ELEC-E3510 Basics of IC Design

Lecture 2:

MOS transistor models

Lecture outline:

- threshold voltage of MOS transistor
- drain current equation
- parasitic capacitors and resistors
- short channel effects (extra material)
- weak inversion
- SPICE parameters
- small signal model

MOS transistor

NMOS

Modes of operation

Cut-off	$V_{G S}-V_{T} \leq 0$	$I_{D S}=0$
Linear region (Triode region)	$0<V_{D S} \leq\left(V_{G S}-V_{T}\right)$	$I_{0}=\frac{\mu_{0} C_{0 x} W}{L}\left[\left(V_{G S}-V_{T}\right)-\frac{V_{D S}}{2}\right] V_{D S}\left(1+\lambda V_{D S}\right)$
$k=\left(K^{\prime}\right) \frac{W}{L} \cong\left(\mu_{0} C_{0 \times}\right) \frac{W}{L}\left(a m p s / v o l t^{2}\right)$		
Saturation	$0<\left(V_{G S}-V_{T}\right) \leq V_{D S}$	$I_{D}=\frac{\mu_{0} C_{o x} W}{2 L}\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right)$
Pinch-off	$V_{D S, S A T}=V_{G S}-V_{T}$	$I_{D S, L I N}=I_{D S, S A T}$

a) I_{D} as a function of $V_{D S}$

b) $\sqrt{I_{D}}$ as a function of V_{GS} (for $\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}$)

NMOS Enhancement Transistor: W = 100 $\mu \mathrm{m}, \mathrm{L}=20 \mu \mathrm{~m}$

MOS transistor modes of operation

MOS transistor modes of operation

Linear region
$V_{G S}>V_{T}>0$
$0<V_{D S}<V_{G S}-V_{T}$

$$
\begin{gathered}
\text { Pinch-off } \\
V_{G S}>V_{T}>0 \\
V_{D S}>V_{G S}-V_{T}
\end{gathered}
$$

Saturation
$V_{G S}>V_{T}>0$
$V_{D S}>V_{G S}-V_{T}$

B

Threshold voltage

gate-bulk work function diff.
formation of inversion layer

$$
\begin{aligned}
V_{T} & =\left[\phi_{G B}\right]+\left[-2 \phi_{F}-\frac{Q_{b}^{\prime}}{C_{o x}}\right]+\left[\frac{-Q_{S S}}{C_{o x}}\right] \\
& =\phi_{G B}-2 \phi_{F}-\frac{Q_{b 0}}{C_{o x}}-\frac{Q_{\text {Ss }}}{C_{o x}}-\frac{Q_{b}-Q_{b 0}}{C_{o x}}
\end{aligned}
$$

Bias independent part:

$$
V_{T 0}=\phi_{G B}-2 \phi_{\mathrm{F}}-\frac{\mathrm{Q}_{\mathrm{b} 0}}{\mathrm{C}_{\mathrm{ox}}}-\frac{\mathrm{Q}_{\mathrm{ss}}}{\mathrm{C}_{\mathrm{ox}}}
$$

Threshold voltage

Source-bulk bias voltage dependence:
$V_{T}=V_{T 0}+\nu\left(\sqrt{2\left|\phi_{F}\right|+V_{S B}}-\sqrt{2\left|\phi_{F}\right|}\right)$
$V_{T 0}=V_{T}\left(V_{S B}=0\right)=V_{F B}+2\left|\phi_{F}\right|+\sqrt{\frac{2 q \varepsilon_{s} N_{\text {SUB }} 2 \mid \phi_{F}}{C_{0 X}}}$

$\gamma=$ bulk threshold parameter $\left(\right.$ volts $\left.^{1 / 2}\right)=\frac{\sqrt{2 \varepsilon_{\text {si }} \mathrm{qN}_{\text {sUB }}}}{\mathrm{C}_{\mathrm{ox}}}$
$\phi_{F}=$ strong inversionsurface potential $($ volts $)=\frac{k T}{q} \ln \left(\frac{N_{\text {SUB }}}{n_{i}}\right)$
$V_{F B}=$ flatbandvoltage $($ volts $)=\phi_{G B}-\frac{\mathrm{Q}_{\mathrm{SS}}}{\mathrm{Q}_{\mathrm{OX}}}$
$\phi_{G B}=\phi_{F}($ substrate $)-\phi_{F}$ (gate)
$\phi_{F}($ substrate $)=\frac{k T}{q} \ln \left(\frac{n_{i}}{N_{\text {SUB }}}\right)$ [NMOS with p - substrate]
$\phi_{F}($ gate $)=\frac{k T}{q} \ln \left(\frac{N_{\text {GATE }}}{n_{i}}\right)$ [NMOS with n^{+}polysilicon gate $]$
$Q_{S S}=$ oxide charge $=N_{S S} q$

