] pro-

posed a neural network for character scene interaction , such as sitting,

picking up objects, and avoiding obstacles in addition to different types of

locomotion. All of these approaches use a global temporal parameter to

differentiate between the different phases of the motion of the characters.

Starke et al. [12] presented a new framework which uses a local phase

for each body part that makes contact with the objects in the environ-

ment instead of using a global phase. This approach result in a synthesis

of sharp animations for situations that need much contact between the

characters or the character and an object. In addition, this framework

can be generalized to be used for quadruped characters. Since these ap-

proaches use a large amount of data, the iteration time can be slow. By

introducing a modular deep learning framework, Starke et al. [13] took

a similar approach to learned motion matching [7], but this approach has

the advantage of synthesizing new animations.

3 Preliminaries

This section first explains and defines the motion matching algorithm.

After that, it introduces the basis of neural networks since they are the

main building blocks for deep learning frameworks that are used to create

character controllers.

3.1 Motion Matching

Motion matching is an animation selection algorithm that is currently

widely used in video games. It was first introduced by Clavet [3] for the



game called "For Honor". Since then, different versions of motion match-

ing have been used in games, such as "The Last of Us Part 2" by Naughty

Dog, Inc [10], "Control" by Remedy Entertainment Plc [9], and "Madden"

and "FIFA" by Electronic Arts [2].

Clavet defines motion matching as a brute-force animation selection algo-

rithm in which the animation database is searched for the best matching

pose in each frame.This algorithm can be more formally defined as follows.

Input

The input of the algorithm is a feature vector consisting of two major com-

ponents and metadata. The components are the pose of the character in

the previous frame and the future trajectory.

These properties can be defined as follows. X = {Jp
i−1, J

v
i−1, J

d
i−1, T

p, T d,M} ∈
Rn where Jp

i−1 ∈ R3N are the joints 3D position local to the root joint of

the character in the previous frame, Jv
i−1 ∈ R3N are the joints 3D veloc-

ity local to the root joint of the character in the previous frame, and N is

the number of joints that will be matched. According to Clavet, the per-

formance can be boosted by choosing a few joints instead of choosing all

of the joints of the character’s skeleton. For example, using only the feet

joints and the hip joint.

T p ∈ R2t are the future 2D trajectory positions and T d ∈ R2t are the future

2D trajectory directions. The trajectory positions and directions of the

character can be calculated using the values from the game-pad control

stick. The trajectory of the animation can also be calculated by project-

ing the hip joint on the ground. Since there may exist some noises in hip

joint movement, Holden [6] suggests smoothing out the position using a

Savitzky-Golay filter.

M is the metadata used to match different features, such as one-hot en-

coded vectors for matching specific gates and the local velocity of the char-

acter. For example, the position of the sword was one of the metadata

features which was used in the game "For Honor" that allowed combo an-

imations.

Output

The output vector can be defined formally as follows. Y = {J t
i , J

r
i , O}

where J t
i and Jr

i are the joint translations and rotations for the current

frame, and O is other additional output tasks, such as foot contact infor-

mation, the position of the objects in the world, and the future position

and direction of the trajectory of the selected animation.



Workflow

The workflow suggested by Clavet for using motion matching in the game

"For Honor" is as follows.

The motion is captured using dancing cards. Zadziuk [14] proposed danc-

ing cards for capturing actors’ movements in motion capture scenes. Danc-

ing cards help animators to capture effectively, meaning capturing as few

moves as possible while creating the most coverage possible.

Once the motions are captured, animators tweak and clean them up,

label the important parts of them, and import them into the engine.

At runtime, at each frame, the gameplay code makes a query to the an-

imation system by specifying input variables, such as speed, trajectory,

and the gate of the character. Based on the query, the animation system

then tries to find the best possible matching frame (frame with the lowest

cost). Finally, the animation system procedurally adjusts the pose accord-

ing to the environment, other characters, and the gameplay code using

techniques, such as animation warping and inverse kinematics (IK).

3.2 Neural Networks

One of the machine learning algorithms that support supervised learn-

ing is neural networks. The idea behind neural networks is to create an

algorithm that mimics the operations of an animal brain.

Neural networks are extremely efficient in learning from data. As a

result, once the network has learned, it can predict the output based on

the provided input.

Gurney [5] has presented a pragmatic, working definition of a neural

network: "a neural network is an interconnected assembly of simple pro-

cessing elements, units or nodes whose functionality is loosely based on

the animal neuron. The processing ability of the network is stored in the

inter-unit connection strengths, or weights, obtained by a process of adap-

tation to, or learning from, a set of training patterns"

In order to understand how neural networks work and what the ma-

jor components are, can be observed in the following example which was

presented in [5].

An example of a simple neural network can be seen in Figure 1. This

simple neural network is also known as a single-layer perceptron.



Figure 1. Single-Layer Perceptron

Inputs

The input X is one of the components of the neural networks. The input is

the data that is sent to the perceptron for further processing. The input

can be actual input data which consists of different features or it can be

the output of other perceptrons. In this example we can see that the input

X = x1, x2, . . . , xn has n features.

Weights

The edge between each input and a neuron has a weight. This weight is

used to compute the neuron output. Weights indicate the impact of an

input xi on a neuron, and can be both positive and negative.

Activation Variable

The activation variable is the total sum of the input and weights. It is the

variable α in the Figure 1 and is calculated as follows.

α =
∑

i

wixi

Activation Function

The activation function is a function that takes α and a bias as input

and decides whether this node (neuron) is active or not. The activation

function that is used in this example is known as logistic sigmoid.

y =
1

1 + exp(−(α− θ))

[5] [1]



4 Neural network based character controllers

In this section, five different neural network architectures for creating

character controllers are discussed.

4.1 Phase functioned neural network

Phase functioned neural network is the network structure proposed by

Daniel Holden, for creating humanoid character controllers. It uses a

three-layer fully connected neural network with an exponential rectified

linear(ELU)[4] activation function. This network structure is unique in

that it computes its weights using a periodic function called the phase

function. This function can be another neural network, Gaussian Process,

or other functions. Holden uses cubic Catmull-Rom spline as the phase

function. A phase is a scaler value between 0 and 2π that is defined based

on the character’s foot position and is labeled during data preparation.

The locomotion of humans is mostly cyclic, and the phase is determined

based on the foot landing on the ground. For example, in the clip, the first

left foot land is assigned the value 0, the first right foot land is assigned

the value π , and the second left foot land is assigned the value 2π. The

phases in between can be calculated by interpolation.

4.2 Mode-Adaptive Neural Networks

In quadrupeds, movement is different from humanoid movement, so it is

difficult to distinguish different modes of movement using a single phase

variable. Therefore, using the approach in PFNN results in the artifact

for quadruped characters.

The network architecture for Mode-Adaptive Neural Networks consists

of two different parts. The first part is the motion prediction network.

With the help of a few features as input, this network tries to differenti-

ate between different behaviors and actions. The outputs of the network

are blend weights used for expert pools. An expert is a neural network

weight for the second part of the model and specializes in a single action.

Motion prediction is the second part of the algorithm that determines the

character’s pose in the scene. In this network, the weight is calculated by

blending the expert pools.

In this approach, the feet velocity is used as the feature to differentiate

between different actions. According to Zhang, this feature yields the best



quality because the velocity of the feet correlates closely with the phase

of the locomotion, creating a similar effect to that of the phase function in

PFNNs.

4.3 Neural State Machine for Character-Scene Interactions

Neural State Machines provide seamless translation between animations

using Goals and the environment surrounding the character. The goals

in this architecture can be divided into two categories: high level locomo-

tion and low level locomotion. Choosing an action, such as sitting is an

example of a high-level or goal-driven mode. When an action is chosen,

the network will generate a series of actions. For example, a sitting action

can be divided into three phases: starting to move, moving toward the tar-

get, and then sitting. A low-level locomotion mode involves walking and

running by the character.

NSM uses the same architecture as MANN [15]. The gating network is

responsible for creating distinctions between different goals and actions.

The network is designed in such a way that the output selects and inter-

polates expert weights based on the action labels and phase values. The

action labels and phase values are added to the animation clip during the

data preparation process. In addition, action labels can be a combination

of two different actions. For example, carry and walk.

The phase is the same as PFNN approach, a scaler value between 0 and

2π. For cyclic animations the phase is defined as [8]. In the case of acyclic

motions, such as sitting, the phase is determined by the time between

transitions. The network produces blending coefficient for the expert pool.

Experts are different network weights, each trained to be specialized in a

specific goal.

As with the PFNN, the motion prediction network consists of three lay-

ers, whose weights are calculated by blending expert pools. The motion

prediction module takes the encoded form of the input as its input. There

are four components of the input: Frame input, Goal input, Interaction

Geometry input, and Environment geometry input. A three-layer neural

network encodes these inputs and then feeds them to the motion predic-

tion module.



4.4 Local Motion Phases for Learning Multi-Contact Character
Movements

Local Motion Phases aims to extend existing works by accommodating

fast interaction between characters and objects. The LMP uses the same

architecture as MANN and NSM, which means that the network consists

of two different components, a Gating network, and a Motion Prediction

Network. This approach differs from others in the features it uses for dis-

tinguishing between different actions. Due to the complexity and speed

of these interactions, defining a single phase can be challenging. Con-

sequently, rather than using a global phase for different actions as in

MANN, it extracts phases locally for individual body parts. As a result,

the network is able to learn fast and complex interactions.

The paper also introduces a generative control model. This model is

used to convert high-level control signals into finer and sharper movement

signals. As a result, more variety of motions can be created using the

same input signal. Previous works would have produced the average of

the motions in these situations. The paper utilizes an encoder-decoder

network. Encoder-decoder networks are primarily used to compress data.

Encoder-decoder networks can be created using neural networks. Such

architectures have a low number of neurons in a hidden layer called the

bottleneck. In this paper, the network is trained based on motion capture

data, and then in runtime, it takes the controller input as its input, and

noise is added to the bottleneck to produce a different trajectory.

4.5 Neural Animation Layering for Synthesizing Martial Arts
Movements

The purpose of Neural Animation Layering is to address three problems

that have been identified in previous works. The problems are as fol-

lows: 1. Abstract features and not being able to cover all possible motion

variations 2. There is a long iteration time because the data needs to be

retrained in order to cover new application areas 3. animators do not have

control over the animation output.

There are three modules in the model: a control module, an interface,

and a motion generator. The motion generator uses a similar architecture

as [15, 8, 12]. The network is able to reconstruct animation data with

a high degree of accuracy by learning from unstructured motion capture

data.



The control module is responsible for learning different behavior. Idling,

moving, attacking, and targeting are some examples. Behaviors can be

represented by neural networks, motion matching, animation clips, or

physics-based animations. In the paper, for example, a neural network

similar to [12] is used for locomotion. Each behavior must produce a fu-

ture trajectory as an output.

Control interfaces allow animators to change animations by using func-

tions, such as overriding, adding, and blending. By using the override

operation, different motions can be combined, for example, walking while

punching. An example of an additive operation would be the addition or

subtraction of height from an action. It is possible to use the blending op-

eration to transition between different behaviors, for example, from idle

behavior to walking behavior.

5 Conclusion

This paper examines different methods for creating character controllers

for video games. First, state machines and animation graphs were intro-

duced as traditional methods of creating character controllers, as well as

their limitations. After that, motion matching was introduced, which is

a method for overcoming the problem of complex animation systems by

querying the animation database to find the closest pose of the charac-

ter. Following this, five neural network-based character controllers were

presented and discussed.

The PFNN [8] approach is used to create the locomotion of bipedal char-

acters. Using a global phase variable, it is possible to distinguish biped

locomotion, since it is always characterized by left foot landing, right foot

landing, and again left foot landing.

Since quadruped locomotion does not follow the same pattern as bipeds,

the PFNN approach cannot be used for quadruped characters. Architec-

ture defined in MANN [15] can be used for quadruped character locomo-

tion. This approach uses the velocity of the quadruped feet to differentiate

between the phases of the movement. The system utilizes a gating net-

work and motion prediction modules. Different types of motion are distin-

guished using the gating network. And motion prediction is responsible

for creating the character’s pose.

MANN and PFNN do not provide functionality for interacting with the

environment. NSM [11] extends previous studies to include character



scene interaction. The network architecture is the same as that of MANN.

Instead of using velocity as a feature, it defines a phase for each action.

LMP [12] improves the previous study by introducing a local phase for

each body part. As a result, it can be used for fast-paced movement and

character-to-character interaction.

Finally, NAL [13] provides an animation framework that enables anima-

tors to change the output of animations with a minimal amount of itera-

tion. Animators can use different methods to alter different animations,

combine animations together or translate between different behaviors.
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Abstract

With the recent influx of research papers on real-time ray tracing algo-

rithms for global illumination, along with supporting hardware and soft-

ware solutions, one could argue that the field is rapidly evolving. Re-

searchers and developers new to computer graphics may find themselves

overwhelmed by the amount of available research material and struggle to

find a starting point upon which to build their knowledge in the area.

This paper aims to serve as an easily approachable overview of ray trac-

ing research for interactive global illumination. It takes a bottom-up ap-

proach to build prequisite knowledge in underlying computer graphics

principles before discussing more advanced material. This work provides

up-to-date references for the reader to deepen their understanding of the

discussed content and to find the most recent and authoritative research

papers in the field.

KEYWORDS: Computer graphics, Global illumination, Real-time render-

ing, Ray tracing, Path tracing



1 Introduction

Interactive computer graphics, such as used in 3D game engines, often

aims to produce photorealistic and immersive experiences for the user. In

interactive, or real-time, computer graphics an image is rendered to the

screen multiple times in a second [17, p. 1]. Between each image, also

called a frame, the user may interact and the next rendered image is then

affected by the user’s action. This loop must cycle in such a rapid way that

the user does not see individual images but rather experiences this as if

it’s happening in real-time.

Modern movies leverage a rendering technique called ray tracing to sim-

ulate realistic reflections, refractions and shadows, producing images that

can be indistinguishable from real life [4]. Such realistic lighting effects

are generally referred to as global illumination (GI) [3]. GI includes not

only direct illumination, where light from a light source hits the rendered

surface directly, but also indirect illumination, where light bounces from

surrounding surfaces before hitting the surface.

Global illumination through ray tracing algorithms has historically been

too demanding for computing hardware to be feasible for real-time appli-

cations [4]. Therefore developers of real-time computer graphics have long

had to resort to another faster, although more limited, rendering tech-

nique called rasterization. In recent years though, ray tracing hardware

such as the NVIDIA® RTX technology [9] has made rendering techniques

based on ray tracing increasingly feasible for real-time applications [10].

Both ray tracing and rasterization will be discussed in more detail in sec-

tion 2.1.

This paper reviews the current state of real-time global illumination

research based on ray tracing and highlights some important challenges

that will still have to be addressed by future works in the field.

This paper is organized as follows. Section 2 serves as a technologi-

cal primer to help the reader understand more advanced concepts in the

following sections. Section 3 surveys the most recent research conducted

within the field of real-time ray tracing. Section 4 explores some of the un-

solved challenges within the field as well as potential for future research.

Finally, section 5 concludes with a summary.



2 Computer graphics primer

This section aims to serve as a primer in computer graphics. Starting with

a discussion of the two major types of rendering techniques - rasterization

and ray tracing - the following subsections review prequisites necessary

to understand current real-time ray tracing research.

2.1 Ray tracing versus rasterization

Ray tracing algorithms for offline, or non-interactive, rendering have been

a subject of computer graphics research for over 40 years [18]. Ray trac-

ing was formulated by Brian Caulfield from NVIDIA [4] as follows: "The

easiest way to think of ray tracing is to look around you, right now. The

objects you’re seeing are illuminated by beams of light. Now turn that

around and follow the path of those beams backwards from your eye to

the objects that light interacts with. That’s ray tracing."

The ray tracing algorithm works by tracing a ray of light through each

pixel on the 2D viewing surface out into the 3D space [4]. By following this

ray as it bounces from objects in the 3D scene by reflection and refraction,

ray tracing captures reflections, shadows and refractions. As the ray trav-

els, every time it hits a surface the color and lighting information at the

point of impact contributes to the originating pixel’s color and illumina-

tion level. By working this way, ray tracing can also simulate a variety

of common techniques seen in movies - such as motion blur, depth of field

and translucency. It is a rather simple algorithm yet computationally very

demanding. Ray tracing is illustrated in figure 1a.

As mentioned before, the rasterization technique has long been used in

real-time computer graphics due to its speed [4]. Consequently, using this

technique, the graphics processing units or GPU’s in today’s computers

are able to render millions of polygons to a 4K display typically 30 to 90

times each second. Years of development into GPU’s and rasterization

techniques have led to good rendering results, although still inferior com-

pared to ray tracing.

When using rasterization, the objects in the scene to be rendered consist

of a virtual mesh of triangles. These triangles are further formed from

their virtual apexes known as vertices [4]. There is important informa-

tion associated with each vertex, such as its position in space, its normal

vector, its color and texture information. This information can be used

when converting the 3D triangles into pixels on the screen. The rasteri-



zation algorithm goes through every triangle in the 3D scene and checks

which pixels on the screen the triangle covers [4]. Each pixel can then be

assigned an initial color value based on the data stored in the triangle’s

vertices. Further pixel processing, also known as shading, then changes

the color of the pixel based on how lights in the scene interact with it and

applying textures if needed before determining the final color of the pixel.

Rasterization is illustrated in figure 1b.

(a) Ray tracing [16] (b) Rasterization

Figure 1

Despite its efficiency, rasterization does have its limitations. DICE Tech-

nical Director Christian Holmquist [1] described rasterization as mak-

ing it challenging for objects to interact with each other, as in order for

each triangle to correctly draw itself, each triangle needs to know about a

scene in its entirety. Therefore, developers of interactive computer graph-

ics have traditionally had to resort to various heuristic techniques in or-

der to produce realistic lighting effects. Such techniques include shadow

mapping, ambient occlusion and image-based lighting [7].

2.2 The rendering equation

In his 1986 paper The Rendering Equation [8] James T. Kajiya published

the equation of the same name that accurately models the scattering

of light off various types of surfaces. His work expresses rendering in

terms of radiance transfer, binding computer graphics more concretely to

physics than previous approaches. The rendering equation is also known

as the light transport equation (LTE) [11, p. 861]. The original form of the

rendering equation is defined as follows.

I(z, z′) = g(x, x′)
[
ϵ(x, x′) +

∫

S
ρ(x, x′, x′′)I(x′, x′′)dz′′

]
(1)



where:

I(x, x′) is related to the intensity of light passing from point x’ to point x

g(x, x′) is a "geometry term"

ϵ(x, x′) is related to the intensity of emitted light from x’ to x

ρ(x, x′, x′′) is related to the intensity of light scattered from x” to x by a

patch of surface at z’.

S is the union of all surfaces in the scene.

As can be seen from (1), the rendering equation is recursively defined

and the domain of the integral is infinite-dimentional. Therefore it cannot

be solved in closed form and some sort of approximation has to be used

for solving the equation numerically. Randomized algorithms suitable for

this task will be the topic of the following subsection.

