ELEC-E3510 Basics of IC Design

Lecture 5: OTA Amplifiers

OTA – Operational Transconductance Amplifier

Symmetrical input stage:

M1 = M2 and M3 = M4

Current mirrors:

$$M4 \& M5 \Longrightarrow I_{5} = \frac{(W/L)_{5}}{(W/L)_{4}} \cdot I_{4} = \frac{g_{m5}}{g_{m4}} \cdot I_{4} = B_{1} \cdot I_{4}$$
$$M3 \& M7 \Longrightarrow I_{7} = \frac{(W/L)_{7}}{(W/L)_{3}} \cdot I_{3} = \frac{g_{m7}}{g_{m3}} \cdot I_{3} = B_{2} \cdot I_{3}$$
$$M8 \& M6 \Longrightarrow I_{6} = \frac{(W/L)_{6}}{(W/L)_{8}} \cdot I_{8} = \frac{g_{m6}}{g_{m8}} \cdot I_{8} = B_{3} \cdot I_{8}$$

Required:

 $\mathsf{B}_1 = \mathsf{B}_2 \cdot \mathsf{B}_3$

if M5 = M7 and M8 = M6 \Rightarrow B₂ = B₁ and B₃ = 1

OTA transconductance and gain

OTA transforms the input voltage difference to the output current:

$$I_{1} - I_{2} = g_{m1} \cdot \Delta V_{in}$$

$$I_{5} = B_{1} \cdot I_{2}$$

$$I_{7} = B_{2} \cdot I_{3} = B_{2} \cdot I_{1}$$

$$I_{6} = B_{3} \cdot I_{8} = B_{3} \cdot I_{7} = B_{2} \cdot B_{3} \cdot I_{1}$$

$$I_{OUT} = I_{5} - I_{6} = B_{1} \cdot I_{2} - \underbrace{B_{2} \cdot B_{3}}_{B_{1}} \cdot I_{1} = B_{1} \cdot (I_{2} - I_{1})$$

$$= -B_{1} \cdot g_{m1} \cdot \Delta V_{in}$$

Transconductance of OTA:

$$\Rightarrow$$
 g_m = B₁g_{m1}

Voltage gain is obtained by feeding the output current into output load resistor.

$$V_{OUT} = I_{OUT} \cdot R_{OUT}$$
$$= B_1 g_{m1} \cdot R_{OUT} \cdot \Delta V_{in}$$

$$A = \frac{V_{OUT}}{\Delta V_{in}} = B_1 g_{m1} \cdot R_{OUT}$$

Without external load resistor:

$$R_{OUT} = \frac{1}{g_{DS5} + g_{DS6}}$$
$$\Rightarrow A = \frac{B_1 g_{m1}}{g_{DS5} + g_{DS6}}$$

Small-signal analysis

Transferfunction of the two signal branches:

$$H_{1}(s) = \frac{\frac{1}{2} \frac{g_{m2}}{g_{m4}} \cdot \frac{g_{m5}}{g_{DS5} + g_{DS6}}}{\left(1 + \frac{s}{p_{1}}\right) \left(1 + \frac{s}{p_{L}}\right)} = \frac{\frac{1}{2} \frac{B_{1}g_{m2}}{g_{DS5} + g_{DS6}}}{\left(1 + \frac{s}{p_{1}}\right) \left(1 + \frac{s}{p_{L}}\right)}$$
$$H_{2}(s) = \frac{\frac{1}{2} \frac{g_{m1}}{g_{m3}} \cdot \frac{g_{m7}}{g_{m8}} \cdot \frac{g_{m6}}{g_{DS5} + g_{DS6}}}{\left(1 + \frac{s}{p_{L}}\right) \left(1 + \frac{s}{p_{L}}\right)} = \frac{\frac{1}{2} \frac{B_{2} \cdot B_{3} \cdot g_{m1}}{2 g_{DS5} + g_{DS6}}}{\left(1 + \frac{s}{p_{2}}\right) \left(1 + \frac{s}{p_{3}}\right) \left(1 + \frac{s}{p_{L}}\right)} = \frac{1}{\left(1 + \frac{s}{p_{2}}\right) \left(1 + \frac{s}{p_{3}}\right) \left(1 + \frac{s}{p_{L}}\right)}$$