Back bias effects on MOS transistor

- Increases threshold voltage

- Decreases drain current

Derivation of drain current equation

The charge per unit area in the channel:

$$
Q_{1}(y)=C_{o x}\left[V_{G S}-V(y)-V_{T}\right]
$$

Resistance of the channel per unit of length:

$$
d R=\frac{d y}{\mu_{n} Q_{1}(y) W} \quad R=\frac{\rho 1}{A} \quad \begin{aligned}
& \text { with } \\
& \text { and }
\end{aligned} \quad \rho=\frac{1}{\mu n q} \quad A=W z \quad, n q=\frac{Q_{1}(y)}{z}
$$

The voltage drop along the channel (y -direction):

$$
d v(y)=I_{0} d R=\frac{I_{0} d y}{\mu_{n} Q_{1}(y) W} \Rightarrow I_{0} d y=W \mu_{n} Q_{1}(y) d v(y)
$$

Integrate this from source to drain, i.e. $y=0$ to $y=L$

$$
\begin{aligned}
& \int_{0}^{L} I_{D} d y=\int_{0}^{V_{D S}} W \mu_{n} Q_{1}(y) d v(y)=\int_{0}^{V_{D S}} W \mu_{n} C_{o x}\left[V_{G S}-v(y)-V_{T}\right] d v(y) \Rightarrow I_{D}=\frac{\mu_{n} C_{O X} W}{2 L}\left[2\left(V_{G S}-V_{T}\right) V_{D S}-V_{D S}^{2}\right] \\
& \Rightarrow I_{D}=\left.\frac{\mu_{n} C_{0 x} W}{L}\right|_{0} ^{V_{D S}}\left(V_{G S}-V_{T}\right) v(y)-\frac{v(y)^{2}}{2}
\end{aligned}
$$

Pinch-off

In pinch-off inversion layer at drain end is lost due to higher V_{DS} over $\mathrm{V}_{G S}-\mathrm{V}_{\mathrm{T}}$ and drain current is saturated

$$
\begin{gathered}
I_{D}=\frac{\mu_{0} C_{0 x} W}{L}\left[\left(V_{G S}-V_{T}\right)-\left(\frac{V_{D S}}{2}\right)\right] V_{D S} \\
0<V_{D S} \leq\left(V_{G S}-V_{T}\right)
\end{gathered}
$$

Saturation voltage

$$
V_{D S, \text { sat }}=V_{G S}-V_{T}
$$

Saturation current

$$
\begin{gathered}
\mathrm{I}_{\mathrm{D}}=\frac{\mu_{0} \mathrm{C}_{\mathrm{ox}} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{T}\right)^{2}\left(1+\lambda \mathrm{V}_{\mathrm{DS}}\right) \\
0<\left(\mathrm{V}_{\mathrm{GS}} \quad \mathrm{~V}_{\mathrm{T}}\right) \quad \mathrm{V}_{\mathrm{DS}}
\end{gathered}
$$

MOS Spice model (level 1)

Planar conductor resistance

Current flow in conductive bar

6 squares in series:

3 squares in parallel:

L

Resistance of a conductor

$$
R=\frac{\rho L}{A}(\Omega) \quad ; \rho=\frac{1}{q \mu_{n} n} \text { resistivity }
$$

Insert area $\mathrm{A}=\mathrm{WT}$

$$
\begin{aligned}
& R=\frac{\rho L}{W T}(\Omega) \\
& R=\frac{L}{W} R_{\square}(\Omega)
\end{aligned}
$$

where resistance per square is

$$
R_{\square}=\frac{\rho}{t}
$$

L/W determines the number of squares

Capacitance of pn-diodes

Planar diode:

Capacitance of a reverse-biased diode (Abrupt Junction)

$$
C_{j}=\frac{C_{j 0}}{\sqrt{1+\frac{V_{R}}{\Phi_{0}}}} ; V_{R}=\text { reverse bias voltage }
$$