2.3 Monte Carlo integration and path tracing

As discussed in section 2.2, some way of approximating the integral in

the rendering equation is needed. Monte Carlo integration uses random

sampling to estimate the values of integrals and is often used for this task

[11, Ch. 13]. Monte Carlo integration gives different results depending

on random choices made during the process. However, by averaging the

results of multiple runs of the algorithm on the same input, the result

eventually converges to the correct answer.

Some of the advantages of Monte Carlo over other numerical integra-

tion methods is that it can be used to estimate integrals over domains

of arbitrarily high dimension and only requires that one has the ability

to evaluate the integrand f(x) at arbitrary points in the domain [11, Ch.

13]. Its main disadvantage is the variance, or noise, in the output result-

ing from the random nature of the algorithm.

Along with his famous rendering equation [8], Kajiya also introduced

a technique called path tracing as one of the first general-purpose unbi-

ased Monte Carlo light transport algorithm as a solution to (1). Bias as

discussed here refers to a typically small systematic error produced by

the estimator, such that the result never truly converges to the correct

answer.

Path tracing generates paths of light scattering events starting from the

camera and terminating at a light source in the scene and does so in an

incremental manner [11, Ch. 14.5]. The paths, or rays, originating from

a pixel on the screen are traced as they hit surfaces in the scene. At the

point of intersection the integral in equation (1) is estimated. Direct illu-



mination from light sources is accounted for and a scattering distribution

function specific to the surface properties is evaluated. Then a new ray

direction for the scattered light must be randomly sampled in order to

continue the light path further into the scene. This path continues bounc-

ing off of surfaces until a predefined termination condition is met. Finally,

the accumulated radiance along the path determines the color of the orig-

inating pixel.

Path tracing can be thought of as an extension to the traditional ray

tracing algorithm proposed by Whitted [18] in 1980 [11, Ch. 14.5]. It is

a unified rendering algorithm, meaning that it accounts for all different

types of light transport and thus removes the need for separate handling

of any global illumination effects [5].

As path tracing is based on Monte Carlo integration, it suffers from in-

accuracies of the estimation. These inaccuracies result in noise in the

rendered image. In order to produce a noise-free image, typically hun-

dreds or thousands of samples per pixel (spp) may be necessary [11, Ch.

14.5]. The speed of convergence to the correct result is greatly affected

by the choice of sampling methods. Therefore a lot of emphasis has been

put into the development of better sampling techniques within computer

graphics research. Importance sampling is one of such techniques and

will be discussed in section 2.4.

Due to the the limited amount of computation that can be allocated to

each frame, path tracing for real-time applications can typically only af-

ford one sample per pixel at a maximum [5]. Therefore the resulting im-

ages will have significant noise unless sampling techniques specifically

designed for real-time path tracing are used in addition to proper denois-

ing. Denoising techniques will be discussed in section 2.6 and recent re-

search in sampling methods for real-time path tracing will be explored in

section 3.

2.4 Importance sampling

Importance sampling is one of the most used variance reduction tech-

niques in rendering [11, Ch. 13.10]. Importance sampling is based on the

observation that samples taken from a distribution similar to the function

in the integrand result in faster convergence of the Monte Carlo estimator.

Its main idea is to concentrate sampling where the value of the integrand

is relatively high.

As an example, when a ray cast from the camera hits an object, an out-



going ray direction has to be chosen. The direction is chosen randomly

by sampling a so called probability density function (PDF). If the PDF

is chosen such that it is similar to the scattering distribution function of

the surface, it is more likely that a light path along the chosen direction

will carry radiance, than if the sample is drawn from a uniform distri-

bution. On the other hand, if the PDF is chosen poorly, the results can

be much worse than by simply using a uniform distribution. In practice

though, finding good distributions for importance sampling is not too hard

for many integration problems in rendering.

2.5 Resampling

Importance sampling can be very useful for real-time applications as it

reduces variance at low sample counts [10]. However, this can become

a challenge when sampling from optimal distributions is impossible, as

is the case with complex lighting. Instead, resampling algorithms based

on Talbot et al.’s [15] resampled importance sampling (RIS) can render

complex lighting with only few samples per pixel.

RIS is a technique that uses a two-pass algorithm to sample from dis-

tributions that cannot be sampled directly [14]. Recent resampling al-

gorithms exploit sample reuse within and across frames to continually

evolve a population of samples towards their optimal distribution [10].

Some of the most recent iterations of such resampling algorithms for

global illumination will be discussed in section 3.

2.6 Denoising

Due to the low sample count available for real-time ray tracing, there can

be significant noise in the resulting frames. Therefore, denoising is nec-

essary to achieve good results with low sample counts [10]. A denoising

algorithm, or denoiser, first takes a noisy path tracing output, or signal,

and decomposes it into frequencies [6]. These frequencies can for example

be the diffuse, specular and transmission components of the signal. The

denoiser then processed these frequencies in their own spatial and tem-

poral, or spatiotemporal, kernels before composing them back together to

produce a noise-free signal. The denoiser is guided by guide buffers pro-

duced by the path tracer. These mostly noise-free guide buffers hold data

such as normal, position and transmission distance information.

NVIDIA Real-Time Denoisers (NRD) [12] is one of such denoising solu-



tions. It is a spatiotemporal denoising library engineered to work with

signals with one ray or less per pixel.

3 Recent research

Many of the recent studies in the field of interactive global illumination

algorithms are based on RIS. This section will explore some of the most

influential of these works.

3.1 ReSTIR and RTXDI

In 2020 Bitterli et al. [2] introduced their Reservoir-based Spatio- Tempo-

ral Importance Resampling (ReSTIR) algorithm - a Monte Carlo approach

for rendering direct lighting with thousands to millions of dynamic light

sources in real-time. ReSTIR is based on a generalization of RIS and al-

lows unbiased spatiotemporal reuse of nearby samples while also provid-

ing a more efficient biased variant. It works by iteratively applying RIS

using weighted reservoir sampling. Reservoir sampling is a method using

a special sampling algorithm in conjunction with a small fixed-size data

structure, called a "reservoir", that stores accepted samples. It enables a

high-performance GPU implementation and helps to achieve stable, real-

time performance.

The following year Wyman et al. [19] introduced algorithmic improve-

ments to ReSTIR that led to the development of the NVIDIA RTX Direct

Illumination (RTXDI) [13] technology. These improvements included re-

ducing lighting costs by up to a factor of seven, improving memory coher-

ence, shrinking the required ray budget and increasing rendering quality,

among others.

3.2 ReSTIR GI

While the previously discussed ReSTIR algorithm and its commercial im-

plementation RTXDI enables unbiased real-time rendering of direct light-

ing, they still leave indirect lighting unaccounted for. Consequently, in

their 2021 paper, Ouyang et al. [14] propose path sampling algorithm

building on the screen-space spatiotemporal resampling principles of Re-

STIR to remedy this. This reservoir-based ReSTIR GI -algorithm, suit-

able to highly parallel GPU architectures, resamples indirect light paths

produced by path tracing.



The writers show that ReSTIR GI achieves mean-squared-error (MSE)

improvements up to 166x compared to ordinary path tracing while ren-

dering at 1 spp every frame. Furthermore, when used together with a

denoiser, it can produce path traced GI at interactive frame rates even

with complex scenes. ReSTIR GI, like the original ReSTIR, comes both in

biased and unbiased variants. The former can be used to trade off bias for

improved rendering performance.

3.3 GRIS and ReSTIR PT

While providing exceptional performance improvements over traditional

path tracing, the previously introduced ReSTIR algorithms and their un-

derlying RIS theory make various assumptions, such as sample indepen-

dence [10]. As interative sample reuse introduces correlation, violating

this independence, ReSTIR has the tendency to invalidate most conver-

gence guarantees RIS theoretically provide. More specifically, RIS as-

sumes independent and identically distributed (i.i.d) samples, typically

from a single source distribution. Sample reuse in ReSTIR violates this

dependence slowing convergence or even causing divergence.

To remedy these issues, Lin et al. [10] introduce generalized resampled

importance sampling (GRIS) that lifts the i.i.d. assumption of the origi-

nal RIS theory. The authors state that some of the previous work such as

ReSTIR and ReSTIR GI are special cases of this new GRIS theory. Using

GRIS, resampling can be applied to correlated candidate samples with un-

known PDF’s, taken different domains. This allows for deriving variance

bounds and convergence conditions in ReSTIR based samplers.

Building on GRIS, the authors reformulate the spatiotemporal reuse of

ReSTIR to remain consistent and unbiased even for long and complex

light paths and present ReSTIR path tracing (ReSTIR PT), an unbiased,

path traced resampler capable of running interactively on complex scenes.

It can capture many-bounce diffuse and specular lighting while rendering

only at 1 spp. ReSTIR PT improves on ReSTIR GI with better robustness

from a consistent and unbiased algorithm as well as reduced noise.

4 Future research

This section explores some of the open problems demanding more work,

as presented by Clarberg et al. [6] in their keynote presentation at the



High-Performance Graphics 2022 virtual conference.

4.1 More robust sampling

Clarberg [6] explains that content authored for real-time rendering is of-

ten optimized for raster engines and can therefore be ill-suited for path

tracing. Consequently, more robust sampling methods are needed that

are also able to handle poor content, such as occluded lightsources and

poor use of emissive features. In addition, tools need to be developed for

finding what is causing rendering issues with path tracing.

Clarberg also states that more robust sampling is needed for difficult

or longer light paths, such as when rendering long blonde hair, caustics

and snow on ice [6]. However, ReSTIR PT [10] was only released a year

after the presentation and was not discussed therein. Perhaps ReSTIR

PT could provide a part of the solution to these problems.

4.2 Better denoising

Sampling and denoising are intrinsically tied together and are both essen-

tial for real-time path tracing [6]. The denoiser expects noise-free guide

buffers as input from the path tracer, but in reality guide data can some-

times be noisy, such as when rendering dense geometry, hair and fur, vol-

umes and particle effects. In these cases the denoiser fails to denoise

properly.

One possible solution could be to co-design sampling and denoising,

forming a feedback loop between the denoiser and the path tracer [6].

With this feedback loop the denoiser could tell the path tracer to improve

sampling where the denoiser lacks information.

5 Conclusion

This paper has provided a broad overview of ray tracing research for inter-

active global illumination. Starting from the basics of computer graphics,

such as rasterization, ray tracing and path tracing, it has introduced the

reader to increasingly more advanced concepts. After exploring some of

the most recent research works in the field, such as the reservoir-based

ReSTIR algorithms, this paper finished with a discussion of some yet un-

resolved problems within real-time ray tracing and path tracing research.
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Abstract

In the ever increasing distributed computing ecosystem, service discovery

has an even more important role. Many solutions have been proposed to

provide a solution for the challenges of a distributed, heterogeneous envi-

ronment. While these solutions are able to provide a structure to provide

these services, security has been left unattended. Currently, proper solu-

tions do not exists. In this paper, the aim is to highlight security and other

issues in some of the proposed solutions, to highlight the areas that require

more research and solutions.
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1 Introduction

The rise of IoT devices has caused the need to be able to process and filter

data on a large scale with faster speeds. This data can be used to train

more efficient ML models or to act based on sensor data. This has caused

the rise of Edge Computing and Fog Computing, which are meant to sat-

isfy these requirements. However,in these models nodes can communicate

with each other without being in the same LAN network while generating

and processing different amounts of data. Therefore, Web Service Discover

is required for Edge and Fog to operate properly. To sum up, these charac-

teristics generate a complex system with a lot of heterogeneity[2][4]. Due

to these characteristics, the traditional WSD with a broker and naive text

search, such as Web Service Description Language, is not sufficient on its

own due to the increased heterogeneity and scale of Edge and Fog systems.

Either traditional WSD discovery messages are transformed through a

proxy[4] to be more dynamic, web services are classified to ease web ser-

vice discovery[2] or unique frameworks[13] have been developed to tackle

this issue. Each of these solutions have their benefits and drawbacks

ranging from regex processing to additional overhead. Additionally, each

of these proposed solutions generally consist of architectural, security and

implementation issues that are discussed in this paper to highlight future

research topics. Furthermore, some real life examples are provided of se-

curity issues affecting some of these solutions.

2 Web Service Discovery

2.1 Traditional Web Service Discovery

Traditionally, A Semantic Web Service discover system consists of seven

key features: service advertisement, service mediation, service storage,

service request, service matchmaking, service negotiation, and service se-

lection [10]. However, these can vary based on demands and needs of a

system. Every SWS method consists of some kind of formalism, such as a

common framework or language, on which the discovery is based on[10].

For example, WSDL which uses XML format to describe a web service and

details for connecting to it. However, this method is resource consuming

and thus the low-power computational resources of Edge computation are

not sufficient in all scenarios, thus increasing latency and lowering qual-



ity of service. Furthermore, another commonly used method is to have

a centralized registry of all web services which acts as a broker, such as

UDDI[11]. This kind of approach is also used in cloud based service dis-

covery such as Kubernetes. However, this approach is not favorable on

smaller scale networks and cause a strain on load balancers. To combat

this, methods for multicasting such as WS-discovery[4], which can ease

the load from brokers. However, these methods are susceptible for mali-

cious usage and can be used to generate massive DDoS attacks[9]. Addi-

tionally, these probings are CPU-intensive, because they require multiple

HELLO and PROBE messages to be sent which is a limiting factor for

edge computing.

2.2 Edge and Fog Optimized Web Service Discovery

As discussed in section 1.1, traditional naive document based web ser-

vices are not enough in a low-power distributed environment. Therefore,

some kind of classification is required to provide better ways to connect

services accurately and swiftly. Currently, two ways of classifications are

researched actively[2]. First method is based on data mining text while

the secondary method is based on semantic annotations[2]. The text based

classification can lead to inaccurate service discovery which can be used

maliciously to route traffic to mimicking services while the annotation

based requires a large adaptation of standards and policies, such as Web

3.0 based OWL-s. However, these classification methods are able to pro-

vide more accurate definition of the available web services. Developments

on the traditional method of containing a service registry have been pro-

posed, technology where the blockchain contains the service registry and

the blockchain is passed to each node has been suggested as a way to con-

tain a service registry without having a centralized database for it[13].

2.3 Cloud-based Classification Methodology

This method proposed by Alshafaey et al.[2] contains a classification method

where there are three modules: A Concepts Preparation Module (CPM),

a Tree Creation Module (TCM) and a Change, Edit, Add module (CEAM).

The CPM and the TCM module are located in cloud and are responsible

for the tree structure creation process. The CEAM is located in fog and its

main task is to calculate and create the lowest cost for a web service to be

discovered. Together these modules are able to create, modify and store a



tree based classification structure which is then stored in cloud. The pri-

ority of this model is to reduce dimensional space, take into consideration

the semantic relationships in web services[2]. This model relies heavily

on the cloud based networks and the storage capability in cloud services.

The overarching concept of having a centralized database that holds all

the web services is not a revolutionary concept and is used in current

cloud solutions such as Kubernetes and AWS Cloud Map. However, this

proposed model is more precise and accurate [2]. However, issues with

this models are related to time response, since a query has to be send to

cloud resources and data storage, since with billions of devices the tree

structure is large and hard to store without scalability. Additionally, the

CEAM is the crux of this methodology, since it is responsible for managing

the tree structure. Making sure it is scalable, transparent and manage-

able could be difficult when the tree structure becomes sufficiently large.

2.4 Choreographic Approach

A method proposed by Blanc et al.[4] suggests a method based on choreog-

raphy collaborative paradigm which relies on RegEx patterns to be able

to handle multitude of different sensors and devices in a edge network.

As in choreographic model, this model focuses on the messages passed

between different processes by creating a choreographic engine inside ev-

ery device in the local network through which provisions are passed to

a message broker which contains a dynamic list that is used in service

discovery[4]. Additionally, a proxy is created to be able to communicate

with devices outside LAN through WS-discovery. In this approach, hot

plugging is made possible and consumer cannot know services before con-

necting. However, inevitable misconfigurations in the service discover

proxy could lead to possible security issues and could be used in mali-

cious ways. Overall, this method takes advantage of resources available

on the devices to do service discovery that can help to distribute the load.

However, CPU utilization is on the edge which might be an issue due to

the limited capability of processing power.

2.5 DNS-SD

Another approach is based on the DNS infrastructure we currently have

in our DNS[5][12]. Service discovery through DNS requires new records

to be added to DNS records, DNS SRV and DNS TXT[5]. By using these



formats, a service can be searched through DNS queries. However, con-

sequently traffic to DNS providers would increase massively due to the

nature of fog and edge computing. Additionally, this approach could be

problematic due to the scalability of these DNS services since the need

of DNS providers having a service close to the fog nodes forces the DNS

providers to operate and deploy more DNS servers. This subsequently

also provides more serious attack opportunites by using DNS[1], espe-

cially through DNS amplification attacks. Therefore, this implementation

has security and scalability issues. Additionally, this style of solution is

not the most optimized on resource usage, since it lacks discovery through

context which can cause latency when two fog nodes are trying to find each

other. However, two methods to combat this have been developed[12].

One method is to use geographic location based context but it lacks accu-

racy and flexibility[12]. However, currently more and more geographically

locked cloud environments are being tested and deployed. Thus global ac-

curacy might not be needed in all scenarios. Another solution is to use the

DNS TXT to serve key-value pairs a client can request when searching

for a web service. However, this can cause the TXT queries messages size

to be an issue[12] which can cause increased response time due higher

processing requirements.

2.6 Distributed Hash Table

Another proposed solution by Cirani et al.[6] archetype is to provide a

DHT based architecture to provide an Peer-to-Peer solution. This way

the whole systems capabilities increase when more nodes or devices are

increased. The solution provided by Cirani et al. is automated and no ad-

ditional configuration is needed by the end user. The system uses an tech-

nology called DLS. The DLS a DHT-based architecture, which provides

a name resolution based on storage and retrieval of bindings between a

URI[7]. DLS provides a better way to provide service compared to DNS

since it applies over the URI, not only over FQDN and it has lower propa-

gatation times[6]. Howver, P2P is extremly vulnerable to many different

attack vectors. Sybil, Eclipse and Pollution attacks are common attack

types on current P2P networks[14]. A Sybil attack interferes with infor-

mation retrieval by using fake identifiers. An Eclipse attack targets the

routing table and poisoning the data. This way the attacker can take over

the whole traffic. A Pollution attacks inserts a large amount of invalid

information into the index to poison the data to prevent the users from



finding the right resource. These attack types create difficulties on DHT

type solutions and require methods to address these attack types. How-

ever, P2P has a history of providing stable services in distributed way,

such as Skype.

2.7 An IOTA based approach

An cryptocurrency based method proposed by Tsung-Yi et al.[13] uses

the IOTA tokens to provide a distributed service discovery database in

fog. This reduces the amount of data that is send and processed by cloud

providers which is becoming an issue in IoT and mobile businesses. Addi-

tionally, this approach reduces latency between services but at the same

time complexity and decentralization is reduce. However, this method

tries to combat this issue by having a IOTA based blockchain which con-

tains the service discovery database. This means no external databases

are held in cloud and no latency in communications when finding a ser-

vice. However, traditional problems that exists in blockchain technologies

also exists in this approach: Are malicious entities able to gain control of

the blockchain and is proof how ownership is provided. Additionally, the

IOTA blockchain is derived from mIOTA that is managed by the IOTA

Foundation. If this foundations wallets secrets are leaked or cracked, the

whole system is compromised and large downtimes can be expected, such

as the 2020 security incident[8]. Additionally, if the node that is used for

every transaction has an outage, the whole service is unusable. This can

lead to the whole currency not be able to be used. AS a positive note,

IOTA is currently being developed to provide resilience against cyberat-

tacks such as Cybil and Eclipse[13] which means it can be more resistant

compared to other distributed table approaches while providing the bene-

fits of these solutions.

