
Proceedings of the Seminar in Computer
Science (CS-E4000), Spring 2023

Antti Ylä-Jääski and Wencan Mao

Tutors for seminar topics

Suoranta Sanna, Jose Luis Martin Navarro, Aura Tuomas, Ylä-Jääski Antti,

Gunn Lachlan, Welsch Robin, Di Francesco Mario, Truong Linh, Sehad Nas-

sim, Shushu Liu, Peltonen Aleksi, Lindqvist Blerta, Chren Stanislav, Zhu Shibei,

Bufalino Jacopo, Mauranen Henry, Rannisto Antti, Saif Abduljalil, Gon-

zalez Torres Ana, Bharti Ayush, Lai Russell W. F., Korpi-Lagg Maarit,

Siekkinen Matti, Harjuhahto Jaakko, Zhanabatyrova Aziza, Paler Alexan-

dru, Jäntti Riku, Ollila Esa, and Siekkinen Matti

Preface

The Seminar on Network Security, Seminar on Internetworking and Sem-

inar on Software Technology and Systems Research were previously sepa-

rate Master’s level courses in computer science at Aalto University. These

seminar courses have now merged into one seminar course. These sem-

inar series have been running continuously since 1995. From the be-

ginning, the principle has been that the students take one semester to

perform individual research on an advanced technical or scientific topic,

write an article on it, and present it on the seminar day at the end of

the semester. The articles are printed as a technical report. The topics

are provided by researchers, doctoral students, and experienced IT pro-

fessionals, usually alumni of the university. The tutors take the main

responsibility of guiding each student individually through the research

and writing process.

The seminar course gives the students an opportunity to learn deeply

about one specific topic. Most of the articles are overviews of the latest

research or technology. The students can make their own contributions in

the form of a synthesis, analysis, experiments, implementation, or even

novel research results. The course gives the participants personal con-

tacts in the research groups at the university. Another goal is that the

students will form a habit of looking up the latest literature in any area

of technology that they may be working on. Every year, some of the semi-

nar articles lead to Master’s thesis projects or joint research publications

with the tutors.

Starting from the Fall 2015 semester, we have merged the three courses

into one seminar that runs on both semesters. Therefore, the theme of the

seminar is broader than before. All the articles address timely issues in

security and privacy, networking technologies and software technology.

These seminar courses have been a key part of the Master’s studies in

several computer-science major subjects at Aalto, and a formative expe-

rience for many students. We will try to do our best for this to continue.

Above all, we hope that you enjoy this semester’s seminar and find the

proceedings interesting.

Seminar papers

Ali Ghazal, Debugging, Logging and Monitoring ML Systems: Tech-

niques and Tools .9

Tutor: Hong-Linh Truong.

Alina Kostetska, A Review of Existing Tools for Automated Formal

Verification of Security Protocols . 21

Tutor: Lachlan Gunn.

Andrea Amadei, Energy saving capabilities of Kubernetes 31

Tutor: Antti Ylä-Jääski.

Anoosha Sajid, The Password Conundrum: Rethinking Authentication

for the Digital Age . 41

Tutor: Sanna Suoranta.

Apramey Bhat, A Security Overview of OAuth 2.053

Tutor: Aleksi Peltonen.

Ashok Dhungana, A survey on participant selection for mobile crowd-

sensing . 63

Tutor: Aziza Zhanabatyrova.

Atte Rouhe, Kubernetes Cluster Network Model and its Limitations 77

Tutor: Tuomas Aura.

Basak Amasya, Modern Applications of Software Reliability Growth

Models . 87

Tutor: Stanislav Chren.

Berk Türetken, Can we trust Microsoft and Google Authenticators?

Evaluating Security of Widely Used Authenticator Applications for An-

droid . 99

Tutor: Mario Di Francesco.

Chathurangi Edussuriya, Blockchain and consensus algorithms: se-

curity vulnerabilities and tradeoffs . 111

Tutor: Shushu Liu.

Fajar Malik, Psychometry for Researching Usable Security123

Tutor: Sanna Suoranta.

Farjad Ali, Web application session management security 133

Tutor: Aleksi Peltonen.

Hai Luong, An Analysis of Security Vulnerabilities in JWT Implemen-

tations and Proposed Mitigations . 145

Tutor: Aleksi Peltonen.

Henri Katvio, A Survey of Deep Learning Based Video Codecs 157

Tutor: Matti Siekkinen.

Iikka Näsälä, Comparative of security tools for the cloud167

Tutor: Jose Luis Martin Navarro.

Ioana Moflic, Quantum Natural Language Processing 179

Tutor: Alexandru Paler.

Ishani Bhardwaj, Programming Orchestration of Data Analysis Work-

flows in Edge Cloud Continuum . 191

Tutor: Linh Truong.

Jana Fischer, A comparison of classification approaches in likelihood-

free model selection . 205

Tutor: Ayush Bharti.

Janne Hölttä, Animating interactions using neural networks 217

Tutor: Henry Mauranen.

Javier Alberto Rosales Flores, Overview of Adversarial Attacks for

Neural Networks Classifiers . 227

Tutor: Overview of Adversarial Attacks for Neural Networks Classifiers.

Jawad Zaheer, Microservices: Describing usage based upon granular-

ity . 239

Tutor: Antti Ylä-Jääski.

Je-Ruei Yang, Docker Container Networking for Local-Network Appli-

cations . 249

Tutor: Tuomas Aura.

Jiehong Mo, Audio-Visual Speaker Recognition using Deep Learning:

A Survey . 261

Tutor: Abduljalil Saif.

Jinjia Zhang, Service Mesh Technical Details . 275

Tutor: Tuomas Aura.

Kwan Li, Machine learning for fog and edge service placement 289

Tutor: Jaakko Harjuhahto.

Leonardo Pasquarelli, Digital Scent in Mulsemedia applications 301

Tutor: Nassim Sehad.

Markus Kähkönen, Algorithmic Power . 313

Tutor: Antti Rannisto.

Meri Lemponen, Secret Management in Infrastructure as Code . . 325

Tutor: Jose Luis Martin Navarro.

Murali Amudha Abinaov, The Biases of Algorithms 335

Tutor: Rannisto Antti.

Niko Vänttilä, Analysing the security properties of the APT package

manager . 345

Tutor: Jacopo Bufalino.

Nimer Amol Singh, Assessing Container Security: An Overview of Best

Practices and Popular Tools .353

Tutor: Jose Luis Martin Navarro.

Parsa Sadri Sinaki, A Survey on Security of Microservices 365

Tutor: Antti Ylä-Jääski.

Patrik Mäki, An Overview on Extended Reality for the Internet of

Senses .377

Tutor: Nassim Sehad.

Pawel Strozanski, Profiling stencil computations for GPUs using As-

taroth library . 389

Tutor: Maarit Korpi-Lagg.

Philipp Giersfeld, Review of recent advances of leveraging symbolic

execution for fuzzing . 399

Tutor: Lachlan Gunn.

Phong Tran, Kubernetes for greener environment 411

Tutor: Antti Ylä-Jääski.

Praewpiraya Wiwatphonthana, Security and Privacy in the Meta-

verse . 421

Tutor: Mario Di Francesco.

Rasmus Blässar, Zero trust network security model in cloud net-

works . 433

Tutor: Tuomas Aura.

Roope Kajoluoto, Uncertainty estimation in model-based reinforce-

ment learning with ensembles . 445

Tutor: Shibei Zhu.

Roope Karppinen, Algorithmic voting power . 461

Tutor: Antti Rinnasto.

Roope Räsänen, Supply chain security in the npm ecosystem 471

Tutor: Bufalino Jacopo.

Rui Liao, Exploring the Threats of White-box Targeted Adversarial Ex-

amples for Automatic Speech Recognition .481

Tutor: Blerta Lindqvist.

Salem Getachew Wollel, Effects of habituation on security warnings

and ways to minimize it .493

Tutor: Sanna Suoranta.

Samath Lenaduwa Lokuge, Using Deep Reinforcement Learning to

solve the Service Placement Problem of the Fog Computing system . 505

Tutor: Jaakko Harjuhahto.

Samu Kähkönen, Adversarial attacks and defenses on neural net-

works . 515

Tutor: Blerta Lindqvist.

Sandeep Aryal, A Survey on Participant Selection for Mobile Crowd-

sensing . 525

Tutor: Zhanabatyrova Aziza.

Shuto Kuriyama, Succinct Non-Interactive Arguments 537

Tutor: Russell W. F. Lai.

Shweta Jaiswal, Migration from Monolithic Architecture to Microser-

vices: Challenges and Opportunities . 549

Tutor: Antti Ylä-Jääski.

Song Huong Pham Thi, Kubernetes Approach to Public Key Infras-

tructure . 563

Tutor: Matti Siekkinen.

Songlin Jiang, Implementing a Virtual Network System among Con-

tainers . 573

Tutor: Tuomas Aura.

Tenho Korhonen, Virtual reality toward the internet of senses . . . 585

Tutor: Nassim Sehad.

Tomi Molander, Analysis of GPU Architecture for High-Performance

Stencil Computing . 595

Tutor: Maarit Korpi-Lagg.

Touko Nurminen, Dynamics of social interactions in social Mixed Re-

ality . 605

Tutor: Robin Welsch.

Uuna Saarela, Using formal verification with instant messaging pro-

tocols . 617

Tutor: Lachlan Gunn.

Ville Vastamäki, Comparative Analysis of Static Analysis Kubernetes

Security Tools . 629

Tutor: Jose Luis Martin Navarro.

Vipul Kumar, Managing Secrets in Cloud Applications 639

Tutor: Jose Luis Martin Navarro.

Walerius Kyllönen, Usability of MFA solutions 649

Tutor: Mario Di Francesco.

Wendy Yunuen Arevalo Espinal, Gaze Interactions in Virtual Char-

acters and Their Impact on Player Experience . 659

Tutor: Robin Welsch.

Xu Feng, Review on the security of OpenID Connect 671

Tutor: Aleksi Peltonen.

Yeleuov Sanzhar, Adversarial Attacks on Machine Learning Based

Malware Detection Systems . 683

Tutor: Blerta Lindqvist.

Yuanhao Fan, Approahes to Accelerate Mesh Deformation in Practical

Situations . 693

Tutor: Mauranen Henry.

Zainab Ahmad, Managing Secrets in Cloud Applications 705

Tutor: Jose Luis Martin Navarro.

Zainab Khan, Monolithic vs Microservices: A Comparative Analysis

of Architectural Approaches for Application Development and Migra-

tion .717

Tutor: Antti Ylä-Jääski.

Zsombor Takács, Comparative analysis of Container Network Inter-

face (CNI) implementations . 727

Tutor: Tuomas Aura.

Debugging, Logging and Monitoring ML
Systems: Techniques and Tools

Ali Ghazal
ali.ghazal@aalto.fi

Tutor: Hong-Linh Truong

Abstract

KEYWORDS: Observability, Debugging, Logging, Monitoring, Software

Quality, Machine Learning

1 Introduction

In recent years, Machine learning (ML) models have been a central part

of most modern applications. Such models are at the heart of e-commerce

applications, streaming services, and search engines. These models man-

age the critical infrastructure of the banking, healthcare, and transporta-

tion industries. As those systems mature, it has become increasingly

important to develop observability for debugging, logging, and monitor-

ing the operation of the ML component in those systems. Traditionally,

ML models were treated as black boxes. That is, in cases of performance

degradation, it is difficult to know which combination of data points and

hyperparameters had this influence on the model and why. The ad-hoc

way of handling the failures of ML systems was through repeated experi-

mentation and hyper-parameters tunning.

The ML community has proposed a diverse set of tools and techniques

to address this problem. For logging, industry tools such as MLflow [24]

and Weights & Biases [1] are widely adopted to track experiments during

the training phase of those models. Data Unit Tests [20] and Data Debug-

gers [19] were introduced to ensure the quality of data coming through

the system. Such tools are tailored for individual components in the ML

pipeline without providing end-to-end visibility into the platform’s perfor-

mance. A handful of tools were proposed to fill this gap, such as Apple’s

Overton [18] and IBM’s Maro [4]. However, the majority of these tools are

not optimal. Overton requires exclusive use of their platform for the en-

tire pipeline [18], and Maro only supports Scikit-learn and requires access

to the history of previous training rounds.

This paper explores the different techniques and tools that could be used

to monitor, debug, and log machine-learning pipelines.

2 Background: Machine Learning Pipelines

Machine learning models are an integral part of a variety of applications

spanning a multitude of domains. Regardless of the downstream task, the

majority of those models undergo the same development and deployment

lifecycle. As shown in figure 1, ML development lifecycle consists of three

main stages: data management, model development, and model serving

[10].

Data Management
Model Selection Model Training Model Evaluation Model Serving

Data Manag... Model Managment Model Serving

Figure 1. ML lifecycle. It includes data management, model training and evaluation,
and model serving.

The data management stage encapsulates the techniques and tools used

to store and transform the data used in ML pipelines. A multitude of

tools are published every year to optimize the storage and retrieval of

different formats of data over various file systems. Upon retrieval, data

points typically undergo multiple stages of transformations in order to be

usable by the model. For example, most ML frameworks provide tools to

impute missing values, scale, reshape, or even drop data points. Further,

to compensate for the lack of real data, many researchers started adopting

various data augmentation techniques to their pipelines. To mention a

few, researchers augment their data by applying linear transformations

or adding white noise to the data [23]. In addition, they could depend

on entirely synthetic data generated from auto-encodes and generative

adversarial models [21].

The model development stage represents the activities involved with se-

lecting the hyper-parameters of the systems and fitting the parameters of

the selected model. The process of selecting the optimal hyper-parameters

is iterative in nature. That is, researchers run different experiments with

different combinations of hyperparameters before selecting the optimal

ones. Those experiments could be performed manually or automatically.

Multiple tools, such as MlFlow [24], were introduced to facilitate keeping

records of the different experiments and their results. Further, tools, such

as AutoML [7], perform an optimized search for the optimal hyperparam-

eters in more constrained ranges, thus leading to convergence faster.

Lastly, the model serving stage describes the process of exposing the ML

model for users to query. This could be achieved by manually packaging

the model and serving it through a RESTful API. Alternatively, this could

be realized through using out-of-the-box tools such as TensorFlow Serv-

ing, AWS Sagemaker, or Cortex.

Models typically are subject to iterations of retraining to incorporate the

newly collected data. Most out-of-the-box model serving tools facilitate the

retraining process [15]. Thus, periodically, data gets transformed, and

models get re-trained and served. However, this process is error-prone

since there are no guarantees that the newly added data points are se-

mantically correct. Thus, the need for rigorous observability mechanisms

has become more pressing.

3 Data: monitoring and debugging techniques

Machine learning applications are typically described as data-driven pro-

gramming [2]. The performance of a model is bounded by the quality of

the data used during training. Similarly, if the performance of a model

is degrading, this would be directly related to the degraded quality of the

training data. Thus, the task of debugging ML models revolves around

debugging their training data. To mention a few, data could be corrupted

because of skewed data distribution, misconfiguration errors in the pre-

processing pipeline, or inaccurate labeling.

Numerous techniques are proposed by the research community to ad-

dress those problems. Dagger was introduced to be a “data debugger.”

Dagger provides a framework-agnostic interface that provides high-level

abstractions that enable researchers to monitor and debug the lineage of

the data through their ML pipeline [19]. In Dagger’s terminology, each

pre-processing step is thought of as a “block.” Those blocks are used to

construct a directed acyclic graph (DAG) to describe the execution of the

pipeline. As data points undergo different transformations through each

block, Dagger keeps track of the changes, Deltas, happening to each row

of data. Dagger also could be used to insert data breakpoints between

different pre-processing blocks. Further, Dagger provides an interface to

split the pipeline resulting in forked pipelines running using different hy-

perparameters [19]. Thus, it enables comparing the performance of those

different pipeline splits. Lastly, Dagger comes with a DQL (Dagger Query

Language) that could be used to query the logging manager for different

versions of the data at different stages of the pipeline [19]. In addition to

DQL, a preliminary version of Dagger is integrated into data civilizer 2.0,

enabling researchers to debug their pipeline through an intuitive GUI.

Additionally, MLinspect targets the data distribution problem [6]. It is

framework and language-independent. Similar to Dagger, It transforms

the pipeline into a graph presentation. However, in MLinspect, nodes are

snapshots of the data and edges are the transformations applied over the

data. At each node, it keeps track of the data distribution of the differ-

ent variables in the dataset. MLinspect comes with a GUI where users

could hover over the node and explore the statistics associated with each

snapshot of the data.

As we could have noticed in the aforementioned tools, debugging is per-

formed at the data level independently of the performance of the down-

stream prediction task. Flokas et al. introduced a complaint-based de-

bugging mechanism to solve this problem [5]. Basically, domain experts

could define rules describing how the model should be performing. Then,

the data is transformed to enable the model to follow the pre-specified

rules. Further, to avoid the cost of retraining the model with the newly

refined data, Flokas et al. utilized Influence Functions [9] to manipulate

the behavior of the model until it reaches the desired state.

Data Management
Model Selection Model Training

Data Manag... Model Managment

MLinspect

Dagger

MLinspect

Dagger

Complaint-bas...

Figure 2. A summary of the different tools that could be used to debug data related prob-
lems

4 Models: monitoring and debugging techniques

The second main component of the ML pipelines is the model. Assuming

a model is malfunctioning, the second step after debugging data would be

debugging the model itself. The research community proposes an array

of tools that could be used for this purpose. In [3], Ariadne, an analy-

sis tool for machine learning programs, utilized static analysis techniques

to localize errors during the development process of the model. BugDoc

[13] and Maro [4] incorporated iterative approaches to identify errors’ root

causes. Further, OMG [8] used model performance assertion to make

sure that the model is behaving as expected. Lastly, others [22], [14]

proposed using model management and versioning tools to compare the

performance of different variations of models.

BugDoc and Maro are iterative debugging tools. On one hand, Bug-

Doc could assist in localizing errors in any computational pipelines. On

the other hand, Maro could only be used to debug AutoML pipelines. In

essence, both tools are capable of determining the root cause of errors and

providing a natural language explanation for what went wrong. However,

Maro is additionally capable of automatically remediating the pipeline [4].

Bugdoc takes as input 1) a pipeline description, 2) a history of the runs

of the pipeline, and 3) an evaluation function to determine if the pipeline

succeeds or fails [13]. Then, it produces a report about the possible root

causes of the failure of the pipeline if any.

BugDoc uses two main algorithms to determine the root cause of the er-

ror. The first algorithm is refered to as Shortcut. It assists in determining

single hyperparameter misconfigurations in the system. To detect more

complex misconfiguration errors, a second algorithm, Debugging Decision

Tree, is used. The output of both algorithms is fed into the explainer

module whose main function is to describe the root cause of the error in

natural language description. On the other hand, Maro models bug local-

ization as a search problem over the set of all possible hyperparameters

used in the pipeline. It uses Satisfiability Modulo Theories (SMT) Solvers

to localize the error [4], as well as derives a set of constraints over the

original model to describe the error. Then, using those constraints, it

identifies the best configuration for the pipeline that would eliminate the

detected errors. Lastly, similar to BugDoc, the identified constraints are

fed to the explainer module which provides a description of the error in

natural language.

Realizing the importance of Boolen Assetions in software production,

Kang et al. in [8] introduced the idea of model assertions which could be

used to enforce expectations over the behavior of the model. Assertions

could either be soft (probabilistic) or hard (deterministic). The paper pro-

posed OMG Model Guardian which consists of an API to specify asser-

tions, a runtime system, and a logging mechanism. OMG (OMG Model

Guardian) could be used to enforce assertions during both development

and deployment. Further, it could be used to encode corrective actions

when the model fails any of the pre-defined assertions. Lastly, since the

logging manager keeps track of the instances when our model fails, those

records could be utilized during the process of active learning. As reported

by Kang et al, OMG increased the accuracy of a Single Shot Detection

(SSD) [12] model from 40.4% to 82.6% [8].

Lastly, model versioning mechanisms are essential for the effective de-

bugging and monitoring of ML pipelines. The need for model version-

ing arises from the nature of the ML lifecycle. As developing ML models

pertains to extensive experimentation, manually keeping track of all the

versions, their related artifacts, and their corresponding performances

becomes impractical. Further, without proper versioning and archiving

mechanisms, storing snapshots of production models required hundreds

of MBs or even GBs. Multiple tools were proposed to solve those problems.

ModelDB was one of the earliest systems for versioning ML systems [22].

It had client libraries that could be integrated with ML environments,

such as Spark and Scikit-learn. As researchers conduct their experimen-

tations, ModelDB collects metadata about the model parameters in the

background and sends it to a hosted backend. Using this system, re-

searchers have access to an interface where users could browse through

the different medals and their associated metadata [22]. Furthermore,

Modelhub, a lifecycle management tool for deep learning, presented a sys-

tem that enabled effective debugging and exploration for model versions

[14]. Modelhub introduced a model versioning system (DLV) along with

a Domain Querying Language (DQL) that enables researchers to explore

the models in a repository based on the network architecture or any of

the selected hyper-parameters. Distinctive features of ModelHub include

its efficient storage mechanism along with its optimized query execution

planner. Additionally, ModelHub could be deployed to enable model shar-

ing among teams.

Model Selection Model Training Model Evaluation

Model Managment
Maro BugDoc

OMG Model G...

ModelHub ModelDB

Figure 3. A summary of the different tools that could be used to debug model-related
problems

5 Inference: monitoring and logging techniques

The next step in the ML lifecycle is model deployment. Models in produc-

tion commonly experience performance degradation. This happens be-

cause the training data doesn’t always have the same distribution as the

real-world data. As time progress, changes in the user-generated data

might render models ineffective. Additionally, in cases of Continuous

Training and Continuous Deployment (CT/CD), the parameters of mod-

els are prone to poisoning and drifting. For example, under a brute force

attack, a fraud detection model, if left unmonitored, would be trained on

an uneven distribution of fraud transactions [17]. Thus, the model might

make more false-positive predictions, i.e. predicting that more transac-

tions are fraudulent, leading to a degradation of the overall performance

of the system. To address this problem, multiple open-source and pro-

prietary tools were proposed. Most of those tools provided capabilities to

monitor and detect drifts. Further, most of them are equipped with log-

ging mechanisms that would enable debugging the performance degra-

dation of models. Since performance monitoring is essential for reliable

AI, many enterprise solutions were proposed, such as Amazon SageMaker

Model Monitor [16], SAMM by Feedzai [17], and Fiddler.ai. Further, many

open-source solutions exist, such as Great Expectations, Angur, and Why-

logs. Most of those tools share similar functionalities. In this section, we

are presenting the overall architecture of a representable subset of those

tools.

Amazon SageMaker Model Monitor is one of the most used model mon-

itoring tools. It is designed for scalability and usability, and it easily inte-

grates with Amazon Web Services (AWS) tools. SageMaker Model Moni-

tor consists mainly of three components: a model monitor, data collection

endpoints, and a scheduler. The concept of Data Sketches is essential to

understand how SageMaker Model Monitor works [16]. Basically, through

the data collection endpoint, a summary of the data is accumulated in a

Data Sketch Object. Then, the model monitor component queries those

Data Sketch Objects to get different measurements about the model, the

input data, and the predictions made. The execution frequency of this

process is managed by the scheduler module. SageMaker Model Monitor

is equipped with numerous functions that could assist in detecting drifts

in model fairness and in model feature attributions. When the Model

Monitor detects any of those drifts beyond a preconfigured threshold, it

triggers alarms and produces a report with the preliminary root cause

analysis [16].

The majority of the monitoring tools assume the existence of immediate

labels, a ground truth, which could be used to assess the performance of

the model. This is only possible in limited scenarios. For example, con-

sider a case where a model is predicting whether, for example, a user is

going to click on a certain link. Then, in a few seconds, the ground truth

about the user behavior is reported. However, in most cases, human input

is needed for labeling, and this process is slow and unreliable. This moti-

vated the work done on the Streaming System for Automatic Model Mon-

itoring (SAMM) by Feedzai [17]. This system operates on data streams

of the input data feed into the model under observation. And it computes

a signal indicating the shift in the distribution of the data compared to

historical records of data. In [17], the authors proposed a novel, constant-

time streaming algorithm SPEAR for percentile estimation using a fixed

number of bins. Users could select a certain threshold before alarms could

Enterprise Drift Detection Drift Induction

for unlabled data and Analysis

AWS SageMaker Model Monitor SAMM Augur

Fiddler.ai - -

Arize AI - -

Evidently - -

Table 1. A summary of the different tools that could be used to debug model performance
problems

be triggered. Lastly, SAMM includes a configurable response module that

could trigger retraining for the model.

In [11], Augur was proposed to address the explainability problem with

the monitoring of the performance of the ML models. That is, although

different tools such as Amazon SageMaker Model Monitor [16] and SAMM

[17] could detect the occurrence of data drifts, they don’t provide a system-

atic analysis of the underlying cause and the type of drifts. Lewis et al.

listed the different types of drift that could occur. Concept drifts happen

when the underlying relationship between the features and the output,

p(y|x), changes. Feature drift happens when the distribution of the input

to the model, p(x), changes. Label drift happens when the distribution of

the output of the model, p(y), changes. Further, those types of drifts could

be categorized into continuous, abrupt, and re-occurring [11]. Angur ad-

dressed this problem by creating a simulation test environment where

different types of data drifts could be induced into the model. Then, it

generates a report of the best metrics and thresholds that could be used

to detect the different types and categories of drifts.

