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Variable selection

In modern data analysis it is common to encounter data sets with
extremely large numbers of predictors/explanatory variables.

It is, however, possible that not all of the predictors are actually related to
the response variable (maybe we did not have a clear idea what would
make for a good predictor and measured a large number of predictor, “just
in case” ).

Methods which aim to identify the relevant variables are known as variable
selection methods
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Reasons for variable selection

Possible reasons for trying to narrow down the number of predictors in a
regression model:

1 Helps us interpret the model better (understand the phenomenon
underlying the data).

2 Predictors not related to the response add extra noise in prediction.

3 Avoiding collinearity.

4 Cost issues, it might be cheaper to observe only a subset of the
variables.
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Backward selection

Two most basic methods of variable selection are backward selection and
forward selection based on p-values.

The backward selection works by selecting a p-value cutoff α0 (e.g. 0.05)
and proceeding as follows:

1 Estimate the model using all predictors.

2 Remove the predictor with the highest p-value greater than or equal
to α0 and estimate the new model.

3 Repeat step 2 until all predictors have p-values less than α0.

That is, backward selection begins with a full model and one-by-one
removes the variables that are the least “important”, until we are left with
the subset of “most important” variables.
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Forward selection

The forward selection works by selecting a p-value cutoff α0 (e.g. 0.05)
and proceeding as follows:

1 Start with a model with no predictors at all.

2 For each predictor one at a time, check what their p-value would be if
they were added to the model and add the one with the smallest
p-value below α0 to the model.

3 Repeat step 2 until no new predictors with p-values less than α0 can
be added.

That is, forward selection begins with an empty model and one-by-one
adds the variables that are the most “important”, until no more
“important” variables are left to be added.
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Backward and forward selection

While the backward and forward selection are natural and simple to use,
they have some drawbacks:

1 It is possible to miss the optimal model as not all possible
combinations of the predictors are considered during the process.
(a combination of the backward and forward selection, stepwise
selection, would avoid this)

2 The more predictors we are left with, the higher is the probability of
encountering at least one type I error. That is, it could be that not all
retained predictors are actually statistically significant.

3 The absolute p-value cut-off might miss some “almost significant”
predictors which are actually relevant.

Note: both backward and forward selection get increasingly complex if one
allows for interaction terms between the predcitors (e.g. age×sex).
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Alternative method

Alternative to the backward and forward methods is to go through all
possible models and choose in some sense the best one. E.g., if one has d
variables and uses only “main effects” (no interactions), there are a total
2d models to choose from.

The best model should make a compromise between fitting the data well
(large enough R2 to be useful) and the number of variables (few enough
variables to be interpretable).

Instead or R2, it is common to measure the model’s goodness of fit using
log-likelihood,

` = −n

2

(
log(2π) + log(σ̂2) + 1

)
.

The larger ` is (the smaller the residual variance σ̂2 is), the better the
model explains the behavior of the response variable.
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Akaike information criterion
Both R2 and ` never decrease when we add predictors to the model. As
such they cannot be used on variable selection on their own (that is, both
R2 and ` would always be in favor of adding more variables to the model).

One of the most common metrics for model selection is known as Akaike
information criterion and it compares the models based on their
log-likelihoods but penalizes for a large number of variables.

AIC = −2`+ 2k .

where k is #parameters in model (≈ #variables used).
Generally, AIC is

Small for simple models (using few variables) that explain the
response well (large `).

Large for complex models (using many variables) that fail to explain
the response (small `).

Choose the model with the smallest AIC, out of all 2d models (if d
variables available).
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Alternative criteria

Multiple criteria having the same idea as AIC (reward for explaining the
response, penalize for using many variables) exist:

Bayesian information criterion,

BIC = −2`+ k log(n),

smaller is better (again k = #parameters estimated)

Adjusted R2,

R2
A = 1− n − 1

n − k
(1− R2),

larger is better (p = #variables)
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Drawbacks of the criteria

Also the criteria-based variable selection methods have their drawbacks:

AIC and BIC assume normally distributed errors.