3 Discussion

A multitude of solutions exist and more are constantly being developed.

As it is, service discovery in Fog and Edge is a well understood problem,

but no best solution exists yet. The discussed solutions have their posi-

tives and negatives. Thus, it is likely that some kind of a hybrid of solution

might arise, especially own solutions to local service discovery and global

service discovery, since service discovery inside a Fog node could be im-



plemented differently than on the global network and these environments

behave differently. Additionally, the trend of proprietary service discover

has been gaining momentum in recent years, especially with containers

and cloud infrastructure. This means that current solutions are not trans-

parent and their implementations are not clear to the end user. Further-

more, many of these solutions could be used injunction to provide a better

overall solution and thus further research. As it is, further security re-

search is needed since traditionally IoT devices are not considered to be

secure, and while positive trend regarding the state of IoT security can be

seen, the appliance of this mechanisms is lacking due to the complexities

of these distributed and heterogeneous environments[3]. And while these

devices are being secured, it is utmost importance to secure the service

discovering mechanisms as well. When device amount is scaled to billions

of devices, even small percentage of these devices can cause massive se-

curity issues. Furthermore, currently many of the largest DDoS attacks

have been using IoT devices to provide massive amounts of traffic. To add,

with proper efficient service discovery also more devices could be infected

if an device can be taken over. This means that while fast and reliable

service discovery is necessary, it is also important that the benefits of

it cannot be used to amplify security breaches. Additionally, managing

an infrastructure that is owned by many different entities, such as DNS

providers, is a hard and cause more opportunities for misconfigurations

that can create security issues. This means that the centralized solutions

can provide edge, since end user has to interact with less amount of ser-

vice providers. However, this also means that the service provider has to

be able to be trusted, meaning transparency is key. Additionally, these

centralized solutions tend to be proprietary, thus the end user has no way

to verify that the systems are secure.

4 Conclusion

The future of Edge, Fog and Cloud service discovery is uncertain. The

current solutions are providing different interesting ways to tackle the

problem of service discovery in distributed and heterogeneous environ-

ment. And while these solutions provide a way to discover services in a

heterogeneous environment, the nature of heterogeneous plug and play

environments is not fruitful for security side. Further research is needed

to provide more robust, secure and transparent service discovery. Fur-



thermore, current energy crisis and shortage of computer hardware has

risen as a important geopolitical security issues meaning these systems

should be energy efficient and not require multitude of geographically lo-

cated data centers that scale on hardware.
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1 Introduction

DNN’s (Deep Neural Networks) are now considered to be the state of the

art for addressing many different problems such as Natural language pro-

cessing [9], image classification [27] or speech recognition [4]. There exist

however vulnerabilities to those models, indeed it is possible for models to

be attacked and made to fail as it was demonstrated as early as 2004 [8].

Attacks can be seen as similar to optical illusions, with knowledge about

the inner workings of human vision we can produce images or situations

which reliably fools the observer.

Adversarial attacks against machine learning methods is a type of at-

tacks which tricks models by presenting them with purposefully mislead-

ing data. This is done by exploiting the fact that complex models can

produce very uneven loss landscape thus, in the loss, local maximums

can usually be found around training samples, they can then be exploited

to produce adversarial examples. With the constant evolution and wide



spread of machine learning methods in recent years, it has become in-

creasingly important to study malicious attacks on models as knowledge

of attacks is often the most reliable way to prevent them. Then by build-

ing more targeted defense methods one can better secure their models.

Defenses against such attacks exists and are paramount to the integrity

of already deployed, sometime critical, models. With, for example, self

driving cars being fooled by physical application of adversarial examples

[2].

Unfortunately, while many defenses have been proposed to counter poten-

tial attacks, most have been defeated. Indeed most of the defenses that

are developed seem very promising, such as distillation of model [20] for

example, but after a while they are showed to be ineffective against more

sophisticated attacks, such as Carlini attacks [6].

1.1 Definitions of attacks

Surveys have been done on the subject and [7] provides extensive defini-

tions of attacks and defenses, all types will not be covered in this publi-

cation and focus will be put on evasion attacks and their defenses as

they are the most common type of attacks. Evasion attacks are attacks

developed after the training phase and only refer to malicious samples in

the testing/deployed phase. Attacks can be categorized in two different

group based on the information the attacker has on the attacked model.

If an adversary possesses specific knowledge (namely the model parame-

ters and structure) of the target than the assault is called a White box

attack. Some examples of attacks are PDG [15], FGSM [11], Deepfool [17]

or Carlini attack [6] all of which use information about the inner working

of the machine learning model such as the gradient of the objective func-

tion the model at specific inputs.

If the opponent does not possess this information directly than it is called

a Black box attack. While hiding information about the model makes

attacks more difficult, models are still vulnerable. Indeed, by training a

substitute model with a decision boundary close to the original model’s,

one can still produce adversarial examples reliably [19, 18].

Further refinement in the type of attacks can be done, non-targeted

attacks aim to misclassify some input while not being specific as to what

kind of output the misclassification will be. Targeted attacks in contrast

have a specific malicious output and will steer the input so that it is mis-

classified in the target class.



1.2 Definitions of defenses

Types of defenses are quite varied but they can be classified into two

categories, the Heuristic defenses are defenses which effectiveness is

only empirically validated without being theoretically proven. While this

implies that some new attacks could be found to surpass those defense

usually remain stronger [16, 24]. Theoretically motivated defenses

provide a guarantee that they will always work under specific conditions

which is exactly what is required for a certification. Unfortunately these

defenses offer poor performance when compared to heuristics [22].

1.3 Structure of the paper

This publication will explain and offer a comprehensive tour of the most

well know attacks and defenses and review whether their effectiveness

has lasted or not.

First the most well know type of attacks will be defined and explained in

sec. 2 then a rapid review of efficient and inefficient defenses in sec. 3

and finally a conclusion on the current state of research and adversarial

defenses in sec. 4.

2 Most well known attacks

Attacks against machine leaning models aims to modify (in the close vicin-

ity) an input such that it changes the output of the model attacked in a

significant way (see Sec. 1.1 for the different kinds of attacks).

2.1 PGD

Projected Gradient Descent is a very general attack method that knows

many variants and derivatives (eg. BIM [12] or FGSM [11], ...) The origi-

nal method can be reduced to some very simple principles which are sum-

marized in figure 1:



Figure 1. Loss landscape with PGD attacks [1]

1. Create a ball of size ϵ around a sample in the loss space and start at a

random point (this is optional as you could start at the sample point)

2. Move in the direction of the greatest loss (this is very general and can

be refined)

3. Project the perturbation in the ball if necessary.

4. Once you arrive at a local maximum stop.

The core of the technique is a very simple loom but it can still creates

strong adversarial examples and is still considered one of the strongest

attacks methods.

2.2 DeepFool

Deepfool is another method to find adversarial examples based on deci-

sion boundaries. It linearize the classifier, project the input point toward

the closest decision boundary and add this perturbation to the input.

Has an approximation of the decision boundary has been done it is possi-

ble that the class still has not changed, if it is the case we can simply try

again until the class has changed.

This guaranties that an adversarial example is eventually found but is

more computationally expensive than PGD.



2.3 Carlini attack

If we view Adversarial attacks as optimization problems we can write the

following :

min D(x, x+ δ)

s.t. C(x+ δ) = t

x+ δ ∈ [0, 1]n

In this form what is meant is : Minimize some distance between the orig-

inal input and the adversarial example such that it will change the clas-

sification of x+ δ, where C is the classification function.

Of course this function is highly non-linear and thus the problem is diffi-

cult to solve. Calini and Wagner propose to replace this with some func-

tion f such that C(f + δ) = t if and only if f(x + δ) ≤ 0, the problem thus

becomes :

min D(x, x+ δ)

s.t. f(x+ δ) ≤ 0

x+ δ ∈ [0, 1]n

There exist many different choices for the function f and usual optimiza-

tion methods are applied to solve the problem efficiently.

One of the main advantages of such attacks is that is allays produces ad-

versarial examples as there is no limit of the size of the space explored

around the sample but it does come with increased computational costs.

As was said in the introduction (see 1) Carlini attacks are most famous

for showing that distillation is an inefficient technique for defense.

3 Most well known defenses

Defenses are harder to develop as they require to be effective against ev-

ery type of attack and often fail do to so. In contrast adversarial attacks

have to find one weakness in a type of model or defense to be effective.

3.1 Distillation defense

Distillation network are networks which tries to learn the output proba-

bilities of another network. This results usually in the second model being

smaller and thus faster and cheaper to run while retaining most of the ca-

pabilities of the first one.



Distillation in defense against adversarial attacks consist in training a

distillation network of the same size as the original one with specific pa-

rameters as to flatten the loss around the training samples. While has

been showed to offer much success when it was first introduced [20], it is

now proven inefficient against more persistent techniques [6].

3.2 Adversarial training

A very simple approach to defenses is to integrate ’attacks’ into the train-

ing of models, that is modify images of the training set so that the modifi-

cation maximizes the loss of the model. Then use those augmented images

for training. This method can be seen as special case of data augmenta-

tion.

However this has several drawbacks :

• It is very costly to run such algorithm in the, already costly, training

phase.

• This kind of algorithm needs to use a specific kind (or some specific

kinds) of attacks in the training phase and thus may be not well suited

to defend against different kinds of attacks.

• Adversarial training does not necessarily result in smoother loss land-

scape (but the contrary [21, 5]) and thus does not necessarily improve

generalization as we can see in figure 2.

Even with those limitations Adversarial training remains one of the best

defense methods.

3.3 Feature squeezing

To prevent malicious attacks another technique is to reduce the attack

capabilities, that is reducing the input space such that attacks have less

freedom in modifying inputs. Feature squeezing is an effective way of do-

ing so [26].

By reducing the number of values for pixel encoding or smoothing images,

machine learning models effectively reduces the search space of malicious

algorithms. Unfortunately while this is an effective technique it does re-



Figure 2. Loss landscapes with Adversarial training [21]

duces accuracy to a certain extent, it has also being show to fail against

more persistent techniques [23].

3.4 Randomization

Some defenses use randomization as a defense strategy, indeed, machine

learning model are know to be quite robust under random modification of

the data. The idea is then to randomly modify the adversarial modifica-

tions in the input on in the network so that the model is not deceived by

the targeted perturbation.

This can be done on several levels :

• Stochastic activation pruning [10], here the idea is to removes random

subset of activation and boost the remaining one. while it has shown

great promise and applicability it has been shown to fail against white

box attacks [3].

• Input randomization [25], by doing randomization of the input (random

resizing and random padding). The algorithm made 2nd place at NIPS

2017, it has remarkably low impact on training time, inference time

and accuracy results. But, as stochastic activation pruning, it has been

shown to fail against a white box attack [3].

• Random noise layers [14], By adding random noise layer at every con-

volution layer and then ensembling the prediction as to stabilize them



one can create a strong defense. This work remarkably well, probably

because ensembling techniques tend to smooth the loss function quite

well, which is arguably best defense against adversarial attacks.

4 Conclusion

Ultimately, researching attacks is as important as researching defenses

as preparing against a specific type of attacks is often more efficient than

blindly making defenses but research trend may give evidence to the as-

sumption that better generalization of models would be the most gen-

eral and effective defense against adversarial attacks hence it emphasise

one of the main goals of machine learning. Even malicious modification

of an input in the neighborhood of the original one should have the

same/similar outputs.

Techniques have been developed to improve objective function smoothness

such as [13] but research is still ongoing in the topic. Relying on heuristic

defenses for the protection of an application is probably the best option at

the moment but with time those defenses will need to be updated as the

trend shows that most become ineffective with the development of new at-

tacks. Defenses against adversarial attack is still a very open and rapidly

moving research topic and people interested in making their particular

application more robust should take an interest in this development.
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Abstract

The domain of Intelligent Transportation Systems (ITS) aims to improve

traffic safety and efficiency through interconnected networks of sensors, ve-

hicles and computers. Interoperability of services is challenging due to

differing standards and technologies used by actors in the space. The con-

cept of semantic models, a type of information model that attaches explicit

meaning to data, has been proposed as a solution to aid interoperabil-

ity. This work provides an overview of current research in using semantic

models to aid interoperability in the ITS domain and highlights some key

challenges that are candidates for future research.
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1 Introduction

Traffic is a large producer of polluting emissions as well as a common

cause of injury or death among the population. Intelligent Transportation

Systems (ITS) is a term describing the use of intelligent systems, data sen-

sors and realtime communications with the goal of making transportation

safer and more efficient. The ITS infrastructure consists of many differ-



ent kinds of devices all connected together in a network to achieve these

goals.

The ITS field consists of numerous different actors, including car man-

ufacturers, global standards organizations and public actors at different

levels of government, such as public transport agencies and road infras-

tructure maintenance personnel. Many actors rely on their own systems

that are using different, often proprietary, standards for data storage and

communications. This makes the interoperability of these systems dif-

ficult in practice. However, in order to truly achieve the goals of ITS,

interoperability is key.

In the recent years, the idea of semantic models has been proposed to

aid in the challenge of interoperability . A semantic model is a representa-

tion of information that aims to provide explicit meaning to data that can

be understood by both machines and humans. Shared semantic models

can be used to ensure that different systems have a common understand-

ing of data semantics, and thus exchanging information in different data

formats becomes easier.

The purpose of this study is to provide an overview of the current re-

search in using semantic models to improve interoperability of ITS. The

result of this study is the highlighting of two key challenges in the field,

and solving these challenges could be the focus of future research.

The rest of this paper is structured as follows: section 2 provides back-

ground information and definitions of key concepts, with subsection 2.1

introducing the concepts of ITS and subsection 2.2 focusing on Semantic

Models. In section 3, the current state-of-the-art research on the subject

is presented. In section 4 the current research and solutions are analyzed

and the key challenges are listed, and section 5 concludes this paper.

2 Background

2.1 Intelligent Transportation Systems

The vision of Intelligent Transportation Systems (ITS) is to make trans-

portation safer and more efficient through the use of intelligent systems

and real time communications [9]. The main way to achieve this is through

gathering of sensor data and adding intelligent functionality to both vehi-

cles and the underlying infrastructure [8]. The concept of ITS can include



all methods of transportation, including on land, air and sea. However,

this paper focuses specifically on road traffic.

An important characteristic of ITS is the requirement for many different

actors from various backgrounds to be able to communicate effectively. Ac-

tors in the transportation space include car manufacturers, public trans-

portation agencies and maintainers of road infrastructure. The multitude

of different actors brings with it many different methods and standards

for information exchange, while the interoperability of different systems

is a key requirement. The problem of interoperability and information ex-

change has been identified as a key challenge in ITS in multiple studies

[26] [14] [1].

There are many different kinds of services that ITS can offer, with vary-

ing requirements, providers and users. Alam et al. [2] distinguish three

main categories: traffic safety, traffic efficiency and other applications.

The first category includes applications such as an alert system giving

road users a notification of nearby accidents, or an intelligent traffic light

controller that gives priority to emergency vehicles. The second category

includes for example programmable traffic signs and navigation services.

The last category includes everything that is not directly related to in-

creasing safety or efficiency, such as public transport information services.

The EU ITS Communications and Information Protocols (EU-ICIP) guide

[9] provides an overview of communication and data exchange standards

for use in ITS in Europe. The guide lists hundreds of related standards

and it is clear that interoperability of many different data formats and

data exchange protocols is necessary.

One example of a common data model in Europe is DATEX II [7]. DA-

TEX II is an extensive data model for exchanging a broad range of differ-

ent kinds of traffic related information. The aim of DATEX II is to be a

unifying data model that enables ITS services in Europe, and one goal in

its design is to enable services that are used across multiple countries.

A unique characteristic of ITS is the requirement for ad-hoc wireless

connections between nearby devices, because physical connections are not

feasible. The devices involved in such connections include devices aboard

vehicles and roadside Internet of Things nodes. These networks are re-

ferred to as Vehicular Ad-hoc Networks (VANETs) [4].

Maimaris and Papageorgiou [18] evaluate some commonly used com-

munication technologies in ITS and list some challenges in them. They

conclude that distance, bandwidth, time criticality and information secu-



rity each have their own sets of challenges. With moving vehicles, dis-

tances between devices are unreliable and disconnects and reconnects are

common. Bandwidth can cause problems when many devices are trying

to access the network at the same time, such as during rush hour. Some

applications, especially those related to emergencies, are time-critical and

care must be taken to ensure they work. Information security is also a key

challenge, since the wireless communication networks can be vulnerable

to denial of service or malicious forged messages.

2.2 Semantic models

The concept of semantic models, or semantic data models, deals with at-

taching semantics to entities or concepts in the context of computer sys-

tems. While it is difficult to find a clear definition of what exactly is a

semantic model, Alexopoulos [3] describes it quite well as "any represen-

tation of data whose goal is to make the meaning of data explicit and

commonly understood among humans and machines".

A commonly used type of semantic model is an ontology. An ontology de-

fines classes, their attributes, and relationships between class members.

These definitions include information on their meaning as well as con-

straints on how they can be used. [17] An ontology describes the structure

of data and gives rules for creating new entities, defining their attributes

and establishing constraints [6]. A key feature of ontologies is to be able

to make logical deductions based on constraints and the relationships be-

tween classes.

As an example, a simple ontology could define a class Person with the at-

tributes age and name. A Person could also have a relationship has_child

to another Person. Another class, Parent, can be defined which is a sub-

class of Person. A requirement of the class Parent is that all of its members

need to have a has_child relationship to another Person. Now let us cre-

ate two instances of Person with the names John and Mike, and define a

has_child relationship from John to Mike. It can be deduced that because

John has a has_child to another Person, it must be true that John also

belongs to class Parent. This example is presented in figure 1.

Ontologies are used as a basis for Semantic Web technologies [5]. The

term Semantic Web refers to the notion of bringing explicit meaning to

web resources. Semantic Web standards include Resource Description

Framework (RDF) [22] and Web Ontology Language (OWL) [21]. RDF

is a data format for exchanging structured data on the web. The main



Figure 1. A simple ontology defining a parent-child relationship

construct of RDF is a triple which consists of two entities and a named

relationship between them. An easy way to visualize these triples is a

directed, labeled graph. OWL is a framework for describing ontologies

using RDF.

Knowledge graphs [10] can also be considered a type of semantic model

that is used especially in big data applications [20]. The term Knowledge

graph was first coined by Google, and the technology is used to enhance

Google search results [24]. However, this paper mainly focuses on the use

of ontologies.

3 Semantic interoperability in ITS

This section presents some recent research studies on using semantic

models to improve the interoperability of ITS.