6 Conclusion

This paper presents an overview of the different technologies and tech-

niques that could be used to debug and monitor Machine Learning appli-

cations. As shown in figure 4, The paper was organized according to the

ML lifecycle, and it aims to asset systems designers select the right tools

for each stage of the ML pipeline. For the data management stage, this pa-

per discussed data flow debuggers, complaint-based data assertions, and

data distribution debuggers. For the model fitting stage, an overview of

iterative debugging tools such as Maro and BugDoc was presented. Fur-

ther, we discussed how ideas from the software industry such as Boolen

Assertion and Software Versioning could be used to debug and monitor

ML applications. For the model serving stage, we discussed the reasons

behind the performance degradation of models. Further, we presented a

sample of different enterprise performance monitoring tools such as Ama-

zon SageMaker Model Monitor, SAMM, and Angur.

Data Management
Model Selection Model Training Model Evaluation Model Serving

Data Manag... Model Managment Model Serving

MLinspect

Dagger

MLinspect

Dagger

ModelHub...
OMG

SageMaker...

SAMM

Angur
Complaint-bas...

Maro

BugDoc

Figure 4. A summary of the different tools that could be used to debug and monitor ML
applications.

References

[1] Lukas Biewald. Experiment tracking with weights and biases, 2020. Soft-
ware available from wandb.com.

[2] Malinda Dilhara, Ameya Ketkar, and Danny Dig. Understanding software-
2.0: A study of machine learning library usage and evolution. ACM Trans.
Softw. Eng. Methodol., 30(4), jul 2021.

[3] Julian Dolby, Avraham Shinnar, Allison Allain, and Jenna Reinen. Ariadne:
analysis for machine learning programs. In Proceedings of the 2nd ACM
SIGPLAN International Workshop on Machine Learning and Programming
Languages. ACM, jun 2018.

[4] Julian Dolby, Jason Tsay, and Martin Hirzel. Automatically debugging au-
toml pipelines using maro: ML automated remediation oracle. In Swarat
Chaudhuri and Charles Sutton, editors, MAPS@PLDI 2022: 6th ACM SIG-
PLAN International Symposium on Machine Programming, San Diego, CA,
USA, 13 June 2022, pages 60–69. ACM, 2022.

[5] Lampros Flokas, Weiyuan Wu, Jiannan Wang, Nakul Verma, and Eugene
Wu. How i stopped worrying about training data bugs and started com-
plaining. In Proceedings of the Sixth Workshop on Data Management for
End-To-End Machine Learning, DEEM ’22, New York, NY, USA, 2022. As-
sociation for Computing Machinery.

[6] Stefan Grafberger, Shubha Guha, Julia Stoyanovich, and Sebastian Schel-
ter. Mlinspect: A data distribution debugger for machine learning pipelines.
In Proceedings of the 2021 International Conference on Management of Data,
SIGMOD ’21, page 2736–2739, New York, NY, USA, 2021. Association for
Computing Machinery.

[7] Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A survey of the state-
of-the-art. Knowledge-Based Systems, 212:106622, jan 2021.

[8] Daniel Kang, Deepti Raghavan, Peter D. Bailis, and Matei A. Zaharia. Model
assertions for debugging machine learning. 2018.

[9] Pang Wei Koh and Percy Liang. Understanding black-box predictions via
influence functions, 2017.

[10] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Na-
ture Cell Biology, 521(7553):436–444, May 2015. Funding Information:
Acknowledgements The authors would like to thank the Natural Sciences
and Engineering Research Council of Canada, the Canadian Institute For
Advanced Research (CIFAR), the National Science Foundation and Office
of Naval Research for support. Y.L. and Y.B. are CIFAR fellows. Publisher
Copyright: © 2015 Macmillan Publishers Limited. All rights reserved.

[11] Grace A. Lewis, Sebastián Echeverría, Lena Pons, and Jeffrey Chrabaszcz.
Augur: A step towards realistic drift detection in production ml systems. In
2022 IEEE/ACM 1st International Workshop on Software Engineering for
Responsible Artificial Intelligence (SE4RAI), pages 37–44, 2022.

[12] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. Ssd: Single shot multibox detec-
tor. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors,
Computer Vision – ECCV 2016, pages 21–37, Cham, 2016. Springer Inter-
national Publishing.

[13] Raoni Lourenço, Juliana Freire, Eric Simon, Gabriel Weber, and Dennis
Shasha. Bugdoc: Iterative debugging and explanation of pipeline. The
VLDB Journal, 32(1):75–101, feb 2022.

[14] Hui Miao, Ang Li, Larry S. Davis, and Amol Deshpande. Modelhub: To-
wards unified data and lifecycle management for deep learning, 2016.

[15] Hui Miao, Ang Li, Larry S. Davis, and Amol Deshpande. Towards unified
data and lifecycle management for deep learning. In 2017 IEEE 33rd Inter-
national Conference on Data Engineering (ICDE), pages 571–582, 2017.

[16] David Nigenda, Zohar Karnin, Muhammad Bilal Zafar, Raghu Ramesha,
Alan Tan, Michele Donini, and Krishnaram Kenthapadi. Amazon sage-
maker model monitor: A system for real-time insights into deployed ma-
chine learning models, 2022.

[17] Fábio Pinto, Marco O. P. Sampaio, and Pedro Bizarro. Automatic model
monitoring for data streams, 2019.

[18] Christopher Ré, Feng Niu, Pallavi Gudipati, and Charles Srisuwananukorn.
Overton: A data system for monitoring and improving machine-learned
products. CoRR, abs/1909.05372, 2019.

[19] El Kindi Rezig, Lei Cao, Giovanni Simonini, Maxime Schoemans, Samuel
Madden, Nan Tang, Mourad Ouzzani, and Michael Stonebraker. Dagger: A
data (not code) debugger. In 10th Conference on Innovative Data Systems
Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020,
Online Proceedings. www.cidrdb.org, 2020.

[20] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix
Biessmann, and Andreas Grafberger. Automating large-scale data quality
verification. Proc. VLDB Endow., 11(12):1781–1794, aug 2018.

[21] Fabio Henrique Kiyoiti dos Santos Tanaka and Claus Aranha. Data aug-
mentation using gans, 2019.

[22] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,
Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. Modeldb: A system
for machine learning model management. In Proceedings of the Workshop
on Human-In-the-Loop Data Analytics, HILDA ’16, New York, NY, USA,
2016. Association for Computing Machinery.

[23] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Un-
supervised data augmentation for consistency training. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neu-
ral Information Processing Systems, volume 33, pages 6256–6268. Curran
Associates, Inc., 2020.

[24] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong,
Andy Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani
Parkhe, Fen Xie, and Corey Zumar. Accelerating the machine learning life-
cycle with mlflow. IEEE Data Eng. Bull., 41(4):39–45, 2018.

A Review of Existing Tools for
Automated Formal Verification of
Security Protocols

Alina Kostetska
alina.kostetska@aalto.fi

Tutor: Lachlan Gunn

Abstract

Formal verification is a powerful technique for ensuring the security, cor-

rectness, and efficiency of security protocols, but it can be complex and time-

consuming to conduct manually. Fortunately, many tools have been devel-

oped to automate formal verification, and this paper provides an analysis

and classification of these tools to help developers and researchers under-

stand their variety and differences and choose the most appropriate one

for their security protocol. The paper discusses the applications of formal

verification, the challenges associated with it, and various tools available

for automated formal verification. The analysis and classification of these

tools are presented in a diagram to facilitate their comparison and selec-

tion. This paper contributes to the development and improvement of formal

verification techniques and tools, ultimately leading to stronger security

and correct and efficient security protocols.

KEYWORDS: formal verification, security protocols

1 Introduction

Security protocols are rules designed to protect data and ensure secure

communication. They define how information is exchanged between par-

ties and how it is protected from unauthorized access. Typically, such pro-

tocols leverage cryptography for data protection. Security protocols are

used in many areas, including internet communication, mobile devices,

financial transactions, and healthcare. Given their widespread use and

critical importance in protecting sensitive information, it is essential to

ensure their security and correct implementation.

Formal verification is one technique to verify the correctness and secu-

rity of security protocols, by checking whether they comply with the spec-

ification using formal mathematical proofs. Formal verification provides

exhaustive coverage of all possible inputs and paths, and a mathematical

proof that predefined properties hold (or do not).

Formal verification can be complex and time-consuming, so many tools

have been developed for its automation, including [6, 16, 7]. Their main

purpose is to help create formal models of security protocols, and auto-

matically verify the desired properties. They have proved their efficiency

before [13, 19, 22].

Different tools usually focus on specific properties they prove. Since

most of the tools have their own descriptive language for models, it is dif-

ficult to use several of them, as it would require a new model specification.

With a huge number of existing tools, it may be difficult to understand

their differences and advantages to choose a suitable one. Also, there ex-

ists an implementation gap [22]. Most of the formal verification tools only

verify models described in a specific formal language. It is still a challenge

to provide a source code (or a machine code) that would be just as secure

and correct.

To address these problems, this paper discusses how formal verification

can be used to reach different goals, including the security of a protocol,

correctness, efficiency, and security of implementations. In addition, this

paper provides analysis and classification of existing formal verification

tools in form of Fig. 1. This can help developers and researchers under-

stand the variety of formal verification tools, choose a tool suitable for

their security protocol, and understand how (and if) it can be translated

to a high-level language or machine code.

This paper is organized as follows. Section 2 discusses applications of

formal verification. Section 3 reviews existing tools and presents them

in a diagram showing possible connections and translations. Section 4

discusses existing challenges formal verification faces when dealing with

security protocols. Finally, Section 5 presents some concluding remarks.

2 Applications of formal verification

Formal verification of cryptography can be applied to three main areas:

protocol-level security, functional correctness and efficiency, and security

of implementations [20]. Different tools exist addressing each of these

areas, but the real challenge is to combine them and prove that a secure

design results in a secure, correct, and efficient implementation. This

section describes reasons and approaches to formal verification in each of

the areas.

2.1 Protocol-level security

Protocol-level security can ensure that a security protocol is resistant

to many attacks that can be caused by bad specifications. It is usually

achieved by using symbolic and computational mathematical security mod-

els [5].

Symbolic models

Symbolic models, also known as the Dolev-Yao models, define cryptographic

primitives as black-boxes, with atomic terms as their arguments that can-

not be further divided into smaller components [27]. An adversary in such

models is an abstract machine that can only use predefined primitives. It

ensures that any possible actions and their combinations are not leading

to a successful attack.

The majority of automated formal verification tools use a symbolic model

because it is relatively simple to use and automate. Meanwhile, this

model may be less realistic and therefore accurate than a computational

model.

Computational models

Computational models present arguments as bitstrings, and cryptographic

primitives as probabilistic algorithms [27]. An adversary of such model is

a probabilistic Turing machine. It means that security holds if an adver-

sary cannot efficiently solve a hard computational problem.

A computational model is more realistic, usually used by cryptographers

[5]. It implies a stronger security notion than a symbolic model but is

more difficult to prove.

2.2 Functional correctness and efficiency

Functional correctness means that a design provides correct results on all

valid inputs. It can be achieved by proving equivalence to a reference im-

plementation or meeting a functional specification that usually includes

pre- and post-conditions that describe requirements for a program’s in-

puts and outputs.

For practical reasons, programs should also be efficient. It is often

achieved by heavy optimizations, or using low-level languages. While

functional correctness may be checked on different levels (including proto-

col model, and source code), efficiency is measured while running machine

code. It can be difficult to combine both and ensure machine code guaran-

tees functional correctness.

2.3 Security of implementations

Protocol-level security can protect from many attacks, and implementa-

tions that follow the protocol specification will be secure with respect to

the design. Meanwhile, in the real world, attackers are not bounded by

what exists in the design. They can observe other useful information, in-

cluding timing patterns, and power consumption, which can lead to side-

channel attacks. Side-channel attacks rely on such information and may

lead to key recovery or leakage of other secrets. Proving the security of im-

plementations means proving that a program can withstand these types

of attacks, usually by ensuring it runs in constant time for all the inputs.

Also, implementation security means avoiding any kind of possible weak-

nesses, including memory vulnerabilities.

3 Automated formal verification

Formal verification can be applied to check the security of protocols and

their implementations, and their correctness and efficiency. Fig. 1 aims to

categorize different tools and languages that aid in formal verification.

The items in the Fig. 1 can be divided into five groups:

• formal verification tools that use symbolic model (located in the top left

corner);

• formal verification tools that use computational model (located in the

top right corner);

• assistive tools that allow translating a model from one syntax to an-

other;

• formal description languages (in the center);

• other programming languages, including JavaScript, C (found at the

bottom).

This section presents a more detailed description and analysis of the

tools for automated formal verification. Tools that work in symbolic and

computational models usually verify security properties only. Correctness

and efficiency may be in the scope of assistive tools and formal descrip-

tion languages. Security of implementations is partially addressed in lan-

guages, such as hacspec and Jasmin [22].

Tools that work in a symbolic model

ProVerif is one of the most popular tools for security protocol verification

that works in a symbolic model [6]. It is fully automatic, and works for an

unbounded number of sessions and messages, but still has some defects,

partially addressed by existing extensions [18]. They deal with stateful

protocols or help verify protocols with algebraic properties.

Tamarin prover is another popular tool for security protocols analysis

[23]. It also works in a symbolic model and has both automated and in-

teractive modes. DeepSec is a verification tool that works for a bounded

number of sessions [9]. ProVerif, Tamarin, and DeepSec have been re-

cently combined into the SAPIC+ tool, which allows to conveniently write

one model and use it with any of the three tools [24].

AVISPA is a popular suite of tools for formal verification [34]. It in-

cludes four tools OFMC, SATMC, CL-AtSe, and TA4SP. OFMC has been

proven to run faster if parallelized [25]. Other tools that work in a sym-

bolic model include AVANTSSAR (a successor of AVISPA) [12], AKISS [7],

Casper/FDR [30], CryptoSolve [14], CPSA [28], APTE [8], Maude-NPA

[11], Scyther [10], and scyther-proof [31]. A relatively new tool called Ver-

ifpal aims to be intuitive and easy to use [26]. It has a list of predefined

primitives and can be translated to the ProVerif syntax.

Figure 1. Tools that automate formal verification of security protocols

Tools that work in a computational model

CryptoVerif and EasyCrypt are amongst the most popular tools that work

in a computational model. CryptoVerif is semi-automatic and uses games

to generate proofs, but does not reconstruct attacks [4]. Compared to

CryptoVerif, EasyCrypt is a less automated tool, but it is capable of per-

forming more subtle proofs [16]. Scary is a fully automatic prover that

works in a computational model, but combines it with a symbolic model

[33]. Others include CryptHOL [29], AutoG&P [17], CertiCrypt [15], FCF

[32], SSProve [21].

Formal description languages for models

Verification tools usually have their own descriptive languages for mod-

els. In some cases, it can be convenient to use other languages to write a

model, and then translate it to a verification tool syntax. ProScript can be

used as an example of such language [2].

Assistive tools

Different tools exist to translate a model from one syntax to another. It

can be useful when building connections (proving equivalences) between

a model and its implementation. fs2pv can translate models written in

F# to ProVerif [3]. ps2pv is an experimental tool to translate ProScript to

ProVerif [2]. KaRaMeL (formerly KReMLin) is a tool that extracts an F*

program to readable C code [1].

Solutions for model-to-implementation mapping

Several papers have proposed solutions for translating formal models into

protocol implementations. These approaches can be useful in addressing

this challenge:

• the BIFROST approach allows to connect C code (implementation) with

its verified model in ProVerif by utilizing F* [13];

• a model written in a subset of F* can be translated to ProVerif via fs2pv,

and to C via KaRaMeL [19];

• a model written in Jasmin can be translated to and verified with Easy-

Crypt, and translated to Assembly [19];

• a model written in hacspec (a subset of Rust language) can be translated

to and verified with SSProve [22];

• a model written in Jasmin can be translated to and verified with SSProve

[22].

4 Discussion

Formal verification is a highly active research domain that has given rise

to several tools that utilize different approaches to formal verification.

However, there is still a lack of standards and common practices in the

field, posing a challenge for users seeking to utilize formal verification.

Attempts have been made to address this challenge through papers that

aim to combine existing tools into one [24] or develop new tools that are

compatible with older ones [6]. Despite such efforts, the adoption of formal

verification remains limited, and more work is needed to establish widely

accepted standards and practices.

Formal verification faces another challenge with respect to the transla-

tion of formally verified models into secure, correct, and efficient imple-

mentations. Many tools that facilitate formal verification operate inde-

pendently and do not consider the eventual translation of the model into

a high-level language (or Assembly). Several papers have attempted to

address this gap by developing tools for model translation [13, 19, 22],

but limitations remain.

5 Conclusion

In conclusion, formal verification tools can play an important role in en-

suring the correctness, security, and efficiency of software and protocols.

However, with the vast number of existing tools and the implementa-

tion gap between formal models and actual code, it can be challenging to

choose and use the right tool for a particular task. This paper addresses

these challenges by providing an overview of the tools of formal verifica-

tion and their classification. It can help developers and researchers better

understand and utilize formal verification tools.

References

[1] Karamel. https://github.com/FStarLang/karamel. Accessed: 2023-04-12.

[2] ps2pv. https://github.com/Inria-Prosecco/proscript-messaging. Accessed:
2023-04-12.

[3] K. Bhargavan, C. Fournet, A.D. Gordon, and S. Tse. Verified interoperable
implementations of security protocols. In 19th IEEE CSFW, pages 14 pp.–
152, 2006.

[4] Bruno Blanchet. CryptoVerif: A Computationally Sound Mechanized Prover
for Cryptographic Protocols. 2007.

[5] Bruno Blanchet. Security protocol verification: Symbolic and computational
models. In Principles of Security and Trust, pages 3–29, Berlin, Heidelberg,
2012.

[6] Bruno Blanchet, Vincent Cheval, and Véronique Cortier. ProVerif with
lemmas, induction, fast subsumption, and much more. In IEEE S&P’22,
pages 205–222, San Francisco, May 2022.

[7] Rohit Chadha, Ştefan Ciobâcă, and Steve Kremer. Automated verification
of equivalence properties of cryptographic protocols. pages 108–127, 03
2012.

[8] Vincent Cheval. APTE: An Algorithm for Proving Trace Equivalence. In
TACAS, pages 587–592, Berlin, Heidelberg, 2014.

[9] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. The deepsec
prover. In Computer Aided Verification, pages 28–36, Cham, 2018.

[10] Cas J. F. Cremers. The Scyther Tool: Verification, Falsification, and Anal-
ysis of Security Protocols. In Computer Aided Verification, pages 414–418,
Berlin, Heidelberg, 2008.

[11] Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-NPA:
Cryptographic Protocol Analysis Modulo Equational Properties, pages 1–50.
Berlin, Heidelberg, 2009.

[12] Alessandro Armando et al. The AVANTSSAR Platform for the Automated
Validation of Trust and Security of Service-Oriented Architectures. pages
267–282, 03 2012.

[13] Camille Sivelle et al. Automatic implementations synthesis of secure pro-
tocols and attacks from abstract models. In Secure IT Systems, pages 234–
252, Cham, 2022.

[14] Dalton Chichester et al. CryptoSolve: Towards a Tool for the Symbolic
Analysis of Cryptographic Algorithms. EPTCS, 370:147–161, sep 2022.

[15] Gilles Barthe et al. Formal certification of code-based cryptographic proofs.
In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on
POPL, POPL ’09, page 90–101, New York, NY, USA, 2009.

[16] Gilles Barthe et al. EasyCrypt: A Tutorial, pages 146–166. Cham, 2014.

[17] Gilles Barthe et al. Automated Proofs of Pairing-Based Cryptography. In
Proceedings of the 22nd ACM SIGSAC CCS, CCS ’15, page 1156–1168, New
York, NY, USA, 2015.

[18] Jiangyuan Yao et al. Formal Verification of Security Protocols: ProVerif
and Extensions. In Artificial Intelligence and Security, pages 500–512,
Cham, 2022.

[19] José Almeida et al. The Last Mile: High-Assurance and High-Speed Cryp-
tographic Implementations. 04 2019.

[20] Manuel Barbosa et al. SoK: Computer-Aided Cryptography. Cryptology
ePrint Archive, Paper 2019/1393, 2019. https://eprint.iacr.org/2019/1393.

[21] Philipp G. Haselwarter et al. SSProve: A Foundational Framework for
Modular Cryptographic Proofs in Coq. Cryptology ePrint Archive, Paper
2021/397, 2021. https://eprint.iacr.org/2021/397.

[22] Philipp G. Haselwarter et al. The Last Yard: Foundational End-to-End
Verification of High-Speed Cryptography. Cryptology ePrint Archive, Paper
2023/185, 2023. https://eprint.iacr.org/2023/185.

[23] Simon Meier et al. The TAMARIN Prover for the Symbolic Analysis of
Security Protocols. In Computer Aided Verification, pages 696–701, Berlin,
Heidelberg, 2013.

[24] Vincent Cheval et al. Sapic+: protocol verifiers of the world, unite! Cryptol-
ogy ePrint Archive, Paper 2022/741, 2022. https://eprint.iacr.org/2022/741.

[25] Alex James, Alwen Tiu, and Nisansala Yatapanage. PFMC: a parallel sym-
bolic model checker for security protocol verification, 2022.

[26] Nadim Kobeissi, Georgio Nicolas, and Mukesh Tiwari. Verifpal: Crypto-
graphic Protocol Analysis for the Real World. Cryptology ePrint Archive,
Paper 2019/971, 2019. https://eprint.iacr.org/2019/971.

[27] Baiyu Li. Computational and Symbolic Models for Secure Computation.
PhD thesis, University of California, San Diego, USA, 2020.

[28] Ramsdell J.D. Guttman J.D. Rowe P.D. Liskov, M.D. The Cryptographic
Protocol Shapes Analyzer: A Manual. 2016.

[29] Andreas Lochbihler and S. Reza Sefidgar. A tutorial introduction to CryptHOL.
Cryptology ePrint Archive, Paper 2018/941, 2018. https://eprint.iacr.org/2018/941.

[30] G. Lowe. Casper: a compiler for the analysis of security protocols. In
Proceedings 10th CSFW, pages 18–30, 1997.

[31] Simon Meier, Cas Cremers, and David Basin. Efficient construction of
machine-checked symbolic protocol security proofs. Journal of Computer
Security, 21:41–87, 02 2013.

[32] Adam Petcher and Greg Morrisett. The Foundational Cryptography Frame-
work. abs/1410.3735, 2014.

[33] Guillaume Scerri. Proof of security protocols revisited. Jan 2015.

[34] Luca Viganò. Automated Security Protocol Analysis With the AVISPA Tool.
ENTCS, 155:61–86, 2006.

Energy saving capabilities of Kubernetes

Andrea Amadei
andrea.amadei@aalto.fi

Tutor: Antti Ylä-Jääski

Abstract

The paper explores the challenge of energy efficiency in the cloud computing

industry, which has been growing rapidly due to the increasing demand

for cloud services. Data centers consume a significant amount of electrical

power, and traditional hardware-based solutions have been insufficient in

addressing energy inefficiencies. However, software-only solutions such as

containers and container orchestration systems have emerged as promis-

ing alternatives. The paper focuses on scheduling algorithms as means to

improve energy efficiency in the cloud, both for homogeneous and heteroge-

neous clusters, while providing a meaningful comparison between them.

KEYWORDS: cloud computing, energy efficiency, virtualization, contain-

ers, container orchestration, Kubernetes, scheduling algorithms

1 Introduction

With the ever-growing demand for different information and communi-

cation technology services delivered through the cloud, the number of

energy-intensive data centers is continuously growing [1]. The data cen-

ter industry is now estimated to consume 2-3% of worldwide electrical

power, with traffic more than doubling every four years [2]. Furthermore,

the typical workload of a data center ranges between 10% and 30% [3, 2].

However, as energy has become more expensive and the market for cloud

services has become more competitive, cloud providers are researching

and developing energy-saving alternatives for data centers [3]. This sig-

nificant issue prompts a reconsideration of the methods and research ap-

proaches to reduce energy consumption as a major factor in the cloud envi-

ronment [1]. Although researchers have developed a number of solutions

to overcome this challenge, energy efficiency still remains a difficulty.

The data center business has historically mostly addressed energy inef-

ficiencies through hardware innovation, such as more effective processors,

better cooling systems, and better power distribution systems. However,

there is room to improve efficiency with software solutions as well [2].

The goal of this paper is to explore those software-only solutions that

could further improve energy efficiency in the cloud, in particular, through

the utilization of containers, their orchestration systems, such as Kuber-

netes, and scheduling algorithms.

In Section 2, this paper will introduce the reader to relevant technologies,

such as containers, orchestration systems, and scheduling algorithms.

Section 3 will provide various solutions found in literature to the problems

presented in Section 2 about energy efficiency of orchestration systems.

Finally, Section 4 will provide an analysis and meaningful discussions on

the topic, and Section 5 will present the conclusions.

2 Background

Before discussing the energy saving capabilities of various Kubernetes

configurations, it is important to examine the energy efficiency provided

by containers and orchestration technologies.

2.1 The advent of Containers

Because of the demand for computing power, agility, and manageability

over the past decade, Virtual Machines (VMs) have been widely used in

the cloud environment [4]. However, there are various other approaches

for running workloads efficiently, such as containers.