Even though we are sure to find the optimal model, going through all
2d of them is computationally costly.

I One solution to this is to combine the criteria with the
backward/forward selection. That is, always include/drop the variable
which most improves the criterion value. For AIC this can be done
with the function step in R.

It is still possible to miss almost significant predictors if they do not
improve the fit enough.
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Constraint for the model coefficients

Our next tools for variable selection, shrinkage methods, allow
“continuous” variable selection. That is, the output shows us how close
the model is to including specific variables.

Shrinkage methods conduct variable selection by limiting the size of the
estimated coefficents in the model,

‖β̂‖ ≤ some limit.

Idea:

Unconstrained model: Unlimited amount of “money” to “spend” on
the coefficients/predictors. Randomness of the data can cause the
model to make some “bad purchases”.

Constrained model: With a limited amount of “money” to “spend”,
the model must focus on acquiring only the most important variables.
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Vector norms

The size of the estimated coefficients β̂ can be measured using vector
norms. Most commonly used are the norms ‖ · ‖r , 1 ≤ r <∞,

‖v‖r = (|v1|r + |v2|r + · · ·+ |vp|r )1/r , where v = (v1, v2, . . . , vp).

Two particular choices include,

r = 1, leading to a method known as LASSO.

r = 2, leading to a method known as ridge regression.

We start with the latter one.
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Ridge regression

Ridge regression has the same assumptions as regular multiple regression
(excluding the normality assumption as no inference is made in ridge
regression) and it minimizes the least squares criterion,

n∑
i=1

(
yi − (β0 + β>xi )

)2
,

under the constraint that ‖β‖22 ≤ s, for some s.

This problem can be shown to be equivalent to minimizing,

n∑
i=1

(
yi − (β0 + β>xi )

)2
+ λ‖β‖22,

where there is one-to-one correspondence between λ and s.
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The parameter λ

The parameter λ ≥ 0 is a so-called “tuning parameter” and it controls
how much the coefficients are penalized.

If λ = 0, there is no penalization and the estimates are simply the
usual least squares estimates (we have an unlimited amount of
“money”).

The larger the value of λ, the more the coefficients are penalized
(“shrunk” towards zero), making only the important variables stand
out (we have less “money” at our disposal and have to make
informed purchases).

We will discuss the optimal choice of λ later.
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Ridge solution

The ridge regression solution can be expressed analytically if we first
center our data.

That is, replace each predictor xij by xij − x̄j where x̄j is the sample mean
of the jth predictor. The centering eliminates the need for the intercept
term in the model and the least squares criterion is then

n∑
i=1

(
yi − β>xi

)2
+ λ · β>β,

where β>β = ‖β‖22. Setting the derivative of the function to zero shows
that it is minimized by the ridge solution,

β̂ridge = (X>X + λI)−1X>y.
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Ridge coefficient profiles
The results of ridge regression are best visualized by computing them for a
sequence of values of λ and plotting the coefficient values versus λ (or
log(λ).
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Variable selection with ridge regression

Variable selection with ridge regression is tricky as

The coefficient sizes are not a measure of the variables’ importance,
as they depend on the scales of the variables.

The coefficients never reach exactly zero. All variables are part of the
model for all values of λ.

As a conclusion, ridge regression should not be used for variable selection.
However, it still has other benefits:

It helps deal with multicollinearity.

It avoids overfitting to noise by shrinking the coefficients of the noise
variables.

A better alternative in terms of variable selection is given by the LASSO
estimator.
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LASSO

LASSO (least absolute shrinkage and selection operator) has the same
assumptions as ridge regression and it minimizes the least squares criterion,

n∑
i=1

(
yi − (β0 + β>xi )

)2
,

under the constraint that ‖β‖1 ≤ s, for some s.

This problem can be shown to be equivalent to minimizing,

n∑
i=1

(
yi − (β0 + β>xi )

)2
+ λ‖β‖1,

where there is one-to-one correspondence between λ and s.
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LASSO vs. ridge regression

The formulations of LASSO and ridge regression look very similar, differing
only in their choice of norm, ‖ · ‖1 for LASSO and ‖ · ‖2 (squared) for ridge.