, where $\mathrm{C}_{\mathrm{j} 0}$ is zero bias capacitance $\left(\mathrm{V}_{\mathrm{R}}=0\right)$

$$
C_{j 0}=\sqrt{\frac{q K_{s} \varepsilon_{0}}{2 \Phi_{0}} \frac{N_{D} N_{A}}{N_{A}+N_{D}}} \quad C_{j 0}=\sqrt{\frac{q K_{s} \varepsilon_{0} N_{D}}{2 \Phi_{0}}} \text {, if } N_{A} \gg N_{D}
$$

and Φ_{0} is junction potential

$$
\Phi_{0}=\frac{k T}{q} \ln \left(\frac{\mathrm{~N}_{\mathrm{A}} \mathrm{~N}_{\mathrm{D}}}{\mathrm{n}_{\mathrm{j}}^{2}}\right)
$$

Drain and source junction capacitances CDB, CSB

$$
\begin{equation*}
C_{B X}=C_{B X 0} A_{B X}\left[1-\left(\frac{v_{B X}}{P B}\right)\right]^{-M J}, \quad v_{B X} \leq(F C)(P B) \tag{1}
\end{equation*}
$$

$A_{B X}=$ junction areas
$C_{B X 0}=C_{B X}\left(\right.$ when $\left.v_{B X}=0\right) \cong \sqrt{\frac{\left(q \varepsilon_{\text {si }} \mathrm{N}_{\text {SUB }}\right)}{P B}}$
$\mathrm{PB}=$ bulk junction potential
FC = forward - bias nonideal junction - capacitance coefficient $(\cong 0.5)$
$\mathrm{MJ}=$ bulk - junction grading coefficient ($1 / 2$ for step junctions
and $\frac{1}{3}$ for graded junctions)

To ease numerical solution of the simulator
$C_{B X}=\frac{C_{B X 0} A_{B X}}{(1-F C)^{1+M J}}\left[1-(1+M J) F C+M J \frac{V_{B X}}{P B}\right], \quad V_{B X}>(F C)(P B)$

Drain and source junction capacitances CDB, CSB

Drain bottom $=A B C D$

$$
\begin{aligned}
C_{B X}=\frac{(C J)(A X)}{\left[1-\left(\frac{V_{B X}}{P B}\right)\right]^{M J}}+\frac{(C J S W)(P X)}{\left[1-\left(\frac{V_{B X}}{P B}\right)\right]^{M S S W}} & C_{B X}
\end{aligned}=\frac{(C J)(A X)}{(1-F C)^{1+M J}}\left[1-(1+M J) F C+M J \frac{V_{B X}}{P B}\right] \quad \begin{aligned}
& +\frac{(C J S W)(P X)}{(1-F C)^{1+M S W}}\left[1-(1+J M S W) F C+\frac{V_{B X}}{P B}(M J S W)\right]
\end{aligned}
$$

$A X=$ area of the source $(X=S)$ or drain ($X=D$) $P X=$ perimeter of the source $(X=S)$ or drain ($X=D$) CJSW = zero-bias, bulk-source/drain sidewall capacitance MJSW = bulk-source/drain sidewall grading coefficient

$$
v_{B X} \leq(F C)(P B)
$$

$$
\mathrm{v}_{\mathrm{BX}} \geq(\mathrm{FC})(\mathrm{PB})
$$

MOS transistor gate capacitance

Gate capacitance (linear region)

$$
C_{2}=W_{\text {eff }}(L-2 L D) C_{o x}=W_{\text {eff }}\left(L_{\text {eff }}\right) C_{o x}
$$

Gate overlap capacitances

$$
\mathrm{C}_{1}=\mathrm{C}_{3} \cong \mathrm{LDW}_{\text {eff }} \mathrm{C}_{\mathrm{ox}}=\mathrm{W}_{\text {eff }} \mathrm{CGXO} ; \mathrm{CGXO}[\mathrm{~F} / \mathrm{m}]=\mathrm{LD} \cdot \mathrm{C}_{\mathrm{ox}}
$$

MOS transistor gate capacitance

Cut-off

$$
\begin{aligned}
& C_{G B}=C_{2}+2 C_{5}=C_{\text {ox }}\left(W_{\text {eff }} L_{\text {eff }}\right)+2 \operatorname{CGBO}\left(L_{\text {eff }}\right) \\
& C_{G S}=C_{1} \cong C_{\text {ox }}\left(L D W_{\text {eff }}\right)=\operatorname{CGSO}\left(W_{\text {eff }}\right) \\
& C_{G D}=C_{3} \cong C_{\text {ox }}\left(L D W_{\text {eff }}\right)=\operatorname{CGDO}\left(W_{\text {eff }}\right)
\end{aligned}
$$