Containers are a form of operating system virtualization that allows

packaging and isolating applications into a single unit that can run con-

Figure 1. Evolution of deployments, from VMs to containers [6]

sistently on any infrastructure. Unlike traditional virtualization meth-

ods, containers offer many important advantages, such as being more

portable, quick to boot and efficient – both in terms of resources and costs

[3]. Most importantly, containers introduce no form of overhead on their

underlying system since they can be executed directly on kernel level, in

contrast to VMs which require a hypervisor. In practical terms, when

containers are used instead of virtual machines, either more tasks can be

executed on the same physical hardware, or the same tasks can be exe-

cuted with a lower energy consumption. In both cases, energy efficiency

can increase up to 21% compared to a traditional VM setup [3].

At the time of writing of this paper, Docker is one of the most well-known

and utilized container management system [5].

2.2 Container orchestration with Kubernetes

Most high-level container management systems (also known as container

engines) have the capability of managing the full lifecycle of a container,

including being able to pull container images from repositories, managing

them and running them through lower-level runtimes [7]. However, when

scaling a system to cluster levels, managing the lifecycle of containers

becomes extremely difficult, especially if the system must consider elastic

demand. The solution to this problem is container orchestration, which

consists of a smart container management system capable of deploying,

scheduling, and networking all containers belonging to the cluster [1, 7].

Currently, the most used container orchestration system is Kubernetes

[8].

Kubernetes, also known as k8s, is an open-source system for automat-

ing deployment, scaling, and management of containerized applications

[9]. In recent years, Kubernetes has become the de-facto standard for con-

tainer orchestration. Therefore, most of the conclusions drawn from this

paper can also be applied to other container orchestration systems as well.

2.3 The scheduling problem

The main goal of Kubernetes is managing tasks on containers over a clus-

ter. Clusters are a set of nodes, either physical devices or abstract entities,

that can communicate and act together as a single object. Nodes can be

vastly different from each other, since Kubernetes is specifically designed

to interact with real-life environments, comprised of both homogeneous

and heterogeneous systems.

The component of the orchestration systems that assigns tasks to nodes

is the scheduler [7]. The role of the scheduler is to handle system re-

sources on the cluster level. It must assign the most suitable task to

the most suitable node in each instant of execution, also considering fac-

tors such as cluster structure, node affinity (not all nodes can handle all

tasks) and other constraints. The role of the scheduler is extremely impor-

tant since it can influence both the efficiency of the entire cluster and the

amount of system resources needed to perform any given tasks. Differ-

ent approaches to scheduling can help prioritize different targets, such as

resource utilization, time requirements, and energy efficiency. So far, no

scheduler has proven itself superior to the others. Therefore the schedul-

ing problem still remains unsolved [7].

3 Energy efficiency of schedulers

By default, the Kubernetes scheduler attempts to distribute the workload

evenly across all nodes [2, 7]. This is achieved by design, since the default

scheduler is meant to be a general-purpose system that accommodates all

kinds of different workloads. This behavior, however, is not ideal when

accounting for the energy efficiency of the system.

The default scheduler also allows a more fine-grained customization,

due to a set of properties that can be assigned to tasks and nodes. One of

the most useful properties are affinity and taint [10], which can be used to

respectively increase or decrease the likeness of a task being assigned to a

certain node. Due to a third parameter named tolerance it is also possible

to completely prevent a task from being performed on a node with a taint

level superior to the one tolerated by the task, effectively preventing some

tasks from being executed on certain nodes. The goal of these measures

is to maximize affinity on all kinds of systems, by assigning tasks to the

nodes best suited to perform them correctly.

Although these functionalities alone are often enough to operate most

real-life scenarios, the standard Kubernetes scheduler still cannot achieve

more complicated situations, such as energy efficiency. For this reason,

Kubernetes also supports several ways to extend its scheduling features

[7]. To achieve this, the Kubernetes Scheduling Framework [11] is the

officially recommended solution to extend the standard functionalities of

the scheduler with user-created plugins.

With both the default scheduler customizability features and the exten-

sion capabilities provided by the scheduling framework, new scheduling

algorithms can be implemented. Since the scheduling problem is a hard-

NP problem [7, 12], indicating there is no optimal solution for a generic

scenario, multiple solutions and approaches are applicable.

3.1 Improving task distribution across nodes

One of the most common strategies to improve the energy consumption of

the cluster and, consequently, the overall energy efficiency is to improve

the method used by the scheduler to distribute tasks across nodes.

Menouer [13] proposes a method that improves the standard schedul-

ing rules by introducing a multi-criteria decision algorithm. Instead of

distributing tasks evenly across the whole cluster, the revised algorithm

takes into account multiple factors, such as processor usage, memory us-

age, storage disk usage, power consumption, and running containers. The

system also takes into account if the requested container image is already

cached by the node. Every time a new task has to be assigned to a node,

the scheduler computes a score for each of the aforementioned parame-

ters for every node, multiplies them by their respective weight, and finally

ranks them, assigning the task to the node which ranked the highest. By

default, the weight is set equal for all parameters.

The proposed algorithm ranks higher those nodes whose processor, mem-

ory, and disk usage is higher than the competing nodes, contrary to how

the default scheduler works. This is done in order to keep as many tasks

as possible running on the same node, with a technique defined as “com-

pacting”. As shown in the paper, compacting helps mitigating energy con-

sumption and decreases waiting times by fully utilizing fewer nodes, and

therefore processors, instead of partially utilizing all processors, as per-

formed by the standard scheduler.

As shown in by Menouer [13], the proposed scheduling algorithm is

successful since it provides both a lower energy consumption and lower

waiting times, thus proving itself as computationally and energy efficient.

Menouer also claims that the inclusion of the power consumption parame-

ter in the scheduling process alone is enough to improve energy efficiency,

since it is never considered by default.

However, one of the major shortcomings of this approach is the complete

lack of support for heterogeneous clusters, since all nodes are considered

virtually identical to each other.

Kaur et al. [14] propose a similar but different approach. First and fore-

most, the proposed method takes into account the energy consumption of

nodes, just like the previously mentioned one. However, while the first

paper designs a specific scheduling algorithm to perform a task distri-

bution across nodes, this paper formulates the scheduling problem as a

multi-objective optimization problem, whose goal is to minimize energy

consumption while also trying to reduce interference between tasks.

Further differentiating the two approaches, the proposed solution sup-

ports both heterogeneous nodes and heterogeneous workloads. To achieve

this, the authors proposed a system capable of being configured with dif-

ferent types of tasks (either processor-intensive or network-intensive) as

well as various constraints, such as minimum processor and memory re-

sources, job deadlines, and number of replicas. The result is a robust sys-

tem which is able to operate an enormous number of workloads and clus-

ter configurations, while also providing efficiency. The scheduling system

also provides a feature which allows those nodes powered by green en-

ergy sources to be prioritized over the others in order to provide a more

environmentally friendly approach.

Just like the previous solution, in order to optimize power consump-

tion and efficiency, tasks are compacted onto fewer nodes. However, be-

cause the system also support heterogeneous workloads, a more advanced

scheduling solution is used, which will try to group similar tasks onto sim-

ilar nodes.

According to the authors of the paper, the proposed scheduling solution

can help increasing energy efficiency by up to 14%, while also reducing

interference by 47% and the carbon footprint of the cluster by 31%.

3.2 Limiting performance to increase efficiency

While the previously presented algorithms try to achieve energy efficiency

by manipulating the way tasks are assigned to nodes, Rocha et al. [15]

take a fundamentally different approach.

The proposed scheduling system offers the client the capability to specify

the maximum acceptable energy-performance ratio, also known as trade-

off. When a new task will be queued for execution in the cluster, the

proposed scheduler will first check which node is capable of executing the

task, also excluding those nodes which are incompatible or too busy with

other tasks. The scheduler will then try to estimate the energy efficiency

of the new task before execution starts. This estimation is performed

thanks to pre-computed references as well as similar tasks already run-

ning in the system. Finally, the scheduler will compute an efficiency score

for every capable node and will assign the task to the node whose score is

closest to the requested trade-off previously set by the user.

With this method, the scheduler effectively excludes some nodes from

the active ones because they were not considered energy efficient enough

to perform the required task, therefore drastically improving energy ef-

ficiency. However, this method also drastically reduces overall perfor-

mances, since high-performance nodes are more likely to draw more power

and therefore are also more likely to be excluded. This performance drop,

however, is often acceptable, especially for deadline-free and low-priority

tasks. Those workloads do not require a fast execution or a real-time re-

sponse form the system, therefore achieving energy savings is the prefer-

able alternative.

Rocha et al. [15] claim an average energy saving of 1.5% and conse-

quently a total efficiency improvement of 7.1% while running the pro-

posed scheduler against the default one on a realistic test environment.

The drawback, however, is the penalty in performance, which can only be

considered acceptable when running deadline-free tasks.

3.3 Reducing energy consumption by predicting performance

The scheduler proposed in [15] is peculiar because it can achieve energy

savings by predicting workloads and assigning tasks.

Another similar paper on the topic is [2], which presents an improved

scheduler that can allocate tasks more efficiently by using experimental

data gathered previously. The authors collected all required data through

experiments conducted on the selected hardware in a wind tunnel, and

then designed a custom scheduler to accommodate their needs.

The scheduler showed vast improvements in both energy consumption

and energy efficiency, while also providing good overall performances.

However, the proposed approach requires advanced research and can only

be applied to a well-defined hardware. Furthermore, those systems that

improve energy efficiency by predicting workloads attributes are not guar-

anteed to work as expected for real-time applications or I/O bound appli-

cations (those applications dependent on external factors). For these rea-

sons, the solution presented cannot be easily achievable unless for very

specific hardware configurations and workloads.

4 Analysis and considerations

Overall, all presented methods seem to provide clever solutions that man-

age to improve energy efficiency by only changing the behavior of the

scheduler. In particular, the methods proposed by Menouer [13] for ho-

mogeneous clusters and Kaur et al. [14] for heterogeneous clusters seem

particularly promising because of their simplicity of implementation and

use, while also remaining effective. The method proposed by Rocha et

al. [15] also seems effective and efficient, although it requires a more ad-

vanced setup and a deeper knowledge of the underlying heterogeneous

system. The scheduler proposed by Townend et al. [2], however, requires

a more advanced physical setup as well as advanced equipment to be per-

formed correctly, therefore it might be the least widely applicable method

of the analyzed ones, although still effective.

5 Conclusion

In conclusion, the demand for cloud services has led to an increase in

energy-intensive data centers, which account for a significant amount of

worldwide electrical power consumption. While the data center industry

has historically focused on hardware innovation to address energy inef-

ficiencies, cloud providers are now exploring energy-saving software so-

lutions. Containers and container orchestration systems, such as Kuber-

netes, have emerged as efficient alternatives to traditional virtualization

methods. This paper has explored software-only solutions to improve en-

ergy efficiency in the cloud, specifically through scheduling algorithms.

Although some effective methods to improve energy efficiency have al-

ready been developed, the scheduling problem remains unsolved, and no

scheduler has proven itself superior to others. Overall, energy efficiency

in the cloud remains an ongoing challenge, and continued research is

needed to further reduce energy consumption.

References

[1] N. Gholipour, E. Arianyan, and R. Buyya, “Recent advances in energy-
efficient resource management techniques in cloud computing environments,”
New Frontiers in Cloud Computing and Internet of Things, pp. 31–68, 2012.

[2] P. Townend, S. Clement, D. Burdett, R. Yang, J. Shaw, B. Slater, and J. Xu,
“Improving data center efficiency through holistic scheduling in kubernetes,”
in 2019 IEEE International Conference on Service-Oriented System Engi-
neering (SOSE), pp. 156–15610, IEEE, 2019.

[3] A. Katal, S. Dahiya, and T. Choudhury, “Energy efficiency in cloud comput-
ing data centers: a survey on software technologies,” Cluster Computing,
pp. 1–31, 2022.

[4] V. Dakic, M. Kovac, and J. Redzepagic, “Optimizing kubernetes performance,
efficiency and energy footprint in heterogenous hpc environments.,” Annals
of DAAAM & Proceedings, vol. 10, no. 2, 2021.

[5] “Docker website.” https://www.docker.com/.

[6] “Kubernetes documentation.” https://kubernetes.io/docs/concepts/overview/.

[7] C. Carrión, “Kubernetes scheduling: Taxonomy, ongoing issues and chal-
lenges,” ACM Computing Surveys, vol. 55, no. 7, pp. 1–37, 2022.

[8] M. Coté, “Why large organizations trust kubernetes.” https://tanzu.vmware.
com/content/blog/why-large-organizations-trust-kubernetes.

[9] “Kubernetes website.” https://kubernetes.io/.

[10] “Kubernetes documentation - taints and tolerations.” https://kubernetes.
io/docs/concepts/scheduling-eviction/taint-and-toleration/.

[11] “Github scheduling framework repository.” https://github.com/kubernetes/
enhancements/tree/master/keps/sig-scheduling/624-scheduling-framework.

[12] Z. Rejiba and J. Chamanara, “Custom scheduling in kubernetes: A survey
on common problems and solution approaches,” ACM Computing Surveys,
vol. 55, no. 7, pp. 1–37, 2022.

[13] T. Menouer, “Kcss: Kubernetes container scheduling strategy,” The Journal
of Supercomputing, vol. 77, no. 5, pp. 4267–4293, 2021.

[14] K. Kaur, S. Garg, G. Kaddoum, S. H. Ahmed, and M. Atiquzzaman, “Keids:
Kubernetes-based energy and interference driven scheduler for industrial

iot in edge-cloud ecosystem,” IEEE Internet of Things Journal, vol. 7, no. 5,
pp. 4228–4237, 2019.

[15] I. Rocha, C. Göttel, P. Felber, M. Pasin, R. Rouvoy, and V. Schiavoni, “Heats:
Heterogeneity-and energy-aware task-based scheduling,” in 2019 27th Eu-
romicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP), pp. 400–405, IEEE, 2019.

The Password Conundrum: Rethinking
Authentication for the Digital Age

Anoosha Sajid
anoosha.sajid@aalto.fi

Advisor: Sanna Suoranta

Aalto University

Abstract

This paper examines the usability of passwords as a primary means of

authentication and explores alternative forms of authentication that can

improve usability. It highlights the difficulties faced by users in remember-

ing complex and unique passwords, the impracticality of complying with

rigid standards for robust passwords, and the complexity of creating and

managing passwords. The paper also discusses other types of authentica-

tion as possible methods to increase the security of authentication systems

without negatively impacting their usability.

1 Introduction

Passwords have been the primary means of authentication for decades, but

their inefficiency has become increasingly apparent in the present world.

The widespread use of the Internet has led to a surge in online security

threats, and passwords are often the weakest link in the security chain.

With the increasing number of data breaches, it is clear that traditional

passwords are no longer sufficient to protect sensitive information, as

cybercriminals have developed sophisticated methods to steal passwords

and render them ineffective. To mitigate these risks, there is a pressing

need to enhance password authentication systems, to ensure that they are

secure, yet still usable for the end-user.

The usability of passwords constitutes a vital facet of their overall secu-

rity, as it influences the ease with which users are able to retain and input

their passwords without compromising security. According to Whitten and

Tygar [19], password usability is "the degree to which a password system

is easy to learn, efficient to use, easy to remember, and satisfying to the

user." However, the utilization of passwords as the predominant mode of

authentication has been hampered by the difficulties that users experience

in generating and retaining complex and unique passwords. This leads to

the widespread usage of readily guessable or repeated passwords, as seen

by the findings of a SplashData survey done in 2019, which revealed that

the most often used passwords in the year were "123456" and "password."

[16]. Additionally, the recurrent imposition of password changes can also

generate confusion and frustration, leading to forgotten passwords. De-

spite these issues, passwords remain a widely used form of authentication

due to their ease of use, low cost, and widespread availability. [13]

The purpose of this paper is to examine the interdependence of password

usability and security, and to offer suggestions for enhancing both. Section

2 discusses the implications of password usability on security and the

importance of preserving both usability and security. Section 3 examines

various methods of improving password usability while maintaining secu-

rity, including the use of password managers, alternative authentication

techniques, and the impact of user education and industry standards. The

paper concludes with a summary of the findings and suggestions for future

advancements in password usability.

2 Challenges to Password Usability

Passwords, despite being a widely used form of authentication, have been

increasingly criticized for their poor usability. Bergstrom et al. [5] found

that the linguistic and phonological difficulty of passwords greatly impacts

the usability of these authentication methods. This issue is exacerbated

by the increasing need for users to enter complex passwords on mobile

devices, as highlighted by Greene et al. [7]. This can lead to difficulties in

typing and, ultimately, a decrease in the overall usability of passwords.

Greene et al. [8] also highlighted the issue of password security being

compromised by poor usability in their study on the usability and security

of peruted passwords on mobile platforms. They found that users often

choose easily guessable or reused passwords, which can have a signifi-

cant impact on security, as easily guessable or reused passwords can be

easily cracked by attackers, potentially leading to unauthorized access to

sensitive information.

2.1 The trade-offs between security and usability in password
design

The design of passwords is a delicate balance between ensuring security

and promoting usability. Research in the field of information security

has long highlighted the trade-offs between these two goals. As stated

by Sasse [14], "usability and trust are often seen as conflicting goals in

information systems." This is because security measures, such as requiring

complex and unique passwords, can make it difficult for users to effectively

recall and apply them, ultimately resulting in poor password management

practices, such as writing them down or reusing the same password across

multiple accounts. On the other hand, longer passphrases that are easier

to remember can be more secure, but users may still make errors that com-

promise their effectiveness. Therefore, when designing password systems,

it is crucial to balance both security and usability considerations to ensure

that they are efficient and effective in promoting strong security practices

among users.

3 Improving usability of passwords

To address the security and usability issues associated with passwords,

researchers and developers have proposed various solutions. These solu-

tions include the use of password managers and alternative authentication

methods, such as token-based authentication, as well as both physiologi-

cal and behavioral biometrics. Password managers provide a convenient

solution for managing complex and unique passwords for multiple online

accounts. They generate strong passwords, store them securely, and aut-

ofill them when needed, thus mitigating the risk of password reuse and

theft. Alternative authentication methods can provide additional layers

of security when used in conjunction with passwords, such as two-factor

authentication. While they are not inherently more secure than passwords,

they can address certain security risks associated with passwords and may

offer a more seamless user experience. However, it is important to note that

these methods also have their own limitations and potential vulnerabili-

ties that must be considered when implementing them in a security system.

This section will examine the potential of password managers and alter-

native authentication methods to enhance the usability of passwords. The

advantages and limitations of these approaches will be explored, along

with recommendations for their effective implementation. Furthermore,

the importance of user-centered design and human factors in the imple-

mentation of these solutions will be discussed to ensure their usability and

effectiveness.

3.1 The use of password managers

Password managers have become increasingly popular due to their many

advantages. By reducing the risk of password guessing and brute-force

attacks, password managers provide a higher level of security for online

accounts. This is accomplished by using complex algorithms, such as cryp-

tographic hash functions, random number generators, and symmetric-key

encryption, to generate strong and unique passwords that are difficult to

crack. By doing so, password managers provide a higher level of security

for online accounts.

Florencio and Herley [6] highlight the significance of password managers

in enhancing the security of online accounts by generating and storing

strong passwords in an encrypted format. This encryption method ensures

that even if an attacker gains access to the password database, they cannot

read the passwords without the encryption key, which is typically stored

locally on the user’s device or in a secure cloud-based vault. Although

different password managers store passwords in various locations, such

as a user’s device, the cloud, or across multiple devices, they all aim to

securely store passwords to minimize the risk of data breaches. Ultimately,

password managers offer a convenient and secure way to generate and

store strong passwords, providing an extra layer of protection to online

accounts and reducing the risk of unauthorized access.

Furthermore, as highlighted by Oorschot et al. [18], password managers

simplify the login process by filling in the username and password fields

automatically, alleviating the burden of memorizing or typing in passwords.

By doing so, password managers save users time and effort while reducing

the likelihood of errors. Additionally, password managers can be used

across multiple devices, which is particularly advantageous for those who

utilize several devices.

Additionally, password managers can prevent man-in-the-middle attacks

by providing login credentials only for recognized websites based on their

URL or domain, which reduces the risk of credential theft. Password man-

agers also enhance password usability by generating strong passwords and

storing them securely. This allows users to avoid the burden of creating

and recalling passwords for multiple accounts, which in turn lowers the

likelihood of insecure password practices such as using easily guessable

passwords or reusing the same password across multiple accounts.

Despite their many advantages, password managers are not without

drawbacks. One of the primary concerns is the risk of a single point of

failure, which arises if the database of the password manager is compro-

mised, thereby putting all user accounts at risk. Furthermore, the security

measures implemented by password managers, such as encryption and

protocols, can also be vulnerable to attack. Additionally, factors such as

human error, the use of weak master passwords, or concerns about privacy

can impede users from adopting password managers.

Hence, as with any security measure, password managers are not infalli-

ble, and their effectiveness ultimately depends on how they are used. Users

should be cautious about selecting a reliable and trustworthy password

manager, keeping the master password secure, and regularly updating

and backing up their password database. By using password managers

carefully, users can enjoy the many benefits they offer while minimizing

the risks associated with password-based authentication.

3.2 The use of alternative authentication methods

The use of alternative authentication methods has gained significant atten-

tion in recent years as a way to improve password usability. Token-based

authentication, as well as both physiological and behavioral biometrics,

are among the most commonly used alternative authentication methods.

Token-based authentication is a passwordless authentication method

that utilizes a token or code, generated by a third-party service, to au-

thenticate a user’s identity. This technique is gaining popularity as an

alternative authentication method for improving password usability be-

cause it eliminates the need for users to remember and manage passwords.

In their study, Banerjee and Hasan [4] evaluated the effectiveness of token-

based authentication techniques on open-source cloud platforms. The study

found that token-based authentication techniques are more secure than

traditional password-based authentication, as the token or code is only

valid for a short period, reducing the risk of unauthorized access. Moreover,

the study found that token-based authentication is easier to implement

and manage than traditional authentication methods, which can reduce

the burden on the user and the system administrator. The results suggest

that token-based authentication can be an effective alternative authen-

tication method to enhance password usability and security, particularly

in cloud-based environments. However, it should be noted that the dis-

tribution of tokens can present security challenges, as the tokens must

be distributed in a secure manner to prevent interception or theft, which

could undermine the security of the authentication process. Therefore, it

is imperative to implement appropriate security measures to ensure the

safe distribution and management of tokens.

Physiological biometrics, which uses physical or behavioral characteris-

tics of a person to authenticate their identity, is a promising alternative

authentication method for improving password usability. One such bio-

metric authentication method is FingerPIN, which utilizes fingerprints to

authenticate a user’s identity. The usability of FingerPIN was evaluated

in a study conducted by Marasco et al. [10], which found that FingerPIN

was perceived as easy to use and efficient by users, compared to traditional

password-based authentication. The study also found that FingerPIN

was effective in reducing the risk of unauthorized access, as it is difficult

for an attacker to replicate a person’s fingerprints. The results suggest

that biometric multi-factor authentication, such as FingerPIN, can be an

effective solution to improve password usability and security, particularly

in situations where the user is required to access sensitive information or

perform high-value transactions.

Behavioral biometrics is a relatively new authentication method that

utilizes the unique behavioral patterns of the user, such as keystroke

dynamics and touch screen interactions, to authenticate the user. This

technique provides several advantages over traditional authentication

methods, including the elimination of the need for the user to remem-

ber and manage passwords, which can be challenging for many users.

Moreover, behavioral biometrics is more secure because it is difficult for

attackers to replicate or steal a person’s unique behavioral patterns. Ac-

cording to a survey by Stylios et al. [17], continuous user authentication

based on behavioral biometrics, such as touch dynamics and accelerometer

data, on mobile devices shows promise for improving password usability

and security while providing a better user experience compared to tradi-

tional password-based authentication.

Consequently, authentication methods such as token-based authentica-

tion, as well as both physiological and behavioral biometrics are promising

ways to improve password usability and security. However, they may not

provide sufficient security on their own. Multi-factor authentication (MFA)

is necessary to combine two or more authentication factors to ensure the

highest level of security. MFA can provide an additional layer of security to

protect against various types of attacks and unauthorized access attempts.

Therefore, it is crucial to consider implementing MFA in combination with

alternative authentication methods to ensure the best possible security

while maintaining easy usability for users.

3.3 The role of user education and standards

Enhancing and improving user education as well as the rigorous adher-

ence of industry standards are vital for establishing appropriate password

habits among users. According to the study by Adams and Sasse [1], in-

adequate policies, rather than user carelessness, are the main cause of

insecure password practices. Therefore, it is essential to educate users on

password management policies to improve password usability.

One way to improve password usability is to adopt standardized pass-

word policies that are user-friendly and easy to understand. A study

by AlFayyadh et al. [2] found that standardized password policies can

significantly improve the usability of password management systems by

providing clear guidelines and reducing the burden of remembering com-

plex passwords. These policies can include guidelines for creating strong

passwords, using unique passwords for each account, and performing reg-

ular password updates. By providing users with clear and easy-to-follow

guidelines, organizations can promote good password practices and im-

prove password usability.

Government and industry standards can also play a role in improving

password usability. For example, the General Data Protection Regulation

(GDPR) of the European Union mandates the use of strong passwords and

password protection measures to ensure the confidentiality and integrity

of personal data. In the United States, the National Institute of Standards

and Technology (NIST) has published guidelines on password security

that include recommendations on password complexity and length, as well

as restrictions on password reuse and expiration [11]. By adhering to

these guidelines, organizations can ensure that their password policies are

user-friendly and easy to follow.

