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Independence and dependence

Two random variables/experiments are independent if the result of
one does not in any way help us predict the result of the other.

More formally, the random variables x and y are independent if for all
(suitable) sets A,B we have,

P(x ∈ A | y ∈ B) = P(x ∈ A).

If the above does not hold, the random variables x , y are called
dependent.

Saying that two random variables are dependent does not, however,
give any indication on the type of dependence or how dependent they
are.
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Dependence in statistics

In statistics, the dependence of random variables is usually of major
interest.

The dependence between unemployment rate and (growth of) GDP in
Finland, election promises, etc.

The dependence between alcohol consumption and alcohol price,
income level, availability of alcohol, warning labels, etc.

The dependence between incidence of lung cancer and smoking
(duration, amount of cigarettes) etc.
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Linear dependence

The simplest form of dependence is linear dependence.

If the random variables x and y satisfy,

y = ax + b,

for some constants a, b ∈ R, a 6= 0, then the variable y is a linear
transformation of the variable x and the random variables x and y are
said to be (completely) linearly dependent.

Linear dependence between two variables can be measured, for
example, using the (Pearson) correlation coefficient.
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Pearson correlation coefficient

Let (x1, y1), (x2, y2), . . . , (xn, yn) be i.i.d. observations of a bivariate
random variable (x , y).

Then the sample covariance,

sxy =
1

n − 1

n∑
i=1

(xi − x̄)(yi − ȳ),

estimates the population covariance E [(x − E [x ])(y − E [y ])] = σxy ,

and the sample Pearson correlation coefficient,

ρ̂ = ρ̂(x , y) =
sxy
sxsy

=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
,

estimates the Pearson correlation coefficient

ρ = ρ(x , y) =
σxy
σxσy

.
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Interpreting the Pearson correlation

Pearson correlation coefficient numerically measures the linear
dependence between two random variables. The coefficient is always
in the interval [−1, 1] and attains the values ±1 if and only if
y = ax + b for some a, b ∈ R, a 6= 0.

If the variables x and y are independent, then the Pearson correlation
coefficient ρ(x , y) = 0.

However, the contrary does not hold. That is, ρ(x , y) = 0 does not
imply the independence of x and y (take, for example, x standard
normal and y = x2).

Thus there are also other forms of dependence than linear
dependence.
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Example 1

Examples of data exhibiting linear dependence of various degrees:

 1 0.8 0.4 0 −0.4 −0.8 −1 
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Example 2

Examples of data exhibiting complete linear dependency (correlation
coefficients equal to ±1) (in the middle one ρ(x , y) cannot be computed
due to division by zero):

 1 1 1 −1 −1 −1 
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Example 3

Examples of weird shaped data all having approximately zero linear
dependency (but still having clear dependency of some other form):

 −0.1 0 0 

Check also http://guessthecorrelation.com/ and
https://www.autodeskresearch.com/publications/samestats
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Correlation vs. causation

Note that showing that two things are dependent reveals nothing about
their causal relation (which one caused the other).

Check out: http://www.tylervigen.com/spurious-correlations.
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Three different warnings!

1 Sample correlation only estimates the “true” correlation. So even if
true distribution has zero correlation, a small sample usually has
nonzero. −→ Try confidence intervals or tests.
E.g. I just rolled two dice, 30 times each. The correlation coefficient was −0.12.

2 Correlation could be small or zero, but still there could be nonlinear
dependence. −→ See end of this lecture about monotonic
dependence.

3 Correlation between X and Y could be big, (so big that it is not just
random noise in sample), but it does not mean that X causes Y .
It could be the other way round. Or it could be a third variable that causes both to be big

at the same time. Finding causality is very important, but requires stronger tools than we

have on this course. At least a high correlation can be taken as a hint of possible causality.
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Bivariate normal distribution
The bivariate normal distribution is an extension of the normal distribution
into two dimensions.

Let (x , y) have the bivariate normal distribution. Then its marginal
distributions are normal distributions with the expected values µx , µy ∈ R
and the variances σ2

x , σ
2
y > 0.

In addition to these, the bivariate normal distribution has the parameter
ρ ∈ [−1, 1], the Pearson correlation between the marginals.