Saturation

$$
\begin{aligned}
C_{G B} & =\frac{\left(C_{2}+2 C_{5}\right) C_{4}}{C_{2}+2 C_{5}+C_{4}} \cong C_{4} \cong 0 \\
C_{G S} & =C_{1}+\frac{2}{3} C_{2}=C_{\text {ox }}\left(L D+0,67 L_{\text {eff }}\right)\left(W_{\text {eff }}\right) \\
& =C G S O\left(W_{\text {eff }}\right)+0,67 C_{\text {ox }}\left(W_{\text {eff }} L_{\text {eff }}\right) \\
C_{G D} & =C_{3} \cong C_{o x}\left(L D W_{\text {eff }}\right)=\operatorname{CGDO}\left(W_{\text {eff }}\right)
\end{aligned}
$$

Nonsaturated

$$
\begin{aligned}
& \mathrm{C}_{6 \mathrm{~B}}=\frac{\left(\mathrm{C}_{2}+2 \mathrm{C}_{5}\right) \mathrm{C}_{4}}{\mathrm{C}_{2}+2 \mathrm{C}_{5}+\mathrm{C}_{4}} \cong \mathrm{C}_{4} \cong 0 \\
& C_{G S}=C_{1}+\frac{1}{2} C_{2}=C_{o x}\left(L D+0,5 L_{\text {eff }}\right)\left(W_{\text {eff }}\right) \\
& =\left(\mathrm{CGSO}+0,5 \mathrm{C}_{\mathrm{ox}} \mathrm{~L}_{\text {eff }}\right) \mathrm{W}_{\text {eff }} \\
& C_{60}=C_{3}+0,5 C_{2}=C_{o x}\left(L D+0,5 L_{\text {eff }}\right)\left(W_{\text {eff }}\right) \\
& =\left(C G D O+0,5 C_{\text {ox }} L_{\text {eff }}\right) W_{\text {eff }}
\end{aligned}
$$

Charge conservation model and short channel effects

Charge conservation model

Charge conservation model (level 2):

$$
d V_{c}=I_{d} d R=\frac{I_{d} d y}{W \mu_{n} Q_{n}^{\prime}(y)}
$$

Channel change: $\quad Q_{n}{ }^{\prime}=-C_{o x}{ }^{\prime}\left(V_{G}-V_{T}\right)$
Threshold voltage: $V_{T}=f\left(V_{c}\right)$

$$
V_{T}=V_{F B}+V_{C}+2\left|\phi_{\mathrm{p}}\right|+\frac{1}{C_{0 X}{ }^{\prime}} \sqrt{2 \varepsilon_{\mathrm{s}} \mathrm{q} \mathrm{~N}_{\mathrm{a}}\left(2\left|\phi_{\mathrm{p}}\right|+\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{B}}\right)}
$$

Channel change: $\quad Q_{n}{ }^{\prime}=f\left(v_{c}\right)$

$$
\begin{aligned}
\mathrm{Q}_{n}^{\prime} & =-C_{0 X}{ }^{\prime}\left(V_{G}-V_{F B}-2\left|\phi_{p}\right|-V_{C}\right) \\
& +\sqrt{2 \varepsilon_{\mathrm{s}} 9 N_{\mathrm{a}}\left(2\left|\phi_{\mathrm{p}}\right|+\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{B}\right)}
\end{aligned}
$$

Integrating:

$$
\begin{aligned}
& d V_{C}=I_{d} d R=\frac{I_{d} d y}{W \mu_{n} Q_{n}^{\prime}(y)} \\
& I_{D}=\int_{0}^{L} d y=I_{D} L=-\mu W \int_{V_{S}}^{V_{0}} Q_{n}^{\prime}\left(V_{c}\right) d V_{c}
\end{aligned}
$$

Drain current equation:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{D}}= & \mu_{\mathrm{n}} \frac{\mathrm{~W}}{\mathrm{~L}} \mathrm{C}_{\mathrm{OX}} \cdot\left\{\mathrm { C } _ { \mathrm { ox } } ^ { \prime } \cdot \left[\mathrm{~V}_{G}-\mathrm{V}_{\mathrm{FB}}-2\left|\phi_{\mathrm{p}}\right|\right.\right. \\
& \left.-\frac{1}{2} \mathrm{~V}_{\mathrm{D}}-\frac{1}{2} \mathrm{~V}_{\mathrm{S}}\right]\left(\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{S}}\right) \\
& \left.-\frac{2}{3} \sqrt{2 \varepsilon_{\mathrm{s}} \mathrm{GN}}\left[\left(2\left|\phi_{\mathrm{p}}\right|+\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{B}\right)^{\frac{2}{3}}-\left(2\left|\phi_{\mathrm{p}}\right|+\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{B}\right)^{\frac{2}{3}}\right]\right\}
\end{aligned}
$$