4 The future of password usability and security

With the ongoing advancement of technology, the emergence of novel pass-

word technologies is expected to transform both the usability and security

of passwords in the foreseeable future. One such technology is password-

less authentication, which eliminates the need for users to remember and

enter complex passwords by using alternative factors, such as biometric

authentication or hardware tokens, to authenticate users. Parmar et al.

[12] conducted a comprehensive study on passwordless authentication,

which evaluated the effectiveness and usability of various passwordless

authentication methods. Their study contributes to the understanding and

development of passwordless authentication, which is expected to become

more widely adopted in the future.

Another emerging technology is the use of artificial intelligence (AI)

to enhance password security. AI can analyze user behavior and detect

anomalies that may indicate a security breach. For example, a study by

Azanguezet Quimatio et al. [3] proposed an ensemble learning approach

for user authentication through keystroke dynamics or mouse movements.

This approach is different from keylogger attacks, which record the keys

pressed by a user to steal their password. While keylogger attacks can

capture passwords regardless of the complexity of the password, analyzing

keystroke patterns adds an extra layer of security and usability, as it is less

intrusive and does not require users to change their behavior. Additionally,

AI can also be used to generate strong passwords that are difficult for

attackers to guess or crack.

Blockchain technology is also being explored as a potential solution for

password security. Blockchain technology provides a decentralized and

secure platform for storing and sharing user credentials, eliminating the

need for passwords. In a blockchain-based authentication system, user cre-

dentials are stored on a distributed ledger, and access is granted through

cryptographic protocols. This technology has the potential to provide a

more secure and transparent authentication system. To get access, users

would need to use their private key to verify their identity and grant per-

mission to access their credentials on the blockchain. [15].

In addition to these emerging technologies, there are also innovative

password mechanisms being developed that could revolutionize password

security in the future. According to Gui et al. [9], researchers are exploring

the use of electroencephalogram (EEG) signals to authenticate users based

on their brainwaves, providing a secure and easy-to-use alternative to

traditional passwords. This technology has the potential to revolutionize

password security in the future, making it more convenient and reliable

for users to access their accounts while also reducing the risk of security

breaches.

Overall, the future of password usability and security is likely to involve

a combination of emerging technologies and innovative password mecha-

nisms. Passwordless authentication, AI-based security, blockchain-based

authentication, and brainwave authentication are just a few examples of

the potential solutions that may become widely adopted in the future. As

technology continues to evolve, it is essential to evaluate the security and

usability of these solutions carefully to ensure that they provide users with

the highest level of protection.

5 Conclusion

In conclusion, passwords remain the most widely used form of authentica-

tion, but their usability and security have increasingly become a challenge

in the digital age. This paper has explored the difficulties faced by users

in generating and retaining complex and unique passwords, and the neg-

ative impact on security when users choose weak and easily guessable

passwords. We have also discussed the trade-offs between security and

usability when designing password systems and highlighted the need to

strike a balance between the two.

To improve the usability of passwords while maintaining security, we

have explored the use of password managers and alternative authenti-

cation methods such as biometrics and token-based authentication. We

have also emphasized the importance of user-centered design and human

factors in the implementation of these solutions to ensure their usability

and effectiveness.

Furthermore, the role of user education and industry standards in im-

proving password usability and security cannot be overlooked. Educating

users on the importance of strong passwords, the risks of weak passwords,

and best practices in password management can go a long way in miti-

gating the risks associated with passwords. Industry standards can also

help promote consistent and effective password policies across different

platforms and organizations.

In summary, the password conundrum requires a rethinking of authen-

tication for the digital age. While passwords remain relevant, there is a

need to explore and implement alternative authentication methods and

user-centered solutions that can enhance password usability and secu-

rity. The way forward requires collaboration between users, developers,

industry leaders, and policymakers to ensure a secure and user-friendly

authentication system for the digital age.

References

[1] Anne Adams and Martina Angela Sasse. Users are not the enemy. Commu-
nications of the ACM, 42(12):40–46, 1999.

[2] Bander AlFayyadh, Per Thorsheim, Audun Jøsang, and Henning Klevjer.
Improving usability of password management with standardized password
policies. arXiv preprint arXiv:1910.10941, 2019.

[3] Benoît Martin Azanguezet Quimatio, Olive Flore Yatio Njike, and Marcellin
Nkenlifack. User authentication through keystroke dynamics based on
ensemble learning approach. Journal of Computer and Communications,
8(12):43–53, 2020.

[4] Amit Banerjee and Mahamudul Hasan. Token-based authentication tech-
niques on open source cloud platforms. International Journal of Computer
Applications, 181(30):11–14, 2018.

[5] J. R. Bergstrom, S. A. Frisch, D. C. Hawkings, J. Hackenbracht, K. K. Greene,
M. Thefanos, and B. Griepentrog. Development of a scale to assess the
linguistic and phonological difficulty of passwords. In Cross-Cultural Design,
6th International Conference, CCD 2014, Held as Part of HCI International
2014, 2014.

[6] Dinei Florencio and Cormac Herley. A large-scale study of web pass-
word habits. In 23rd USENIX Security Symposium (USENIX Security
14). USENIX Association, 2014.

[7] K. K. Greene, M. A. Gallagher, B. C. Staton, and P. Y. Lee. I can’t type
that! p@$$w0rd entry on mobile devices. In Human Aspects of Information
Security, Privacy, and Trust, Second International Conference, HAS 2014,
2014.

[8] K. K. Greene, J. Kelsey, and J. M. Franklin. Measuring the usability and
security of perturbed passwords on mobile platforms. Technical Report 8040,
NIST, 2016.

[9] Qiong Gui, Zhanpeng Jin, and Wenyao Xu. Exploring eeg-based biometrics
for user identification and authentication. IEEE Access, 6:44605–44618,
2018.

[10] Emanuela Marasco, Massimiliano Albanese, Venkata Vamsi Ram Patibandla,
Anudeep Vurity, and Sumanth Sai Sriram. Biometric multi-factor authen-
tication: On the usability of the fingerpin scheme. Pervasive and Mobile
Computing, 58:1–11, 2019.

[11] National Institute of Standards and Technology. Digital identity guide-
lines: Authentication and lifecycle management. Technical Report Special
Publication 800-63B, National Institute of Standards and Technology, 2017.

[12] Viral Parmar, Harshal A. Sanghvi, Riki H. Patel, and Abhijit S. Pandya. A
comprehensive study on passwordless authentication. In 2022 International
Conference on Sustainable Computing and Data Communication Systems
(ICSCDS), pages 1266–1275, Erode, India, 2022. IEEE.

[13] Robert W Proctor. Improving computer security for authentication of users:
Influence of proactive password restrictions. Memory & Cognition, 34(3):573–
582, 2006.

[14] M Angela Sasse. Usability and trust in information systems. University
College London, 1999.

[15] Yashvardhan Singh, Sakshi Jain, and Shubham Rawal. Blockchain based
password free authentication. International Journal of Scientific and Re-
search Publications (IJSRP), 11:418–419, Apr 2021.

[16] SplashData, Inc. Splashdata’s "worst passwords list" for 2019.
https://www.splashdata.com/press/worst-passwords-of-2019-report, 2019.

[17] Ioannis Stylios, Spyros Kokolakis, Olga Thanou, and Sotirios Chatzis. Be-
havioral biometrics & continuous user authentication on mobile devices:
A survey. Journal of Ambient Intelligence and Humanized Computing,
11(10):4471–4495, 2020.

[18] Paul C. van Oorschot. Computer security and the internet: Tools and jewels
from malware to bitcoin. In Computer Security and the Internet, chapter 3.6.
John Wiley & Sons, 2 edition, 2022.

[19] Alan Whitten and J D Tygar. Guerrilla hci: using off-the-shelf user-centered
design. Human-computer interaction, 14(1-2):63–97, 1999.

A Security Overview of OAuth 2.0

Apramey Bhat
apramey.bhat@aalto.fi

Tutor: Aleksi Peltonen

Abstract

OAuth 2.0 is an open-standard protocol widely adopted by organizations.

It enables secure access to resources stored on one website from another,

without exposing the user credentials. While initially intended for autho-

rization, OAuth 2.0 is also increasingly used for authentication. In fact,

a study found that 77% of users view social login as a good registration

solution. This highlights the growing trend towards the use of OAuth 2.0

and social login to facilitate user authentication and improving user ex-

perience on the web. However, the widespread use of the framework also

makes it a popular target for attackers. This paper reviews the security

features, common security vulnerabilities, and best practices for securing

OAuth 2.0-based applications.

KEYWORDS: OAuth 2.0, Authorization, Authentication, Session integrity,

Token

1 Introduction

OAuth 2.0 gained immense popularity as an authorization and authen-

tication protocol in web and mobile applications. The growing adoption

of OAuth 2.0 made it integral to many online services, including social

media, email, and e-commerce platforms [1]. Although OAuth 2.0 has be-

come a widespread solution for secure access, it has faced criticism and

concerns regarding its security and privacy vulnerabilities. Various re-

searchers have analyzed the protocol and several security weaknesses

have been identified [2, 3, 4, 5]. These shortcomings have the potential

to put sensitive information at risk and leave organizations and individu-

als exposed to malicious attacks.

Despite established guidelines and best practices aimed at securing OAuth

2.0 applications, current implementations remain vulnerable to attack.

These vulnerabilities are exemplified by the attack [6] on Booking.com,

an online travel agency with over 100 million users. In addition, a study

conducted by Arshad et al. on the "Alexa top 50k websites" [7] revealed

that nearly 36% of the sites using OAuth 2.0 are vulnerable to cross-site

request forgery (CSRF) attacks [4, 5]. These findings emphasize the ur-

gency for continued research and development efforts to improve the se-

curity of OAuth 2.0 implementations. This paper provides an overview of

OAuth 2.0 protocol and summarizes its security aspects.

The rest of the paper is structured as follows: Section 2 summarizes the

technical details of OAuth 2.0 and explains how it enhances application

security. Section 3 discusses the fundamental security concepts that un-

derlie OAuth 2.0. Section 4 examines various types of attacks that can

exploit vulnerabilities in OAuth 2.0 implementations and provides guid-

ance on how to mitigate these risks. Section 5 presents a brief discussion

about the paper. Finally, Section 6 summarizes the key findings and high-

lights the importance of following the strict guidelines and best practices

provided by the OAuth 2.0 community to ensure the secure implementa-

tion of the protocol.

2 Background

2.1 OAuth 2.0 Protocol Overview

OAuth 2.0 is a widely used authorization framework for securing access

to Application Programming Interfaces (API) [8]. It enables third-party

applications to access the user’s resources, such as their data, without

requiring the user to share their login credentials. The OAuth 2.0 protocol

was developed by the Internet Engineering Task Force (IETF) in 2012 as

an upgrade to the earlier OAuth 1.0 protocol.

The OAuth 2.0 framework involves four roles [9]: (1) The Resource Owner

owns the resource and can grant access to it through the Authorization

Server (AS). In the context of OAuth 2.0, this is typically the end-user

who possesses the resources that a third-party service desires to access.

(2) The Client is an application that communicates with the AS to receive

an access token, that can be used to access the user’s protected resources

on the resource server. (3) The Resource Server (RS) stores the user’s re-

sources. It is responsible for validating the client provided access token

and granting access to the requested resources if the token is valid. (4)

The Authorization Server (AS) grants access tokens to clients after the re-

source owner grants authorization. The AS is responsible for verifying the

identity of the client and the resource owner, and to ensure if the client

has appropriate permissions to access the requested resources.

OAuth 2.0 protocol provides four types of grant, each with unique char-

acteristics and recommended use cases [9]. (1) The Authorization Code

Grant is a server-to-server exchange where an authorization code is ex-

changed for an access token, providing secure access to resources without

sharing the user’s credentials with the client application. (2) The Implicit

Grant involves a client receiving an access token directly from the AS. The

OAuth 2.0 best security practices [3] recommends against using Implicit

grant type because it involves transmitting the access token directly to

User Agent (UA) or browser that can be easily intercepted and misused

[10]. (3) The Resource Owner Password Credentials Grant requires the

user to provide their credentials to the client application to exchange for

an access token, and is only recommended for highly trusted clients. (4)

The Client Credentials Grant involves the client applications providing

their credentials to the AS to receive an access token. It is typically used

for machine-to-machine communication.

Figure. 1 depicts a typical OAuth 2.0 protocol flow [9, 11] between the

above mentioned roles. The numbers below denote the order of the mes-

sages exchanged between the roles. (1) The client initiates the process by

sending an authorization request to the resource owner. (2) The resource

owner then generates an authorization grant as a code and sends it back

to the client. (3) After receiving the authorization grant, the client au-

thenticates to the AS and presents the code to initiate an access token

request. (4) The AS then validates the authorization grant and issues

an access token to the client. (5) The client redeems the access token to

Client

Resource Owner (User)

Authorization Server
(AS)

Resource Server (RS)

1: Authorization Request

2: Authorization Grant

3: Authorization Grant

4: Access Token

5: Access Token

6: Protected Resource

Identity Provider (IdP)

Figure 1. OAuth 2.0 Protocol Flow [11]

the RS to access the protected resource. (6) Finally, the RS validates the

access token and sends the requested resource.

2.2 OAuth 2.0 Application Security

One of the most common approaches legacy applications can handle au-

thentication is through a username and password prompt. In this method,

the user enters their password, and the application exchanges it for a ses-

sion cookie [12]. This works well for simple systems. However, it becomes

limiting when creating multiple apps that share a user database with a

single sign-on.

Without OAuth 2.0, the applications would have to collect the user pass-

word and send it to the API. This is not a good idea because it presents a

set of risks. For instance, the user cannot trust the application that asks

for a password, whether it is a legitimate or third-party app. For third-

party apps, this is a severe problem as the app can read any files in the

account, change the password, and much more [10].

OAuth 2.0 requires applications to redirect users to the AS for login,

thereby avoiding the application’s access to the user credentials. This en-

hances security against untrusted third-party applications, and enables

first-party applications to become more flexible. For example, implement-

ing multi-factor authentication at the identity provider (IdP) can improve

system security and increase flexibility for updates without requiring changes

to individual applications [3, 9, 10]. In summary, OAuth 2.0 improves ap-

plication security by reducing the instances where users enter credentials

and enabling centralized control over authorization and authentication

mechanisms.

3 OAuth 2.0 Security Concepts

3.1 Front Channel and Back Channel

In OAuth 2.0, there are two communication channels between the dif-

ferent roles involved in the protocol: the front and the back channel [10].

The front channel is an unauthenticated communication channel typically

uses the user agent to interact with the AS and the client. It involves user-

facing interactions, such as granting permissions and redirection between

various web pages [13]. The back channel is a more secure communication

channel that is used between the AS and the client. This channel is used

for exchanging tokens and other sensitive information. The back channel

is secured using Transport Layer Security (TLS) encryption and requires

authentication from both the AS and the client [13]. By separating these

channels, OAuth 2.0 can ensure that sensitive information, such as access

tokens is not leaked to unauthorized parties.

3.2 OAuth 2.0 Security Parameters

OAuth 2.0 protocol uses various security parameters to ensure secure

communication between the authorization server, the resource server and

the client [3, 10, 13].

The IdP assigns unique Client ID and Client Secret to a client applica-

tion, which are primary security parameters in OAuth 2.0. These param-

eters are essential for authenticating the client application and allowing

it to access protected resources on behalf of the user. In certain instances,

IdPs may choose to omit the provision of a client secret to clients with

a higher likelihood of exposing this sensitive parameter due to their un-

derlying architecture, such as Single Page Applications (SPA) and native

mobile apps.

The authorization server redirects the resource owner to Redirect URI

after the user has granted permission for the client to access their re-

sources. The Redirect URI is used to receive the authorization code or

access token from the AS. The Client must provide the precise URI or

URI pattern that AS will utilize to redirect back to the client. This pa-

rameter holds significant importance as it is the only reliable means by

which the AS can ensure that the code or token is being transmitted to a

legitimate source in a client with no client secret [3].

The State parameter is a random value generated by the client and in-

cluded in the authorization request. The AS returns this value along with

the authorization code or access token. The client should verify that the

state value returned by the AS matches the one that is sent in the autho-

rization request to prevent CSRF attacks [13].

The Scope parameter is used by the client to request access to specific

resources or actions on behalf of a user. The scope can specify a set of

permissions or access rights, such as read-only access to user data or the

ability to post on behalf of a user.

3.3 Proof Key for Code Exchange

Proof Key for Code Exchange (PKCE) is an OAuth 2.0 protocol extension

that enhances the security of authorization code flows [14]. It ensures that

only intended client can obtain an access token, even when an attacker

intercepts the authorization code. PKCE introduces a code verifier and a

code challenge in the authorization process.

When a client initiates an authorization request, it generates a random

code verifier and computes a hash called code challenge based on the ver-

ifier. The code challenge is sent to the AS with the authorization request.

The AS then stores the code challenge and generates an authorization

code that is sent back to the client. The client redeems the authorization

code back to the AS, and the code verifier it initially generated. The AS

verifies that the hash of the incoming code verifier matches the code chal-

lenge it initially received, and if it does, it issues an access token to the

client [3, 15].

4 Attacks and Mitigations

OAuth 2.0 is the most reliable option of other frameworks that provide

the same functionality, yet there are several open issues that can make it

vulnerable to attacks. To address these issues, the IETF has made efforts

to educate the developer community on best practices for implementing

OAuth 2.0 securely [3, 13]. The following section discusses some of the

attacks associated with these vulnerabilities and their mitigation strate-

gies.

4.1 Insufficient Redirect URI and State Validation

As discussed in the Section 3.2, particular authorization servers enable

clients to provide redirect URI patterns rather than specific redirect URIs.

This parameter holds a significant role in client validation at the AS end-

point, especially for public client with no client secret. While this ap-

proach allows clients to add a range of URI patterns, it is vulnerable to

various types of impersonation and CSRF attacks, making it error-prone

[13]. For example, a URI pattern https://*.someclient.com/ can be re-

placed by an attacker as https://evil-server.com/.someclient.com/ in a

way to bypass the AS validation, resulting in getting the authorization

code or token to attacker’s domain. Even if validations are handled cor-

rectly, this vulnerability can exist due to subdomain takeover attack [16].

An experiment by Arshad et al. on CSRF attacks due to the improper

redirect URI claims that around 36% of the sites are vulnerable to CSRF

attacks. The experiment also claims that around 13% of the sites have

empty state parameters, 27% of sites have state parameters but with im-

proper validation, and 5% of the sites use same state for every request

[5].

Mitigation: The intricacy involved in the correct implementation and

management of pattern matching of the URI raises few security concerns.

It is recommended to simplify the logic and configuration required by em-

ploying exact redirect URI matching [3]. PKCE, as discussed in the Sec-

tion 3.3 can be used as a countermeasure for CSRF attacks [14].

4.2 Authorization Code Injection

Attackers can gain unauthorized access to protected resources by stealing

the authorization code intended for a legitimate client during the autho-

rization process [3]. he attacker can use various means to intercept the

authorization code, including network eavesdropping, Cross-Site Script-

ing (XSS), and Man-in-the-Middle (MitM) attacks. Once the attacker has

the stolen authorization code, they can inject it into their own session with

the client. This enables the attacker to obtain victim’s access token, which

can be used to access the victim’s protected resources. The attacker can

then read, modify, or delete sensitive information, potentially compromis-

ing the victim’s data security [13].

Mitigation: Implementing measures, such as HTTPS to encrypt com-

munications, PKCE or nonces to prevent code interception, and client

authentication to prevent unauthorized clients from accessing the autho-

rization server [3].

4.3 PKCE Downgrade Attack

An attacker intercepts the initial authorization request and replaces it

with a request that does not include the PKCE parameter i.e., code chal-

lenge. The attacker then uses the resulting authorization code to ob-

tain an access token and potentially gain unauthorized access to pro-

tected resources [3, 13]. The PKCE downgrade attack can be carried out

through various means, such as intercepting and modifying the initial au-

thorization request, exploiting vulnerabilities in the client or authoriza-

tion server, or performing a MitM attack.

Mitigation: Authorization servers should enforce the use of PKCE for all

authorization requests and ensure that clients and authorization servers

are configured to reject requests that do not include PKCE parameters

[15]. Additionally, clients should use secure methods to generate code

verifiers and code challenges, such as cryptographic libraries, and validate

the PKCE parameters during the token exchange.

5 Discussion

The security of a system depends on three key factors: authorization, au-

thentication, and session integrity. Authorization controls access to pro-

tected resources, authentication verifies the user’s identity, and session

integrity ensures that protected resources are accessed correctly [2]. Al-

though OAuth 2.0 is widely used for secure resource access, there is no

centralized body for testing authorization and authentication schemes of

the framework. Developers typically conduct their own pen-testing on

their implementation of the OAuth 2.0 services [17]. OAuth’s popularity

stems from its interoperability across platforms and programming lan-

guages, unlike rival solutions that are site-specific, such as Yahoo BBAuth

and Facebook Auth. The flexibility of OAuth 2.0 has led to misinterpreta-

tions and criticisms from the security community [12]. Balancing security

and usability is a challenge, especially as demand for user-friendly solu-

tions increases.

6 Conclusion

This paper provides an overview of the OAuth 2.0 security model and a

few attacks on OAuth 2.0 implementations. It is important to note that

there are many other types of attacks that could occur, such as IdP Mix-

Up attacks, Authentication code injection, Credential leakage through

browser history, Open redirection, and many more [3, 13]. Ultimately, the

security of OAuth 2.0 implementations depends on the developer team

behind the client application and their adherence to following the strict

guidelines and best practices provided by the community.

The OAuth 2.0 framework offers comprehensive documentation [10],

RFCs [9, 3, 13], and security profiles, such as Financial-grade API (FAPI),

Pushed Authorization Requests (PAR), Demonstration of Proof of Posses-

sion (DPoP), and many more [10] to help developers implement the pro-

tocol securely. However, the abundance of documentation may also be

overwhelming, leading to confusion and potential mistakes. The OAuth

community is addressing this concern by releasing OAuth 2.1 [15] with

stricter guidelines for implementing OAuth securely. The developers need

to be well-equipped with these guidelines and best practices to ensure the

security of their implementations.

References

[1] R. Soni, “Social login and CRO: 9 reasons why you need it.” https://cxl.com/blog/social-
login/, 2022. last accessed: 12/03/2023.

[2] D. Fett, R. Küsters, and G. Schmitz, “A comprehensive formal security anal-
ysis of oauth 2.0,” vol. 24-28-October-2016, p. 1204 – 1215, 2016.

[3] T. Lodderstedt, J. Bradley, A. Labunets, D. Fett, “OAuth 2.0 Security Best
Current Practice.” https://www.ietf.org/archive/id/draft-ietf-oauth-security-
topics-21.html, 2022. last accessed: 12/03/2023.

[4] E. Arshad, M. Benolli, and B. Crispo, “Practical attacks on Login CSRF in
OAuth,” Computers and Security, vol. 121, 2022.

[5] M. Benolli, S. A. Mirheidari, E. Arshad, and B. Crispo, “The Full Gamut
of an Attack: An Empirical Analysis of OAuth CSRF in the Wild,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 12756 LNCS, p. 21 –
41, 2021.

[6] A. Carmel, “Traveling with OAuth - account takeover on Booking.com.”
https://salt.security/blog/traveling-with-oauth-account-takeover-on-booking-
com, 2023. last accessed: 12/03/2023.

[7] “Alexa Top Websites.” https://www.expireddomains.net/alexa-top-websites/,
2022. last accessed: 12/03/2023.

[8] R. Yang, W. Lau, and T. Liu, “Signing into one billion mobile app accounts
effortlessly with OAuth 2.0,” 2016.

[9] D. Hardt, “RFC 6749: The OAuth 2.0 Authorization Framework.” https://www.rfc-
editor.org/rfc/rfc6749, 2012. last accessed: 06/04/2023.

[10] A. Parecki, “OAuth 2.0.” https://oauth.net/2/, 2022. last accessed: 07/04/2023.

[11] W. Li, C. J. Mitchell, and T. Chen, “Mitigating CSRF attacks on OAuth 2.0
Systems,” 2018.

[12] M. Papathanasaki, L. Maglaras, and N. Ayres, “Modern authentication meth-
ods: A comprehensive survey,” AI, Computer Science and Robotics Technol-
ogy, Jun 2022.

[13] T. Lodderstedt, M. McGloin, P. Hunt, “OAuth 2.0 Threat Model and Security
Considerations.” https://www.rfc-editor.org/rfc/rfc6819, 2013. last accessed:
09/04/2023.

[14] N. Sakimura, J. Bradley, N. Agarwal, “Proof Key for Code Exchange by
OAuth Public Clients.” https://www.rfc-editor.org/rfc/rfc7636.html, 2015. last
accessed: 12/03/2023.

[15] D. Hardt, A. Parecki ,T. Lodderstedt, “The OAuth 2.1 Authorization Frame-
work.” https://www.ietf.org/archive/id/draft-ietf-oauth-v2-1-07.html, 2022.
last accessed: 09/04/2023.

[16] D. Liu, S. Hao, and H. Wang, “All your DNS records point to us: Understand-
ing the security threats of dangling DNS records,” vol. 24-28-October-2016,
p. 1414 – 1425, 2016.

[17] M. Argyriou, N. Dragoni, and A. Spognardi, “Security flows in oauth 2.0
framework: A case study,” pp. 396–406, 09 2017.