The probability density function of a bivariate normal distribution is,

f (x , y) =
1

2π
√

1− ρ2σxσy
·

exp
(
− 1

2(1− ρ2)

((x − µx)2

σ2
x

− 2ρ
(x − µx)

σx

(y − µy )

σy
+

(y − µy )2

σ2
y

))
.
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Parametric confidence interval for Pearson correlation
Let (x1, y1), (x2, y2) . . . , (xn, yn) be an iid. sample from the bivariate
normal distribution and denote,

tanh(t) =
e2x − 1

e2x + 1
, arctanh(t) =

1

2
log

(
1 + t

1− t

)
Then arctanh(ρ̂) is (for large n) approximately normally distributed and
this can be used to derive an approximate 100(1− α) level confidence
interval for ρ:[

tanh

(
arctanh (ρ̂)− zα/2

1√
n − 3

)
, tanh

(
arctanh (ρ̂) + zα/2

1√
n − 3

)]
,

where zα/2 is the (1− α/2)-quantile of the standard normal distribution.

Note that the above confidence interval makes the assumption of bivariate
normal distribution.

Note also that the confidence intervals for the Pearson correlation provided
by statistical software are almost always based on normality assumption.
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Non-parametric confidence interval for Pearson correlation

If the iid. bivariate sample (x1, y1), (x2, y2), . . . , (xn, yn) does not come
from the bivariate normal distribution, a non-parametric alternative to the
previous parametric confidence interval is given by the bootstrap.
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Non-parametric confidence interval for Pearson correlation

1 Pick new sample of n pairs from the observed pairs
(x1, y1), (x2, y2) . . . , (xn, yn) with replacement, such that new pairs are
selected one-by-one and the selected pair is each time “returned back”
to the original sample (the same pair can be selected multiple times).

2 Estimate the Pearson correlation coefficient for the new sample
formed in the previous step.

3 Repeat the previous steps B times.

4 After the replications, order the B estimates from the smallest to the
largest.

5 A 100(1− α)% confidence interval is now obtained by choosing the
bB × (α/2)c ordered estimate as the lower endpoint and the
bB × (1− α/2)c ordered estimate as the upper endpoint.
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One-sample test for Pearson correlation

The one-sample test for the Pearson correlation coefficient compares the
Pearson correlation to a given constant under the assumption of bivariate
normality.

One-sample test for Pearson correlation, assumptions

Let (x1, y1), (x2, y2) . . . , (xn, yn) be an iid. random sample from a bivariate
normal distribution.

One-sample test for Pearson correlation, hypotheses

H0 : ρ = ρ0 H1 : ρ 6= ρ0.
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One-sample test for Pearson correlation

One-sample test for Pearson correlation, test statistic

The test statistic,

z =
arctanh(ρ̂)− arctanh(ρ0)√

1
n−3

,

follows under H0 (for large n) approximately the standard normal
distribution.

The expected value of z under H0 is 0 and if the value of the test
statistic has large absolute value, evidence against the null
hypothesis H0 is found.
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Two-sample test for Pearson correlation

The two-sample test for Pearson correlation compares the Pearson
correlation coefficients of two independent samples under the assumption
of bivariate normality.

Two-sample test for Pearson correlation, assumptions

Let (x1, y1), (x2, y2) . . . , (xn, yn) be an iid. random sample from a bivariate
normal distribution with the Pearson correlation ρ1 and let
(z1,w1), (z2,w2) . . . , (zm,wm) be an iid. random sample from a bivariate
normal distribution with the Pearson correlation ρ2. Furthermore, let the
two samples be independent.

Two-sample test for Pearson correlation, hypotheses

H0 : ρ1 = ρ2 H1 : ρ1 6= ρ2.
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Two-sample test for Pearson correlation

Two-sample test for Pearson correlation, test statistic

The test statistic,

z =
arctanh(ρ̂1)− arctanh(ρ̂2)√

1
n−3 + 1

m−3

,

follows under H0 (for large n and m) approximately the standard
normal distribution.

The expected value of z under H0 is 0 and if the value of the test
statistic has large absolute value, evidence against the null
hypothesis H0 is found.
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Parametric significance test for Pearson correlation

Often it is of interest to assess whether the Pearson correlation differs
statistically significantly from zero (no correlation). Under the assumption
of bivariate normality, an approximate test for this can be carried out using
the one-sample test for Pearson correlation.

However, an exact test can also be performed.

Parametric significance test for Pearson correlation, assumptions

Let (x1, y1), (x2, y2) . . . , (xn, yn), be an i.i.d. random sample from a
bivariate normal distribution.

Parametric significance test for Pearson correlation, hypotheses

H0 : ρ = 0 H1 : ρ 6= 0.
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Parametric significance test for Pearson correlation

Parametric significance test for Pearson correlation, test statistic

The test statistic,

t =
√
n − 2 · ρ̂√

1− ρ̂2
,

follows under H0 the tn−2-distribution.

The expected value of z under H0 is 0 and if the value of the test
statistic has large absolute value, evidence against the null
hypothesis H0 is found.
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Non-parametric significance test for Pearson correlation

A non-parametric alternative to the parametric significance test is given by
a permutation test.