Pinch-off:

$$
\begin{aligned}
\mathrm{Q}_{n}^{\prime}(L)= & =-C_{o x}\left(V_{\mathrm{G}}-V_{\text {FB }}-2\left|\phi_{\mathrm{p}}\right|-V_{\text {osat }}\right) \\
& +\sqrt{2 \varepsilon_{s} g N_{\mathrm{a}}\left(2\left|\phi_{s}\right|+V_{\text {Dsat }}-V_{B}\right)}
\end{aligned}
$$

Saturation voltage:

$$
\begin{aligned}
V_{\text {Dsat }} & =V_{G}-V_{F B}-2\left|\phi_{p}\right| \\
& -\frac{\varepsilon_{s} q N_{a}}{C_{O X}{ }^{\prime 2}}\left[\sqrt{1+\frac{2 C_{0 X}{ }^{\prime 2}}{\varepsilon_{s} q N}\left(V_{G}-V_{F B}-V_{B}\right)}-1\right]
\end{aligned}
$$

Channel length modulation

Basic model

$$
L_{\text {mod }}=L_{\text {eff }}\left(1-\lambda v_{\text {DS }}\right) \quad L_{\text {eff }}=L-2(L D)
$$

More accurate charge conservation model

$\lambda=\frac{1}{L_{\text {eff }} v_{D S}}\left[\frac{2 \varepsilon_{\text {si }}}{\mathrm{qN}_{\text {SUB }}}\right]^{\frac{1}{2}}\left\{\frac{\mathrm{v}_{\text {DS }}-\mathrm{v}_{\mathrm{DS}}(\mathrm{sat} .)}{4}+\left[1+\left(\frac{\mathrm{v}_{\mathrm{DS}}-\mathrm{v}_{\mathrm{DS}}(\mathrm{sat} .)}{4}\right)^{2}\right]^{\frac{1}{2}}\right\}$
$\mathrm{v}_{\mathrm{DS}}(\mathrm{sat})=.\frac{\mathrm{v}_{G S}-\mathrm{V}_{\mathrm{BIN}}}{\theta}+\frac{1}{2}\left(\frac{\gamma \mathrm{~s}}{\theta}\right)^{2}\left\{1-\left[1+\left(\frac{2 \theta}{\gamma s}\right)^{2}\left(\frac{\mathrm{v}_{G S}-\mathrm{V}_{\mathrm{BIN}}}{\theta}+2\left|\phi_{\mathrm{F}}\right|+\mathrm{v}_{\mathrm{SB}}\right)\right]^{\frac{1}{2}}\right\}$

Charge carrier velocity saturation

Charge carrier velocity (NMOS):

Charge carrier mobility (NMOS):

Charge carrier velocity saturation

Charge carrier velocity (NMOS):

Charge carrier mobility (NMOS):

Charge carrier velocity saturation

I: No velocity saturation $|\bar{E}|<E_{\text {crit }}$
$\mu_{\mathrm{s}}=\mu_{0}$
conditions

1) $V_{D S}$ small
2) strong inversion $V_{G S}>V_{T}$
3) $|\bar{E}|<E_{\text {crit }}$

II: With velocity saturation $|\bar{E}|>E_{\text {crit }}$

$$
\begin{aligned}
& \mu_{s}=\mu_{0}\left[\frac{\left(U_{C R T}\right) E_{S i}}{C_{o x}\left[V_{G S}-V_{T}-\left(U_{T R A}\right) V_{D S}\right]}\right]^{U_{E X P}} \text { when } \\
& \frac{\left(U_{C R T T}\right) E_{S i}}{C_{\text {ox }}}<V_{G S}-V_{T}-\left(U_{T R A}\right) V_{D S}
\end{aligned}
$$

The parameters are defined as
$U_{\text {CRIT }}=$ critical field for mobility degradation and is the limit at which m_{s} starts decreasing.
$U_{\text {TRA }}=$ transverse field coefficient effecting mobility.
$U_{\text {EXP }}=$ critical field exponent for mobility degradation.

Charge carrier velocity saturation

Short channel effects

Cross section of a short
channel transistor showing several depletion areas
which affect each other.