A survey on participant selection for
mobile crowdsensing

Ashok Dhungana
ashok.dhungana@aalto.fi

Tutor: Aziza Zhanabatyrova

Abstract

The evolution of the internet and the emergence of various sensor devices

connected to it have made it possible to collect vast amounts of data for dif-

ferent purposes. Companies and researchers can utilize this data to create

products and analyze patterns. With numerous devices already connected

to the internet, optimizing the number of participants and balancing the

server’s load that collects the data is essential[9]. In mobile crowdsensing

(MCS), participant selection strategies must be carefully designed to en-

sure adequate coverage while avoiding unnecessary energy consumption.

In this survey, we will examine various techniques developed to optimize

participant selection for MCS.

KEYWORDS: Mobile Crowdsensing, Internet of Things, Participant Selec-

tion

1 Introduction

Mobile crowdsensing (MCS) is a new paradigm in sensing and data collec-

tion that utilizes the power of mobile devices and crowdsourcing to gather

data on a large scale. MCS enables individuals to participate in data col-

lection activities using their mobile devices, such as smartphones, wear-

able sensors, and other portable gadgets, and share data with researchers,

companies, or public institutions. The resulting data can provide insights

into various domains, such as urban planning, healthcare, and environ-

mental monitoring. In MCS, participants can actively contribute to data

collection and analysis, allowing for a more comprehensive understanding

of the phenomenon being studied. This approach has the potential to revo-

lutionize data collection, making it more efficient, cost-effective, and scal-

able, and it has already found numerous applications in both academia

and industry. This introduction will explore the concept of MCS and the

various techniques used to optimize participant selection in this emerging

field.

Mobile crowdsensing is a collaborative process in which individuals use

their sensing and computing devices, such as smartphones, wearables, in-

vehicle sensors, and other Internet of Things (IoT) devices, to share data

and extract information for measuring and mapping phenomena of com-

mon interest [7]. Smartphones, which are widely available, are equipped

with sensors such as GPS, compass, camera, microphone, proximity sen-

sor, light sensor, and inertial sensor. Additionally, wearable devices like

smartwatches and rings can sense heart rates, blood pressure, and per-

form ECGs, among other things. With the availability of such data, nu-

merous applications can be developed.

MCS has numerous applications in environmental, infrastructural, and

social domains [7]. For instance, microphones can be utilized with GPS lo-

cation data to map noise pollution, and inertial sensors in vehicles can be

combined with GPS to track potholes. Similarly, pictures of trash taken

near water bodies can be used to map pollution levels in water resources.

Infrastructural aspects like road conditions, traffic congestion, parking

space availability, and traffic light operations can be studied using posi-

tioning data [7]. In the social domain, individual data such as exercise

data can be beneficial in medical science to create products focused on

health.

Despite the increasing benefits of MCS due to advancements in sen-

sors and internet connectivity, resource limitations in terms of energy,

bandwidth, and computation pose significant challenges [16, 7]. Dynamic

nature of the devices collecting sensor data means that they may share

energy sources and bandwidth for various other activities, further compli-

cating the situation. Additionally, the large number of devices connected

to servers, which identify, schedule, and communicate with them, further

adds to the complexity [7].

Although some research has proposed different participant selection strate-

gies, there are relatively few works summarizing the current state of al-

gorithms [7, 5]. In this survey, we will compare various works in the lit-

erature related to energy-efficient mobile crowdsensing services, focusing

on participant selection strategies. The optimizations can include data

sensing scheduling, participant selection, and piggybacking [9]. However,

our analysis will be limited to works related to participant selection.

2 Background

MCS can be classified into two primary types based on the involvement

of participants. The first type is participatory sensing, where users are

aware and voluntarily participate in sending out data. The second type

is opportunistic sensing, where data is shared without direct involvement

from the user, and data is shared in the background [8]. In particular, with

opportunistic sensing, the devices sensing the data must decide when and

how user participation should take place based on the user’s context [8].

However, selecting participants is an optimization challenge even before

allocating the sensing task to these devices. In this survey, our focus is on

participant selection and not task allocation.

Let’s take an example to illustrate the need for participant selection.

Suppose we need GPS data to map road congestion, and there are nu-

merous active vehicles on the road that can provide this data. However,

under resource constraints, it is not feasible to select all active sensors

to send this data to the MCS server. Instead, it would be sufficient to

optimally select a subset of participants from various target locations to

generate reliable road congestion information [17]. This is because sens-

ing GPS data and sending it consumes a considerable amount of energy,

and devices have limited battery capacity [4].

While road congestion information serves as an example, having a par-

ticipant selection strategy is essential to maximize the output of informa-

tion, such as Quality of Information(QoI) [15], coverage [1, 9], load balanc-

ing [2], and minimize energy consumption [15, 9], in various scenarios. To

achieve this goal, extensive research has been conducted in the literature.

We will focus on some noteworthy contributions, compare their strategies,

output, and effectiveness, and reach a conclusion that directs toward the

use of different algorithmic approaches based on the expected data and

information.

3 Challenges in participant selection

• To select participants who are deserving of incentives while adhering

to budget constraints, the algorithms for the mobile crowd-sensing sys-

tem must be implemented at the operation center. This is necessary

to avoid participants providing redundant information. Additionally,

selecting participants based solely on their local information poses an-

other challenge[12].

• The majority of participant selection strategies focus on the partici-

pants’ a priori knowledge and their suitability for the task’s sensing

region[15, 14, 6]. Alternatively, some strategies address energy effi-

ciency by reducing individual sensing frequency or replacing sensors

based on energy cost, which may be limited in their application[15, 10,

3].

• To ensure complete coverage while minimizing energy consumption, it

is essential to strategize a plan for participant selection[9].

• Sensing tasks performed on smartphones often result in a poor user ex-

perience, as they consume limited resources such as energy and cellular

bandwidth[2, 13]. To ensure a better user experience, it is recommended

to distribute sensing workloads equally among participants.

4 Literature Survey

The literature offers several approaches to tackle the aforementioned chal-

lenges in participant selection. While there is no single implementation

that addresses all challenges, various works target specific subsets of the

challenges to optimize the effectiveness of selection.

The problem of participant selection in MCS systems without redun-

dant information is investigated by Nguyen and Zeadally. Their study

focuses on minimizing the number of users while maximizing the number

of events sent by users, which is also known as the Participant Report-

Incident Redundant Avoidance (PRIRA) problem. To solve the PRIRA

problem, they introduce a new approximation algorithm called the Maximum-

Participant-Report Algorithm (MPRA). The authors conduct theoretical

analysis and experimentation and show that the proposed method per-

forms well within reasonable bounds of computational complexity[12].

According to Li et al., the behavior of participants in mobile crowd-

sensing systems is influenced by the incentives offered. To account for

this, they suggest that participant selection methods should be varied

based on the incentives, and propose a dynamic algorithm for adjusting

incentive mechanisms. The authors utilize game theory to estimate the

impact of incentives on participant behavior and predict their mobility

patterns. Based on this analysis, they propose a distributed approximate

algorithm to address the participant selection problem[11].

In their study, Song et al. present a QoI-aware energy-efficient partic-

ipant selection strategy that includes four key design elements. Firstly,

they measure the extent of satisfaction with the task’s QoI requirements

by analyzing the data granularity and quantity collected by participants.

Secondly, they estimate the impact of energy cost on the participant’s de-

vice’s current energy levels using an energy consumption index. Thirdly,

they propose a probabilistic movement model to estimate the amount of

data collected from participants. Fourthly, they suggest a multi-objective

constrained optimization problem for participant selection, where task

QoI requirements and energy consumption index of all participants are

considered as optimization objectives. They present a suboptimal, easy-

to-implement solution for solving this optimization problem[15].

In their work, Ko et al. propose a strategy for selecting participants that

ensures coverage and energy efficiency, called CG-EEPS. This strategy

utilizes participants’ data usage profile and mobility level, and employs

a piggyback approach to enable energy-efficient transmissions of sensory

data. To achieve optimal performance, a constraint Markov decision pro-

cess (CMDP) problem is optimized using linear programming to obtain

the optimal policy. To overcome the dimensionality issues associated with

CMDP, the authors also propose a greedy heuristic, which is evaluated in

their study[9].

Ahmed et al. proposes a concept of (α, T)-coverage of the target field

where each point in the field is sensed by at least one node with a prob-

ability of at least α during the time period T . It aims to achieve (α, T)-

coverage by a minimal set of mobile sensor nodes for a given area of in-

terest, coverage ratio α, and time period T . Two algorithms namely inter-

location and inter-meeting-time are proposed to estimate the expected cov-

erage of the specified area of interest for a set of selected nodes. The

inter-location algorithm selects a minimal number of mobile sensor nodes

from nodes inside the area of interest taking into account the distance be-

tween them. The inter-meeting-time selects nodes taking into account the

expected meeting time between the nodes[1].

The authors of [2] propose an approach to optimize the load balancing of

resource-constrained individual mobile users. This approach does not pri-

oritize the minimization of overall sensing cost or user utility. Specifically,

they formulate the load-balanced mobile user recruitment (LB-MUR) prob-

lem as a mixed integer linear programming and prove its NP-hardness.

To address this challenge, they propose an efficient polynomial time sub-

optimal algorithm based on linear programming relaxation. Moreover,

they derive the approximation ratio of the proposed algorithm.

5 Performance study

In this section, we will try to list the outputs of the above-mentioned

strategies proposed in different papers and articles for participant selec-

tion.

5.1 Nguyen and Zeadally’s Maximum-Participant-Report
Algorithm[12]

The performance of the MPRA algorithm was evaluated through experi-

ments, the results of which are presented in this section. The simulations

were conducted using 100-1000 participants and events uniformly dis-

tributed in a 100x100 square area, with a coverage range of 15 for every

participant. The performance of the MPRA was compared with that of

Greedy-based algorithms (GBA) in terms of the number of participants’

reports and the number of paid awards. The simulations were repeated

10 times to obtain average results.

In the first experiment, the number of participants was varied from 100

to 1000, while the number of events was fixed at 500. The results showed

that the MPRA algorithm achieved a higher number of participants’ re-

ports than the GBA and the GBA (d=10). The total number of reports

increased sharply with the increase in the number of participants, as

more participants were able to provide reports. Moreover, the number

of paid awards in the MPRA was lower than that in the GBA and the

GBA (d=10), indicating that the MPRA is more resource-efficient in mo-

bile crowd-sensing applications. The GBA (d=10) had a very high number

of paid awards, as it could not select the best participant.

In the second experiment, the number of events was varied from 100

to 1000, while the number of participants was fixed at 100. The MPRA

algorithm again outperformed the GBA and the GBA (d=10) in terms of

the number of participants’ reports and the number of paid awards. The

MPRA was able to select the highest number of suitable candidates to

provide reports, leading to better performance compared to the GBA and

the GBA (d=10). The results showed that the MPRA required a much

lower number of paid awards than the GBA and the GBA (d=10), indicat-

ing that it is a more efficient algorithm for obtaining more participants’

reports and saving resources for good investments. Overall, these exper-

iments demonstrated that the MPRA algorithm is a better solution for

mobile crowd-sensing applications than the GBA and the GBA (d=10).

5.2 Ko et al.’s coverage-guaranteed and energyefficient
participant selection strategy [9]

The performance of the greedy CG-EEPS was compared to CG-EEPS with

the optimal policy by searching for the optimal solution using brute-force

search. The optimal solution of CG-EEPS could only be obtained in a

small-scale scenario due to the curse of dimensionality of CMDP and the

high complexity of brute-force search. They illustrate the effect of the

threshold θ on the average number of MDs in the sensing mode ζN and

the average coverage rate ζG. They showed that ζN and ζG of the greedy

CG-EEPS increased as θ increased. This was due to the fact that as a

larger θ was set, the MCS server requested the participation of more MDs,

resulting in more MDs being included in the active mobile device by Al-

gorithm 1. However, θ did not impact ζN and ζG of the optimal CG-EEPS

because the optimal policy was decided regardless of θ.

They demonstrated that when appropriate ω and θ were set, the greedy

CG-EEPS achieved comparable ζG and ζN to CG-EEPS with the optimal

policy. Specifically, based on these results, when ω = 0.9 and θ = 4, the

performance difference between CG-EEPS with the optimal policy and the

greedy CG-EEPS was less than 5

According to the paper, CG-EEPS selects mobile devices with high mo-

Figure 1. Effect of θ & comparison between the optimal solution and the greedy algo-
rithm. (a) Average number of MDs in the sensing mode ζN . (b) Average cover-
age rate ζG

bility and data usage frequency as participants to reduce the average

number of mobile devices in the sensing mode while achieving a higher

coverage rate. Evaluation results demonstrate that CG-EEPS effectively

selects only the necessary mobile devices to sense targets. The paper fur-

ther shows that CG-EEPS reduces the number of mobile devices in the

sensing mode by up to 80 percent while still meeting the required cov-

erage guarantee rate. Moreover, the algorithm adapts to changes in the

monitoring area and sampling cycle.

5.3 Li et al.’s coverage-guaranteed and energyefficient
participant selection strategy [11]

The authors provide a comparison of the TSA and baseline methods based

on different values of total incentives and expected values of incentives of

subtasks, respectively, under both the performance-centric and energy-

efficient incentive mechanisms. The TSA algorithm consistently selects

participants with lower total incentives compared to the other three meth-

ods. Although the number of participants selected by the TSA may not al-

ways be the lowest among the four methods, it always results in the lowest

total incentives. When the total incentives are less than the expected val-

ues of incentives of subtasks, the TSA may not select the lowest number of

participants. However, when the total incentives exceed the expected val-

ues of incentives of subtasks, the TSA can select the fewest participants

compared to the other three methods. These findings demonstrate that

the TSA can effectively address the original participant selection prob-

lem, even when assuming that each participant should be paid equally,

by setting the expected value to 0.

The experiments conducted yielded several observations. Firstly, it was

found that the TSA algorithm outperformed other baseline methods across

two different incentive mechanisms, demonstrating its effectiveness as a

participant selection method under various conditions. Secondly, the re-

sults showed that the system achieved higher profits and lower energy

consumption under performance-centric incentive mechanisms and lower

energy consumption with the proposed method, indicating its ability to

attain specific system goals under a given incentive mechanism. Lastly,

although the TSA method required predicting participants’ mobility pat-

terns with the PG game, it took slightly longer to run than the other three

greedy algorithms. This demonstrated that the distributed TSA algorithm

was practical for real-world MCS systems.

6 Discussion of future prospects

Participant selection is a critical aspect of MCS, as it determines the qual-

ity and quantity of data that can be collected. In this context, future

prospects in participant selection in MCS are promising and involve var-

ious developments that can enhance the efficiency and effectiveness of

data collection.

Based on the papers we have discussed, some of the work for the fu-

ture are stated by different authors. Song et al. have demonstrated the

effectiveness and robustness of their approach when compared to existing

schemes through extensive experiments based on a real trace in Beijing.

They have outlined their plans for future research, which include address-

ing the multi-task-oriented optimization problem under limited budget

constraints for participant selection and motivation, as detailed in [15].

In their upcoming work, the Ko et al. plan to extend the proposed scheme

to identify malicious data and introduce an incentive mechanism to en-

courage participation in the MCS, as described in [9]. Hassani et al. aims

to evaluate their methods further by incorporating real-time sensory data

using their task assignment approach. The researchers are interested

in expanding the approach to handle periodic sensing tasks that require

performance at specific intervals and implementing a mobility model to

predict the future location of participants, as proposed in [8].

The results obtained so far have shown the framework’s performance

in terms of energy/coverage quality and timeliness trade-off. In the fu-

ture, Bradai et al. plans to adopt regression algorithms to update episodes

and progressively enhance the off-line selection’s coverage quality, partic-

ularly in cases of dissimilar data compared to recorded ones, as explained

in [4].

Besides the future efforts hinted at by the surveyed authors, there are

other future prospects in participant selection. One of the most significant

future prospects in participant selection in MCS is the use of machine

learning (ML) algorithms. ML algorithms can analyze large amounts of

data and identify patterns that can help predict which participants are

most likely to contribute high-quality data. For example, ML algorithms

can analyze the GPS data from participants’ devices to determine which

participants are most likely to be in the right location to provide relevant

data.

Another promising development in participant selection in MCS is the

use of incentive mechanisms. Incentives can motivate participants to con-

tribute high-quality data by offering them rewards or recognition. For

example, participants can receive points or virtual badges for providing

accurate and timely data. Incentives can also be customized to the needs

of different participants, such as offering monetary rewards to partici-

pants with low incomes.

Furthermore, social networks can be utilized to identify and recruit par-

ticipants in MCS. Social networks can be leveraged to create communities

of participants who share common interests or characteristics. These com-

munities can be targeted for specific data collection tasks, such as study-

ing the behavior of people who live in a particular area or have a specific

hobby.

In conclusion, the future prospects for participant selection in MCS are

promising and involve various developments that can enhance the effi-

ciency and effectiveness of data collection. These developments include

the use of machine learning algorithms, incentive mechanisms, and social

networks. With these advancements, MCS can become an even more pow-

erful tool for obtaining valuable data about the environment and human

behavior.

7 Conclusion

In conclusion, participant selection in mobile crowdsensing is a critical

factor that determines the success or failure of the sensing campaign.

The performance of different algorithms and studies has been explored

in this field to achieve better participant selection. Machine learning al-

gorithms have shown promising results in predicting the behavior and

performance of potential participants. Additionally, studies have high-

lighted the importance of considering various factors, such as location,

task complexity, incentives, and user preferences, when selecting partic-

ipants. Future research should continue to investigate novel algorithms

and strategies to improve participant selection and ensure the quality and

reliability of mobile crowdsensing data. By doing so, we can maximize the

potential benefits of this innovative sensing paradigm for various applica-

tions, ranging from urban planning and transportation to healthcare and

environmental monitoring.

References

[1] Asaad Ahmed, Keiichi Yasumoto, Yukiko Yamauchi, and Minoru Ito. Dis-
tance and time based node selection for probabilistic coverage in people-
centric sensing. In 2011 8th Annual IEEE Communications Society Con-
ference on Sensor, Mesh and Ad Hoc Communications and Networks, pages
134–142, 2011. doi: 10.1109/SAHCN.2011.5984884.

[2] Xin An, Hao Guo, Xiumin Wang, and Xiaoming Chen. Load balanced mobile
user recruitment for mobile crowdsensing systems. IEEE Communications
Letters, 21(11):2420–2423, 2017. doi: 10.1109/LCOMM.2017.2732403.

[3] Patrick Baier, Frank Durr, and Kurt Rothermel. Psense: Reducing energy
consumption in public sensing systems. In 2012 IEEE 26th International
Conference on Advanced Information Networking and Applications, pages
136–143. IEEE, 2012.

[4] Salma Bradai, Sofien Khemakhem, and Mohamed Jmaiel. Re-opsec: Real
time opportunistic scheduler framework for energy aware mobile crowd-
sensing. In 2016 24th International Conference on Software, Telecom-
munications and Computer Networks (SoftCOM), pages 1–5, 2016. doi:
10.1109/SOFTCOM.2016.7772174.

[5] Andrea Capponi, Claudio Fiandrino, Burak Kantarci, Luca Foschini,
Dzmitry Kliazovich, and Pascal Bouvry. A survey on mobile crowdsensing
systems: Challenges, solutions, and opportunities. IEEE communications
surveys & tutorials, 21(3):2419–2465, 2019.

[6] Lingjie Duan, Takeshi Kubo, Kohei Sugiyama, Jianwei Huang, Teruyuki
Hasegawa, and Jean Walrand. Incentive mechanisms for smartphone col-
laboration in data acquisition and distributed computing. In 2012 Proceed-
ings IEEE INFOCOM, pages 1701–1709. IEEE, 2012.

[7] Raghu K. Ganti, Fan Ye, and Hui Lei. Mobile crowdsensing: current state
and future challenges. IEEE Communications Magazine, 49(11):32–39,
2011. doi: 10.1109/MCOM.2011.6069707.

[8] Alireza Hassani, Pari Delir Haghighi, and Prem Prakash Jayaraman.
Context-aware recruitment scheme for opportunistic mobile crowdsensing.
In 2015 IEEE 21st International Conference on Parallel and Distributed
Systems (ICPADS), pages 266–273, 2015. doi: 10.1109/ICPADS.2015.41.

[9] Haneul Ko, Sangheon Pack, and Victor C. M. Leung. Coverage-guaranteed
and energy-efficient participant selection strategy in mobile crowdsens-
ing. IEEE Internet of Things Journal, 6(2):3202–3211, 2019. doi:
10.1109/JIOT.2018.2880463.

[10] Immanuel König, Abdul Qudoos Memon, and Klaus David. Energy con-
sumption of the sensors of smartphones. In ISWCS 2013; The Tenth Inter-
national Symposium on Wireless Communication Systems, pages 1–5. VDE,
2013.

[11] Shu Li, Wei Shen, Muhammad Bilal, Xiaolong Xu, Wanchun Dou, and Nour
Moustafa. Fair and size-scalable participant selection framework for large-
scale mobile crowdsensing. Journal of Systems Architecture, 119:102273,
2021.

[12] Tu N. Nguyen and Sherali Zeadally. Mobile crowd-sensing applications:
Data redundancies, challenges, and solutions. ACM Trans. Internet Tech-
nol., 22(2), oct 2021. ISSN 1533-5399. doi: 10.1145/3431502. URL
https://doi-org.libproxy.aalto.fi/10.1145/3431502.

[13] J Paczkowski. iphone owners would like to replace battery. All Things
Digital, 21, 2009.

[14] Mehdi Riahi, Thanasis G Papaioannou, Immanuel Trummer, and Karl
Aberer. Utility-driven data acquisition in participatory sensing. In Pro-
ceedings of the 16th International Conference on Extending Database Tech-
nology, pages 251–262, 2013.

[15] Zheng Song, Bo Zhang, Chi Harold Liu, Athanasios V. Vasilakos, Jian
Ma, and Wendong Wang. Qoi-aware energy-efficient participant selec-
tion. In 2014 Eleventh Annual IEEE International Conference on Sens-
ing, Communication, and Networking (SECON), pages 248–256, 2014. doi:
10.1109/SAHCN.2014.6990360.

[16] Leye Wang, Daqing Zhang, Zhixian Yan, Haoyi Xiong, and Bing Xie. eff-
sense: A novel mobile crowd-sensing framework for energy-efficient and
cost-effective data uploading. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 45(12):1549–1563, 2015.

[17] Haoyi Xiong, Daqing Zhang, Leye Wang, and Hakima Chaouchi. Emc3:
Energy-efficient data transfer in mobile crowdsensing under full coverage
constraint. IEEE Transactions on Mobile Computing, 14(7):1355–1368,
2015. doi: 10.1109/TMC.2014.2357791.

Kubernetes Cluster Network Model and
its Limitations

Atte Rouhe
atte.rouhe@aalto.fi

Tutor: Tuomas Aura

Abstract

Kubernetes is an open-source system for managing a cluster of machines

running containerized applications. Kubernetes is widely adopted by large

organizations to streamline development of their applications. Network-

ing in Kubernetes is defined by the Kubernetes cluster networking model,

which outlines the requirements for how the networking should work in the

cluster. Kubernetes itself provides no implementation of the model, and it

is up to the developer to choose a solution best suited for their needs. In

this paper, we analyze the networking model and the limitations that it

imposes.

KEYWORDS: Kubernetes, container network interface, networking, con-

tainers, Kubernetes networking model

1 Introduction

Kubernetes is an open-source software project, originating from Google,

for the deployment and management of complex cloud applications that

consist of containerized microservices [6].

Kubernetes works by managing a cluster for you. A cluster in Kuber-

netes is a collection of virtual or physical machines called Nodes that

can be used to run container-based services. A Node can host several

Pods. A Pod can comprise several containers. The clusters operations are

controlled by a special Node or multiple Nodes called the Control Plane,

which has several components. [12] Networking inside the cluster is de-

fined by the Kubernetes networking model. The Kubernetes cluster net-

working model is only a definition of requirements for networking in a

cluster. The Container Network Interface (CNI) specification has been

chosen for the implementation of the model. The specification is then in

turn implemented by third-party developers.

The basic model of networking in Kubernetes is somewhat simple, but

the implementations of the model bring in more complexity. In this paper

we will first go through the basics of the model, followed by looking into

the variations in implementing the model and how they affect the result-

ing application. We will also be looking at Service Meshes, which provide

functionality that extends the networking capabilities by adding an over-

laying infrastructure on top of the basic model and its implementation.

2 Microservice architecture

Applications have traditionally been developed with the monolithic ap-

proach, in which multiple highly coupled services are bundled together

into a single codebase. However, the rise of cloud computing has revealed

that monolithic applications are hard to scale in response to increased

load, and can lead to coordination problems between development teams.

The microservice approach has emerged as a solution to these chal-

lenges, breaking up applications into independent, decoupled services that

are responsible for their specific tasks. The microservice architecture has

been found to outperform monolithic applications in terms of increasing

throughput, decreasing response times, allowing for higher scalability,

and reducing the time and effort needed for development and deployment

[13].

The microservices naturally need to communicate with each other over

a computer network. This network is a standard IP network. However,

modern microservices are implemented as virtual computer units such

as virtual machines and containers, which do not have direct access to

the physical datacenter network. Instead, some kind of virtual network

is needed to connect the microservices that belong to the same applica-

tion. In Kubernetes, the microservices are implemented as Pods. The

cluster network is the virtual network that connects the microservices in

the same cluster to each other.