Poles:

$$p_{2} = \frac{g_{m3} + g_{DS1} + g_{DS3}}{C_{GS3} + C_{GS7} + C_{DB1} + C_{DB3}} \approx \frac{g_{m3}}{C_{p2}}$$

$$p_{1} = \frac{g_{m4} + g_{DS2} + g_{DS4}}{C_{GS4} + C_{GS5} + C_{DB2} + C_{DB4}} \approx \frac{g_{m4}}{C_{p1}}$$

$$p_{3} = \frac{g_{m8} + g_{DS7} + g_{DS8}}{C_{GS8} + C_{GS6} + C_{DB7} + C_{DB8}} \approx \frac{g_{m8}}{C_{p3}}$$

$$p_{L} = \frac{g_{DS5} + g_{DS6}}{C_{L}}$$

$$g_{DS5} + g_{DS6} << g_{m1}$$

$$p_{L} << p_{1}, p_{2}, p_{3}$$

Symmetrical design:

ass.
$$M_1 = M_2$$
, $M_3 = M_4$, $(M_7 = M_5)(M_8 = M_6)$
 $\Rightarrow g_{m3} = g_{m4}$, $C_{p2} = C_{p1}$
 $\Rightarrow p_1 = p_2$

$$B_2 = B_1: B_3 = 1$$
$$\Rightarrow p_1 = p_2$$

5

Transferfunction of OTA:

Combine the two signal paths

 $H(s) = H_1(s) + H_2(s)$

$$= \frac{\frac{1}{2} \frac{g_{m1}}{g_{DS5} + g_{DS6}} \left(B_1 \left(1 + \frac{s}{p_3} \right) + B_2 B_3 \right)}{\left(1 + \frac{s}{p_1} \right) \left(1 + \frac{s}{p_3} \right) \left(1 + \frac{s}{p_1} \right)}$$
$$= \frac{\frac{B_1 g_{m1}}{g_{DS5} + g_{DS6}} \left(1 + \frac{s}{2p_3} \right)}{\left(1 + \frac{s}{p_1} \right) \left(1 + \frac{s}{p_3} \right) \left(1 + \frac{s}{p_1} \right)}$$
$$A_0 = \frac{\frac{g_{m1}}{g_{m4}} \cdot g_{m5}}{g_{DS5} + g_{DS6}}$$
$$A_0 = \frac{B_1 g_{m1}}{g_{DS5} + g_{DS6}}$$
$$A_0 = \frac{B_1 g_{m1}}{g_{DS5} + g_{DS6}}$$
(100...5000)

Compensation of OTA amplifier:

 $\Rightarrow GBW = A_0 \cdot p_L = \frac{B_1 g_{m1}}{g_{DS5} + g_{DS6}} \cdot \frac{g_{DS5} + g_{DS6}}{C_L} = \frac{B_1 g_{m1}}{C_L} = \frac{g_m}{C_L}$

assume
$$g_{DS_1i} \ll g_{m_1i}$$

 $\Rightarrow p_L = \frac{g_{DS5} + g_{DS6}}{C_L} \ll \frac{g_{mi}}{C_{pi}} = p_i$ $i = 1,$

Output node is a high impedance node!

 \rightarrow Compensation is performed by increasing C_L

assume $A(s) \approx \frac{A_0}{\left(1 + \frac{s}{p_L}\right)}$

A₀
C_L
$$\neq 0$$

C_L $\neq 0$
C_L

A . ▲

Cascode OTA

OTA gain is

$$A = \frac{B_1 g_{m1}}{g_L} = \frac{B_1 g_{m1}}{g_{DS5} + g_{DS6}} = B_1 g_{m1} (R_{DS5} | | R_{DS6})$$

Larger output resistance gives higher voltage gain ⇒ use cascode transistors to increase the output impedance.

Replace M_5 and M_6 with cascode current sources.

Cascode transistors increase the output impedance by the internal gain of the cascode transistor.

$$r_{0} = \frac{1}{\frac{g_{DS5}g_{DS11}}{g_{m11}} + \frac{g_{DS6}g_{DS12}}{g_{m12}}}$$

Let's calculate the gain of a cascode amplifier. The input voltage is connected to the gate of transistor M_1 and the other transistors are biased with voltages V_{B2} , V_{B3} and V_{B4} . The difference to a simple current source loaded inverter is the addition of the cascode transistors M_2 and M_3 .

Let's start the analysis with the cascode current source of M_3 and M_4 and calculate its small signal output conductance.