Agbaje et al. [1] present a survey of the interoperability challenges for

Internet of Vehicles (IoV), which is an application of the Internet of Things

(IoT) in the context of ITS. They provide a categorization of five distinct

classes of interoperability problems in IoV: Interoperability of the phys-

ical IoV nodes, network interoperability, systems interoperability which

includes cross-platform and cross-domain concerns, applications interop-

erability and finally data interoperability which is further divided into

semantic and syntactic challenges. Semantic web technologies like OWL



are proposed as a possible solution for the semantic interoperability chal-

lenges. Their work highlights two problems in this area: the absence of

necessary ontologies for IoV context, as well as resource concerns for IoV

devices.

In [11], Fernandez et al. present an ontology-based architecture for us-

ing sensor data in an ITS context. This includes manually constructing a

mapping from sensor data to semantic data that can be used in the traffic

context.

García et al. [12] present a context model and underlying ontologies for

use in the public transportation applications. Their solution models the

whole public transportation field, with traffic at land, air and sea. Their

solution has been seen real world use by the Public Transport Authority

of Gran Canaria to provide services such as a smart card payment system

and an information system for passengers.

Gould and Atkin [13] present an OWL ontology for facilitating data ex-

change in information systems for public transport passengers and other

road users. They introduce the concept of personas in their semantic

model. A persona can be e.g. a regular commuter or a tourist. With the

data model having built-in concepts for different types of users, their goal

is to allow designing applications such as a journey planner that has sup-

port for different kinds of users at the data level.

Terziyan et al. [25] propose a semantic middleware to facilitate inter-

operability of different ITS resources. The middleware uses ontologies to

maintain a central view of all data, and each resource requires an adapter

to connect to the middleware. The advantage of using semantic data mod-

els here is the ability to discover heterogenous resources and integrating

them into the system. In addition, the system allows controlling the be-

haviour of these resources.

Gregor et al. [14] present a methodology for creating ontologies for ITS

context that uses Systematic Literature Review and Information Recov-

ery techniques. They produce an ontology of different kinds of applica-

tions in the ITS domain, and the model could be used by a semantic ser-

vice for service discovery in a distributed network. The model is evalu-

ated for performance and validated against an existing taxonomy of ITS

applications and it is found to contain many applications not present in

the taxonomy. Their method of constructing the model through system-

atic literature review techniques can be used in a somewhat automated

manner, but it does require human supervision.



In [15] Jetlund et al. analyze methods of automatic conversion from

geospatial data models defined in UML to OWL ontologies and raise some

key challenges. The conclusion from their paper is that more advanced

conversion methods are needed to preserve semantics accurately, due to

the differences between the concepts in UML and OWL. They suggest

some additional restrictions to apply when constructing the UML models

to allow easier conversion to OWL. These restrictions include needing to

define local properties that are reused multiple times as global properties,

and using links to external concepts when possible instead of defining new

concepts.

Seliverstov and Rossetti [23] propose a method of aggregating spatio-

temporal transportation data by building a local ontology for each data

source, and integrating these into a global ontology. This approach allows

querying different data sources from a central endpoint.

In [19] Mirboland and Smarsly construct a semantic model of the ITS

landscape for use in building information modeling (BIM) applications.

The model is used to create an extension to the Industry Foundation

Classes (IFC) data schema which can be used to represent ITS elements.

IFC is used as a data exchange standard in the architecture, engineering

and construction industry. The resulting schema extension could be used

for simulating or designing ITS systems with BIM technologies, aiding in-

teroperability of the ITS and the architecture, engineering and construc-

tion domains.

Jetlund et al. [16] study the interoperability of different data models

across the domains of Geographic Information System (GIS) and ITS.

They propose a set of requirements, including compatibility with exist-

ing best practice standards for GIS applications and the support for a

road network, that any common data formats between the two domains

should satisfy. Currently no existing data formats satisfy all the criteria,

so they construct a new semantic model that meets the requirements and

could be used as a prototype model for exchanging information between

GIS and ITS domains. However, the model is missing some key features

and requires further work to be used in real life systems.

4 Analysis and discussion

There has been much research in improving interoperability of ITS with

semantic modeling. However, there are some challenges that can be iden-



tified from the existing research. Many studies provide a contribution of

some new semantic model for the field, but many of these are not suited

for real world use and require further work.

There are many studies that construct ontologies for specific use cases,

such as [13] and [12] that focus on public transportation specifically, and

[11] that focuses on sensor data. Because many of the ontologies ulti-

mately deal with the same concepts, one way to construct an overarching

ontology for the whole ITS field could be to make one higher-level ontology

that will link to other, more specialized ontologies. A similar approach of

combining local ontologies to a global one is presented in [23], where mul-

tiple data sources are mapped to a global ontology.

One way to bring interoperability is to construct a mapping of existing

data sources to some unified semantic model, which would allow auto-

mated translating data from one data format to another. Some work on

this exists, such as [15] which brings a method of translating UML to

OWL. However, this method requires additional restrictions for the UML

models that are not present in the original data. Additionally, a demon-

stration of a method translating data from one existing ITS standard to

another could be useful.

Another concern is the construction of ontologies. This should be an

automated process from some existing data, especially because new ITS

applications could introduce novel concepts that need to be modeled. Mul-

tiple methods for ontology construction are presented, such as [11] [14]

[23]. However, these methods are require some manual supervision. An

automated process would also require some validation for the model. A

technique for validation is presented on [14], but it is based on scientific

literature and thus might not work when adding novel concepts.

Data used in the ITS domain shares concepts from the GIS or architec-

ture, building and construction domains, and some work has been done to

find common data models for these domains. Common semantic models

for ITS and GIS has been studied in [16] and similarly for the architec-

ture, building and construction domain in [19].

Thus, two major challenges in the field can be presented:

• Automated ontology construction for ITS context from existing data

• Translation between two or more existing ITS data exchange formats

using a common ontology



These concepts are somewhat linked, since the existense of a common

model is required before it can be used to do translation between data for-

mats, and the construction of that model should be done in an automated

manner.

In this study, the main focus is on ontologies. However, as mentioned in

section 2.2, knowledge graph is another type of semantic model that could

be explored in the context of ITS interoperability. Knowledge graphs are

used especially in big data applications, and some ITS applications, for

example those involving data from traffic flows, could be considered big

data.

5 Conclusion

This paper presents an overview of the current research on using seman-

tic models to improve interoperability in an ITS context. Many studies has

been conducted in creating semantic models for this purpose, but many fo-

cus on a narrow area of ITS or a specific use case. The main contribution

of this paper is two challenges that need addressing: automatic seman-

tic model construction and automatic translation between ITS data stan-

dards using ontologies as an intermediate step. It is clear that solving

these challenges would be a good topic for future research in the field.
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Abstract

Digital identities and their management are critically important in the dig-

ital environment. They are often used in the Internet and other networks to

protect resources by restricting who can accesss them. Moreover, using dig-

ital identities in a federated environment has many security and usability

benefits, and an increasing number of organisations depend on collaboration

when it comes to identity sharing.

This paper is a review article based on existing research, literature and

specifications of federated identity management and trust networks used for

identity sharing. The focus is in interoperability between EU Member States

and educational environments especially in Europe.

In the EU, a significant factor in secure identity sharing and strong authen-

tication is the eIDAS interoperability framework. In academic environment,

there are multiple projects attempting to provide students identification or

other identity processes that ease mobility between and within countires. A

significant federation in the educational environment is eduGAIN, which con-

sists of smaller academic federations.

KEYWORDS: digital identity, Federated Identity Management, FIdM, eI-

DAS, eduGAIN



1 Introduction

The root problem when IT-security incidents occur is that an unauthorised

actor has gained access to data. Hence, Identity Management (IdM) is an es-

sential part of IT-security for organisations. IdM is a framework of policies

and technologies that are used for controlling and managing digital iden-

tities in computer systems, and when IdM is deployed well and combined

with Access Management, the solution provides protection on confidential

resources.

Organisations have varying needs for Identity Management and there is no

solution that suits for every purpose. Complexity of the required solution de-

pends on organisational structures, used technologies, policies, regulations,

laws and domain-specific factors. Furthermore, it is common that organi-

sations depend on each other and require Federated Identity Management

(FIdM) solutions. With FIdM, the organisations with predefined trust rela-

tions can distribute identity information in a decentralised environment in

order to provide access to cross-domain services.

Even though FIdM is quite a mature topic in research, there is also plenty

of room for study and comparison. This is due to the fact that the umbrella of

IdM is wide, the federation solutions in different sectors have specific needs

for collaborations and they are constantly evolving. There is a high demand

for cross-border services which require secure authentication in the Euro-

pean Union. In addition, there are initiatives and regulations attempting

to provide these services. Based on existing research, this paper gives an

overview of the state of identity sharing federations and networks in the

international and educational environments in the EU.

Next section of this paper will cover the background for Federated Identity

Management, including related research and relevant concepts, such as dig-

ital identity, IdM roles, Singe Sign-On, federation and underlying protocols.

The topic of the third section is identity sharing in EU Member States and

fourth in educational environments. The last section combines conclusion

and suggestions for future work.



2 Background

This section explains important concepts in FIdM. It introduces the topic in

general and gives necessary background for the rest of the paper.

Related work

Previous research on eIDAS includes survey of technology trends for no-

tified eIDAS Schemes [2] and analysis on the eIDAS revision process [12]

among others. There is also existing research on eID schemes of some spe-

cific countries, such as Estonia, Netherlands, UK and Hungarian. During

the last few years, there has been research on how to use eIDAS in academic

services [4] [17].

Variety of research papers of EU level projects attempting to provide iden-

tity sharing in educational environments exists, especially for the Erasmus

Program, but it is difficult to find research that summarises the related

initiatives, projects and regulations. Although, the European Student eID

Framework Proposal [13] has listed many of them.

Digital identity and its lifecycle

At the heart of Identity Management is the concept of a digital identity.

It is a digital presentation of information about a person, company, device,

web element, software or other entity. This paper mainly focuses on digital

identities of people. Generally digital identities consist of three categories

of information: identifiers, credentials, and attributes [11]. The identifier

can be an email address, a string, a public key, or something else that can

be used to locally or globally identify an entity. Credentials are used for

authentication. Authentication refers to the process of verifying that the en-

tity is someone or something they claim to be. There are many credential

options such as username-password-pairs, PIN-codes, graphical passwords,

biometrics, one-time password, smartcards and other security tokens. The

authentication system might require one or more credentials to grant access

to the protected resources. When multiple credentials are used, the process

is called Multi-Factor Authentication. [5] Attributes include all other infor-

mation that describes the entity, including an entity’s characteristics (name,

date of birth, ..), access rights (i.e. roles in organisation), restrictions and

possibly dynamic information (i.e. current location). [11] It is good to ac-

knowledge that digital identity does not have one universal definition and

for instance, electronic identity and eID can be used interchangeably with



digital identity. In this paper, eID refers to the electronic identity in contexts

of eIDAS regulation and Student eID project which the paper discusses later.

[12]

In order to better understand identity management, it is useful to under-

stand the lifecycle of digital identities. Silander [11] divides the lifecycle

into four stages in his paper: provisioning, use, updating, and deprovision-

ing. Additionally, there is a constant process of auditing and maintenance of

the lifecycle and all identities according to agreed policies. The first stage,

provisioning, includes the creation of the identities and forwarding them to

the target systems. During the second state, identity information is used

for identification, authentication, authorization, signatures and other pro-

cesses. The third state is required, if attributes or credentials of the identity

change, then they need to be updated. [11] For example, if an employee gets

a promotion, her/his role and access rights most likely change and need to be

updated to correspond to the new position in the company. Lastly, the stage

that all digital identities should go through before the end of the lifecycle

is deprovisioning, where they must be deleted from all target systems. De-

provisioning is important, because old unused user accounts in IT-systems

cause security issues. [11]

Roles in Identity Management

In IdM systems, there are typically three types of entities interacting with

each other: a user, an Identity Provider (IdP), and a Service Provider (SP).

The user is a consumer of the services and always operates through an user

agent which is typically a web browser. The user agent either allows the

identity information passively flow through or actively mediates it [10]. The

SP provides services to users and consumes identity services provided by

IdP. The Identity Provider typically issues and manages users’ identities,

authenticates them and processes requests from SPs. Since SP depends on

authentication services provided by IdP, it is also referred to as Relying Party

(RP).[16] [10] An entity can be both, SP and IdP, at the same time.

Single Sign-On

Single Sign-On (SSO) refers to a mechanism that allows users to authenti-

cate once and gain access to multiple protected resources. That is, the user

can log in to a service and is able to use other independent services without

need for further authentications during the session. [14]



Currently a well recognized problem is that users have more web accounts

than they are able to remember credentials, which leads to poor password

choices and management practices. SSO reduces the number of user ac-

counts and also improves usability of services since credentials do not need to

be typed repeatedly. For SPs, SSO decreases costs, since authentication and

other identity management processes are delegated to IdP [10]. Although

SSO comes with many benefits, it is also important to recognize its disad-

vantages. For example, if a user account gets compromised in the SSO sys-

tem, the attacker gains access to all services instead of one. SSO solutions

can be classified on how they are deployed: Web SSO is often used in In-

ternet to provide access to applications deployed on web servers, Enterprise

SSO provides access to services in the enterprise or organisation (ESSO) and

multi-domain SSO connects services of enterprise and its business parten-

ers. [14]

Federated IdM

Traditionally SPs have managed the user identities themselves in isolated

IdM model. That is, the web services have been SP and IdP at the same time.

In fact, many web services still use an isolated model even though it means

that users must handle numerous accounts themselves. Figure 1a illustrates

centralised IdM model. In the centralised model, the role of IdP has been

separated from SPs and identity information is stored and maintained in a

centralised location. This model supports the use of SSO. [9]

Figure 1b presents federated IdM model. In FIdM systems, member or-

ganisations allow users to access each other’s resources without centralised

identity control. This model always requires trust relations built on agreed

business contracts and common technology platforms between attending or-

ganisations [9]. The group of IdP and SPs in the federation is called Circle

of Trust (CoT), and the actors in CoT share metadata [10]. In a FIdM sys-

tem, only the users’ home organisation needs to maintain their identities,

but users can still access all SPs in CoT. Moreover, one of the most basic

functions that FIdM systems provide is multi-domain SSO [10].

Identity information is typically highly sensitive and it is used to access

protected resources. Especially in a federated environment where the iden-

tities are shared over organisational boundaries, it is important to take care

of the security and privacy. To address these needs, pseudonyms are used

in exchange of identity information between SPs and IdPs, and the rule of

minimal disclosure is applied to shared attributes in FIdM systems. [7]



(a) Centralized model. Multiple SPs au-

thenticate users against central IdP.

(b) Federated model. The authentication

is directed to users’ home organisa-

tion’s IdP.

Figure 1. Centralized and federated IdM models. Redrawn from [9].

Protocols

There are three widely used industry standard identity protocols: OAuth

2.0, OpenID Connect and SAML 2.0 [15]. These protocols are shortly intro-

duced, because they are important in FIdM, but this paper will not explain

how they work in detail. OAuth 2.0 is an authorization framework that en-

ables third-party applications to access HTTP-services and OpenID Connect

implements an authentication layer on top of OAuth 2.0 [15]. SAML is an

XML-based framework for exchanging identity and security information be-

tween entities. [3] It provides cross-domain SSO and identity federation [15].

3 EU Member States

Significant factor in international identification systems in the European

Union is a regulation called eIDAS, which stands for electronic IDentifica-

tion, Authentication and trust Services for electronic transactions in the

internal market. The eIDAS regulation enables interoperability between

Member States (MS) by permitting a user of eIDAS-enabled SP to authenti-

cate in their home country instead of the country that provides the SP.

Interoperability in eIDAS is achieved by defining technical interfaces be-

tween eIDAS-nodes. There are two different kinds of eIDAS-nodes: eIDAS-

Connector and eIDAS-Service. Latter can be categorised further to eIDAS-

Proxy-Services and eIDAS-Middleware-Services. Depending on which kind

of eIDAS-service is used, the architecture is called Proxy-based-scheme or

Middleware-based scheme. [6]

In the eIDAS architecture receiving MS provides services and relies on au-



thentication and identity information of sending MS. The eIDAS-enabled RP

is connected to eIDAS-Connector of receiving MS which again is connected

to eIDAS-Service of the sending MS. The eIDAS-Service of sending MS is

connected to national electronic identification system: eID scheme. Figure 2

illustrates simplified connections of eIDAS architecture. In reality, all MSs

have both eIDAS-Connector and -Service. Communications between eIDAS-

nodes use SAML-protocol. [6]

Figure 2. The eIDAS-Connector of the receiving MS A is connected to other countries eIDAS-
services. [7]

The eIDAS regulation has been compulsory for all MSs since 2018, but

many MSs have been unsuccessful when trying to integrate the regulation

to their national eID-schemes [12]. This is because MSs have developed their

eID management systems independently trying to meet their internal goals

of secure authentication prior to trying to have interoperability with other

countries’ eID schemes. Thus, the national identification solutions between

MSs have significant differences that have led to obstacles in terms of cross-

border interoperability [7]. Besides interoperability issues and differences

between national eID implementations, some authors have suggested that

eIDAS implementations have difficulties because of the complexity of the

eID concept. As a result, the European Commission proposed an amended

draft of the eIDAS regulation based on collected feedback in July 2021. The

new draft includes functionality called EU digital identity wallet, and har-

monisation with other EU regulations and standards among other things.

[12]

4 Education and reaserach environment

Academic institutions typically form national federations in different coun-

tries. In Finland HAKA federation is responsible for enabling SSO between

research and educational institutions with SAML-based software called Shib-



boleth which is commonly used in academic environments. When an organ-

isation has successfully applied to HAKA, metadata of its servers is added

to the resource register and the organisation can join the SAML metadata

exchange of the whole federation. [8] Other countries also have their own

federations and trust networks for academic institutions. For example, Ger-

many has DFN-AAI and Sweden has SWAMID [1].

EduGAIN is a large, international federation formed by smaller federa-

tions [13] such as HAKA. In eduGAIN, SSO is enabled with Shibboleth with

no extensions. [8] [4] After SP or IdP has registered to one of the subfedera-

tions, it can also register to eduGAIN. Subfederation might have varying lev-

els of trust built into their systems and therefore entities in eduGAIN do not

automatically transfer identity attributes between each other. In contrast,

in HAKA it is the default behaviour that all IdPs and SPs share attributes

between each other. Thus, entities in eduGAIN can choose with whom they

form communications agreements. [8]

Figure 3. SPs and IdPs can be part of eduGAIN or only the subfederation. Metadata Distri-
bution service provides details of entities.

The eIDAS framework can be used in academic services and other domains,

such as, banking and healthcare. In fact, many academic e-services provided

by higher education institutions offer the possibility for students to authen-

ticate by using their national eIDs [17]. However, the problem with using

eIDAS in cross-border identity sharing for certain domains is that countries

provide only the restricted basic set of identity attributes, not anything ad-

ditional. [4] [17] That is, a service relying on authentication through eI-

DAS will only gain a minimum dataset of user profile, which contains cit-

izens’ personal and legal attributes, not academic or other domain-specific

attributes that may be required to use certain services. [4] [17] Solutions for

this problem must address two challenges; (1) Since eIDAS does not support

any additional attributes besides the minimum dataset, relevant academic

attributes must be recognized and eIDAS specification extended to support



these attributes. And (2) third-party attribute providers are needed in or-

der to add academic attributes to eIDAS profiles since IdPs connected to

eIDAS-nodes provide only personal and legal information according to the

national eID scheme. [17] Even though these challenges are still an open

issue [4], there already exist working implementations of extensions that

address these challenges.