3 Kubernetes Networking Model

The Kubernetes networking model defines the following requirements for

networking inside a cluster: containers can communicate with any other

containers without Network Address Translation (NAT), A Pod can com-

municate with any other Pod without NAT, and the IP address of a Pod

is the same both inside the Node as well as in the cluster. Additionally,

all the agents on a Node, such as system daemons, can communicate with

all Pods on that Node. The main advantage of this model is that it allows

for Pods to be treated in a similar way that older infrastructures would be

utilizing Virtual Machines (VM). Since IP addresses are allocated at the

pod level, all containers in a Pod share the same IP and MAC address, it

also means that the containers can communicate with each other using

the local loopback interface. [3] The Kubernetes networking model only

defines the requirements. It is up to the developer to choose how to imple-

ment these requirements, since Kubernetes offers no default networking

solution.

3.1 Cluster network

Kubernetes cluster networking can be viewed through three distinct sce-

narios: traffic inside a Pod, traffic between Pods, and traffic entering or

leaving the cluster itself.

When setting up a Pod, an infrastructure container is provisioned to it,

which sets up the Pod’s network namespace and IP address. The infras-

tructure container uses Docker’s bridge networking mode, meaning that

it creates a virtual Ethernet bridge attaching to the node’s network inter-

face. All other containers in the Pod then join the network and namespace

of this container using Dockers container networking mode. In the result-

ing configuration, all the containers share the same IP address and can

communicate with each other on the localhost. It is possible for the con-

tainers to have port collisions with each other in this scenario. To avoid

tight coupling between microservices, each Pod usually implements only

one microservice.

All Pods in the cluster can communicate with each other directly with-

out the use of NAT. Pods can either communicate straight with other Pods

by discovering the Pod’s IP address or by using a Service. The problem

with communicating directly with Pods is that, as characteristic to Ku-

bernetes, Pods come and go, meaning that their IP addresses might need

to be rediscovered constantly. A Service in Kubernetes provides a stable,

discoverable Virtual IP address that hides behind it a set of Pods, which

might be destroyed and created frequently. The Service operates as a sort

of load balancer, providing a stable interface for the set of Pods.

Endpoints for traffic coming in to the Kubernetes cluster can be config-

ured using Kubernetes objects such as NodePort, LoadBalancer, External-

Name and Ingress. These objects allow for exposing parts of the cluster

for external traffic. All of these objects operate at the TCP or UDP level

except for the Ingress service, which operates at the HTTP level. [12]

3.2 Container Network Interfaces

The Container Network Interface (CNI) specification was initially pro-

posed by CoreOS and has since been adopted by Kubernetes as the model

for container networking. At its core, the CNI specification defines a set of

interfaces that enable network interaction. Third-party vendors can then

implement the CNI specification in their own ways, creating CNI plugins.

These plugins then handle tasks such as of IP address management, Pod

network namespace and host network connections, IP address allocation

and route configuration in the cluster. Each CNI implementation differs

in their design and scope of implemented features. CNI plugins differ

in their way of utilizing the link-layer for communications in addition to

using either an underlay or an overlay network. Additionally, some CNI

plugins implement Kubernetes network policies while some do not.

CNI plugins mainly utilize layer 3 (the networking layer) of the net-

working stack for communications between Nodes in the cluster. Some

plugins also utilize layer 2 (the link layer) for communications inside a

Node. Plugins utilizing only the second layer also exist, such as [7], but

their main point is usually to support legacy applications.

Another major design difference in CNI plugins is their packet forward-

ing configuration. CNIs take two different approaches to implementing

packet forwarding: overlay networking and underlay networking. Over-

lay networking refers to the situation where a virtual network is provi-

sioned on top of the physical or virtual network in which the hosts reside.

Another option is the underlay network, which simply means utilizing the

existing layer 3 infrastructure for routing.

As mentioned earlier, all CNIs do not support Network Policies, for ex-

ample the Flannel CNI does not implement the Network Policy Controller.

Other CNIs vary in their implementation of the controller. Some CNIs im-

plement just the standard Kubernetes Network Policy, which operates at

layer 3 and 4, while others extend the functionality to configure policies

at levels 3 to 7, or to integrate service meshes. [11]

3.3 Namespaces and Network Policies

As required by the Kubernetes cluster network model, all Pods can reach

all other Pods in the cluster by default. This is not an ideal situation for

a production cluster, since a situation where all Pods need to reach each

other is unlikely.

Namespaces [1] in Kubernetes allow you to separate a set of resources

in the cluster to a separate group called a Namespace. The main usage

of a Namespace is to divide a single cluster for multiple teams working

on different microservices. Namespaces can be used to further enhance

security in a cluster by providing increased isolation and additional option

in controlling access to parts of the cluster.

Network Policies [2] in Kubernetes are used to configure how a Pods can

communicate with other Pods and services in the cluster. They can be ap-

plied both to ingress and egress traffic at the IP address and port level.

When assessing whether a connection is to be allowed, three different as-

pects must be inspected: what Pod labels, Namespaces and IP address

ranges are accepted. Exceptions to these rules are that connections from

the underlying Node to the Pod cannot be blocked by IP address, and

the containers in the same Pod can always access each other. An impor-

tant thing to keep in mind is that support for the network policies comes

from the CNI plugin, meaning that the plugin must implement necessary

features to allow for this functionality. In addition, network policies in

Kubernetes are quite limited as they do not support for example any TLS

functionality or logging of network security events.

3.4 Service Mesh

While microservice based architectures have streamlined the deployment

of applications, they have also introduced new issues. The problem with

modern cloud based microservice applications is that they consist of a high

number of services with constantly changing states, possibly spread over

multiple domains. This makes the applications hard to debug and the

data flow difficult to track. Service mesh aims to answer these issues. A

service mesh is an infrastructure layer above the microservices of an ap-

plication. Its main purpose is to facilitate fault tolerant service to service

communications over complex topologies of modern infrastructures. Ser-

vice meshes provide a lot of the features that are missing from a standard

Kubernetes setup, such as service discovery, fault tolerance, traffic mon-

itoring, load balancing, circuit breaking, and authentication and access

control. [9]

Previously, a set of components and frameworks was needed to provide

the functionality listed above. This introduced a lot of coupling, since

certain frameworks only supported some components, and were tied to

specific languages. Additionally, the application itself could be coupled to

the specific frameworks selected. With a service mesh, all the function-

ality happens at the network level, meaning that the individual services

of the application do not need to be concerned with how the service mesh

operates. [8]

A service mesh comprises two main components or layers: the data

plane and the control plane. The data plane consists of interconnected

proxies that control inter-service communication and provide features such

as load balancing, authentication, and authorization. Each service in-

stance has a side-car proxy that enforces security by injecting policies

from the control plane, allowing for dynamic policy changes without mod-

ifying the microservice’s code. The control plane is responsible for im-

plementing all security functions and contains the necessary intelligence,

data, and artifacts such as authentication certificates, authentication poli-

cies, authorization engine, and monitoring data. It is separate from the

orchestrator’s control plane, which controls the cluster. The Service Mesh

control plane must be integrated with the orchestration platform and

have the necessary integration capabilities to be effective. Additionally,

it must be highly available and distributed since it is a critical component

of the Service Mesh. [8]

The three main challenges with implementing functioning service meshes

are that they need to be high performance, adaptable, and highly avail-

able to be production ready for modern applications. [9]

4 Limitations of the Cluster Kubernetes Networking Model

Since the Kubernetes cluster networking model is implemented by the

CNI plugin, most of the limitations come from the designs of the imple-

mentations themselves.

4.1 Performance

The performance of the cluster networking depends on the CNI imple-

mentation. The cluster networking model aims to hide the implementa-

tion details from the application developer, and thus the developer cannot

have much influence on the performance beyond selecting the CNI.

According to [11], the ideal CNI plugin should implement an eBPF based

solution for intra-Node communications, as they found that it performs

better for package forwarding inside a single Node. Furthermore, native

IP routing should be preferred over an overlay network, since it reduces

the amount of overhead relating to package encapsulation and decapsu-

lation. However, if a native option is not viable, then the CNI should

be able to provide overlay tunneling options to accommodate for a lover

overhead. An eBPF based implementation for iptables will also provide a

significantly better throughput [4].

4.2 Security

Due to the flat networking model in Kubernetes, where all containers

can reach each other, a compromised container can potentially give an

attacker access to the entire cluster, highlighting the importance of im-

plementing robust security measures. Another thing to keep in mind is

that CNI plugins run as privileged programs on the Node meaning that

compromising a CNI plugin results in the attacker having access to the

whole cluster network [10].

Network Policies can be used to limit ingress and egress connections be-

tween Pods, and they can be a useful tool to limit an attacker that has for

example compromised a single container in the cluster. However possible

security issues have been identified with Network Policies, for example

configuration mistakes are common. Since Kubernetes does not provide

warnings on disabled policies, it is up to the administrator to make sure

that the policies are valid, enabled and following best practices such as

least privilege and zero trust. [5]

The choice of a CNI plugin affects what level of security you can achieve

in your application, since they vary in their implementation designs and

scope of features. The CNI may for example provide a more advanced

interface for the network security configuration, allowing for more so-

phisticated traffic control and isolation mechanisms than what could be

achieved with a basic solution. This is usually achieved by utilizing over-

lay networking, which refers to when a virtual network is provisioned on

top of the underlying physical hardware. This allows Kubernetes admin-

istrators to implement a wide range of network policies and controls to

ensure the security and reliability of their applications. [11]

Service meshes can be a great solution to further solidifying the security

of your application. As mentioned earlier, they provide a wide variety of

functionality to further increase the security of an application.

5 Discussions

The Kubernetes networking landscape is currently quite fragmented, with

multiple CNI plugins offering varying implementations of the Kubernetes

cluster networking model. The choice of CNI plugin is an important one,

as it affects the performance, scalability, and security of the application.

It remains to be seen whether the industry will converge on a single best

approach or whether multiple options will continue to coexist. One po-

tential solution to the challenges of Kubernetes networking is the use of

service meshes. Service meshes provide a range of features such as ser-

vice discovery, fault tolerance, traffic monitoring, load balancing, circuit

breaking, and authentication and access control. As modern cloud-based

microservice applications become increasingly complex, service meshes

may become an essential tool for managing their networking.

6 Conclusion

In this paper, we analyzed the Kubernetes cluster networking model and

its implementation by various CNI plugins. We explored the limitations

of the model, particularly in terms of performance and security. We also

looked at service meshes as a potential solution to these challenges. The

choice of CNI plugin is critical to the performance, scalability, and secu-

rity of a Kubernetes application. Service meshes can provide additional

functionality and capability, making them a potentially valuable tool for

managing complex microservice architectures. Overall, it is clear that

networking is a crucial aspect of Kubernetes that requires careful consid-

eration and planning. As Kubernetes continues to gain popularity, it will

be important for developers and administrators to stay informed about

the latest developments and best practices in networking to ensure the

success of their applications.

References

[1] The Kubernetes Authors. Namespaces. https://kubernetes.io/docs/

concepts/overview/working-with-objects/namespaces/, 2022. [Online;
accessed 01-April-2023].

[2] The Kubernetes Authors. Network policies. https://kubernetes.io/

docs/concepts/services-networking/network-policies/, 2022. [Online;
accessed 03-April-2023].

[3] The Kubernetes Authors. Services, load balancing, and networking. https:
//kubernetes.io/docs/concepts/services-networking#the-kubernetes-network-model,
2022. [Online; accessed 07-April-2023].

[4] Matteo Bertrone, Sebastiano Miano, Fulvio Risso, and Massimo Tumolo.
Accelerating Linux security with eBPF iptables. In Proceedings of the ACM
SIGCOMM 2018 Conference on Posters and Demos, pages 108–110, 2018.

[5] Gerald Budigiri, Christoph Baumann, Jan Tobias Mühlberg, Eddy Truyen,
and Wouter Joosen. Network policies in Kubernetes: Performance evalua-
tion and security analysis. In 2021 Joint European Conference on Networks
and Communications & 6G Summit (EuCNC/6G Summit), pages 407–412.
IEEE, 2021.

[6] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John
Wilkes. Borg, Omega, and Kubernetes. Communications of the ACM,
59(5):50–57, 2016.

[7] Haines Chan. Anchor. https://github.com/hainesc/anchor, 2018. [On-
line; accessed 02-April-2023].

[8] Ramaswamy Chandramouli, Zack Butcher, et al. Building secure microservices-
based applications using service-mesh architecture. NIST Special Publica-
tion, 800:204A, 2020.

[9] Wubin Li, Yves Lemieux, Jing Gao, Zhuofeng Zhao, and Yanbo Han. Service
mesh: Challenges, state of the art, and future research opportunities. In
2019 IEEE International Conference on Service-Oriented System Engineer-
ing (SOSE), pages 122–1225. IEEE, 2019.

[10] Francesco Minna, Agathe Blaise, Filippo Rebecchi, Balakrishnan Chan-
drasekaran, and Fabio Massacci. Understanding the security implications
of Kubernetes networking. IEEE Security & Privacy, 19(05):46–56, 2021.

[11] Shixiong Qi, Sameer G Kulkarni, and KK Ramakrishnan. Assessing con-
tainer network interface plugins: Functionality, performance, and scalabil-
ity. IEEE Transactions on Network and Service Management, 18(1):656–
671, 2020.

[12] Gigi Sayfan. Mastering Kubernetes. Packt Publishing Ltd, 2017.

[13] Vindeep Singh and Sateesh K Peddoju. Container-based microservice ar-
chitecture for cloud applications. In 2017 International Conference on Com-
puting, Communication and Automation (ICCCA), pages 847–852. IEEE,
2017.

Modern Applications of Software
Reliability Growth Models

Başak Amasya
basak.amasya@aalto.fi

Tutor: Stanislav Chren

Abstract

Software reliability is integral for software systems especially in the mod-

ern setting and software reliability growth models are useful tools to eval-

uate software reliability. However, traditional SRGMs, which were devel-

oped in the context of legacy software, do not accurately represent the re-

alities of contemporary software projects. Therefore, recent studies propose

new SRGMs that utilize revised assumptions for the OSS context. This

paper provides a literature review on these recent SRGMs by focusing on

their parameters, assumptions and evaluations.

KEYWORDS: Software reliability growth models, open-source software,

agile, literature review

1 Introduction

Software reliability has always been a crucial aspect of software systems

but even more so now in the modern context, especially with the increas-

ing usage of agile software development and open-source software (OSS).

Software reliability is described in [8] as “probability of failure-free op-

eration” in a certain time and certain environment. Software reliability

growth models (SRGMs) are among integral tools used to asses software

reliability. In Mičko et al. [7], reliability growth process refers to the

practice where the recorded faults are removed from the software system.

Accordingly, SRGMs are regression models used to estimate the cumula-

tive number of faults detected with respect to the given time [7].

These models can be used by both the customer and the developer as

information they present can support the software release planning [6].

SRGMs can be utilized to forecast metrics such as future failure inten-

sity, number of faults left, or the amount of testing necessary to reach a

particular reliability level [7]. Moreover, SRGMs can be employed for test

resource and cost allocation and management [15].

There is a gap between software reliability models which were developed

in the context of legacy software and waterfall mindset, and OSS and agile

mindset. It is critical to understand this gap to better evaluate software

reliability in agile development and OSS contexts and also to choose an

appropriate model. There exists some work on new SRGM suggestions

[3], [5], [8], [9], [11], [12], [15]. However, there is still a need for a thor-

ough evaluation of newly proposed models so that software reliability can

be assessed more precisely. Figuring out especially the limitations, im-

pacts and shortcomings of these recent models when applied to software

projects in modern contexts will guide practitioners to assess reliability of

software products more competently.

The goal of this paper is to explore recent SRGMs, focusing on SRGM pa-

rameters, assumptions, and evaluations. This review contributes by com-

paring and discussing different recent SRGMs, examining the advance-

ments in the most recent research. Thus, it can be helpful to see the latest

developments in SRGMs. There exists some literature review on SRGMs,

but its focus is mostly on parametric vs non-parametric models, hence the

focal point of the study is different [6]. Another study evaluated differ-

ent traditional SRGMs in terms of their fitting and prediction capabilities

based on closed and open-source software. The primary focus is to assess

specific models’ competency rather than investigating the assumptions or

constraints of SRGMs when it comes to modern software projects [10].

This paper is organized as follows. Section 2 explains the details of

software reliability growth models. Section 3 provides the results of the

study based on the research questions provided while Section 4 discusses

these results. Section 5 concludes the paper with some final remarks.

2 Software Reliability Growth Models

Software reliability model is defined as a method to assess and predict

software reliability based on particular assumptions in a specific environ-

ment. More precisely, software reliability growth models are regression-

based models [13]. These models utilize data collected from the software

development and testing process to estimate future reliability of the soft-

ware.

2.1 SRGM Application

There are different variables to take into consideration while using SRGMs

such as amount of testing, defect data, grouped data, growth model type,

statistical technique etc. [6].

To apply any SRGM, firstly input data needs to be prepared [1]. Accord-

ing to [6], two pieces of data must be provided: defect data and the time at

which the defects first appeared in the data. Chren et al. [1] states that

the bug reports can be utilized for this purpose. The bug reports should

ideally be evaluated to determine the faults that led to the failures but

this can be time consuming. Instead, the duplicates can be eliminated

from the bug report to speed up the procedure. The reports can also be

further reviewed to ensure that they closely match SRGM’s assumptions.

It is important to note that, if there is no significant reliability growth

trend in the input data, SRGMs may not be able to provide sensible re-

sults [7]. Accordingly, a statistical test evaluation should be carried out to

see if a trend of decreasing number of failures becomes apparent [1].

After that, since SRGMs are regression models, fitting them to the data

requires estimating their parameters. The most common techniques are

maximum likelihood technique and least squares technique [14].

A goodness-of-fit (GoF) test needs to be carried out following parameter

estimation to determine how well the model fits the data. Most common

metrics used for GoF are R-squared (R2), Akaike Information Criterion

(AIC), Bayesian Information Criterion (BIC) and Residual Standard Error

(RSE). There is no one model that would match all projects [1]. Most

suitable model is selected according to the metrics [7].

These application stages are illustrated and summarized in Figure 1.

Figure 1. SRGM application process [1]

2.2 Traditional SRGM Assumptions

Traditional SRGMs, developed in the context of legacy software, involve

assumptions of both testing and defect repair processes. Main assump-

tions of traditional models and why they might not be valid are explained

below [14]:

• Although a perfect debugging process is presumed, meaning that any

discovered defect will be corrected right away, this is not always the

case. Especially in the OSS setting, debugging process is rather non-

linear [7]. Furthermore, unfixed defects can make it more difficult to

find further defects in the software.

• It is assumed that "defect repair is perfect". However, in practice, defect

repair itself might also result in the introduction of new flaws into the

system.

• It is assumed that the code being tested does not change during the

testing process. However, new code may always be added for both main-

tenance and adding new functionality.

• Although, traditional models assume that defects can only be reported

by the testing team, they can be reported by other teams as well. How-

ever, testing time of the quality assurance team is not nearly identical

to the testing time of other groups. If the bugs reported by the other

groups are not included at all, this crucial information will be lost. This

indicates that defects and test time do not always correlate precisely.

• It is assumed that the each unit time such as calendar time or test cases

is equivalent during testing process. For instance, tests that are re-

peated are less likely to discover new defects but each test is still treated

as if they have equal impact.

• Testing is thought to indicate an operational profile. This operational

profile usually includes types of users, frequency and timing of user in-

teractions, types of input data etc. In practice, it may be impossible to

duplicate the operational environment.

• The failures are thought to be independent from one another. This

might especially be an erroneous assumption, if there is a part of the

code that has not been tested sufficiently which can also lead to cascad-

ing failures.

It’s vital to keep in mind that, it is challenging to foresee what kind of

an impact will violation of these assumptions have on the models [14].

These assumptions of traditional SRGMs are based on closed-source

software and waterfall development approach, and they stand as a chal-

lenge in applications of SRGMs to OSS [7].

3 Results

In recent years, studies have been conducted for development of new

SRGMs. However, there seems to be not sufficient overview of these re-

cent models. Accordingly, this review was concentrated on studies from

last 10 years. First, a keyword based search was done on Google Scholar

and IEEE Xplore. The keywords were: software reliability growth mod-

els, agile, open-source software. Then, the found papers’ references were

examined. Altogether, 30 publications were reviewed and 7 of them were

chosen for this paper. These papers are chosen because they were sug-

gesting a new model and not focusing on analysing previously proposed

models.

Research questions presented in this section are:

1. What are the recent SRGMs?

2. What are the parameters of SRGMs and how are they estimated?

3. What are the assumptions of SRGMs?

4. How are SRGMs applied and evaluated?

These questions were chosen to better understand and compare recent

developments of SRGMs in modern context. This review aims to examine

the parameters and assumptions used in these models. The findings of

this literature review will be discussed in each subsection provided based

on these research questions.

3.1 What are the recent SRGMs?

Rawat et al. [8] propose a new model combining Goel and Weibull dis-

tributions through the non-homogenous Poisson process (NHPP). They

emphasize the frequent incremental release property of agile software de-

velopment and emphasize that each release has the potential to introduce

new bugs to the system, thus affecting the reliability.

Wang [11] questions the old models’ "perfect debugging" assumption

which does not represent the reality of OSS debugging process. Wang

presents a reliability model based on these non-linear changes of fault

detection.

In another study, Wang et al. [12] put more emphasis on "gradual de-

crease in the number of introduced faults over time". The new model

proposed is based on the decline variation of fault introduction.

Zhang et al. [15] also consider imperfect debugging from fault detection

rate perspective and propose flexible SRGMs based on imperfect debug-

ging models.

Saraf et al. [9] explore imperfect debugging and multi-release modelling

for OSS, proposing a new SRGM for estimating reliability of multi-release

OSS.

He [3] proposes a new model based on newly created faults brought

about by fault debugging and its incompleteness, revising the presump-

tions of NHPP. In this model, quantity of faults and the fault removal

efficient alters over time.

Authors of [5] propose a two-dimensional multi-release SRGM, model-

ing the software reliability growth as a function of both testing time and

the number of failures instead of only number of failures, focusing on the

faults of each release but does not account for imperfect debugging.

3.2 What are the parameters of SRGMs and how are they
estimated?

The mean value functions of investigated SRGMs can be seen in Table 1.

Reference Year Mean Value Function

Rawat et al. [8] 2017 mn(t) = λaFn1(t) + (1− λ)aFn2(t)
Wang [11] 2021 µ(t) = a

θ+eωt

(
e(βt

d+ωt) − βd∑n
i=0

ωiti+d

i!(i+d) − 1
)

Wang et al. [12] 2022
ξ(t) =

η
(
1− exp(−µt)

1+µt

)
+ C(1− exp(−ψt))

1 + γ exp(−ψt)

−
ηµ exp(−ψt)∑m

j=0

∑n
i=0

(−1)j(j+2)µj(ψ−µ)iti+j+1

(i+j+1)i!

1 + γ exp(−ψt)
Zhang et al. [15] 2022 mIDII_5(t) = a

∫ t

0

b(1 + σ)

1 + σe−b(1+σ)u
e
−

∫ u
0
p(1−r(τ)) b(1+σ)

1+σe−b(1+σ)τ
dτ
du

He [3] 2013 m(t) = b

{
k(1+λb)
λ−b + α

b+λ

[
(1+λt)2

2λ − (1+λt)1−
b
λ −1

λ−b

]}

Saraf et al. [9] 2022 Mi(t) =

ηi+(η∗(i−1)2−M(ti−1)

(1−δi1) [1− (1− (Fi1 ⊗Gi1) (t))ρi1 (1− δi1)] ; for t ≤ λi
ηi+(η∗(i−1)2−M(ti−1)

(1−δi2)

[
1− (1− (Fi1 ⊗Gi1) (λi))ρi1(1−δi1)

(
(1−(Fi2⊗Gi2)(t))
1−(Fi2⊗Gi2)(λi)

)ρi2(1−δi2)]

+
(

(δi1−δi2)
(1−δi2)

)
M (λi) ; for t < λi

Kapur et al. [5] 2012 m(s, u) =
a(1−exp(−bsαu1−α))
1+β exp(−bsαu1−α)

Table 1. Recent SRGMs with the publishing year and their mean value functions

Expected cumulative number of detected faults are measured in [11],

[12] and [3]. Rawat et al. [8] calculates total number of faults, Zhang

et al. [15] calculates specific cumulative fault detection function whereas

Saraf et al. [9] calculates the expected amount of faults eliminated in an

interval. Lastly, Kapur et al. [5] is interested in the cumulative number

of faults removed.

Failure rate of n-th release (λ), probability density function for perma-

nent and transient faults in the n-th release (Fn1 and Fn2) are most no-

table parameters in [8]. Scale parameter (β in [11], µ in [12]), shape pa-

rameter (d in [11] and λ in [12]) and fault detection rate (w in [11], ψ

in [12]) are among the noticeable parameters. Initial count of faults (η),

Steiltjes convolution (⊗) according to change point (λ) are utilized in [9].

Fault detection rate per remaining fault (b) and Logistic learning factor

(β) are worth mentioning for [5].

An important remark about parameters of SRGMs is that, with the in-

crease in number of random factors in software testing, the SRGMs will

also become increasingly complicated and difficult to solve [15].