Writing the node equations we get

$$(g_{DS3} + g_{DS4})V_X - g_{DS3}V_{out} = -g_{m3}V_X$$
$$g_{DS3}V_{out} - g_{DS3}V_X = g_{m3}V_X + i_{out}$$

The resulting small signal output conductance is

$$g_{out1} = \frac{\dot{i}_{out}}{V_{out}} = \frac{g_{DS3}g_{DS4}}{g_{DS3} + g_{DS4} + g_{m3}} \approx \frac{g_{DS3}}{g_{m3}}g_{DS4}$$

Now we can solve the rest of the small signal circuit and the resulting gain.

The node equations are

$$(g_{DS1} + g_{DS2})V_1 - g_{DS2}V_{out} = -g_{m1}V_{in} - g_{m2}V_1$$
$$(g_{out1} + g_{DS2})V_{out} - g_{DS2}V_1 = g_{m2}V_1$$

$$(g_{m2} + g_{DS1} + g_{DS2})V_1 - g_{DS2}V_{out} = -g_{m1}V_{in}$$

 $V_1 = \frac{g_{out1} + g_{DS2}}{g_{m2} + g_{DS2}}V_{out}$

Inserting the value of v_1 to the first equation we get

$$(g_{m2} + g_{DS1} + g_{DS2}) \frac{g_{out1} + g_{DS2}}{g_{m2} + g_{DS2}} v_{out} - g_{DS2} v_{out} = -g_{m1} v_{in}$$
$$\frac{(g_{m2} + g_{DS1} + g_{DS2})g_{out1} + g_{DS1}g_{DS2}}{g_{m2} + g_{DS2}} v_{out} = -g_{m1} v_{in}$$

The transfer function after simplification $(g_m >> g_{DS})$ is

$$\frac{V_{out}}{V_{in}} = \frac{g_{m1}}{\frac{g_{DS2}}{g_{m2}}} g_{DS1} + g_{out1}} = \frac{g_{m1}}{\frac{g_{DS2}}{g_{m2}}} g_{DS1} + \frac{g_{DS3}}{g_{m3}}} g_{DS4}$$

The output conductance of the whole amplifier is very small due to the g_{DS}/g_m terms.

Cascode OTA

The gain of cascode OTA becomes:

$$A_{0} = g_{m} \cdot R_{L} = \frac{g_{m}R_{p}R_{N}}{R_{p} + R_{N}} = \frac{B_{1}g_{m1}}{\frac{g_{DS5}g_{DS11}}{g_{m11}} + \frac{g_{DS6}g_{DS12}}{g_{m12}}}$$

There is also a pole associated with a cascode transistor. Assuming $M_{11} = M_{12}$ (i.e. matched)

$$p_4 = \frac{g_{m11}}{C_{GS11}} \cong \frac{g_{m12}}{C_{GS12}} = p_5$$

However, as $p_4 = p_5 =>$ there is also a zero

$$z = \frac{1}{2}(p_4 + p_5)$$

Which compensates one of the poles!

The dominant pole of the cascode OTA is

$$p_{L} = \frac{g_{L}}{C_{L}} = \frac{1}{R_{L}C_{L}} = \frac{g_{m11}}{C_{L}} + \frac{g_{DS6}g_{DS12}}{g_{m12}}$$

$$P_{L} = \frac{g_{L}}{C_{L}} = \frac{A_{0}}{R_{L}C_{L}} = \frac{g_{m11}}{C_{L}}$$

$$A(s) = \frac{A_{0}}{1 + \frac{s}{p_{L}}}$$

$$GBW = A_{0} \cdot p_{L} = \frac{B_{1}g_{m1}}{C_{L}}$$

$$A_{0} = \frac{A_{0} \cdot p_{L}}{OTA} = \frac{B_{1}g_{m1}}{GBW}$$

$$A_{0} = \frac{A_{0} \cdot p_{L}}{OTA} = \frac{GBW}{GBW}$$

Output signal swing of cascode OTA

Cascode OTA has limited signal swing

Cascode biasing

 $\Rightarrow V_{\text{gs5}} = V_{\text{tn}} + V_{\text{ds5,sat}} = V_{\text{tn}} + 2V_{\text{ds1,sat}}$

	OTA CAS	2 Stage (Miller comp.)
A ₀	$\frac{B_1g_{m1}}{g_{DS5}g_{DS11}} + \frac{g_{DS6}g_{DS12}}{g_{m12}}$	$\frac{g_{m1}(g_{m8} + g_{m9})}{(g_{DS2} + g_{DS4})(g_{DS8} + g_{DS9})}$
p ₁	$\frac{g_{m3}}{2C_{GS} + 2C_{DB}}$	$\frac{g_{m3}}{2C_{GS} + 2C_{DB}}$
p ₂	$\frac{g_{m2}}{2C_{GS} + 2C_{DB}}$	$\frac{(g_{DS2} + g_{DS4})(g_{DS8} + g_{DS9})}{(g_{m8} + g_{m9})C_{C}} = \frac{g_{m1}}{A_{0}C_{C}}$
p ₃	$\frac{g_{m11}}{C_{GS11}}$	$\frac{1}{R_z C_c}$