Traditionally High Education Institutions (HEIs) have had their own stand-

alone solutions for eID schemes varying between and within the countries

which makes the digital interoperability and mobility between HEIs diffi-

cult or even impossible [13]. European Campus Card Association (ECCA)

has been promoting research for the development and implementation of

eID credentials for HEIs to allow interoperability for students in Europe.

Furthermore, ECCA’s recent Student eID project is progressing to support

provision of secure identification and authentication of students on a cross-

border basis. There is a wide range of related projects and initiatives aiming

to provide better mobility for students, and the Student eID project recog-

nized 13 other projects that are relevant for the delivery of European eID

credentials, including EUROLogin, eID4U and European Digital University

Card Student. Additionally, the credentials should be interoperable with eI-

DAS and other EU policies. [13]

5 Conclusion and Future work

The increasing mobility worldwide and in the EU increases the demand for

secure digital identity sharing. FIdM addresses this need by enabling large-

scale decentralised identity sharing between organisations with predefined

trust relations, in addition, many security and usability benefits come with

it. In many sectors, FIdM is already widely used or in development, includ-

ing e-government and other services that use national eID schemes. There

are also multiple federations and EU-level attempts to provide mobility for

students in Europe by allowing cross-border identity sharing. These federa-

tions and networks are constantly developing, which requires active research

and effort to create secure and usable solutions.

As already stated in the introduction, there has been much research on IdM

already but there is also room for further study. Based on this paper, some

ideas for future work includes more detailed comparison of eID schemes of

different countries which could be expanded to outside of the EU. Addition-

ally, more detailed comparison of federations and trust networks in academic



environments, also expanded further from Europe and other sectors. Lastly,

even though there is much literature on earlier introduced widely used pro-

tocols in FIdM, the comparison of IdM solutions in software level is an inter-

esting research topic.
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Abstract

Biometrics of intent utilize the different biological properties of the human

body to attempt to define the intentions of a person. As a large amount of

cybersecurity breaches come from internal infiltration, more secure meth-

ods are needed for authentication. Biometrics of intent can detect when a

person is about to use their authentication for nefarious purposes and pre-

vent this from happening. Electrodermal activity (EDA), electroencephalo-

gram (EEG) and electromyography (EMG) monitor the electrical proper-

ties of the skin, the brain and the striated muscles to detect both deception

and the intent of the person. These methods are currently utilized in labo-

ratory conditions and the results of the experiments have been promising.

However, more research is needed, especially in the area of applying these

technologies in field conditions.

KEYWORDS: biometrics, intent biometrics, authentication, electrodermal

activity, electromyography, electroencephalogram, deception detection

1 Introduction

Biometrics is the measurement of physical characteristics to verify iden-

tity. The technology has been used for more than a century with the



first paper on fingerprint recognition used in identifying people published

in 1880 [4]. In popular media, fingerprint and DNA identification are

technologies commonly seen in police procedural television shows. With

the development of mobile phone cameras and fingerprint sensors, facial

recognition and fingerprints have become a common mode of securing ac-

cess on mobile phones. Similar methods are also used in modern biometric

passports.

These methods as well as passwords, another very popular method of

authentication, offer no protection against cases where a person is forced

to authenticate under duress or when a person authenticates with mali-

cious intent. These types of breaches of security can be counteracted with

biometrics of intent. These technologies apply certain types of biometrics,

such as electrodermal activity (EDA) [1, p. 478-490], electroencephalo-

gram (EEG) and electromyography (EMG). These types of biometrics can

be utilized to detect involuntary reactions within the body of a person to

establish whether their intention matches their claim or not [18, p. 688-

703].

The aim of this paper is to present and review three important biomet-

rics of intent. This paper will next explain the different types of biometrics

utilized in biometrics of intent. The third section will outline deception de-

tection tests and how biometrics of intent are utilized in detectiong decep-

tion. Section four includes conclusions and a short discussion on possible

future avenues to explore.

2 Biometrics

Although there are a very large number of different types of biometrics,

this paper focuses on the three aforementioned: EDA, EEG and EMG.

These three have been the focus of research on biometrics of intent. An

important term to understand in neural response to triggers is the con-

cept of different types of neuron firings. Tonic firing refers to a sustained

response, which activates during the course of the stimulus, while phasic

firing refers to a transient response with one or few action potentials at

the onset of stimulus followed by accommodation [20].



2.1 Electrodermal Activity

Electrodermal activity refers to all the electrical properties and their changes

within the skin. The change within the properties is caused by sweat

glands controlled by the autonomous nervous system [18, p. 159-177]. The

glands secrete sweat, which causes changes in skin conductance, capaci-

tance and potential [19]. EDA measures the excretion of palmar surfaces,

as these are thought to be more responsive to psychological sweating [18,

p. 159-177]. Different methods are used to measure changes in different

electrical properties of the skin: 1) the endosomatic method without ap-

plying external current, and the exosomatic methods of applying either 2)

direct current or 3) alternating current via electrodes.

EDA measurements are taken with electrodes placed upon the skin of

the subject. The placement of the electrodes varies depending on the type

of method used [5]. The measured conductance will change when the sub-

ject is exposed to external stimuli leading to autonomic nervous system

activation and hence a change in the skin conductance [8]. It is impor-

tant to note that skin conductivity is not influenced by parasympathetic

(unconscious) activation; hence it can be considered as a measure for both

cognitive and emotional activity [3]. The level of conductance on the skin

varies between 2 and 20 microsiemens while the observed changes usually

range from 1 to 3 microsiemens [18, p. 159-177].

EDA is measured from the surface of the skin using electrodes. A small

current with a constant voltage is passed between the electrodes. The

level of the current will alternate and can be used to measure the con-

ductance of the skin according to Ohm’s law R = V/I, where R is resis-

tance, V is voltage and I is current, while conductance is the inverse of R,

i.e., G = I/V [18, p. 159-177]. The electrodes are placed on the hand of

the subject. There are three location pairs which are commonly utilized;

however the measurements are not comparable with each other, as the

number of sweat glands varies between the locations [6]. Commonly, the

measurements are taken from the non-dominant hand, as the skin is as-

sumed to have less wear. The location should not be cleaned or abraded,

as this might alter the natural electrical properties of the skin. The atmo-

spheric properties, such as the ambient temperature and the humidity of

the test environment should be kept as constant as possible to ensure the

comparability of the measurements [1, p. 189-213].



2.2 Electroencephalogram

Electroencephalogram (EEG) is a technique which measures electrical

activity in the brain. More specifically, it is used to measure the total

activity of neurons in a localized area of the brain. This activity is syn-

chronous and hence creates frequency oscillations. The oscillations induce

an electrical field, which can be detected through the skull on the scalp.

The inducted potentials can be detected as a potential difference between

different parts of the scalp and thus; a reference electrode is needed as

well [3]. Intracranial EEG can be recorded as well, and while the signal

recorded would be stronger and clearer, the method is extremely invasive

and hence not viable in most experiments [9].

There are different types of metrics recorded using EEG: spontaneous

activity recorded during rest or sustained stimulus and evoked brain po-

tential (EP) induced by phasic stimulus. Often both are measured in par-

allel, as they offer complimentary information [9]. The oscillations range

from 1 to 44 Hz and is separated into five different bands based on the

types of brain activity they reflect [18, p. 59-60]. The different frequency

bands reflect different types of brain activity. The voltages measured

range from 5 to 100 microvolts.

2.3 Electromyography

Electromyography (EMG) is the detection of electrical activity within the

striated muscle cells [18, p. 267-291]. Contraction of these muscles can

reveal the mental states of examined people, as emotional expressions

reflect on the facial muscles. Facial expressions are often observed and

assessed based upon the facial expression coding method. However, EMG

is more effective in identifying subtle expressions that are not detected by

facial coding. EMG has been shown to be primarily effective in separating

positive expressions from negative ones [14].

There are two varieties of EMG: surface where the signals are recorded

with electrodes from the skin and intramuscular where the signals are

recorded with needles from within the muscle [18, p. 267-291]. As biomet-

rics of intent are concentrated only on facial EMG, this paper focuses on

surface EMG. The signal EMG records is created by motoneurons firing

within the muscle fiber, as it contracts creating muscle action potential

(MAP). A measure of this potential transfers to the skin and the elec-

trodes detect the change. However, as numerous different MAPs affect



the potential on the skin, the change cannot be tracked back to singular

actions or origins. Hence, considerable attention must be given to elec-

trode placement as well as recording and analysis of the signal.

Surface EMG measurements require two electrodes. Prior to attach-

ing, the skin is cleaned from dirt and oil as well as abraded reducing the

impedance to between 5 and 10 kΩ [18, p. 267-291]. As the measured

signals are small in both current and voltage, they are very susceptible to

electrical noise. Hence, it is important to ensure that the connection be-

tween the electrode and the ground is stable and the impedance between

the two measuring locations is low. The frequencies of the signals vary

from several to 500 Hz, while the amplitude can be lower than one mi-

crovolt or as high as a millivolt. Due to these factors, EMG signals are

vulnerable to noise, especially from electrical sources such as AC power

lines operating on a 50 or 60 Hz frequency. Because of the noise, it is vital

to properly shield and ground the equipment as well as the subject.

Establishing a baseline is important in EMG. A true baseline in EMG

would be only the background noise of the measuring location; however,

achieving zero activity in muscles is difficult to accomplish. The baseline

is attempted to record with either prestimulus and pseudotrial recordings,

which mimic the actual trials except for the external stimuli, or with a

closed-loop baseline procedure, where stimuli is random on low enough

levels of activity on the recording locations [18, p. 267-291].

Additionally, EMG is greatly affected by the social aspect involved in

the recording as well as the mental state of the test subject. Tassinary

& al. [18, p. 267-291] mention several social factors that affect EMG

recordings, such as the audience effect, where the subject will react dif-

ferently to stimuli depending on whether they are being observed or not,

or the mimicry effect, where the subject will mimic some of the muscle

movements they perceive on a face they are observing.

3 Deception detection

3.1 Deception detection tests

Deception detection or polygraph, is an interview where the interviewer

attempts to detect if, when and where the interviewee is lying. The ques-

tions in these interviews are formulated as yes or no questions.



Deception tests can be categorized into two categories: knowledge-based

tests and deception-based tests [1, p. 478-490]. Deception-based tests can

be further divided into two categories: comparison question tests (CQT)

and the relevant-irrelevant test (RI). Boucsein further states that the RI

tests are completely useless as they do not satisfy the requirements of a

psychological test and should not be used in a professional setting to make

final decisions. The CQT is a technique developed after the RI test and

it has improved upon its model. In addition to the relevant information

and irrelevant information questions of the RI test, CQT also includes

comparison questions, which are designed to create a large response from

non-deceptive individuals, while deceptive individuals would react most

strongly to the questions relevant to the matter.

Knowledge-based tests are called either guilty knowledge tests (GKT) or

concealed information tests (CIT) and they rely on the deceptive person

to react strongly to the information they know, while the non-deceptive

person will not react strongly to the information they do not know[1, p.

478-490]. Of course, due to the nature of the test, the GKT cannot be used

for every type of deception detection. The GKT was developed for forensic

applications and hence it is most applicable in these situations.

3.2 Using EDA in deception detection

As Boucsein [1, p. 478-490] states in his book, EDA has been used in tra-

ditional polygraphs for a long time. Despite the longevity, the results have

been mixed. While EDA is the most accurate of traditional polygraph de-

tection methods, Boucsein notes that it is defeated by countermeasures

such as covert muscle contractions or discreetly self-inflicted pain. Due to

this and cases where a guilty party has been deemed innocent or an inno-

cent deemed guilty by a polygraph, polygraphs are deemed inadmissible

in court or are not used by the police forces [10].

A study conducted in The Netherlands, involving 97 students in two sep-

arate experiments, focused on discovering whether the intent to lie could

be seen in the EDA signals of the subject the same as actual lying [17].

Two different experiments were conducted: one where the deception was

regarding perceived emotions and one where it was an arithmetic task

was performed. The EDA measured was exodermal skin conductance.

When the test subject was lying, both tests clearly showed an increase in

EDA activity. However, the results were not the same on the intention to

lie. The emotion recognition test did not show an increase in EDA activity



while the arithmetic task test did.

3.3 Using EEG in deception detection

A study in the People’s Republic of China, involving 33 subjects, discov-

ered a link between theta synchronization and deception [21]. Three elec-

trodes at three different sites on the scalp detected similar theta band

oscillations when subjects were withholding information in a CIT.

Another study in People’s Republic of China, involving 30 individuals,

concentrated on the information flows between different cortices of the

brain instead of the usual time, frequency, or temporal features [7]. The

test setup had 64 electrodes recording signals during a GKT. 24 regions of

interest were selected and the sources of the signals were estimated with a

standardized low-resolution brain electromagnetic tomography [13]. Next,

the effective connectivity was analysed with partial directed coherence [2]

and differences were extracted with graph theoretical analysis [7]. The

model was tested with test datasets of different frequency bands and the

rate of deception detection was very high, ranging from 96 to 99% depend-

ing on the frequency band. However, there are issues with the study. A

notable issue is the inability to simulate a real situation. The subjects did

not expect the type of emotions, such as fear or anxiety, an actual inter-

rogated person would. The presence of these emotions would definitely

influence the EEG signals. Another issue is the lack of study on the ef-

fectiveness on lie countermeasures, which usually easily fool GKT [1, p.

478-490].

3.4 Using EMG in deception detection

A study in Australia tested 14 individuals utilizing EMG along with a

polygraph. The EMG recordings were taken from the belly of the masseter

muscle [15]. The participants were measured with a card test as well as

an affirmative test. In the results, the researchers claim EMG helps in

detecting deception as the differences in amplitude were clearly visible

while the subjects were being deceptive during the test. However, more

than 67% of the deception in the card test was unnoticed.

A study, with 45 participating individuals, by Shuster & al. [16] did

not utilize a polygraph, but used a different method: participants acted

as sender and receiver of messages. The sender would hear one of two

words and would repeat either the one they heard (non-deception) or the



one they did not hear (deception) to the receiver, who would then decide

whether they believed the sender was being truthful or deceptive. Af-

ter a number of trials, a monetary incentive was introduced, where the

sender would receive money for successfully deceiving the receiver, while

the receiver would gain money, if they were able to tell correctly whether

the sender was being deceitful or not. The EMG recordings were taken

from the corrugator superclii muscle region (frowning) and the zygomati-

cus muscles region (smiling). The data was analyzed with a support vec-

tor machine classifier using a least squares cost function. The results of

the study indicated that the EMG recording reliant algorithm was much

better at detecting deception than the human participants. It was also no-

table that while slightly more than half of the participants mostly showed

their deception through their zygomaticus region, a minority expressed

their deception through their corrugator superclii region.

4 Discussion

It is evident from the small sampling of studies in this paper that the

methods mentioned are effective at detecting deception, when the tests

are done within optimal circumstances. Especially EEG had very notable

detection rate. However, it is also evident that using biometrics of intent

outside of a laboratory environment proposes several challenges. First

and foremost is the noise bound to be present in a practical situation.

Electrical devices and wiring are everywhere and the 50/60 Hz frequency

is within the frequency range utilized by EEG and EMG. Hence there will

be considerable noise present in the measurements. This interference can

be mitigated to an extent, but in a field environment, it might prove a sig-

nificant challenge. Countermeasures are another issue that might prove

difficult to overcome. While Boucsein [1, p. 484] states that EMG can be

used in conjunction with EDA in polygraphs to counter countermeasures,

he also states that the effectiveness of it is limited.

All of the studies performed consisted of experiments where the subjects

were carefully coordinated in their performance. This is ideal for initial

tests to clearly indicate implication between deception and the recorded

signal. However, the situation in a field use case will be remarkably dif-

ferent. The subjects, both innocent and guilty, will be substantially more

anxious and nervous and less cooperative. Rigorous testing must be con-

ducted prior to these kinds of experimental tests utilized as proof in courts



of law. Another significant issue is the lack of realistic stake for the sub-

jects in the experiments. In a real life case of deception, the party per-

forming the deception has something significant to lose, if their deception

is detected. In addition, it is very probable an innocent person would ex-

perience anxiety within an interrogation situation. Hence, more research

is needed to allow these methods to be utilized in real life field conditions.

One final issue is morality. Detecting the intentions of a person prior to

them actually voicing them out or committing the deeds could be consid-

ered a serious breach of privacy as defined in the United Nations Declara-

tion of Human rights [11]. Moreover, the use of a polygraph is considered

unlawful in Switzerland[10] as taking a polygraph, even if willingly, can

be seen as a form of self incrimination [12]. The ideas in these experi-

ments do not venture into actual mind reading or thoughtcrime, however,

these ideas are not a distant future.
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Abstract

Current container security practices in the form of namespaces and control

groups are considered insufficient or hard to use. For this reason, security

profiles and modules have been used as an incremental improvement for

container security, without being designed into the original approach. Hy-

brid virtual machines are the latest solution that offers a combined strat-

egy between container usability and security, in which containers are run

inside or abstracted to a virtual machine optimised to start fast and offer

only a minimal layer around the container. The existence of such projects

shows that the superior security model of virtual machines can be refitted

to harden container isolation.

KEYWORDS: container isolation, security, virtual machine, hybrid con-

tainer virtualization

1 Introduction

Application containers are a technology tightly linked with the rise in pop-

ularity of cloud deployment among developers, offering the possibility of

migrating providers without affecting the application, generally bringing

the DevOps side of a software business closer to the development team.



The significant ease of use coming from this "write once deploy every-

where" strategy made containers pervasive in all use cases, from packag-

ing software for the advanced home user, to cloud-scale systems like Ku-

bernetes, at their core being the concept of containers. While the security

of this environment has been built around UNIX-like abstractions such

as control groups (cgroups) and namespaces, their weaknesses resulted in

different strategies needed to further security, such as security profiles or

kernel security modules. Separate from the above, there has been a push

to merge the usability of container technologies with the security offered

by virtualization, running either a thin virtual machine layer around a

container for hardware-enabled isolation or abstracting out the container

runtime completely and offering it only as an API layer for controlling and

monitoring the working process inside a virtual machine.