Permutation test for Pearson correlation, assumptions

Let (x1, y1), (x2, y2) . . . , (xn, yn), be an i.i.d. random sample from a
bivariate distribution.

Permutation test for Pearson correlation, hypotheses

H0 : ρ = 0 H1 : ρ 6= 0.
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Permutation test for Pearson correlation

Let ρ̂ be the Pearson correlation of the original sample. The probability of
obtaining a value equally or more deviating than ρ̂ under the null
hypothesis can be estimated using a permutation test as follows.

1 Form n new pairs (x1, y
∗
1 ), (x2, y

∗
2 ) . . . , (xn, y

∗
n ) from the original

observed pairs (x1, y1), (x2, y2) . . . , (xn, yn), such that y1, y2, . . . , yn
are permuted randomly and each original yj is used only once in the
new sample.

2 Estimate Pearson correlation using the new sample
(x1, y

∗
1 ), (x2, y

∗
2 ) . . . , (xn, y

∗
n ).

3 Repeat the steps 1 and 2 several times.

4 Estimate the probability of obtaining a value equally or more
deviating than ρ̂ under the null hypothesis using the generated
distribution of estimates. That is, calculate the percentage of the
generated estimates in that have absolute value greater than |ρ̂|.
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Permutation test for Pearson correlation

The permutation test is based on the idea that the permuted samples
(x1, y

∗
1 ), (x2, y

∗
2 ) . . . , (xn, y

∗
n ) do not exhibit correlation (as the pairs

are chosen randomly) and if ρ̂ differs a lot from the typical correlation
coefficient of a permuted sample, we can conclude that the original
sample exhibits significant correlation.

More accurate estimate can be achieved using a permutation test
without simulation. In an exact permutation test, all possible n!
sample combinations are used, and the probability of obtaining the
value ρ̂ or more extreme value under the null hypothesis is estimated
exactly using all n! correlation coefficients.
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Monotonic dependence

A more flexible form of dependency is given by monotonic
dependence.

If the random variables x and y satisfy

y = g(x),

where g is a monotonic (increasing or decreasing) function, then y is
a monotonic transformation of x and the random variables x and y
are said to be (completely) monotonically dependent.

The monotonic dependence between two random variables can be
measured using, for example, Spearman’s rank correlation coefficient.
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Spearman’s rank correlation coefficient

Let (x1, y1), (x2, y2), . . . , (xn, yn) be i.i.d. observations of a bivariate
random variable (x , y).

Let R(xi ) denote the rank of the observation xi in the sample
x1, x2, . . . , xn and let R(yi ) denote the rank of the observation yi in
the sample y1, y2, . . . , yn.

Then Spearman’s rank correlation coefficient ρS(x , y) is the Pearson’s
correlation coefficient calculated from the ranks.
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Spearman’s rank correlation coefficient

Spearman’s rank correlation coefficient measures the monotonic
dependence between two random variables. The coefficient is always
in the interval [−1, 1] and (in case of no repeating data values)
attains the absolute value 1 if and only if y = g(x) for some
monotonic function g .

If the variables x and y are independent, then the Spearman
correlation ρS(x , y) = 0 (using the same counterexample as with
Pearson correlation, we see that the contrary does not again hold).

See, link 1 and link 2 for values of the Spearman correlation for some
particular data sets.
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Non-unique ranks

It is possible that some of the sample points have the same rank.

In that case, all those points are assigned to have the median of the
corresponding ranks.

For example, if two observations have the same rank, corresponding
to ranks 7 and 8, then both are assigned to have rank 7.5. If three
observations have the same rank, corresponding to ranks 3, 4, and 5,
then each is assigned to have rank 4.
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Confidence intervals for Spearman correlation

Confidence intervals for Spearman’s rank correlation coefficient can be
estimated using the bootstrap.
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Significance tests for Spearman correlation

Significance test for Spearman correlation can be conducted
non-parametrically either via a permutation test or through the following.

Significance test for Spearman correlation, assumptions

Let (x1, y1), (x2, y2) . . . , (xn, yn), be an i.i.d. random sample from a
bivariate distribution.

Significance test for Spearman correlation, hypotheses

H0 : ρS = 0 H1 : ρS 6= 0.
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Significance test for Spearman correlation

Significance test for Spearman correlation, test statistic

The test statistic,

t =
√
n − 2 · ρ̂S√

1− ρ̂2
S

,

follows under H0 (for large n) approximately the tn−2-distribution.

The expected value of z under H0 is approximately 0 and if the value
of the test statistic has large absolute value, evidence against the
null hypothesis H0 is found.
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