Short channel effect on the threshold voltage V_{T} of an nMOS transistor with and without a DV_{T} implantation.

Short channel effects

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{S}}=\sqrt{\frac{2 \varepsilon_{\mathrm{si}}}{\mathrm{qN} \mathrm{~S}_{\text {SUB }}}} \sqrt{2\left|\phi_{\mathrm{F}}\right|+\mathrm{v}_{\mathrm{SB}}} \\
& \mathrm{~W}_{\mathrm{D}}=\sqrt{\frac{2 \varepsilon_{\mathrm{Si}}}{\mathrm{qN}}} \sqrt{2\left|\phi_{\mathrm{F}}\right|+\mathrm{V}_{\mathrm{SB}}+\mathrm{v}_{\mathrm{DS}}}
\end{aligned}
$$

$i_{D}=\frac{\mu_{S} C_{\text {ox }} W}{L_{\text {mod }}}\left\{\left[\mathrm{v}_{\text {GS }}-\mathrm{V}_{\text {BIN }}-\frac{\theta \mathrm{v}_{\text {DS }}}{2}\right] \mathrm{v}_{\text {DS }}-\frac{2}{3} \gamma S\left[\left(2\left|\phi_{F}\right|+\mathrm{v}_{\mathrm{DS}}+\mathrm{v}_{\text {SB }}\right)^{1,5}-\left(2\left|\phi_{F}\right|+\mathrm{v}_{\mathrm{BS}}\right)^{1,5}\right]\right\}$
$V_{\text {BIN }}=V_{F B}+2\left|\phi_{F}\right|+\frac{\pi \varepsilon_{S i}}{4 C_{\text {ox }} W}\left(2\left|\phi_{F}\right|+V_{S B}\right)$
$\theta=1+\frac{\pi \varepsilon_{\mathrm{si}}}{4 \mathrm{C}_{\mathrm{ox}} W}$
$\gamma_{\mathrm{s}}=\gamma\left(1-\alpha_{\mathrm{S}}-\alpha_{\mathrm{D}}\right)$
$\alpha_{s}=\frac{X J}{2 L}\left[\sqrt{1+\left(\frac{2 W_{S}}{X J}\right)}-1\right]$
$\alpha_{D}=\frac{X J}{2 L}\left[\sqrt{1+\left(\frac{2 W_{D}}{X J}\right)}-1\right]$

Weak inversion behaviour

MOS transistor operates in the 'weak inversion' region when its gate-source voltage $\left(\mathrm{V}_{\mathrm{GS}}\right)$ is just below its threshold voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$.

$$
\mathrm{I}_{\text {Duub }}=\frac{\mathrm{W}}{\mathrm{~L}} \cdot \mathrm{Cl}_{\mathrm{D}} \mathrm{e}^{\frac{\mathrm{V}_{G B}}{\mathrm{mU}}}
$$

$$
\begin{aligned}
C & =e^{\frac{-V_{S B}}{U_{T}}}-e^{\frac{-V_{0 B}}{U_{T}}}(\text { Cis constanthere }) \\
U_{T} & =\frac{\mathrm{kT}}{\mathrm{q}} \approx 25 \mathrm{mV} \text { atroom temperature } \\
\mathrm{I}_{\text {oso }} & =\text { characteristic current at } \mathrm{V}_{G B}=0 \mathrm{~V} \\
\mathrm{~m} & =\text { slope } \approx 1,5
\end{aligned}
$$

If V_{T} is low $(<0,6 \mathrm{~V})$ then there is always
a sub-threshold current when $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$. There is a considerable stand-by
 current.

Matching of weak and strong inversion models

Spice transistor parameters

Parameter name	Symbol	SPICE Name	Units	Default Value
Drawn Length	L	L	m	-
Effective width	W	W	m	-
Source Area	AREA	AS	m^{2}	0
Drain Area	AREA	AD	m^{2}	0
Source Perimeter	PERIM	PS	m	0
Drain Perimeter	PERIM	PD	m	0
Squares of Source Diffusion		NRS	-	1
Squares of Drain Diffusion		NRD	-	1