In the following, we will describe security-related projects and technolo-

gies, to help follow with further comparisons. First of all, the security

model for containers currently relies, as described, on cgroups, which can

monitor and limit resource usage, namespaces, which isolate processes

from one another (and related resources like PIDs) and seccomp-bpf, a

kernel security module that restricts syscall access. KVM, or kernel-level

modules, is a technology that has been integrated into the Linux kernel

that is used to turn a Linux instance into a bare-metal hypervisor for vir-

tualization. QUEMU/KVM is a project forked from the general purpose

emulator and virtualizer QEMU and enhanced with kernel-level virtu-

alization capabilities coming from KVM. As such, it is a complex project

with a functionally complete set of capabilities, and a codebase size to

reflect it, over 1.4 million lines of code [1]. gVisor, a Google project, is

a sandboxed container runtime, which isolates containers from the host

without being a fully-fledged virtualization solution, but by presenting a

similar interface to the virtualized targets (strategy named paravirtual-

ization), being a good comparison target to the discussed solutions. runC

and crun are two lightweight container runtimes following the OCI (Open

Container Initiative) specification, the first being a project that started as

part of Docker’s source code for running and managing containers, and

the second being a competitor to the first, with lower memory consump-

tion and written in C, compared to Go. Podman (Pod Management tool)

is a container engine including a runtime and all the necessary tools for

developing and management of containers, but, differently from Docker, it

does not have a model based on system daemons and can run completely



in non-root mode.

This paper focuses on such technologies, going into detail on their strate-

gies and advantages in adopting the advantages of containers and the se-

curity of hardware-enabled virtualization. The two main projects we will

approach are Kata Containers [5] and Firecracker [8] (with its control

layer enabled by Ignite), both open-source codebases supported either by

the community, through the Open Container Initiative, or by the currently

largest on-demand cloud provider, AWS.

2 Solution basics

The two main solutions when it comes to hybrid VM containers are repre-

sented by Kata containers, which run containers themselves on a virtual

machine and Firecracker, which runs the container image itself as an ac-

tual virtual machine with a dedicated kernel. While the first option is

closer to a layered onion security model in which the nature of the con-

tainer stays the same, it has been criticised for slow starts due to the

need to wait for the virtual machine boot [10], so projects like Firecracker

have created micro VMs with stripped down kernels that reduce startup

times to under 125 ms [1].

A clear downside of using a dedicated minimal kernel is the possibility

of not being able to run some types of applications [9], which impacts the

use cases surrounding a less specialised deployment environment. When

the functional needs require system calls that are not handled (or cannot

be virtualized directly), then the bottleneck platform (in this case Kata

container’s solution) has to be replaced or, in case enough resources can

be found on the user side for regular maintenance, a custom kernel can

be compiled for specific operations.

2.1 Firecracker

Firecracker is a virtual machine manager that is used to control lightweight

virtual machines called microVMs [8], and an alternative to QEMU. Using

KVM-based virtualization and reducing the container image capabilities,

in what they call a minimal device model, it improves the security model

by removing part of the attack surface (as well as unused kernel func-

tionality). Firecracker runs as a userspace program, using kernel-based

virtualization (KVM) to separate the host OS from the custom OS of the



guest. Unlike other solutions like Kata containers, it does not also use

QEMU or a modified version of it, deciding to reduce the possibility of

security vulnerabilities from the breath of code by having a slim code-

base written in Rust [1]. Firecracker is not characterized by a paradigm

change, compared to its alternatives. That is because it comes with the

specific purpose of running serverless functions, which need quick startup

times and a large number of simultaneous containers, so Firecracker acts

as an integration to many other products in the space, including Kata.

The minimal guest kernel results in low container startup times (lower

than 125 ms) and high startup rates (up to 150 microVMs per second per

host) [1]. Being a technology targeted as a quality-of-life improvement

for clients of AWS, it is built with the scope of reducing the overhead

of managing a single container as much as possible (reported at 5 MB),

to provide a high-capability multi-tenancy. Outside network and storage

abstractions and management, it also comes with rate-limiting capabili-

ties, for easy management of individual containers. Their chosen security

model specifies that all workloads are considered malicious at all times

[1], with the point of them being isolated completely against one another

and against the control level itself. Firecracker can be controlled through

a REST API with access to configuration and rate-limiting. The second

level of security is at the container level through a separate process called

jailer. This jailer can additionally offer cgroup level controls inside the

guest kernel, such as namespaces and limits for file sizes and file de-

scriptor counts. However, its main development team has mentioned it is

both less capable and offers fewer options than control groups themselves

[1]. Its operation is more user-friendly than manually managing the men-

tioned resources, as it does a cleanup and startup sequence automatically

to reduce the attack surface.

2.2 Kata Containers

Kata Containers are a lightweight VM solution that integrates with OCI

containers seamlessly [6], and it is the merger of two previously exist-

ing technologies: Intel Clear Containers (container runtime solution that

works on Intel processors with Intel® Virtualization Technology enabled,

using QEMU/KVM), focused on short startup times (under 100ms) and

Hyper’s runV (a virtualized container runtime). One advantage of using

Kata containers compared to Firecracker, coming from the utilization of

runV, is the breadth of deployment targets, in various hardware archi-



tectures: ADM64, ARM, IBM z-series and p-series, outside the standard

x86_64. Moreso, it also integrates with multiple hypervisors: QEMU,

Cloud-Hypervisor and even the Firecracker hypervisor [5]. It enables

multi-tenancy (when the same orchestrator can be shared by multiple ten-

ants) and supports Container-as-a-Service capabilities, not only for Ku-

bernetes but also for Swarm and OpenShift.

To settle performance and compatibility issues, post version 1 Kata has

adopted containerd’s shimv2 architecture [4], which is OCI runtime com-

patible but resolves various state-handling issues (like synchronisation).

It is using a single runtime binary for all containers, and that communi-

cates with the container manager through a socket using gRPC calls in-

stead of regular API calls (that have no connection established). The final

result is improving the runtime performance and eliminating commonly

appearing byzantine problems on synchronization between deployments

on multiple hosts. The virtualization offered is on two levels: the VM root

specified by the hypervisor OS image and the VM container root, specified

by the container base image. Each container environment is managed by

the configured hypervisor, which manages a kata-agent and the workload

(the actual deployed container). The kata-agent is the sole supervisor of

all containers of a VM instance. Back on the host level, a kata-runtime

acts as a utility for admin control. In terms of limitations, it is mostly

in line with the runC implementation used by Docker (however that im-

plementation does not follow the OCI standard specification itself), with

some notable differences: host network usage is not accessible, host stor-

age is not allowed unless extra privileges are offered to the container and

Podman support is not yet achieved.

3 Security considerations

3.1 Threat scenarios

The overview of container security models in [11], outlines four use cases

for container security, which should each be treated as if any level in this

vertical deployment (host, container, and application) can either be honest

(secure), semi-honest (would disclose information, but not give up control)

or malicious (give up control to attackers): 1. protecting containers from

applications 2. protecting containers from each other 3. protecting host



from containers 4. protecting container from host

Usage of hybrid VM containers clearly can defend more thoroughly, if

not completely, in protecting containers from each other, and by the way

of their construction, it can also avoid attacks coming from the use of

untrusted images, or image misconfiguration. Making containers work

inside VMs, as in the case of Kata containers, can protect the host (at least

up to par with regular virtualization solutions) from malicious processes

running at the application and container level. The core of the effort is

then moved to securing the container runtime itself. If any vulnerabilities

are to be found in the control level (such as unrestricted port mapping,

which is a missing feature in the case of Kubernetes) of a hybrid container

solution, then the virtualization does not bring any additional security.

However, that is a much more limited attack surface than the complete

OS interface to which a regular container’s application has access.

4 The performance question

The rise of hybrid virtualized container technologies above the concep-

tual and scholastic realm shows that, at least in theory, the model brings

enough security improvements over the currently insufficient mechanisms.

Most of the previous discussion has been focusing on the problems that

can arise from practical implementations of these concepts. These two lay-

ers of isolation, container isolation and virtualization, are the root cause

of subsequent usability problems of such container runtimes: the startup

and runtime speed of processes inside this setup is often insufficient. As

a result, many roadblocks have been removed in the form of reduced fea-

ture sets and minimal operating system images, all to bring the applica-

tion performance closer to the bare metal. To see if this strategy has been

successful, comparative benchmarks can bring in quantitative data.

In a standard Kubernetes deployment, the default runC runtime outper-

forms Kata by 5 times [12] in a benchmark using real-life applications, at

both executing the applications and container startup. Comparatively, in

the same benchmark, gVisor has been found to deploy containers 2 times

faster than Kata (version 1.9), but execute apps 1.6 times slower than it.

This data comes from actual deployable (and quite popular) apps which

are often used in a container form: Redis, an in-memory data store; Spark,

a big data processing pipeline; and TeaStore, a microservice benchmark.

In microbenchmarks focused on specific code paths, system calls or a sub-



set of application runtimes (Node, Ruby, Apache), one can see that even if

optimisation is made for those functionalities to be comparable with the

base runC (as in the case for gVisor [7]), I/O transfer limitations trans-

late in overall application performance loss. Using Python performance

standard benchmark (represented by the pyperformance package used as

a standard for Python performance benchmarking), it has been shown [3]

that Kata containers perform similarly compared to crun when talking

about basic operations (math, logging, SQL execution), but that is not the

case for more complex applications, where Kata performs up to 16% worse

than crun. A deeper analysis shows that the filesystem model used inside

Kata (DAX, Linux Direct Access filesystem, meant to be used to access

host caches directly) is creating real-life performance issues, and it barely

registers for compute-only jobs. These tests are done using Podman as

a container manager and crun as a runtime as a comparison baseline

for evaluating Kata containers, and only regard the runtime execution,

not the container startup. In a CPU-bound performance benchmark (AV1

video decoding) [13], Kata QEMU performs around 4% worse than the

bare-metal, almost identical to runC, while gVisor performs, depending

on configuration, either the same as the host or significantly worse, by

13%, showing that, for computationally difficult tasks that need extra se-

curity, Kata containers are a reliable choice.

One practical strategy adopted by Firecracker in treating container re-

source usage has been soft allocation, which means that it will over-

commit resources, but only offer to a container what they use (dynami-

cally at runtime), not what has been requested [1]. This has helped in

the target required by Amazon’s Lambda in having 99.9% or higher up-

time. In a comparison with gVisor and Linux containers [2], it has been

shown that the CPU speed has not been affected by running on any of the

above-mentioned runtimes compared to the host (comparison on up to 10

concurrent instances). However, Firecracker has shown more consistent

bandwidth usage than gVisor, slightly higher network latency and signifi-

cantly lower memory overhead footprint. Finally, while its write through-

put is up to four times higher than gVisor depending on its configuration

because it does not write data to persistent storage, its read throughput is

significantly slower than gVisor (whose performance is comparable to the

one of the host), because it is expensive to copy data from the host’s space

outside the container. This can be improved by having warm startups

inside the microVM, with the data being kept in the slot’s cache.



5 Conclusion

The hybrid VM solutions mentioned represent innovative approaches to

fixing the security and performance problems of containers without harm-

ing usability. They have been steadily gaining traction as deployment op-

tions, while they are still missing out on important features and have

a limited choice when it comes to actual supported images and bare-

metal. This can be often overlooked by products which fit within those

constraints, and it shows that hybrid VMs still need increased capabili-

ties and adoption before they can become de-facto solutions for the secu-

rity needs in container isolation.
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Abstract

This paper presents select language features from two programming lan-

guages – EasyCrypt and F* – used for automated verification of crypto-

graphic proofs. These languages differ in their capabilities and intended

applications, yet have passing resemblances as functional programming

languages. The most distinct language features of the languages are dis-

cussed and related to their use in cryptographic verification.
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1 Introduction

In the ever more digital and connected world of today, computer security

is more relevant than ever. Fridges, cars, phones and other devices are

all connected to each other as well as the Internet, enhancing their tra-

ditional features with ones such as remote monitoring and management.

However, a larger number of online devices also present more opportuni-

ties for malicious actors to leverage.

Although developments in cryptography may not be seen as particularly

impactful in the daily life of the average person, cryptographic algorithms



and schemes form the basis upon which the security of many of the afore-

mentioned devices rely upon. As such, it is vital that the security of these

algorithms is verified thoroughly. The security of an algorithm is verified

with a cryptographic proof [1].

Traditionally, cryptographic proofs have been written by hand, but a re-

cent trend has been so-called automated verification, where some or all

of the proof is generated by a computer or the verification of the proof is

automated [2]. Errors and vulnerabilities can be effectively found with

a computer program looking for contradictions between the proof and its

assumptions [3]. Automated verification requires a description of the al-

gorithm and the associated assumptions, in a form that a computer can

understand. Many domain-specific languages (DSL) have been developed

to support different types of cryptographic verification; most tools come

with their own languages [3].

This report presents language features of two state-of-the-art crypto-

graphic verification tools: EasyCrypt and F*. A third tool – CryptoVerif

– was reviewed, but was omitted from the comparison as it was found to

bring nothing additional to the comparison. These three tools and their

languages represent three different application domains within the field

of computer security and cryptography, and were named as promising can-

didates for computational verification in [3].

EasyCrypt is both a tool primarily intended to aid in the construction

and verification of cryptographic proofs [4], while F* is a general-purpose

programming language that focuses on verification and, consequently,

supports cryptographic proofs [5][6]. The third tool, CryptoVerif, focuses

on protocol-related proofs and is capable of aiding the user by generating

parts of the proof [7][8]. Both EasyCrypt [9][10] and F* [6][3] have been

used to verify standardized cryptography, and support the extraction of a

verified program from the proof.

Beyond this introduction, this report consists of three sections. The

next two sections hereafter describe EasyCrypt and F*, respectively, their

unique features in particular. The third section concludes the report with

insight into whether and how the presented features could be made use

of in the other language.



2 EasyCrypt

EasyCrypt is described in [1] as a framework for machine-verifying the

security of cryptographic constructions and is notable for how closely it

resembles traditional manual proofs. The language can be used in most

cryptographic proofs, including for primitives, protocols and systems, and

the framework supports the extraction of an implementation from the

proof. [11][1]

Under the hood, EasyCrypt uses a proof engine that utilizes an SMT

solver. This engine determines whether the proof is valid by generating a

goal from the specification, which is then resolved by applying tactics that

either map goals to subgoals or resolve them. If all goals can be resolved,

then the proof is valid — otherwise, the proof is rejected [11]. A deeper

inspection of the proof engine is not within the scope of this report.

The EasyCrypt language is, at its core, a functional programming lan-

guage. This functional language is referred to as core language both in

this report and other works [3]. From a practical perspective, this means

that all functions are deterministic and never modify the program state,

except by their return value [12].

EasyCrypt has two particularly notable features. The first feature is the

module, which presents an embedded imperative programming language,

and the second is the treatment of values as distributions.

2.1 Modules

As described in [11], EasyCrypt utilizes modules defined in an imperative

language (i.e. each operation modifies the current state). These modules

resemble the ‘class’ data type of object-oriented languages such as C++

and Python, with data and procedures enclosed within. The key difference

is that only a single instance can ever exist for a given EasyCrypt module.

These modules are used to describe Games and Oracles, as commonly

seen in cryptographic proofs [11]. The imperative language that these

modules are written in resembles very closely pen-and-paper proofs [3],

with the exception that all symbols are written with ASCII characters,

with some becoming keywords and others becoming a multi-symbol oper-

ator – though this limitation is shared with the core language [11]. For

the sake of illustrating the syntax of modules and the symbol mappings,

figure 1 shows a simple example in both pseudocode and in EasyCrypt.



M

state

a : Z
init

a←$Z
next(x)

a← a⊕ x

return a

module M = {

var a : int

proc i n i t ( lim : nat ) : unit = {

a <$ [− lim . . lim ] ;

}

proc next ( x : int ) : int = {

a <− a ^^ x ;

return a ;

}

}

Figure 1. A simple package in pseudocode (left) and in EasyCrypt (right)

2.2 Values as distributions

One feature in EasyCrypt that is not strictly a feature of the language is

the fact that its proof engine treats values as distributions of the declared

type. This allows EasyCrypt to not only determine whether and adversary

is successful, but also the probability of success. Consider the example

given in figure 1 — the variable a is actually initialized to be a uniform

distribution of given precision. Subsequent calls to next() then modify

that distribution. [11]

3 F*

F* (F star) is a general-purpose functional programming language that

lends itself to cryptographic verification. After a program written in F* is

verified, it can be extracted to program code that is also verified. Beyond

the verification capabilities of EasyCrypt, F* also supports verification of

side-channel resistance. [3][5]

F* bears striking resemblance to EasyCrypt both superficially, with the

syntactic and lexical elements of the two languages being nearly identical,

with one exception being the imperative sublanguage of EasyCrypt. An-

other point of similarity is that the verification engine at the heart of F*

also uses an SMT solver, i.e. applies tactics to resolve goals to prove that

the program fulfills the programmer’s specification. Tactics and goals are

a type in F*, and can therefore be defined and used by the programmer.

[5]



According to the developers, the driving force behind the language is

the development of Project Everest [13], which aims to produce a fully-

verified HTTPS implementation [6]. This project has also verified and im-

plemented the QUIC record layer [14] and the Signal messaging protocol

[6]. A byproduct of the project has been EverCrypt, which is a collection of

cryptographic algorithms and data structures, such as SHA-3 and Merkle

trees [6].

Similar to the other two languages, F* has a very flexible type system,

extended further by its propositions, which are described at length in Sec-

tion 3.1. Another peculiar feature of F* is its support for implicit code,

described in Section 3.2. Lastly, one feature of F* that deserves a men-

tion, but unfortunately did not fit into the scope of this work, is its remark-

able metaprogramming capabilities — beyond defining types and operator

overloads, F* supports defining new goals and tactics for the SMT solver

[5].

3.1 Types and propositions

Most programming languages have some notion of types, as does F*. What

sets the type system of F* apart from those of many other programming

languages, is that an F* type is a value. For example, a function can ac-

cept a type as an argument and types can be used in expressions. It is

also possible to compose new types from pre-existing types, e.g. vectors

and tuples. [5]

F* incorporates proof-irrelevant propositions [5], a notion under which

any two proofs of a given proposition are considered equal [15]. In F*,

propositions resemble the boolean type in that they can be resolved to

either ‘true’ or ‘false’, but may also be undecidable. It is particularly im-

portant to note that propositions are simply another type under the F*

semantics, allowing the programmer to define functions that operate on

or return propositions. Two examples of this are forall and exists, both

of which are functions returning a proposition. [5]

Propositions can be attached to types and functions, and can also be

used in assertions and assumptions, which define the constraints of the

program. When attached to a type, a proposition allows one to define a

novel type from a pre-existing type, such as the set of odd numbers or the

elements of the fibonacci sequence. In functions, a proposition can be used

to ensure that a recursive function always terminates – a notion which is

required by the verification engine. [5]



3.2 Implicit code

F* allows the programmer to omit values or small parts of code to let

the verification engine to determine the appropriate code. In the simplest

case, a small piece of code can simply be omitted — for example, if an

integer is assigned to a name, the type definition for that name can be

omitted [5].

More importantly, there are two ways for a programmer to indicate that

values should be accepted implicitly. Firstly, some or all of the arguments

of a function can be declared as implicit by prefixing them with a ‘#’. Sec-

ondly, parts of expressions or statements can be omitted explicitly by uti-

lizing a language concept coined by the developers as program hole, rep-

resented with a ‘_’ token and implying a default behaviour. In the case

of a function argument, an omitted argument would be inferred from the

other arguments of the function — or possibly the return value.

4 Conclusions and discussion

While both languages are intended for different purposes, they are very

similar in terms of syntactic and lexical elements. This similarity is likely

due to a translation of mathematical symbols to an ASCII representation.