However, this difference plays a big role in the methods’ results. The
geometry induced by the norm ‖ · ‖1 is such that it can force coefficients to
equal exactly zero for an appropriate choice of the tuning parameter λ ≥ 0.

The parameter λ again controls how much the coefficients are
penalized/shrunk towards zero with the same interpretations as in ridge
regression.
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LASSO solution

The non-differentiable absolute values in the LASSO penalty,
‖β‖1 = |β1|+ |β2|+ · · ·+ |βd |, mean that the LASSO solution β̂LASSO

cannot be obtained by standard means.

Statistical software computes the solution (which has no closed form)
numerically.

As with ridge regression, it is standard to compute the LASSO solution for
multiple values of λ and plot the resulting coefficients as functions of λ (or
log(λ).
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LASSO coefficient profiles
The LASSO cofficient profiles show that after particular values of λ each
coefficient hits zero and stays there.
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LASSO coefficient profiles

The plot on the previous slide shows that

the black variable is the most important (we “buy” it first),

the orange variable is the second most important,

the red variable is the third most important,

and so on...
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Choosing the value of λ

But how should one choose which λ (“budget”) to pick?

It is standard to select λ in LASSO using cross-validation, by choosing the
value which makes the best predictions.

Too small value of λ (too much “money” at our disposal) makes us
include also irrelevant variables (noise) in the model and this makes
prediction difficult.

Too large value of λ (too little “money” at our disposal) makes us
leave important variables out of the model, again making prediction
difficult.

The best choice is usually in between the above two.
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Training, validation and test data sets

In modern study of prediction methods (especially in machine learning), it
is common to divide the data into three disjoint sets, training, validation
and test data.

Training data is used to fit the model (estimate the parameters),
possibly for multiple values of a tuning parameter λ.

Validation data is used to choose the value of the tuning parameter
such that the obtained model makes the smallest average squared
error in predicting the response values in the validation data.

Test data is used to evaluate the performance of the obtained model.
The smaller the prediction error on the test data, the better the
method is.

The data sets are kept disjoint so that no step influences another, and that
we get fully objective results in the testing step.
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Cross-validation

Cross-validation is a modification of the previous scheme including only
the training and validation steps.

k-fold cross validation proceeds as follows,

1 Split the data into k groups of as equal size as possible.
2 For each of the k groups:

I Use the remaining k − 1 groups together to fit the model for several
values of λ.

I Compute the average squared prediction errors of the fitted models on
the left-out set.

3 For each used value of λ, average the obtained k average squared
prediction errors.

4 Choose the λ with the smallest average.

Being based on multiple evaluations of the models, cross-validation leads
to a more “robust” choice of the tuning parameters than a single
validation would (“majority vote vs. single person deciding”).
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Cross-validation in LASSO
The tuning parameter λ is in LASSO usually selected in the manner
described in the previous slide, e.g. using 10-fold cross validation. The
vertical line below shows the optimal value for the example data.
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Cross-validation in LASSO

Usually the choice of λ which yields the lowest average prediction error
produces a model which still contains too many variables from a practical
point of view.

To obtain a more sparse model (one with less variables), we choose the
simplest model which still explains the response “almost as well as” the
optimal model.

The standard choice is to pick the largest value of λ which has a prediction
error still within one standard deviation of the optimal prediction error.
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Cross-validation in LASSO
The below plot shows both the optimal value (solid line) and the
“one-standard-error” value (dashed line) of λ. The latter has selected the
variables x2, x5 in the model.
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Other methods

Besides those that we covered, numerous methods exist for variable
selection. For example,

Algoritms such as Branch-and-Bound can be used to speed-up the
criteria-based variable selection methods.

Elastic net is a combination of ridge regression and LASSO.

LARS (least angle regression) is combination of forward selection and
LASSO.
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