	OTA CAS	2 Stage (Miller comp.)
p _L	$\frac{\frac{g_{DS5}g_{DS11}}{g_{m11}} + \frac{g_{DS6}g_{DS12}}{g_{m12}}}{C_{L}}$	$\frac{\left(g_{m8} + g_{m9}\right)C_{C}}{C_{A}C_{L} + \left(C_{A} + C_{L}\right)C_{C}} \approx \frac{g_{m8} + g_{m9}}{C_{L}}$
Z	$\frac{1}{2p_3}$	
GBW	$\frac{B_1g_{m1}}{C_L}$	<u>g_{m1}</u> C _C
SR	$\frac{B_1 I_{SS}}{C_L}$	L _{ss} C _C

Folded – cascode OTA

Input voltage divides the input stage biasing current I_{ss} between M1 and M2, on the other hand I_{M1} and I_{M2} defines how much biasing current of M7 and M5 goes to output stage through M10 and M11

Typical biasing $I_{M3} = I_{M7} = I_{M5} = I_{SS}$ and $I_{M1} = I_{M2} = I_{M10} = I_{M11} = I_{M8} = I_{M6} = I_{SS}/2$

- Eliminates the diode connected load transistors of the input stage
 ⇒ one pole less
 - \Rightarrow broader bandwidth possible
- No current mirror
 ⇒ no current gain
 ⇒ g_m = g_{m1}
- Larger parasitic capacitance at the source of M₁₀ and M₁₁
 ⇒ cascode pole at lower frequencies

Folded – cascode OTA transferfunction

18

Modified folded – cascode OTA

Ideally ZERO offset:

Cascode transistor M_{12B} added so that:

•
$$V_{DS8} \equiv V_{DS6}$$

 $\Rightarrow I_{D,M8} \equiv I_{D,M6}$

- Channel length modulation eliminated
 - \Rightarrow systematic offset eliminated
 - \Rightarrow also PSRR improved
- DC operating point harder to design to keep M_8 in saturation $V_{GS8} > V_{DS12,SAT} + V_{DS8,SAT}$ $V_{GS8} = V_{DS8,SAT} + V_{T8}$ $V_{DS12,SAT} < V_{T8}$

Tripple – cascode FOTA

Second cascode transistor added to increase the output impedance and DC-gain:

$$A = \frac{g_{m1}}{(g_{d4} + g_{d2})g_{d6} \cdot g_{d8}} + \frac{g_{d11} \cdot g_{d10} \cdot g_{d9}}{g_{m10} \cdot g_{m9}} \approx 10^{6}$$

=120dB

 Reduced output swing due to three devices in series (all need to be in saturation for high gain)

Miller compensated amplifier with cascode input stage

Cascode-transistors added to input gain stage to increase the output impedance and gain by gain of cascode transistor.

Cascode transistors do not limit linear signal range because only 10-20 mV signal swing needed at the output of the input stage.

Gain increased by 30-50 dB and can be as high as 120...130 dB.

Regulated cascode OTA

• Regulated cascode transistors increases the output impedance

$$r_{\rm OUT} = \frac{1}{\frac{g_{\rm DS5}g_{\rm DS11}}{Ag_{\rm m11}} + \frac{g_{\rm DS6}g_{\rm DS12}}{Ag_{\rm m12}}}$$

- Output impedance and gain are increased with the gain of A
- Settling is affected by regulation amplifiers, may cause ringing
- The gain of regulated cascode OTA:

$$A = Bg_{m1}V_{OUT}$$

$$= \frac{ABg_{m1}}{\frac{g_{DS5}g_{DS11}}{g_{m1}} + \frac{g_{DS6}g_{DS12}}{g_{m12}}}$$

Fully differential OTA

- No diode connection of M₈
 ⇒ one zero-pole pair less
 - \Rightarrow faster settling
- Fully symmetrical
 ⇒ very good PSRR

Disturbances from power lines rejected.

Ideally a 2-pole transfer-function:

Needs a common-mode feedback to stabilize output DC-level (output can fluctuate freely).