To reiterate, the features highlighted in this report are: modules, values

as distributions, the F* type and proposition system and implicit code. In

this section, both languages are considered again – this time, considering

if and how the features from the other language would suit the lanugage

in question.

EasyCrypt appears to be very focused on game-based cryptography, with

its embedded imperative language and interactive flow. However, it is not

hard to imagine ways in which the propositions of F* could be used in the

language. Rather than stating facts about variables in assertions (or as-

sumptions), one could attach these facts to the variables themselves at the

site of declaration. Given its smaller scope, however, it is unlikely to ben-

efit to a significant degree from the code inference and metaprogramming

capabilities of F*.

On the other hand, F* is a much broader language, and seems to have

sufficient metaprogramming capabilities to be able to define the Easy-

Crypt language as an embedded DSL. Of the two presented features of

EasyCrypt, the treatment of values as distributions is clearly more attrac-



tive – whether F* is reasonably capable of this kind of analysis, however,

remains unclear. The language has a deceptively simple appearance and

is difficult to fully grasp.

As a more general note, many papers discussing these languages and

others utilize pseudocode with mathematical symbols, rather than the ac-

tual source code. This is counterintuitive and potentially even harmful, as

then a paper showcasing the capabilities of a programming language ends

up simply displaying the pen-and-paper solution, rather than a strong ar-

gument why the language excels at presenting said solution.
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In recent years, containers have emerged as a lightweight alternative to

virtual machines, especially in the context of cloud computing. They are

now considered an industry standard to implement and deploy mircoser-

vices. Nevertheless, some companies are reluctant to switch to container

technology because of its complex networking and security concerns. This

paper focuses on different methods that can be deployed at different levels

within containers to address network security concerns.
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1 Introduction

The majority of the Internet uses the client-server model, where the server

hosts an application generally running on a virtual machine. However, in

recent years, the demand for containers and their application has been

popular. A container is a standardized unit of software that creates a

virtualized environment for an application by encapsulating all its depen-

dencies thus it can be easily deployed and run in any environment [5]. The



concept of containers has been introduced early as 2008, but its rampant

growth has been directly linked to the introduction of Docker, an easy-to-

use command line tool first released in the year 2013 as a free software

[2].

Containers have become the industry standard for cloud computing. In

fact, several containers can run inside a single cluster that hosts multiple

applications. However, few companies oppose the idea of container tech-

nology and consider it insecure because of its complex network security

concerns. Therefore, it is vital to address container security and specifi-

cally how containers interact inside a cluster to ensure the security of the

system. A container is the smallest segment in a cluster, and securing the

container helps enforce network security at a more granular level.

To facilitate the task of securing container networks, this paper reviews

the current methods available to limit and secure container access. Fur-

thermore, it discusses the challenges involved in implementing and en-

forcing network security methods in dynamic container configurations.

The paper is structured as follows: Section 2 briefly introduces the need

for container network security; Section 3 covers different methods that

help enforce container network security and their implementation; Sec-

tion 4 addresses the related challenges; finally, Section 5 provides con-

cluding remarks.

2 Background

Containers offer many advantages in terms of flexibility, scalability, and

portability. As shown in Figure 1, fewer resources are required compared

to traditional counterparts, virtual machines. Because of this their pop-

Figure 1. Virtual Machines vs Container. Source: [7]



ularity and adoption have significantly increased in recent years. Most

companies based on cloud technologies are transforming their traditional

infrastructure to utilize container technology [22]. The global software

container market is expected to reach 9.643 billion US dollars by 2032,

three times higher than in 2022 [6].

2.1 Kubernetes

Container design frameworks, such as Kubernetes have emerged as the

preferred standard for dynamic, on-demand delivery of edge applications

to end users and third parties [8]. Kubernetes provides a framework for

persistently running distributed applications. It supports scaling and

failover, offers deployment patterns, and more features, such as service

discovery and load balancing, storage orchestration, automated rollouts

and rollbacks, self-healing as well as secret and configuration manage-

ment [5].

A Kubernetes cluster is a set of worker machines known as nodes. A

node can be a physical or virtual machine depending on the cluster, which

runs containerized applications by using pods. Kubernetes has mainly

two types of nodes called: Control-plane nodes and Worker nodes [11].

Each cluster has at least one worker node. Pods are considered the small-

est deployable units of computing that can create, deploy and manage

using Kubernetes [5]. A pod is defined as a set of one or more contain-

ers that uses shared storage, network resources and contains instructions

for how to run a certain container. In Kubernetes, a namespace provides

means for isolating group of resources within a single cluster.

2.2 Kubernetes Networking Model

Once network security measures are deployed in a container they proac-

tively restrict unauthorized communication and prevent applications from

being compromised [1]. All pods and nodes can communicate with other

pods without having to use Network address translation (NAT). Each pod

is allocated a unique IP address across the entire cluster. Given so there

are three different types of networking as illustrated in Figure 2:

Container-to-Container Networking. Inside a pod, there can be

multiple containers, and communication between them is straightforward.

Containers inside a pod share the same network namespace and effi-

ciently the same virtual network stack, i.e., network interfaces and net-



Figure 2. Kubernetes Networking Model. Source: [19]

work properties. A compromised container has access to other containers

that are running inside the same pod [15].

Pod-to-Pod Networking. Communication between pods leads to two

scenarios: pods communicating within the same worker node or to differ-

ent worker nodes. Pods within the same worker node have a virtual Ether-

net interface and a bridge that handles communication using the address

resolution protocol. Hence, multiple pods inside a worker node can ex-

change network packets through the virtual bridge. In case the pods are

in different worker nodes, there is an overlay network that keeps track of

the network properties of the pods. This is used to manage and update a

routing table, which references to subnet and node for a given pod. The

virtual bridge sends the packets to the overlay network, which exchanges

data packets from the other pod in a different worker node [15].

Pod-to-Service Networking. A Kubernetes service is a logical ab-

straction that exposes a group of deployed pods in a cluster as a network

service [18]. Kubernetes supports three distinct types of services:

• ClusterIP: This service is used to assign a cluster-wide unique IP ad-

dress to the application, which makes the application’s service reachable

only from inside the cluster.

• NodePort: It is used to assign the service to a static port on each node

within the cluster. The service created can be accessed from outside

the cluster using the node’s IP address and the port number that was

statically assigned.



• Load Balancer: Kubernetes exposes the service using a cloud provider’s

load balancer. Once the request is received at the cloud provider’s load

balancer, it redirects the request to the subsequent NodePort service,

which routes it to a ClusterIP service to reach a certain application [15].

2.3 Container network interface (CNI)

In Kubernetes, a network policy is used to define certain network param-

eters on how a specific pod is authorized to communicate with other net-

working components i.e., pods and services. These policies are not en-

forced by Kubernetes, but by a network plugin that implements the con-

tainer network interface (CNI). CNI plugins running on each node are

used to retrieve network policies stored in the database and enforce them.

Creating a network policy without the CNI plugin will not affect cluster

traffic.

A CNI plugin is an effective way to enforce and manage network policy

on a Kubernetes cluster. There are various CNI agents, such as calico,

Flannel, Kube-route, weave, and others [13]. Different CNI agents oper-

ate on different layers of the Open Systems Interconnection (OSI) network

model. These offer features, such as low latency, fewer resource require-

ments, encryption support, and several other security features [17].

3 Methods and implementation

A firewall is the main method used to restrict container network com-

munication. A Firewall can be introduced at different layers of the OSI

network model, i.e., transport, network, and data link layer, which can be

enforced by CNI plugins. Deploying a container on a virtual private cloud

can also help to strengthen container network security [20]. A firewall can

also be introduced on an application layer using Application Programming

Interface (API) firewalls also termed WAF or web application firewalls.

3.1 Firewall

A firewall can help limit the traffic that flows to and from a certain set of

containers. A container firewall is generally referred to as network poli-

cies in Kubernetes, which are then enforced by the CNI plugin. The idea

is to restrict container network traffic to and from approved endpoints



Figure 3. Virtual Private Cloud. Source: [4]

with a set of rules defined by network policies. A firewall is not exactly

a new concept, but using it in conjunction with other security tools and

practices can be highly effective.

3.2 Deploying containers in Virtual Private Cloud

Deploying containers with Virtual Private Cloud (VPC) can increase se-

curity. Although a VPC is part of the public cloud, it is isolated. There-

fore, the data and resources do not associate with other customers in the

cloud [21]. Users can have full privilege over how to allocate resources

and access. VPC also provides additional benefits, such as performance

upgrades, agility, and even cost reduction compared to the public cloud

[14].

3.3 Network Policies in Kubernetes

Network policy can be created, managed, and enforced using any number

of CNI plugins, some standardized practices should be followed to ensure

a certain level of security.

Default denies: This follows the principle of least privilege assigned

to restrict any unwanted traffic. Set up a network policy that denies all

incoming traffic by default in each namespace, and only allows traffic to

permitted endpoints.

Default denies egress: Egress is also referred to as outgoing traffic.

One compromised container can infect its neighboring containers, to re-

strict this deny all outgoing traffic by default in each namespace, and add



network policies for authorized egress traffic.

Restrict pod-to-pod traffic: Pods represent applications, and com-

munication between pods should be limited, thus only required pods can

communicate with other pods to ensure application functionality.

Restrict ports: Exposed ports can lead to a compromised system. Re-

strict all traffic in order to only documented ports with adequate reasons

that are authorized to accept incoming and outgoing traffic.

4 Challenges

Network security issues have been cited as one of the major problems pre-

venting many companies from successfully adopting container technology

[22]. Legacy storage architectures can be complex, and they lack API

functionality to compete with modern automation [10]. Storage cannot be

easily scaled with applications and in turn, lower the performance. Im-

plementing the right set of tools with container technology is vital and

failing this can lead to more challenging problems [9].

Different CNI plugins provide distinctive features and levels of perfor-

mance. Creating complex network policies and enforcing them using the

wrong CNI plugin can add latency to the overall network performance

[12]. The Performance of CNI plugins depends on a variety of factors, such

as resource allocation, network architecture, and protocols. According to

one of the studies that focused on finding the CNI plugins with higher

throughput and less consumed resource-usage index (CPU and memory)

in Kubernetes. In an experimental environment for exchanging data be-

tween hosts, the Kube-Router achieved the highest throughput for Trans-

mission control protocol (TCP) data transfers at over 90% of the nominal

link bandwidth, followed by Flannel and Calico [16].

Monitoring and maintaining run-time container network security can

be challenging. It requires additional resources and attaching sidecar con-

tainers with unlimited access and control over deployed resources. Mali-

cious tools with access can compromise container security. Since there is

a need for a centralized system to manage all sidecar containers deployed

for various monitoring and logging tools, an Open policy agent (OPA) can

be a use full tool that provides seamless support for policy management.

OPA is an open-source engine that supports Policy as Code, which can

track the standard development lifecycle and provide policy change his-

tory [3]. OPA integrates with a variety of tools, allowing many parts of



the system to use a standard policy language rather than relying on mul-

tiple vendor-specific technologies. For example, OPA can be deployed as

a host-level daemon or sidecar container. OPA provides centralized policy

management accessible via an API, runs in parallel with application ser-

vices, and is designed to work with any type of JSON input. Therefore it

can be easily integrated with any tool that produces JSON output.

5 Conclusion

As container technology becomes the industry standard for cloud comput-

ing, there needs to be focus on container network security, as this poses

a significant challenge to the adoption of container technology. This pa-

per has reviewed different network security measures to provide the best

model for container network security, as there are open-source solutions,

such as open policy agents, CNI plugins, and third-party container secu-

rity tools. These open-source solutions can help mitigate the current chal-

lenges when setting up complex networking models and network security

concerns. This approach can help container technology become more se-

cure, feasible, and easy to set up and could encourage more companies to

transition to container technology.
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Abstract

Bayesian neural networks (BNNs) are neural networks (NN) whose weights

are represented by a distribution. Compared to a deterministic NN, BNNs

theoretically can produce more accurate and better-calibrated predictions.

However, due to the sheer amounts of parameters in modern NNs, BNNs

are difficult to train and require massive amounts of computation. Meth-

ods have been proposed to improve the efficiency of BNNs, such as Markov

chain Monte Carlo and variational inference. In this paper, we will survey

the motivation of BNNs and two basic Bayesian inference algorithms.

KEYWORDS: Machine learning, Deep learning, Bayesian neural network,

Uncertainty.

1 Introduction

Deep neural networks have obtained astonishing performance on machine

learning tasks [1] and have been increasingly popular in many domains

such as image classification, video recommendation, social network anal-

ysis, multimedia concept retrieval, text mining. Despite the outstanding

performance in supervised learning, neural networks are not good at mea-

suring uncertainty and prone to overfitting, which adversely affects their



generalization capabilities [2]. Many approaches have been put forward

to mitigate the issue. The majority of those use a Bayesian formalism [3],

where the parameters are given prior distributions and update with data,

and the posterior distributions over the parameters is computed.

Bayesian neural networks(BNNs) are referred to a neural network where

weights are probability distributions, as shown in figure 1. Generally,

Bayesian inference is intractable due to doubling the number of parame-

ters and complex integration. However, variational approximation can be

used to exact Bayesian updates to make exact integration.

Figure 1. Left: each weight has a deterministic value. Right: each weight is a distribu-
tion.

The paper is constructed as follows. Section 2 introduces basic structure

of BNNs. Section 3 presents the advantages of BNNs. Finally, section 4

will aim to contain two efficient Bayesian inference methods.

2 Bayesian neural networks

A BNN uses approximate Bayesian inference for uncertainty estimation[4].

For a supervised learning task, the goal of deep learning is to fit a neural

network y = fθ(x) with parameters θ to dataset D = (xn, yn)
N
n=1, corre-

sponding to a Maximum Likelihood Estimation (MLE) of parameters:

θ∗ = argmax
θ

E(x,y) D[log p(y|x, θ)], (1)

with the likelihood term defined as

for regression: p(y|x, θ) = N (y; fθ(x), σ
2I) (2)

for classification: p(y|x, θ) = Categorical(logit = fθ(x)) (3)

In BNN, however, the parameters θ are regarded as random variables,



and we conduct approximate Bayesian inference, and we define a prior

distribution p(θ), which leads to a posterior with Bayes’ rule (under the

i.i.d data setting):

p(θ|D) =
p(D|θ)p(θ)

p(D)
, p(D|θ) =

N∏

n=1

p(yn|xn, θ) (4)

Supposing knowing p(θ|D), in the prediction time, given new test input

x∗, we can obtain:

p(y∗|x∗, D) =

∫
p(y∗|x∗, θ)p(θ|D)dθ (5)

However, p(θ|D) or p(y∗|x∗, D) can not directly be computed. This is

where approximate Bayesian inference distribution comes in. The method

solves the problem in the following three steps: First, design an approxi-

mate posterior: design a distribution familyQ such that for each q(θ) ∈ Q,

we can compute its density given any θ, and q(θ) is easy to sample from;

second, fit the approximate posterior: find the best q distribution in Q so

that q(θ) ≈ p(y∗|x∗, D) well according to some criteria; third, approximate

predictive inference with Monte Carlo: approximate p(y∗|x∗, D) by replac-

ing the exact posterior p(θ|D) with q(θ) and estimating the integral with

Monte Carlo:

p(y∗|x∗, D) ≈
∫

p(y∗|x∗, θ)q(θ)dθ ≈ 1

K

K∑

k=1

p(y∗|x∗, θk), θk ∼ q(θ). (6)

It is still challenging to find an approximation q(θ) ≈ p(θ|D), we will

discuss more in section 4.

3 Advantage of BNNs

There are mainly three advantages of BNNs. First, BNNs provide an ap-

proach to quantify uncertainty since BNNs offer better calibration than

neural networks [5]. Second, BNNs can differ between the epistemic un-

certainty and the aleatoric uncertainty [6]. Third, BNNs have good ro-

bustness and generalization. In theory, BNNs are more robust against

out of sample data.

3.1 Uncertainty

In Bayesian modeling, there exist mainly two types of uncertainty[6].

Epistemic uncertainty, also named model uncertainty or systematic un-



certainty, is resulting from a lack of knowledge and thus can be reduced

by training with more data. This uncertainty refers to the uncertainty

of model weights themselves. Each time training the model can produce

slightly different results. Aleatoric uncertainty, also called statistical un-

certainty, means the uncertainty of model outputs.

3.2 Regression curves

A concrete example can show how BNNs measure uncertainty. The data

can be generated synthetically from curve:

y = x+ 0.3sin(2π(x+ ϵ)) + 0.3sin(4π(x+ ϵ)) + ϵ (7)

where ϵ ∼ N (0, 0.02). Figure 2 represents two concrete examples of train-

ing a neural network. On the left, Bayesian Neural Networks have effect

on predictions: when there are no or few data, the confidence intervals

become larger, meaning more uncertainty. On the right, it is the standard

neural network. In this case, BNNs can tell where is highly uncertain as

there are no nearby data, as opposed to the classic neural network. In

BNNs, it can be seen that when the data points appear intensively, the

predictions are more deterministic near the those data points. That is

also how BNNs measure uncertainty.

Figure 2. Black points mean training datapoints. Red lines are median predictions.
Blue/purple region is interquartile range. Left: BNN. Right: standard neu-
ral network.

4 Bayesian inference algorithms

This section reviews two basic inference methods. The first one is Markov

chain Monte Carlo(MCMC) methods[7] mainly drawing samples to evalu-



ate the integral directly. The second is variational inference[8] converting

integration problem into optimization problem.

4.1 Markov chain Monte Carlo(MCMC)

Markov chain is a sequence of random datapoint which only depend on

the previous datapoint. The idea is to use a Markov chains to perform

Monte Carlo estimate.

MCMC methods can be one of the best and most popular solutions for

sampling from exact posterior distributions [9]. But not all MCMC algo-

rithms are suitable for BNNs. For example, Gibbs sampling is popular in

some areas but is unsuited for BNNs. Metropolis-Hastings algorithm is

the most relevant MCMC method for BNNs, as it does not need any prior

information about the probability distribution to sample. This algorithm

can compute posterior distribution easily in addition to the evidence term

However, the Metropolis-Hasting algorithm has its own drawback. When

the proposal distribution is too large, the rejection rate will be too high,

leading to low efficiency. When the proposal distribution is too small, the

samples will be more autocorrelated. Hamiltonian Monte Carlo algorithm

(HMC) has been put up to solve this impact. HMC belongs to Metropolis-

Hasting algorithms family. It uses Hamiltonian dynamic, widely used in

computational physics and chemistry. The motivation for HMC is to sam-

ple the state space more efficiently, so that larger movements from the cur-

rent state could be made in one step than what is possible in Metropolis-

Hastings sampling. This comes at the price of increased computation per

time step.

In MCMC algorithms, there usually exist a burn-in time before calculat-

ing, as Markov chain does not maintain convergence all the time. More-

over, the sequential samples maybe autocorrelated, meaning that lots of

samples have to be generated and subsampled to get independent sam-

ples.

4.2 Variational inference

MCMC algorithms are the best choices for sampling from a exact pos-

terior. However, they are expensive and don’t scale to large datasets.