Spice parameters for parasitics

Parameter name	Symbol	SPICE Name	Units	Default Value
Source resistance	R_{S}	RS	Ω	0
Drain resistance	R_{D}	RD	Ω	0
Sheet resistance (Source/Drain)	R_{a}	RSH	Ω / \square	0
Zero Bias Bulk Junction Cap	R_{Jo}	CJ	$\mathrm{F} / \mathrm{m}^{2}$	0
Bulk Junction Grading Coeff.	m	MJ	-	0.5
Zero Bias Side Wall Junction Cap	$\mathrm{C}_{\text {JSwo }}$	CJSW	F / m	0
Side Wall Grading Coeff.	$\mathrm{m}_{\text {Sw }}$	MJSW	-	0.3
Gate-Bulk Overlap Capacitance	$\mathrm{C}_{\text {GBO }}$	CGBO	F / m	0
Gate-Source Overlap Capacitance	$\mathrm{C}_{\text {GSO }}$	CGSO	F / m	0
Gate-Drain Overlap Capacitance	$\mathrm{C}_{\text {GDO }}$	CGDO	F / m	0
Bulk Junction Leakage Current	I_{S}	IS	A	0
Bulk Junction Leakage Current Density	J_{S}	JS	$\mathrm{A} / \mathrm{m}^{2}$	$1 \mathrm{E}-8$
Bulk Junction Potential	ϕ_{0}	PB	V	0.8

Main MOS Spice parameters

Parameter name	Symbol	SPICE Name	Units	Default Value	
SPICE Model Index		LEVEL	-	1	
Zero-Bias Threshold Voltage	VTO	VTO	V	0	
Process Transconductance	k^{\prime}	KP	A/V ${ }^{2}$	2.E-5	
Body-Bias Parameter	g	GAMMA	V0.5	0	
Channel Modulation	1	LAMBDA	1/V	0	
Oxide thickness	tox	TOX	m	0	
Lateral Diffusion	xd	LD	m	0	
Metallurgical Junction Depth	xj	XJ	m	0	
Surface Inversion Potential	2\|fF		PHI	V	0.6
Substrate Doping	NA, ND	NSUB	cm^{-3}	0	
Surface State Density	$\mathrm{O}_{5 s / q}$	NSS	cm^{-3}	0	
Fast Surface State Density		NFS	cm^{-3}	0	
Total Channel Charge Coefficient		NEFF	-	1	
Type of Gate Material		TPG	-	1	
Surface Mobility	mo	U0	$\mathrm{cm}^{2} / \mathrm{Vs}$	600	
Maximum Drift Velocity	umax	VMAX	m / s	0	
Mobility Critical Field	xcrit	UCRIT	V / cm	1.0E-4	
Critical Field Exponent in Mobility Degradation		UEXP	-	0	
Transverse Field Exponent (mobility)		UTRA	-	0	

Matching manual and Spice models

MOS transistor model characteristics

Variation of the drain current with model parameter VTO, for the LEVEL1 model.

Variation of the drain current with model parameter TOX, for the LEVEL1 model.

MOS transistor characteristics

NMOS transfer characteristic of a typical wafer, W/L = 30/6, VGS = 1.5, 2, 3, 4, 5 V . o measured, solid line $=$ MOS2 model, dashed line $=$ AMS model.

PMOS transfer characteristic of a typical wafer, W/L = 30/6, -VGS = 1.5, 2, 3, 4, 5 V . o measured, solid line $=$ MOS2 model, dashed line $=$ AMS model.

12 um CMOS Process Parameters

NMOS transfer characteristic of a typical wafer, $W / L=2 / 30, V G S=1.5,2,3,4,5 \mathrm{~V}$. o measured, solid line $=$ MOS2 model, dashed line $=$ AMS model.

PMOS transfer characteristic of a typical wafer, $W / L=2 / 30,-V G S=1.5,2,3,4,5 \mathrm{~V}$. o measured, solid line $=$ MOS2 model, dashed line $=$ AMS model.

1.2 um CMOS Process Parameters

NMOS transfer characteristic of a typical wafer, $W / L=30 / 1.2, ~ V G S=1.5,2,3,4,5 \mathrm{~V}$. o measured, solid line = MOS2 model, dashed line
= AMS model.

PMOS transfer characteristic of a typical wafer, $W / L=30 / 1.2,-V G S=1.5,2,3,4,5 \mathrm{~V} .0$ measured, solid line = MOS2 model, dashed line = AMS model.

1.2 um CMOS Process Parameters

NMOS transfer characteristic of a typical wafer, $W / L=30 / 1.2, V G S=1.5,2,3,4,5 \mathrm{~V}$. o measured, solid line = MOS2 model, dashed line = AMS model.

PMOS transfer characteristic of a typical wafer, $W / L=30 / 1.2,-V G S=1.5,2,3,4,5 \mathrm{~V} .0$ measured, solid line $=$ MOS2 model, dashed line = AMS model.