Among the studies which explicitly mention how they estimated the pa-

rameters, least square estimation (LSE) is used in all of them [11], [12],

[9], [5]. In contrast, He [3], Zhang et al. [15], and Rawat et al. [8] did

not explicitly mention the method used to estimate the parameters. He

[3] just states that a method can be chosen such as LSE, Maximum Like-

lihood Estimation (MLE) or Bayesian Estimation (BE) and yet it is not

indicated what was chosen for the proposed model.

In both studies [11] and [12], a sensitivity analysis of the parameters is

conducted as well to further investigate impact of the parameters.

Saraf et al. [9] and Kapur et al. [5] also specifies the usage non-linear re-

gression module of SPSS (Statistical Package for Social Sciences) as their

tool to estimate unknown parameters. To determine the least square es-

timates, this module utilizes an iterative estimating approach based on

sequential quadratic programming.

3.3 What are the assumptions of SRGMs?

While developing new SRGMs, each study proposed their own assump-

tions explicitly by revising the assumptions of traditional models, espe-

cially putting emphasis on fault detection and removal processes of OSS.

Except Kapur et al. [5], all papers assume an "imperfect debugging"

process in contrast to assumptions of traditional SRGMs’. They explain

this either by stating that there is a non-linear change of number of de-

tected faults during the development and testing of OSS [11] or empha-

sizing introduction of new faults during removal process [12] or defining

an imperfect fault removal operation [15], [3].

All papers also pay attention to changing fault rates over time. Rawat

et al. [8] state that failure rates have exponential and Weibull distribu-

tions. Saraf et al. [9] acknowledge that there might be variations in the

defect detection rate that are not monotonic. He [3] states that fault de-

bugging rate alters over time. Kapur et al. [5] assume a non-decreasing

fault detection rate. Wang et al. [12] states a gradual decrease in fault

introduction due to the learning phenomenon for debuggers.

Zhang et al. [15] adds that introduction of new faults during repair is

proportional to the accumulated fixed faults. Assuming that at most one

fault happens during a specified period of time, they construct a propor-

tionate link between detected and undiscovered faults for building two

imperfect debugging models.

Almost all papers consider that fault detection procedure follows NHPP

in OSS [11], [12], [15], [9], [3], [5]. Wang et al. [12] and Kapur et al. [5]

also presume immediate removal of faults.

In contrast, there exists some different assumptions in some papers.

Saraf et al. [9] incorporate the latency between the notice of a failure and

the correction of the underlying fault. For the mean value function for

the next release, only the existing release and the previous one are taking

into consideration.

He [3] modified some assumptions of the classical Goel-Okumoto [2]

model as all faults are independent and equally identifiable and opera-

tional profiles for software and reliability tests are identical.

Lastly, Kapur et al. [5] utilizes the assumptions from their previous

work [4] about two dimensional flexible SRGMs. Most notable ones are no

introduction of new faults and all remaining faults equally affect the fail-

ure rate. They also consider the faults of the current and the remaining

faults of the previous release.

3.4 How are SRGMs applied and evaluated?

Comparison metrics chosen for the models and data they have been tested

on can be seen in Table 2.

Among the studies, mean squared error (MSE) is the most commonly

used metric, followed by R2. Bias and root mean square error (RMSE) are

also chosen frequently. Many metrics are used together to better evaluate

the models in these papers.

Wang [11] states that eight models were utilized to compare the per-

formance of the model, these models included perfect debugging, imper-

Reference Data Comparison Metrics

Rawat et al. [8] four consecutive releases Reliability (probability/quantity of faults)

Wang [11] three OSS fault data sets MSE, R2, RMSE, TS, Bias, Variance, RMSPE and KD

Wang et al. [12] two OSS fault data sets MSE, R2, TS, and Bias (fitting), PSSE, TS, Variance, and

Bias (predicting)

Zhang et al. [15] three failure data sets MSE, Variance, RMS-PE, BMMRE and R2

He [3] not stated SSE and R2

Saraf et al. [9] three releases MSE and Bias

Kapur et al. [5] four releases MSE

Table 2. Recent SRGMs data for evaluation and comparison metrics

fect debugging, closed-source software, OSS models. Wang claims that

this new model has superior fitting and predictive performance for OSS,

closed-source software, perfect and imperfect debugging models.

In their other study, [12] employed five OSS reliability models to com-

pare two models they proposed, single release OSS reliability model, and

a multi-release OSS reliability model. The suggested model outperforms

the competition in terms of prediction and fitting, with stable performance

in both areas.

In [15], five models were chosen that take imperfect debugging into ac-

count. The two different types of imperfect debugging models are inte-

grated with the fault detection rate (FDR) function to create a more ac-

curate model that has better performance than others. Type II imperfect

debugging model encapsulates the relationship between fault detection,

repair and introduction. It takes into account more random factors in the

real software debugging process, thus performs better than type I model.

He [3] claims that the suggested model improved NHPP performance

but he also remarks that lots of unknown parameters and insufficient

fault data for parameters estimation may lead to inaccurate model pa-

rameter estimation and decreasing ability to predict.

In [9] the proposed model was compared with existing models validated

on closed source software data sets without change point. It is not explic-

itly mentioned which models are used for comparison. Improved values of

R2 have been reported for Release 1 and Release 3.

4 Discussion

The reviewed models aim to estimate the reliability of OSS in multi-

release scenarios, where each release can introduce new bugs that affect

the system’s reliability. These models demonstrate that there are more

factors to take into consideration while developing SRGMs for the mod-

ern context. These studies mostly start with a widely-accepted function

and alter it by using revised assumptions for the OSS context, to propose

new models. Almost all count on NHPP for this purpose. There exists

common assumptions as imperfect debugging and changing failure rates

over time which fit the nature of OSS.

LSE appears to be the most popular methodology for parameter esti-

mation. However, it is noteworthy that some papers did not explicitly

mention the parameter estimation technique they utilized [3], [15], [8].

The assumptions in recent models are explicit and considerably more

in line with the reality of OSS. The studies generally evaluated the new

models based on OSS data with multiple releases. It is evident that cur-

rent models surpass older models on OSS projects with multiple releases

based on metrics used in reviewed studies.

5 Conclusion

In conclusion, the importance of software reliability in modern software

projects has increased, especially in the context of agile software devel-

opment and open-source software. Although SRGMs are essential tools

for evaluating software reliability, traditional SRGMs do not provide an

accurate depiction of modern software context because they were created

in the context of legacy software and a waterfall approach. Thus, their

assumptions are made according to their context.

This study looked into the parameters, their estimation techniques, as-

sumptions, applications and evaluations of recent SRGMs in relation to

contemporary software projects. Overall, this paper aimed to analyze and

explain the current developments in the research. The results of this

study may serve as a reference for professionals that evaluate software

reliability or develop new SRGMs for modern software projects. In future,

more or different papers can be reviewed and interesting results can be

obtained. As software development conventions will continue to change,

SRGMs also need to keep up with these changes to continue to be useful

for estimating reliability.

References

[1] Stanislav Chren, Radoslav Micko, Barbora Buhnova, and Bruno Rossi. Strait:
A tool for automated software reliability growth analysis. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR), pages
105–110. IEEE, 2019.

[2] Amrit L Goel and Kazu Okumoto. Time-dependent error-detection rate
model for software reliability and other performance measures. IEEE trans-
actions on Reliability, 28(3):206–211, 1979.

[3] Yan He. Nhpp software reliability growth model incorporating fault detec-
tion and debugging. In 2013 IEEE 4th International Conference on Software
Engineering and Service Science, pages 225–228. IEEE, 2013.

[4] PK Kapur, RB Garg, Anu G Aggarwal, and Abhishek Tandon. Two dimen-
sional flexible software reliability growth model and related release policy.
In Proceedings of the 4th National Conference, INDIACom-2010, New Delhi,
India, pages 25–26, 2010.

[5] PK Kapur, Hoang Pham, Anu G Aggarwal, and Gurjeet Kaur. Two di-
mensional multi-release software reliability modeling and optimal release
planning. IEEE Transactions on Reliability, 61(3):758–768, 2012.

[6] Anurag Kumar. Software reliability growth models, tools and data sets-a
review. In Proceedings of the 9th India Software Engineering Conference,
pages 80–88, 2016.

[7] Radoslav Mičko, Stanislav Chren, and Bruno Rossi. Applicability of soft-
ware reliability growth models to open source software. In 2022 48th Eu-
romicro Conference on Software Engineering and Advanced Applications
(SEAA), pages 255–262. IEEE, 2022.

[8] Shubham Rawat, Nupur Goyal, and Mangey Ram. Software reliability
growth modeling for agile software development. Int. J. Appl. Math. Com-
put. Sci., 27(4):777–783, 2017.

[9] Iqra Saraf, Javaid Iqbal, Avinash K Shrivastava, and Shozab Khurshid.
Modelling reliability growth for multi-version open source software consid-
ering varied testing and debugging factors. Quality and Reliability Engi-
neering International, 38(4):1814–1825, 2022.

[10] Najeeb Ullah, Maurizio Morisio, and Antonio Vetro. A comparative anal-
ysis of software reliability growth models using defects data of closed and
open source software. In 2012 35th Annual IEEE Software Engineering
Workshop, pages 187–192. IEEE, 2012.

[11] Jinyong Wang. Open source software reliability model with nonlinear fault
detection and fault introduction. Journal of Software: Evolution and Pro-
cess, 33(12):e2385, 2021.

[12] Jinyong Wang, Ce Zhang, and Jianying Yang. Software reliability model
of open source software based on the decreasing trend of fault introduction.
Plos one, 17(5):e0267171, 2022.

[13] Juhani Warsta and Pekka Abrahamsson. Is open source software develop-
ment essentially an agile method. In Proceedings of the 3rd Workshop on
Open Source Software Engineering, pages 143–147. Citeseer, 2003.

[14] Alan Wood. Software reliability growth models. Tandem technical report,
96(130056):900, 1996.

[15] Ce Zhang, Wei-Gong Lv, Sheng Sheng, Jin-Yong Wang, Jia-Yao Su, and Fan-
Chao Meng. Default detection rate-dependent software reliability model
with imperfect debugging. Applied Sciences, 12(21):10736, 2022.

Can we trust Microsoft and Google
Authenticators? Evaluating Security of
Widely Used Authenticator Applications
for Android

Berk Türetken
berk.turetken@aalto.fi

Tutor: Mario Di Francesco

Abstract

The widespread use of online systems increases the importance of secure

authentication methods. Since the traditional single-factor authentication

methods have become more vulnerable, the need for multi-factor authen-

tication (MFA) has grown to increase security. Although MFA adds an

extra layer of security, it has vulnerabilities while generating the one-time

password (OTP) in the time-based OTP algorithm. By using reverse engi-

neering techniques, this seminar paper analyzes the security vulnerabili-

ties of two widely used mobile authenticator applications, Google Authen-

ticator and Microsoft Authenticator. The analysis shows that both mobile

authenticator applications have security vulnerabilities in storage or mem-

ory. Given these vulnerabilities, more precautions need to be taken in the

implementation to enhance security, particularly when these applications

are utilized for security-focused services.

KEYWORDS: Authentication, Multi-Factor Authentication, Security, Mo-

bile Authenticator, Microsoft Authenticator, Google Authenticator, One-Time

Password, Reverse Engineering

1 Introduction

In recent years, online systems have become an indispensable part of our

daily life as they are extensively used in education, shopping, and enter-

tainment among other use cases [13]. Correspondingly, security attacks

have also evolved, resulting in numerous security breaches. One main

reason for recent security breaches is a faulty authentication system, ei-

ther in its design or implementation. For a long time, traditional single-

factor authentication (SFA) methods – password-based authentication be-

ing the most common example – were the main focus in authentication

system design [5]. In the face of the growing complexity of newer secu-

rity attacks, password-based authentication has become more vulnerable

than other methods. As a proof, in 2020, Microsoft reported that almost all

compromised accounts that they monitor on a monthly basis did not have

multi-factor authentication (MFA) enabled [10]. MFA is an authentica-

tion method where the user must not only know their login credentials,

but also have something in their possession, such as a hardware token,

smart card, or one-time password (OTP), which is more secure since it

adds one more factor, to access the application [11]. MFA ensures identity

verification through multiple independent factors that can be categorized

as follows:

• Knowledge: Users know their username, password or personal identi-

fier number (PIN).

• Inherence: Users use a physical characteristic, which is specific to an

individual, such as fingerprint or face recognition.

• Possession: Users possess an item, such as a hardware token or a

mobile phone with an OTP generator application [14].

Recently, the mobile phone has become an ideal choice for possession, as

utilizing a mobile phone for MFA is cost-free, in contrast to a hardware

token or smart card [11, 13].

Although MFA provides many advantages in terms of security, it is still

not an ideal solution especially since mobile authenticator applications

have security vulnerabilities. One of the possible security vulnerabilities

is the generation of OTP value in the time-based OTP (TOTP) algorithm,

thus the disclosure of the shared secret [13, 14].

This paper analyzes the existing security vulnerabilities of Google Au-

thenticator and Microsoft Authenticator, which are one of the most widely

used mobile authenticator applications, by applying reverse engineering

techniques. The working principles of the selected authenticators are also

investigated with a special focus on the TOTP algorithm.

The rest of the paper is organized as follows. Section 2 considers the

prevalent mobile phone-based MFA solutions including the determination

of OTP through the TOTP algorithm. Section 3 describes the experimen-

tal setup, simulation of the attacks, forensic analysis and results. Section

4 includes an assessment of the Google and Microsoft Authenticators from

a security perspective. Finally, Section 5 provides concluding remarks.

2 Working Principles of Google and Microsoft Authenticators

2.1 Most Popular Mobile Phone-based MFA Solutions

Different approaches and solutions utilize the mobile phone as an MFA.

This paper studies three solutions and in all of them, OTP plays a funda-

mental role in one way or another.

The first and the less secure one among the other options is OTP sent

via Short Message Service (SMS), also known as SMS verification [11, 13].

In this solution, users try to use the service by sending a request and the

service sends an SMS message that includes OTP once it gets the request

from the user. After receiving OTP via SMS, users enter the OTP to use

the service. Although OTP sent via SMS offers more security than SFA,

using SMS as a form of MFA is not completely secure since attackers can

intercept SMS messages and alter them [3, 4, 13].

Therefore, the use of mobile applications to generate OTPs, also known

as OTP generated by the authenticator, has been becoming increasingly

popular as an alternative [11]. In this approach, users need to enter the

OTP that is generated by the mobile authenticator when they make a re-

quest to the service and reach the second-factor page (i.e., login page).

Google and Microsoft Authenticators use the TOTP algorithm, which is

specified in RFC 6238 [12], to generate OTP. For the generation of OTPs,

the user and the service need to agree on a shared secret, also known as a

seed value, which can be achieved by the user by determining and enter-

ing the value to the mobile authenticator. After that, the TOTP algorithm

starts to generate OTPs on-demand or periodically, usually every 30 sec-

onds [13]. Section 2.2 describes the generation of an OTP by the TOTP

algorithm in more detail.

The last and the most secure solution is the OTP via push notification.

In this solution, the service sends a challenge to the user via a mobile au-

thenticator and accepts the request once the user accomplishes the chal-

lenge. To be able to accomplish the challenge, the user first has to log into

the mobile authenticator, using a PIN code or inherence factors, such as

fingerprint or face recognition. Then, the user needs to accept the notifi-

cation which is sent from the service [11].

2.2 TOTP Algorithm

Since Google and Microsoft Authenticators use the TOTP algorithm and

the shared secret is the key factor of the MFAs, it is worth mentioning

how OTP is generated. OTPs are created by combining a shared secret

and the current timestamp [12, 13]. The steps for the generation of an

OTP can be found below:

1. Calculate T , which is the number of time steps, as follows:

T = ⌊Tunix/Ts⌋

where Tunix: number of seconds elapsed since 1 January 1970 00:00:00,

and Ts: time step, 30 seconds is the default.

2. Convert T into hexadecimal format, Th, ensuring that the resulting

value comprises 16 hexadecimal characters. Add leading zeros if neces-

sary.

3. Convert Th to an array of 8 bytes and let it be Ah. Similarly, convert

the shared secret, which the user enters, to an array of 20 bytes and let

it be As.

4. Compute the HMAC ofAh andAs by using the HMAC-SHA1 algorithm,

let the result be H.

5. Obtain the final byte of the result and convert it to a decimal which

will be the offset. Then, retrieve 4 bytes from the result by utilizing the

Figure 1. Android Development Cycle and Compilation of Android Applications

offset value, Hr.

6. Perform a bitwise AND operation to Hr with the hexadecimal value

0x7FFFFFFF. After that, convert it to a decimal, Dr.

7. Finally, compute the OTP = Dr mod 10d where d is the number of OTP

digits, usually being chosen as 6.

These calculations are carried out both on the mobile authenticator and

the service. If the resulting OTPs are identical, the request is approved

[13, 14].

3 Forensic Analysis and Results

This section starts by defining the concept of reverse engineering and con-

tinues with selected tools, assumptions, simulation setup, attacks and re-

sults.

Reverse engineering is, briefly, the process of converting compiled soft-

ware to source code [15]. The fundamental aim of reverse engineering is

to analyze a technology to understand how it works, create a replica or an

improved version of it, and obtain more insight information about its de-

sign, architecture, or components [7, 13]. Figure 1 shows the development

cycle and the compilation of the Android applications. In Section 3.3, the

reverse order of Figure 1 is followed while conducting the attacks.

3.1 Selected Tools for Forensic Analysis and Assumptions

The main goal of the simulations is to exploit as many vulnerabilities

as possible for Google and Microsoft Authenticators. The targeted main

vulnerabilities include retrieving the shared secret from storage as plain

text, copying the database file to another emulator and generating the

same OTP values on that emulator, retrieving the shared secret from

memory as plain text, and redirecting push notification requests. How-

ever, the latter one is only valid for Microsoft Authenticator [16] since

Google Authenticator does not have a push notification feature. The fol-

lowing reverse engineering tools are used to conduct the forensic analysis

and exploit the above-mentioned vulnerabilities: Android Debug Bridge

(adb) to debug and communicate to the emulators, Android Virtual Device

(AVD) Manager to configure the emulators, apktool to decompile and re-

compile Android Package Kit (APK) files after modifications, DB Browser

for SQLite to view and perform database operations, Eclipse Memory An-

alyzer (MAT) to detect memory leaks, JADX to reach the source code,

Profiler in Android Studio to analyze head dump files, rootAVD to root

AVDs with Magisk, Root Explorer to view and access some files on the

emulators, and mitmproxy to investigate the network traffic [13, 14].

Before conducting the simulations, two major assumptions have been

made. First, the shared secret should be shared between the user and the

service to generate OTPs. Once both parties agree on the shared secret,

they can start to generate identical OTPs since the shared secret, current

timestamp, and execution of the TOTP algorithm are the same for both

parties. In this case, everything is known from the perspective of an at-

tacker except the shared secret. If the attackers can obtain the shared

secret, they may be able to pass the second factor [13]. The second as-

sumption is that the attackers have root access to the system which can

be achieved by exploiting a vulnerability in the system, having physical

access to the rooted Android device, or rooting the device [6, 9].

3.2 Simulation Setup and Static Analysis

For the setup, Android Virtual Device (AVD) Manager was used, which is

a tool in Android Studio, to create the emulators. Pixel 4, with an API

level of 30, and Pixel 3a, with an API level of 29 had been chosen as the

target devices. After having two emulators for the forensic analysis, both

emulators were first rooted using rootAVD and Magisk. Then, the APKs

of Google Authenticator with version 5.20R4 and Microsoft Authenticator

with version 6.2303.2086 were downloaded from APKPure [1].

After having the APKs on the emulators, static analyses, such as ana-

lyzing the existing folders, files and classes, were conducted for both mo-

bile authenticator applications by using JADX to detect vulnerabilities in

the source code. With these static analyses, the main purpose is to gain

a deeper understanding of the functionalities of APK and the process of

OTP generation. Then, we tried to determine whether the shared secret

is still not encrypted in the storage as the first potential vulnerability be-

cause Polleit and Spreitzenbarth’s study shows that Google and Microsoft

Authenticators did not encrypt the shared secret while storing it in the

database in 2018 [14]. Similarly, the same finding has been shown by

Ozkan and Bicakci’s research in 2020 [13] but Google has made a change

for Google Authenticator in the latest update on the 14th of July 2022,

and started to encrypt the shared secret in the storage according to their

update notes. This update was verified with the static analysis because

the shared secret was encrypted by using the Advanced Encryption Stan-

dard with Galois/Counter Mode (AES-GCM), which is considered as one

of the most secure encryption methods [2, 8], if the Software Development

Kit (SDK) version is greater than 22.

For Microsoft Authenticator, three different types of accounts could be

added that are personal account, work or school account and other (Google,

Facebook, etc.) account. When conducting the static analysis, we real-

ized that Microsoft Authenticator did not encrypt the shared secret for

the other account type while storing it in the database. In other words,

Microsoft has not taken any action for at least three years, unlike Google.

3.3 Conducted Attacks and Results

Once the static analyses were completed for both mobile authenticator ap-

plications, they were decompiled by using apktool to make modifications

to the APKs, such as making the applications debuggable, to validate the

findings in dynamic analysis. Next, the modified APKs were installed on

the emulators. As the last step before exploring the vulnerabilities, the

shared secrets were entered manually into the mobile authenticators, as-

suming a hypothetical service, such as GitHub or Dropbox, provides that

shared secret. After entering the shared secrets, the mobile authentica-

tors were ready to launch attacks against the shared secrets.

The accounts table of the databases file, which is located within the

/data/data/com.google.android.apps.authenticator2/databases folder and

reached by using Root Explorer or the combination of adb and DB Browser

for SQLite, contained the encrypted version of the shared secret in Google

Authenticator. Since the shared secret was encrypted with AES-GCM,

decrypting it would require an infeasible amount of computational power

Figure 2. Shared secret in the memory (Google Authenticator)

and time to brute-force the key, thus finding the shared secret [2, 8]. Then,

the file was duplicated onto the other emulator to observe if it is possible

to generate the same OTPs but Google Authenticator took precautions for

this action and did not generate the OTPs. To test the last objective, while

the application was running, another account and key were created. Af-

ter the creation of the account and key, we took a heap dump at any time

by using the Profile feature of Android Studio. Figure 2 shows that the

entered shared secret, which is abcde12345abcde12345, was stored in the

AutoValue_Account_Builder class’ objects as plain text.

The same objectives were performed for Microsoft Authenticator as well.

First, the accounts table of the PhoneFactor file, which is located within

the /data/data/com.azure.authenticator folder, contained the encrypted

shared secret for the personal accounts and work or school accounts. On

the other hand, Microsoft did not encrypt the shared secret key for the

other accounts as can be seen in Figure 3, therefore, the shared secret

key could be obtained from the storage. Then, the PhoneFactor file was

copied to the other emulator and only for the other accounts, the same

OTPs were generated on both devices. For the last objective, we followed

the same procedure as in Google Authenticator and the shared secret was

obtained as plain text in the object of the SecretKeyBasedAccount class.

The detailed findings and corresponding screenshots from the mobile

authenticator applications can be found in [17].

4 Security Analysis

After completing the forensic analyses and examining Google Authentica-

tor and Microsoft Authenticator, it has been discovered that both of them

are similar in terms of where they store the shared secrets and how they

create the OTPs from the shared secrets.

Figure 3. Shared secret in the storage (Microsoft Authenticator)

Both Google and Microsoft Authenticators use the TOTP algorithm to

produce the OTPs, and this results in one major disadvantage and ad-

vantage. The major disadvantage is that one can produce the same OTPs

in another device once the shared secret is obtained since the TOTP al-

gorithm does not need any unique values that are specific to the device,

such as the IMEI number or MAC address. On the other hand, the major

advantage is to move the accounts to another device in case of losing or

changing the mobile device.

Furthermore, advanced obfuscators or ProGuard can make static analy-

sis difficult for reverse engineers by obfuscating the source code. Unfortu-

nately, both mobile authenticator applications do not apply advanced ob-

fuscators or ProGuard. Hence, it is relatively straightforward to read and

understand the source code. Moreover, since we can make modifications

on both APKs, the mobile authenticator applications permit repacking.

With the latest update, Google Authenticator provides secure storage

for the shared secret. It does not also allow cloning the database file to

another device but retrieving the shared secret from the memory is still

vulnerable in Google Authenticator. Although Microsoft Authenticator

provides secure storage for the shared secret of the personal account and

work or school account types, it does not encrypt the shared secret for the

other account type. In contrast to Google Authenticator, Microsoft Au-

thenticator allows cloning the database file to another device for the other

account type. Similar to Google Authenticator, fetching the shared secret

from the memory is possible in Microsoft Authenticator. Figure 4 presents

an overview of the security mechanisms of the Google and Microsoft Au-

thenticators.

Figure 4. Security mechanisms of Google Authenticator and Microsoft Authenticator

5 Conclusion

Firstly, the use of an MFA is crucial and beneficial to enhance security

as it adds an extra layer of protection in contrast to SFA. Although two

of the most widely used mobile authenticator applications still have secu-

rity vulnerabilities, adding an extra layer of security with MFA will not

worsen the situation. This paper has analyzed the security vulnerabili-

ties of Google Authenticator and Microsoft Authenticator with a focus on

retrieving shared secret and copying the database file to another device.

In light of the conducted attacks, Google Authenticator allows the re-

trieval of the plain text version of the shared secret from the memory. In

Microsoft Authenticator, the shared secret can be obtained as plain text

for the other account type from the storage and memory. Microsoft Au-

thenticator does not also prevent copying the database file to another de-

vice, therefore, an attacker can produce the same OTPs without retrieving

the shared secret as plain text.