For example, HMC which is still ’gold standard’ for doing accurate pos-

terior inference in BNNs, is inherently a batch algorithm and updates

with the entire training dataset, which has made them less popular for



BNNs. Variational inference[8], which has better scalability than MCMC

algorithms and cheap, received huge popularity. Compared with MCMC,

variational inference is a less accurate method. Instead of directly sam-

pling from the exact posterior, the variational inference is to construct a

variational distribution, parameterized by designed parameters. Those

parameters are learned in order that the variational distribution is as

close as possible to the exact posterior distribution. To measure the close-

ness of those two distributions, the Kullback–Leibler divergence is the

most common method[10], mainly based on Shannon’s information[11].

Bayes by backpropagation

Variational inference provides an approach for Bayesian inference, but in

order to train it as classic neural network, it needs some modifications.

The main challenging is that stochasticity stops backpropagation from

functioning at the internal nodes of a network [12]. Bayes-by-backprop

[13] has proposed to tackle this problem and has been seen as a break-

through in probabilistic deep learning. Variational inference is imple-

mented by combining with a local reparametrization trick[14] to ensure

backpropagation work.

The local reparametrization trick works in this way. It moves the pa-

rameters to be learnt out of the distribution function for any weight. For

example, in a Gaussian distribution, µ is the mean and σ is the standard

deviation ,and ϵ is one sample, multiply it with the standard deviation σ

and add the mean µ. By doing so, two parameters of interest are incor-

porated in every weight value and both calculate the derivative of it and

rewrite into a probability distribution. Each step of optimization proceeds

as follows:
∆µ =

∂f

∂w
+

∂f

∂µ

∆σ =
∂f

∂w

ϵ

σ
+

∂f

∂σ

µ← µ− α∆µ

σ ← σ − α∆σ

θopt = (µopt , σopt)

Thus, the usual gradients found by backpropagation can be calculated

as normal, then scale and shift them as above.



5 Conclusion

This paper presents overview of BNNs. Although the idea is simple,

just training a neural network with probability distribution on weights,

Bayesian inference is still challenging in time-efficient and data-efficient.

The paper also covers the advantages of BNNs and two basic inference

methods, MCMC and variational inference. Those methods have been

seen as huge process and made BNNs a hot topic. Another challeng-

ing is that there are massive amounts of parameters in BNNs, making

BNNs difficult and expensive to train. However, some methods has put

up and achieved notable performance and we hope this paper can provide

an overview of basic and classic methods.
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1 Introduction

Twitter, as one of the most popular social media in the world, is chang-

ing the way people communicate. An increasing number of people choose

Twitter as a platform to read and share the breaking news and their opin-

ions in public [11]. The convenience and openness of the social media

enable and motivate people to communicate freely online, but many in-

accurate statements also cause new problems. Recently, the wide spread

of misinformation on social platforms has received much attention from

the public and academia. Especially, the health information in Twitter is

considered a major issue [6].

According to WHO, there are over 6000 people hospitalize and 800 peo-

ple even have died due to the misinformation in first 3 months of 2020.

The misinformation ranges from the suspicions about the COVID-19 could

alter the structure of human DNA to the vaccine will make people ster-

ile. The real danger presented by the misinformation is even worse than

the virus itself. An ongoing project between Aalto University and Finnish



Institute for Health and Welfare (THL) is focusing on the misinformation

detection related to Covid 19. The aim of this paper is to review the ex-

isting misinformation detection methods and give insight based on the

current research.[7].

This paper will introduces the classification, detection and intervention

methods in term of the misinformation in Twitter and discuss the possible

future challenges. The rest of the paper is organized as follows. Section 2

defines the different types of misinformation. Section 3 analyses the main

parts and characteristics of misinformation posts. Section 4 presents the

main classification and detection methods based on the characteristics,

which focus on the accuracy and earliness. Section 5 presents some con-

cluding remarks.

2 Misinformation Definition

To investigate misinformation in social media, this section organizes dif-

ferent type of misinformation according to the intention of user spreading

misinformation.

Unintentionally-Spread Misinformation:

Some misinformation is some misinformation which is not intended to

deceive its recipients. Due to their trust of information sources, people

tend to spread such information to their friends, family or colleagues in

their social network. Instead of deceiving, people usually want to help

and inform their social network of the underlying issues.[9]

Intentionally Spread Misinformation:

Some rumors and fake news are created and spread intentionally by

malicious users who aim to deceive their recipients, cause public anxiety

and mislead. There are usually a group of spreaders or writers behind

the popularity, who have clear purpose and agenda to promote misinfor-

mation for improper profit.[9]

3 Model Information

The Social network users are defined by the content they create and spread.

Thus, by using this feature, modeling their content information is an ef-

fective method to identify the misinformation spreaders.[9] This section

is to analysis the features of the misinformation based on its content and



Figure 1. An example of misinformation in Twitter

aims to identify distinguishing characteristics.

Figure 1 illustrates an example of misinformation in Twitter. From

the figure, it shows that a tweet consists of four sections: misinforma-

tion spreader, content of misinformation, context of misinformation and

propagation of misinformation.

The section for the misinformation spreader consists of the profile and

account description and they can be used to identify the malicious signals.

For instance, the name length and longevity of accounts are jointly used

for spreader detection [5].

The misinformation content consists text, URL, image and video which

are the main carriers of disinformation. In early research [5], the text

classifiers were mainly used to classify malicious users. However, s re-



search has progressed, the external links in content, which direct normal

users to websites, are also seen as the key to detection. For example,

although the content of a post is varied, researchers found that the em-

bedded links in their posts may lead to the same target. By recording the

links of these web pages, the data can be used to distinguish the authen-

ticity of the information.

In terms of context and propagation of misinformation, such as release

time and forwarding number, can also be used as key factors for detec-

tion. For example, during the 2020 U.S. presidential elections, the posting

behavior of political misinformation often contained long hibernation and

burst peaks [2].

4 Detection Methods

The detection of misinformation is generally regarded as a classification

problem, which classifies media according to their content and distin-

guishes true from false [9]. However, misinformation posts are deliber-

ately made seemingly real and accurate, which increases the difficulty of

detection based on the content. Therefore, based on these characteristics,

this paper classifies the detection methods into four categories: content-

based misinformation detection, context-based misinformation detection,

propagation-based misinformation detection and early detection of misin-

formation.

4.1 Content-based misinformation detection

Content-based misinformation detection aims to identify the content of

information directly, and distinguish the authenticity by extracting key-

words in information for classification detection.This method usually col-

lects tweets and hashtags from social media as data-sets and and then

train a text classifier based on the collected content and labels [1]. Due

to the huge demand for data sets, this method is suitable for detecting

popular information and news.

4.2 Context-based misinformation detection

Context-based misinformation detection is to identify information tweets

based on their release time and geographical location, and identify them

by capturing the features of time and location. This approach is often



used in combination with other approaches [10].

4.3 Propagation-based misinformation detection

Propagation-based misinformation detection is to detect information based

on the propagation patterns, such as specific user groups. Misinformation

can be identified by searching the commonalities among the audiences of

misinformation. Since many users will follow back when they are followed

by some users, the spreader can form a numbers of groups by connecting

with legitimate users. Therefore, the current research is focusing on how

to use the source of network information to identify the misinformation

spreaders [8].

4.4 Early detection of misinformation

The purpose of early detection of misinformation is to identify and process

information in the pro-phase stage. This focuses on the speed and effi-

ciency of error information detection and blocking misinformation before

it spreads widely [4]. However, in the early stages of misinformation dis-

semination, the spread of postings is usually fragmented and takes a long

time to develop. To shorten the waiting time, the researchers suggested

that three types of structural information, including hashtags, web links

and content similarity, could be discussed to help analyze the authenticity

of information.[3]

5 Conclusion

As social media platforms make everyone increasingly connected, mis-

information is also spreading faster and more widely than ever before,

which impacts the real world. Fake tweets can have a negative impact on

communities and even trigger catastrophic results. The purpose of this

paper was to explore the causes and characteristics of misinformation,

and through the review of previous related research, to detail the exist-

ing work of identifying misinformation. Meanwhile, through the further

discussion of different detection methods, more accurate, efficient and op-

timized solutions can be found to overcome this "information pandemic".
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Abstract

Low Latency Low Loss Scalable Throughput (L4S) is a new technology in

the internet service. It introduces new ways for flow-rate control mech-

anisms over the internet. L4S makes few architectural changes in the

already deployed protocols over the internet. These changes modify the

components in a network such that non-L4S traffic as well as L4S traffic

can be sent over the same channels. In L4S, host has a scalable congestion

control mechanism, the intermediary nodes have DualQ Coupled AQM

and ECN protocol. The L4S traffic will face low latency and minimum

loss incase congestion occurs, and throughput is decreased. Low Latency

and Low Loss is a major requirement in time-critical and data intensive

applications, where data is generated and sent over internet in real-time.

KEYWORDS: L4S, Active Queue Management (AQM), ECN

1 Introduction

Over the past years, advancement in network technology has increased the

use of computer systems in many new types of services. This has led to an



increase of usage in real-time application in various fields, such as, indus-

trial sector, medical science, telecommunication, and entertainment. These

applications require the delivery of contents in a fraction of microsecond.

In interactive applications like online gaming, Augmented Reality (AR)

and Virtual Reality (VR), efficiency in terms of latency and throughput

is critical. The Low Latency, Low Loss and Scalable Throughput (L4S)

architecture is currently being under discussion in the IETF [1]. Latency

is the time taken by a data packet to travel from source to destination and

loss is the failure of data packet to arrive at destination. Throughput is

defined as the number of data packets sent successfully per second.

The aim of this paper is to explore L4S protocol. L4S protocol can play an

important role in interactive applications like online gaming, AR and VR

applications where latency and throughput can be critical factors. While it

is possible to achieve high throughput to deliver a better user experience

in these applications due to the advancements in ultra-reliable low-latency

communications in advanced wireless networks. However, the challenge in

these applications lies in providing a high throughput and low latency at

the same time [2]. This is challenging to achieve because when throughput

is increased, the amount of traffic is increased which can further congest

the network and this, in turn, increases the latency. The main objective of

L4S, as evident from its name, is to balance this contradiction between low

latency and high throughput.

2 L4S Architecture

In a high-volume traffic network, latency is increased due to packet loss

and congestion. Congestion control algorithms are implemented at the

endpoint (hosts) to manage this problem. The L4S host uses scalable con-

gestion controller to achieve low latency. Scalable Congestion Control is

defined by the IETF when the average time between two congestion signals

(the recovery time) remains unaffected with scaling in flow rate, provided

all other factors remain same[3]. The network intermediary nodes such as

routers and switches use Active Queue Management (AQM) policy to drop

packets inside a buffer associated with a network interface controller (NIC)

before that buffer becomes full [4]. The goal of this buffer management is

to reduce network congestion or improve end-to-end latency. However, this

brings another problem, that is, queuing delay. The queuing delay occurs

when the rate of input packets in a network node (end node or intermedi-



ary) exceeds the output capacity. L4S technology works by minimizing or

eliminating the queuing delay, hence lowering latency without lowering

throughput [2]. L4S achieves this task by using the Explicit Congestion

Notification (ECN) bits in the IP header. The ECN bits inform the sender

about congestion as soon as the queues start building up. This is known as

ECN marking [1]. The L4S architecture comprises of three major parts:

a. Network elements: Isolate L4S traffic from regular traffic in the network

and send suitable congestion signals to both sender and receiver. In

case of congestion give a signal by marking the ECN bits [1].

b. Protocol features: Enable nodes to separate L4S traffic and allow com-

munication between receiver and sender to notify about congestion

[1].

c. Host support: The sending node(host) has a congestion control mech-

anism. Congestion control manages the entry of data-packets into

network [3].

2.1 Network

The L4S architecture delivers low latency by using the following arrange-

ments in the network.

Dual Queue Coupled AQM

The DualQ Coupled AQM [5] comprises of coupling of L4S AQM and

Classic AQM and provides latency isolation and bandwidth pooling. Some

important properties are described below:

Latency isolation means that two distinct queues are employed to separate

L4S queuing delay from the larger queue that Classic traffic requires for

full utilization of bandwidth.

Bandwidth pooling means that both L4S and Classic queues behave in a

way that it is seen as a single pool of bandwidth. All traffic get almost

equal throughput irrespective of the traffic type (Classic or L4S), without

any need for the scheduler to classify the flows. This becomes possible by

maintaining an AQM in every queue, however, the Classic queue gives

congestion signal to ensure a consistent response about congestion control

from both queues.



2.2 Protocol

The use of Explicit congestion signals is an important aspect of scalable

congestion control. The Explicit Congestion Notification (ECN) protocol

[6] is simply a congestion signaling or notification mechanism. It has 2-bit

IP-ECN field which maps to four possible signals: ECT(0), Not ECT, ECT(1)

and CE. Here, ECT reefers to ECN-Capable Transport and CE refers to

Congestion Experienced. The original ECN protocol treats ECN signal

equivalent to packet drops. In L4S ECN field is ECN notifies the sender

about congestion so that suitable measures can be taken.

2.3 Host

The host in L4S architecture has a scalable congestion control. The host in

a L4S supported network must be capable of instantaneous signaling and

handling of congestion through scalable congestion control [1]. The scalable

congestion control is already implemented in TCP and other transport layer

protocols like QUIC, SCTP and RTP/RTCP. For instance, in TCP scalable

congestion control is achieved by TCP Prague. Transport layer protocols

need to implement scalable congestion control before they can use L4S

service. Transport protocols can indicate the congestion control response

by using the ECT(1) bits.

3 4. L4S use cases

The L4S transport layer protocol can resolve latency and packet loss which

are currently affecting many intense user interactive applications. Using

the L4S protocol in the following domains can significantly impact the

user experience. These are: cloud-based gaming, video streaming, VoIP,

video conferencing, cloud-based VR and AR [1] and 5G network [2]. In

cloud-gaming timing is critical as delay and packet loss can adversely

affect the user-experience. Latency and packet loss leads to freezing of

games and inability to keep up with other players and events taking place

in real time. Video Streaming and VoIP services cannot achieve their main

goal due to increased latency and packet loss. A live video or voice with

disruptions in between is hard to understand and packet loss in this case

means absence of chunks of video. Virtual and Augmented reality also

sends large streams of data which is time sensitive. Hence, they can not



bear any delay or data loss.

4 Security Analysis

As time passes by new evolution in network technology brings about

changes in wired (e.g., ethernet or fiber) or wire- less technologies (e.g.,

LTE, 5G). One of the major goals of these developments is to provision high

throughput and low latency in the network infrastructure, and this leads

to emergence of new technologies in the network infrastructure. The Low

Latency, Low Loss and Scalable Throughput architecture is a new addition

to the network infrastructure. The performance of new technologies like

L4S is decent under normal circumstances, however, L4S based network

is prone to many security vulnerabilities that can occur due to malign

usage of L4S. Malicious attackers can exploit the shortcomings in newer

technologies such as L4S to adversely affect the Quality of Experience

(QoE) in latency sensitive applications [7].

Letourneau et al [7] use the term ’undesirable flows’ to describe misbehav-

ing, malformed and unresponsive flows, either due to legitimate traffic or

attempt by an adversary. The IETF has acknowledged the undesirable

flows as a problem for L4S [1]. Although IETF has identified these security

flaws and stated some countermeasures against them, to date, not enough

practical implementations of the countermeasures and active studies are

going on to identify the issues and their possible fixes [8].

4.1 Misbehaving Flows

Misbehaving flows comprise of both legitimate and attack flows. Misbe-

having flows can be divided into two types: low-rate DoS and Protocol

manipulation.

Low-Rate DoS Attacks

It is more difficult to detect Low-Rate DoS (LDoS) attacks compared to

DoS or DDoS attacks. The attacker sends regular bursts of packets that

are synchronized with the victims Re-transmission Timeout to overflow

the router’s queue and eventually increase latency. An in-depth study of

LDoS attack [9] shows that the proportion of attack traffic needs to be

only about 10%-20% of the legitimate traffic flow. Due to its small and

concentrated attack footprint, it is concealed in the normal traffic and hard

to pin-point. Multiple LDoS attack pulses from different sources gather to



form a concentrated attack. LDoS creates congestion at the target network,

creating a bottleneck which results in blocking or affecting the quality of

service of end user.

Protocol Manipulation

A deeper study into protocol manipulation atacks by Kothari et al [8] de-

fines protocol manipulation as the ability of the network participants to

disrupt the protocol without intermediary nodes realizing it. The study

focuses mostly on TCP centered attacks that are carried out by manipulat-

ing acknowledgements in the protocol stack for example hacked TCP ACK

and hacked ECN.

Misbehaving Flow in L4S

M. Letourneau [10] discusses the possible attacks against the L4S protocol.

In this study misbehaving flow was implemented by targeting ECN signal-

ing and making the protocol unresponsive to congestion notification. The

protocol was manipulated by eliminating the congestion window reduction

when the coefficient of reduction is updated in TCP Prague. As a result,

the Low Latency (LL) queue saturates, due to increase in the number of

packets that are ECN-marked. Host resends the marked packets but due

to false marking of regular traffic flow which was not sent by L4S host

the LL queue becomes full. This eventually leads to some of the packets

being dropped. This creates a much larger delay which is sufficient to

make latency sensitive applications unusable. A malicious user can use

this attack to steal the user bandwidth.

4.2 Malformed Flows

Most of the time Malformed flows [10] are legitimate traffic but unwanted

from the perspective of L4S. Malformed flows occur when the sending

buffers in network stack of an operating system within endpoints are wait-

ing to be filled before transmitting data over the network. L4S architecture

is found to be sensitive to the bursty nature of the kernel of the operating

system and to the L4S’s own architectural burstiness.



4.3 Unresponsive Flows

An Unresponsive Flow [7] does not answer to the congestion control signals.

These congestion signals may be generated by ECN marking, packets drop-

ping or delay. This unresponsiveness can occur due to L4S or Classic queue

which does not implement congestion control and can lead to overloading

of the L4S queues or saturation of congestion signals. In such a case the

malicious user sends traffic bursts with altered ECN flags via the classic

and low latency queue. The attack traffic is then directed towards the

classic queue. As a consequence of saturation in classic queue, packets

that belong to the classic queue are directed to Low latency queue which

results in saturation of LL queue. This attack targets the coupling mecha-

nism in the DualQ coupled AQM that exists in a network to accommodate

both classic and LS4 traffic. As a result, the marking probability of ECN

bits increases and causes heavy fluctuations in the traffic flow over the

network.

5 Conclusion and Future Work

he L4S protocol is a promising technology that can deliver latency sensitive

content under a few milliseconds. L4S can be used in the current network

architecture with little changes and it equips the network to cater both

types of traffic, L4S and non-L4S. Hence it can be easily implemented but

to deploy this protocol in real world operational networks requires L4S to

be robust to attacks and handle undesirable flows. Due to these attacks,

latency is increased, which is the key aspect of L4S. Further studies are

required to be carried out to simulate these undesirable flows in an L4S

architecture The combined affect of two or more types of undesirable flows

also needs to be studies. Mechanisms using pattern analyses of traffic or

machine learning need to be designed to detect possible attacks. Moreover,

countermeasures are needed to mitigate the identified security flaws and

this will allow secure and stable operation of L4S in future internet.
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