Small-signal model

Small signal model

Small-signal model is a linearised model at the operating point
Transconductance: $\quad \mathrm{g}_{\mathrm{m}}=\frac{\partial \mathrm{i}_{\mathrm{D}}}{\partial \mathrm{v}_{G S}}$ (at the quiescent point)

Drain-source conductance: $g_{d s}=\frac{\partial i_{D}}{\partial \mathrm{v}_{\mathrm{DS}}}$ (at the quiescent point)

Bulk modulation:

$$
\mathrm{g}_{\mathrm{mbs}}=\frac{\partial \mathrm{i}_{\mathrm{D}}}{\partial \mathrm{v}_{\mathrm{BS}}} \text { (at the quiescent point) }
$$

Drain and source diode conductances:
$\mathrm{g}_{\mathrm{bd}}=\frac{\partial \mathrm{i}_{\mathrm{BD}}}{\partial \mathrm{v}_{\mathrm{BD}}}$ (at the quiescent point) ≈ 0

$\mathrm{g}_{\mathrm{bs}}=\frac{\partial \mathrm{i}_{\mathrm{SB}}}{\partial \mathrm{v}_{\mathrm{SB}}}$ (at the quiescent point) ≈ 0

Modes of operation

Cut-off	$V_{G S}-V_{T} \leq 0$	$i_{D}=0$
Linear region	$0<V_{D S} \leq\left(V_{G S}-V_{T}\right)$	$i_{D}=\frac{\mu_{0} c_{0 X} W}{L}\left[\left(v_{G S}-V_{T}\right)-\frac{v_{0 S}}{2}\right] v_{D S}\left(1+\lambda v_{D S}\right)$ $\beta=\left(K^{\prime}\right) \frac{W}{L} \cong\left(\mu_{0} C_{o x}\right) \frac{W}{L}\left(a m p s / v o l t^{2}\right)$
Saturation	$0<\left(V_{G S}-V_{T}\right) \leq V_{D S}$	$i_{D}=\frac{\mu_{0} C_{0 \times} W}{2 L}\left(v_{G S}-V_{T}\right)^{2}\left(1+\lambda v_{D S}\right)$
Pinch-off	$V_{D S}($ sat. $)=V_{G S}-V_{T}$	

Saturation region

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{D}}=\frac{\mu_{O} C_{O X} W}{2 \mathrm{~L}}\left(\mathrm{~V}_{G S}-\mathrm{V}_{T}\right)^{2}\left(1+\lambda \mathrm{V}_{\mathrm{DS}}\right) \\
& \mathrm{V}_{T}=\mathrm{V}_{T O}+\gamma\left(\sqrt{\left|-2 \phi_{F}+\mathrm{V}_{S B}\right|}-\sqrt{\left|-2 \phi_{F}\right|}\right)
\end{aligned}
$$

Transconductance:
$g_{m}=\frac{\partial i_{D}}{\partial v_{G S}}=\frac{\mu_{0} C_{O X} W}{2 L} 2\left(v_{G S}-V_{T}\right)\left(1+\lambda \mathrm{v}_{\mathrm{DS}}\right)$
$g_{m}=\sqrt{\left(2 K^{\prime} W / L\right)| |_{D} \mid}\left(1+\lambda V_{D S}\right) \cong \sqrt{\left(2 K^{\prime} W / L\right)| |_{D} \mid}$
$k^{\prime}=\mu * C_{o x}$

Drain-source conductance:

$$
\begin{aligned}
& g_{d s}=\frac{\partial i_{D}}{\partial v_{D S}} \\
& g_{d s}=g_{o}=\frac{I_{D} \lambda}{1+\lambda V_{D S}} \approx I_{D} \lambda \quad \lambda \propto \frac{1}{L}
\end{aligned}
$$

Bulk modulation:

$$
\begin{aligned}
& g_{m b s}=\frac{\partial i_{D}}{\partial v_{S B}}=\left(\frac{\partial i_{D}}{\partial V_{T}}\right)\left(\frac{\partial V_{T}}{\partial v_{S B}}\right) \quad \frac{\partial i_{D}}{\partial V_{T}}=\left(\frac{-\partial i_{D}}{\partial v_{G S}}\right) \\
& g_{m b s}=g_{m} \frac{Y}{2\left(2\left|\phi_{F}\right|+V_{S B}\right)^{1 / 2}}=\eta g_{m}
\end{aligned}
$$

MOS transistor small signal model