It has been shown that two-factor authentication might immediately be-

come an SFA for the Google and Microsoft Authenticators if the attackers

can obtain the shared secret as plain text or clone the application to an-

other device. Hence, considering the vulnerabilities that are highlighted

in this paper, additional measures should be implemented to improve se-

curity, especially when using these mobile authenticator applications for

security-oriented services.

References

[1] APKPure. APKPure. https://m.apkpure.com/. Accessed: 2023-09-04.

[2] Christian Badertscher, Christian Matt, Ueli Maurer, Phillip Rogaway, and
Björn Tackmann. Augmented Secure Channels and the Goal of the TLS 1.3
Record Layer. In Provable Security: 9th International Conference, ProvSec
2015, Kanazawa, Japan, November 24-26, 2015, Proceedings 9, pages 85–
104. Springer, 2015.

[3] Divya Buttan. Hacking the Human Brain: Impact of Cybercriminals Evok-
ing Emotion for Financial Profit. PhD thesis, Utica College, 2020.

[4] Aniket S. Chaudhari. Security Analysis of SMS and Related Technologies.

Research Master Thesis, Dept. of Mathematics and Computer Science, Eind-
hoven University of Technology, 2015.

[5] Sanchari Das, Bingxing Wang, and L. Jean Camp. MFA is a Waste of Time!
Understanding Negative Connotation Towards MFA Applications via User
Generated Content. arXiv preprint arXiv:1908.05902, 2019.

[6] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy.
Privilege Escalation Attacks on Android. In Information Security: 13th
International Conference, ISC 2010, Boca Raton, FL, USA, October 25-28,
2010, Revised Selected Papers 13, pages 346–360. Springer, 2011.

[7] Eldad Eilam. Reversing: Secrets of Reverse Engineering. John Wiley &
Sons, 2011.

[8] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Kenneth G. Pa-
terson. Data Is a Stream: Security of Stream-Based Channels. In Advances
in Cryptology–CRYPTO 2015: 35th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II 35, pages 545–
564. Springer, 2015.

[9] Jason Gu, Veo Zhang, and Seven Shen. ZNIU: First Android Malware to
Exploit Dirty COW. TrendLabs Security Intelligence Blog, 2017.

[10] Kevin Jensen, Faiza Tazi, and Sanchari Das. Multi-Factor Authentication
Application Assessment: Risk Assessment of Expert-Recommended MFA
Mobile Applications. Proceeding of the Who Are You, 2021.

[11] Piotr Lewandowski, Anna Felkner, and Marek Janiszewski. Security anal-
ysis for authentication and authorisation in mobile phone. Przegląd Elek-
trotechniczny, 95(8):132–138, 2019.

[12] David M’Raihi, Salah Machani, Mingliang Pei, and Johan Rydell. TOTP:
Time-Based One-Time Password Algorithm. Technical report, Internet En-
gineering Task Force, 2011.

[13] Can Ozkan and Kemal Bicakci. Security Analysis of Mobile Authenticator
Applications. In 2020 International Conference on Information Security and
Cryptology (ISCTURKEY), pages 18–30. IEEE, 2020.

[14] Philip Polleit and Michael Spreitzenbarth. Defeating the Secrets of OTP
Apps. In 2018 11th International Conference on IT Security Incident Man-
agement & IT Forensics (IMF), pages 76–88, 2018.

[15] Michael G. Rekoff. On Reverse Engineering. IEEE Transactions on systems,
man, and cybernetics, 15(2):244–252, 1985.

[16] Mayur Santani, Justin Hall, Curtis Love, Jason Howell, and Pritam Ovhal.
How to use additional context in Microsoft Authenticator notifications - Au-
thentication methods policy. https://learn.microsoft.com/en-us/azure/active-
directory/authentication/how-to-mfa-additional-context, 2023. Accessed:
2023-06-02.

[17] Berk Türetken. Screenshots from Authenticators. https://rb.gy/cspau, 2023.
Accessed: 2023-10-04.

Blockchain and consensus algorithms:
security vulnerabilities and tradeoffs

Chathurangi Edussuriya
chathurangi.edussuriya@aalto.fi

Tutor: Shushu Liu

Abstract

Blockchain technology will be an integral component of Web 3.0. The con-

sensus mechanism is a crucial component of the underlying technology of

the blockchain. The architecture of consensus algorithms introduce both

distinctive features and exploitable vulnerabilities. Consequently, perfor-

mance metrics, such as transaction throughput, decentralization, power

consumption, scalability, and permission model are compromised by secu-

rity vulnerabilities. There are numerous applications for blockchain tech-

nology, spanning from cryptocurrencies, financial industry, and supply

chains to healthcare. Consensus algorithms that are appropriate for ap-

plications vary based on the application requirements, performance eval-

uation of the consensus algorithm, and its security vulnerabilities. This

paper examines the functionality of the main consensus algorithms and

their security flaws. In addition, this study describes the trade-offs be-

tween evaluation metrics and potential security vulnerabilities. This re-

search also reviews the applicability of consensus algorithms to a variety

of applications based on their respective needs. This paper serves as a ref-

erence paper for the selection of consensus algorithms in both academy and

industry

KEYWORDS: Blockchain, Proof-of-X protocols, Cryptocurrency, Consen-

sus algorithms

1 Introduction

Blockchain technology, introduced by Satoshi Nakamato, has paved the

way for the emergence of web 3.0 [17]. Web 3.0 technology is regarded as

the next phase of the internet, in which data in the virtual space is man-

aged without human intervention. It will employ Decentralized Ledger

Technology (DLT) and blockchain alongside big data, machine learning,

and artificial intelligence technologies [13]. Therefore, blockchain tech-

nology plays a significant role in the process of transforming the internet

into an autonomous, intelligent system. Blockchain technology records

transactions of a business network in an immutable, distributed ledger.

Figure 1 shows the architecture of the bitcoin blockchain. Each block of

data in a blockchain contains the hash of the previous block, data, and the

own hash of the block [16]. The immutability of the blockchain architec-

ture is achieved by storing the hash of the current block in the succeeding

block. Using complex cryptographic functions, the hash value of a block is

calculated, making it impossible to replicate. Consequently, if a block is

altered, it can be recognized by its hash value.

Figure 1. Blockchain architecture

Blockchain is controlled in a decentralized manner, with no single au-

thority in control [4]. When a block is added to the blockchain, all par-

ticipants must agree to include it in the distributed ledger. This method

of validation is known as consensus. The consensus algorithm can be

considered the key component of the blockchain. Different proof-of-X pro-

tocols, such as proof-of-work, proof-of-stake, and proof-of-authority, have

emerged over time [19]. Furthermore, voting based consensus algorithms,

such as Practical Byzantine Fault Tolerance and Proof of Elapsed Time [6]

were developed. These protocols have a tradeoff between security mea-

sures and system performance.

The three primary categories of blockchain are public, private, and con-

sortium. The public blockchain is permissionless, whereas the private

blockchain is permissioned. Both types of blockchains comprise the con-

sortium blockchain [20]. Consistent with their respective requirements,

these varieties of blockchain employ employ different consensus algorithms.

The research examines consensus algorithms in three key areas. Initial

discussion focuses on various consensus protocols and the inherent secu-

rity flaws of these protocols. Consequently, the study reviews the compro-

mises between efficacy, decentralization, scalability, and security of these

protocols. The study concludes by analyzing the applications that employ

these protocols in light of their respective compromises.

The paper is organized as follows. Section 2 presents the existing con-

sensus protocols and the inherent security vulnerabilities of these pro-

tocols. Section 3 compares the costs associated with the protocols with

the security measures. The applications of the protocols are described in

Section 4. Section 5 concludes the paper.

2 Consensus algorithms

This section discusses the functionality of the main consensus algorithms

and their security flows.

2.1 Proof-of-work (PoW)

Proof-of-work mandates that participants calculate hashing functions un-

til the output contains a minimum number of preceding zeros [11]. These

calculations are performed by miners. The successful miner announces

the newly discovered hash value to the network. After the hash value

has been verified, the block is submitted to the blockchain. Miners must

demonstrate that a significant quantity of processing power was used to

attain the desired result. Due to this considerable processing power, it is

challenging for a single miner to control the blockchain (more than 51%).

Consequently, this ensures security of the blockchain. However, this pro-

tocol presents security vulnerabilities.

Security vulnerabilities

• 51% attack: The miner obtains more than 50% of the control of the

blockchain [8]. As the attacker gains more control over the blockchain

network, attacker can determine which blocks are added to the network,

preventing other miners from participating. Additionally, the attacker

can double-spend the tokens.

• Selfish mining: The miner retains the blocks it has discovered and does

not broadcast them. Without interference from other miners, the at-

tacker mines additional blocks. The attacker will only broadcast the

blocks it has if the mined blocks form a chain that is longer than the

public chain. Therefore, blocks mined by other miners become invalid

[23].

• Finney attack: The miner includes a fraudulent transaction in a block

it has mined and swiftly spends before discovering the block [2].

• Timestamp attack: The miner modifies the timestamp of the block to

an earlier time. It permits the attacker to create new blocks or reverse

transactions based on the modified time frame, thus altering the history

of the blockchain.

2.2 Proof-of-stake (PoS)

Proof-of-stake consensus mechanism decreases the high computational

cost associated with Proof-of-Work. In Proof-of-Stake, participants or val-

idators are chosen based on the quantity of stake they possess, whereas

in Proof-of-Work, miners are chosen based on their ability to solve a cryp-

tographic puzzle. In a process known as minting, validators are selected

at random [18]. It guarantees that no single entity can acquire control

of the blockchain. A transaction fee is paid to the validators whenever it

creates a new block. PoS adheres to the longest chain rule, wherein the

chain with the most validators and the most blocks is considered to be

the valid blockchain. Ethereum, one of the most prominent blockchains,

transitioned from PoW to PoS with the release of version 2.0.

Security vulnerabilities

• Nothing at stake problem: To maximize their reward, the validators of

the blockchain validate multiple chains simultaneously [14]. Validating

a chain takes the stake of the validators into account. Nonetheless, if

consensus cannot be reached on the valid chain, multiple chains may be

validated, resulting in a double spending attack.

• Long-range attack: The attacker modifies the history of blockchain,

spanning several years to decades [14]. By manipulating the history,

the adversary gains the ability to add new blocks or roll back transac-

tions.

2.3 Delegated Proof-of-stake (DPoS)

Delegated Proof of Stake is an enhanced variant of Proof of Stake [24]. A

delegate is selected to represent the electors at the consensus meeting. If

a delegate fails to perform as anticipated, the electorate may choose a re-

placement. The delegate distributes the resulting profit to the electorate.

However, delegate authority can be abused because they validate newly

inserted blocks.

Security vulnerabilities

• Sybil attack: The attacker creates numerous fraudulent participants

to increase their voting strength in order to nominate themselves as

the delegate [9]. The adversary manipulates the blockchain in order to

obtain additional rewards.

• Bribery attack: The adversary induces the participants to designate the

adversary as the delegate. In return, the adversary increases the profit

of participants by increasing their reward.

2.4 Proof-of-Activity (PoA)

Bentov et al.[5] proposed proof-of-Activity, which addresses the drawbacks

of both PoW and PoS consensus protocols. In PoA, the blockchain is se-

cured by validators who validate blocks in accordance with PoS and min-

ers who mine blocks in accordance with PoW. This method is more secure

and energy-efficient than PoW and PoS.

Security vulnerabilities

• 51% attack: The adversary with the higher computational capability

solves the PoW puzzle to acquire a larger PoS stake. With more owner-

ship in Proof-of-Stake, an adversary obtains control of the blockchain by

initiating blocks and collecting rewards.

• Bribery attack: The attacker bribes the validators in order to gain their

favor. In exchange for obtaining control of the blockchain, the attacker

rewards validators.

• Eclipse attack: The attacker isolates a specific node or group of nodes

from the blockchain and manipulates the observation of the blockchain

to conceal or alter the data from the node [12]. For consensus, the node

would not obtain a complete picture of the state of the blockchain.

2.5 Practical Byzantine Fault Tolerance (PBFT)

The PBFT algorithm proposed by Castro and Liskov [6] is an implemen-

tation of the Byzantine general problem algorithm. Even in the presence

of deceptive nodes, this algorithm can reach a consensus. The leader node

notifies all blockchain nodes of the implementation of a transaction. The

nodes analyze the information and provide approval of the transaction to

the leader. The new block is added to the blockchain if the transaction is

acknowledged by the majority of nodes. A malicious node can be identi-

fied by the leader node, which can then eliminate it from the consensus

process.

Security vulnerabilities

• Sybil attack: The attacker creates numerous malicious nodes and ac-

quires the voting power of the blockchain. The PBFT algorithm is de-

signed to function even in the presence of malicious nodes. However,

there must be a minimum of 3f+1 trusted nodes, where f is the maxi-

mum number of malicious nodes [22].

• Forgery attack: By intercepting the communication between the nodes,

the attacker causes a man-in-the-middle attack. The attacker modi-

fies the consensus process by adding or spending defective blocks of the

blockchain.

• Denial-of-service (DOS) attack: The attacker floods the blockchain by

injecting requests and overloading the nodes.

2.6 Proof of Elapsed Time (PoET)

The PoET algorithm utilizes the same consensus mechanism as the PBFT

algorithm, excluding the selection of the leader. Based on a random wait-

ing period, PoET selects the leader of the blockchain [7]. Waiting time of

each node is determined by a random number generated by a module of

trusted hardware. Once the waiting time has elapsed, the network desig-

nates the node that completed the waiting time first as the leader of the

blockchain. This procedure ensures no malicious node can obtain control

of the blockchain.

Security vulnerabilities

• Time tampering attack: The adversary modifies the trusted hardware

module and reduces the waiting time to designate themselves as the

leader of the blockchain

• DoS attack: The adversary continuously requests wait times from trusted

hardware modules, preventing other nodes from completing a cycle of

wait time.

• Sybil attack: The attacker creates multiple nodes in order to enhance

the likelihood of being elected leader.

3 Comparative Analysis of the Tradeoffs

Increased algorithmic security is always accompanied by increased costs.

Consequently, this section evaluates the protocols based on the transac-

tion rate, decentralization, power consumption, scalability, and permis-

sion model with the most prevalent security flaws as shown in Table 1.

The security flaws encountered by consensus protocols are outlined in Sec-

tion 2 and presented concisely in Table 1.

3.1 Transaction throughput

Transactions Per Second (TPS) is a metric that quantifies the number of

transactions executed in a single second. Table 1 compares the transac-

tion rates of well-known cryptocurrencies utilizing these consensus proto-

cols [4]. Due to the time required for mining, PoW has a lower transaction

throughput, whereas PoS and PoA have a higher transaction rate than

PoW. PBFT and PoET, as voting-based consensus algorithms, have higher

transaction rates than DPoS-based EOS, which has a rate of 4000 TPS.

Pro-

to-

col

TPS (cryp-

tocurrency)

Decen-

traliza-

tion

power con-

sumption

scalabil-

ity

permission

model

security

vulnerabilities

PoW 10 (Bitcoin) high high low
permission-

less

51% attack,

selfish mining,

double

spending

PoS 100 (Nxt) medium low medium
permission-

less

nothing at

stake, long

range attack

DPoS
4000 (EOS) low low high consortium

sybil attack,

bribery attack,

51% attack,

double

spending

PoA
100

(Komodo)
low low high permissioned

51% attack,

double

spending

PBFT

1500

(Ripple)
low low high consortium

forgery attack,

DoS

PoET

2000

(sawtooth)
high low medium consortium

time

tampering

attack, DoS

Table 1. Evaluation matrix of consensus algorithms along the security vulnerabilities

3.2 Decentralization

Several factors are considered when evaluating the decentralization of

consensus algorithms, including the number of nodes required for consen-

sus, the requirements for consensus participants, and the degree of power

distribution among consensus participants [4]. The PoW consensus pro-

cess is highly decentralized, as Participation is open to anyone. PoS and

DPoS are semi-centralized because validators must have a stake prior to

participation. PoA inherits decentralized characteristics of PoW. PoET is

highly decentralized because anyone can participate, whereas PBFT is

less decentralized because consensus requires fewer participants.

3.3 Power consumption

Power consumption is a comparison of the quantity of energy required to

add one new block to a blockchain using a particular consensus mecha-

nism. PoW consumes the most energy in the consensus procedure due to

the complexity of mining. In contrast, PoS, PoA, and DPoS require less

energy to achieve consensus. PBFT and PoET are more energy-efficient

than PoW because they are designed to outperform it.

3.4 Scalability

PoW has a limited scalability due to the low transaction throughput, whereas

PoS has a higher scalability. DPoS is highly scalable owing to its high TPS.

In addition to being highly scalable, PBFT quickly reaches consensus. Al-

though it can process large volumes of transactions, the scalability of PoA

and PoET depends on the time it takes to reach consensus.

3.5 Permission model

According to their access management, as described in Section 2, blockchains

can be categorized into three models: permissionless, permissioned, and

consortium. Depending on the security and architecture of consensus

mechanisms, various consensus protocols may be utilized in these permis-

sion models [15]. Permissionless blockchains use PoW and PoS, whereas

permissioned blockchains use PoA. Due to their architectures, DPoS, PBFT,

and PoET can be utilized by both permissionless and permissioned blockchains

as constortium. Permissionless blockchains include Bitcoin, Ethereum,

and Litecoin, whereas permissioned blockchains include Hyperledger Fab-

ric and Corda. Hyperledger Sawtooth and R3 Corda are consortium-based

blockchains.

4 Applications of the protocols

The suitability of the protocol that should be utilized by each application

varies depending on the requirements of the applications and the perfor-

mance tradeoffs of consensus as described in Section 3.

PoW is better suited for applications that require increased security

and decentralization but less transaction throughput and scalability. The

inherent security features of this algorithm make it a good fit for cryp-

tocurrencies [26]. PoS can be utilized by energy-efficient and low-power-

consuming applications. Applications that demand a higher transaction

throughput can utilize DPoS. This consensus algorithm is ideal for use in

industrial blockchain networks [3] because it strikes a balance between

security and scalability. PoA algorithm, which has strong management

capabilities in consensus can be used for regulatory compliance and au-

dit.

The PBFT algorithm is optimal for financial systems due to its high

transaction throughput and minimal latency. In addition, the high fault

tolerance of algorithms makes it appropriate for use in communication net-

works [4]. PoET can be utilized by applications that prioritize lower power

consumption and higher throughput. Applications involving the Internet

of Things (IoT) [21], supply chains [10], healthcare [1], and edge comput-

ing [25] can benefit from this protocol.

5 Conclusion

The blockchain is an integral part of the endeavor to redesign the cur-

rent web architecture for the subsequent generation. This paper exam-

ines the consensus algorithms utilized by the blockchain. This paper

discusses the functionality of the main consensus algorithms and the se-

curity flaws. In addition, the security vulnerabilities with other perfor-

mance metrics, such as transaction throughput, decentralization, power

consumption, and scalability of the consensus algorithms are compared to

determine the beneficial and negative aspects of each algorithm. Compar-

isons demonstrate that the PoW is the most secure algorithm. It is, how-

ever, less efficient and scalable. The PoS algorithm, which was devised to

address the deficiencies of PoW, is more efficient than PoW. In DPoS, the

transaction rate is the highest. The PoA is a highly scalable algorithm

that incorporates PoW and PoS. Due to its consensus architecture, the

PBFT algorithm outperforms Proof-of-X protocols in terms of scalability

and energy consumption. PoET, which uses the same consensus architec-

ture as PBFT, has a high degree of decentralization because it permits

a large number of participants to take part in the decision-making proce-

dure. The consensus algorithm that is most appropriate varies, depending

on the needs of various applications. The suitable consensus algorithm

can be selected, by comparing the requirements to the performance met-

rics and security vulnerabilities of the consensus algorithms.

References

[1] Cornelius C Agbo, Qusay H Mahmoud, and J Mikael Eklund. Blockchain
technology in healthcare: a systematic review. In Healthcare, volume 7,
page 56. MDPI, 2019.

[2] Shubhani Aggarwal and Neeraj Kumar. Attacks on blockchain. In Ad-
vances in Computers, volume 121, pages 399–410. Elsevier, 2021.

[3] Jameela Al-Jaroodi and Nader Mohamed. Blockchain in industries: A sur-
vey. IEEE Access, 7:36500–36515, 2019.

[4] Seyed Mojtaba Hosseini Bamakan, Amirhossein Motavali, and Alireza Babaei
Bondarti. A survey of blockchain consensus algorithms performance evalu-
ation criteria. Expert Systems with Applications, 154:113385, 2020.

[5] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. Proof of activ-
ity: Extending bitcoin’s proof of work via proof of stake [extended abstract]
y. ACM SIGMETRICS Performance Evaluation Review, 42(3):34–37, 2014.

[6] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Systems (TOCS),
20(4):398–461, 2002.

[7] Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi. On
security analysis of proof-of-elapsed-time (poet). In Stabilization, Safety,
and Security of Distributed Systems: 19th International Symposium, SSS
2017, Boston, MA, USA, November 5–8, 2017, Proceedings 19, pages 282–
297. Springer, 2017.

[8] Usman W Chohan. The double spending problem and cryptocurrencies.
Available at SSRN 3090174, 2021.

[9] John R Douceur. The sybil attack. In Peer-to-Peer Systems: First Interna-
tionalWorkshop, IPTPS 2002 Cambridge, MA, USA, March 7–8, 2002 Re-
vised Papers 1, pages 251–260. Springer, 2002.

[10] Chathurangi Edussuriya, Kasun Vithanage, Namila Bandara, Janaka Alawatu-
goda, Manjula Sandirigama, Upul Jayasinghe, Nathan Shone, and Gyu My-
oung Lee. Bat—block analytics tool integrated with blockchain based iot
platform. Electronics, 9(9):1525, 2020.

[11] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hu-
bert Ritzdorf, and Srdjan Capkun. On the security and performance of proof
of work blockchains. In Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, pages 3–16, 2016.

[12] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse
attacks on bitcoin’s peer-to-peer network. In 24th {USENIX} Security Sym-
posium ({USENIX} Security 15), pages 129–144, 2015.

[13] Jim Hendler. Web 3.0 emerging. Computer, 42(1):111–113, 2009.

[14] Wenting Li, Sébastien Andreina, Jens-Matthias Bohli, and Ghassan Karame.
Securing proof-of-stake blockchain protocols. In Data Privacy Management,
Cryptocurrencies and Blockchain Technology: ESORICS 2017 International
Workshops, DPM 2017 and CBT 2017, Oslo, Norway, September 14-15, 2017,
Proceedings, pages 297–315. Springer, 2017.

[15] Du Mingxiao, Ma Xiaofeng, Zhang Zhe, Wang Xiangwei, and Chen Qijun.
A review on consensus algorithm of blockchain. In 2017 IEEE interna-
tional conference on systems, man, and cybernetics (SMC), pages 2567–2572.
IEEE, 2017.

[16] Paul Müller, Sonja Bergsträßer, Amr Rizk, and Ralf Steinmetz. The bitcoin
universe: An architectural overview of the bitcoin blockchain. In 11. DFN-
Forum Kommunikationstechnologien. Gesellschaft für Informatik eV, 2018.

[17] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized business review, page 21260, 2008.

[18] Cong T Nguyen, Dinh Thai Hoang, Diep N Nguyen, Dusit Niyato, Huynh Tuong
Nguyen, and Eryk Dutkiewicz. Proof-of-stake consensus mechanisms for
future blockchain networks: fundamentals, applications and opportunities.
IEEE Access, 7:85727–85745, 2019.

[19] Giang-Truong Nguyen and Kyungbaek Kim. A survey about consensus
algorithms used in blockchain. Journal of Information processing systems,
14(1):101–128, 2018.

[20] Sunny Pahlajani, Avinash Kshirsagar, and Vinod Pachghare. Survey on
private blockchain consensus algorithms. In 2019 1st International Con-
ference on Innovations in Information and Communication Technology (ICI-
ICT), pages 1–6. IEEE, 2019.

[21] Alfonso Panarello, Nachiket Tapas, Giovanni Merlino, Francesco Longo, and
Antonio Puliafito. Blockchain and iot integration: A systematic survey.
Sensors, 18(8):2575, 2018.

[22] Soumyashree S Panda, Bhabendu Kumar Mohanta, Utkalika Satapathy,
Debasish Jena, Debasis Gountia, and Tapas Kumar Patra. Study of blockchain
based decentralized consensus algorithms. In TENCON 2019-2019 IEEE
Region 10 Conference (TENCON), pages 908–913. IEEE, 2019.

[23] Muhammad Saad, Laurent Njilla, Charles Kamhoua, and Aziz Mohaisen.
Countering selfish mining in blockchains. In 2019 International Conference
on Computing, Networking and Communications (ICNC), pages 360–364.
IEEE, 2019.

[24] Sheikh Munir Skh Saad and Raja Zahilah Raja Mohd Radzi. Comparative
review of the blockchain consensus algorithm between proof of stake (pos)
and delegated proof of stake (dpos). International Journal of Innovative
Computing, 10(2), 2020.

[25] Ruizhe Yang, F Richard Yu, Pengbo Si, Zhaoxin Yang, and Yanhua Zhang.
Integrated blockchain and edge computing systems: A survey, some re-
search issues and challenges. IEEE Communications Surveys & Tutorials,
21(2):1508–1532, 2019.

[26] Yong Yuan and Fei-Yue Wang. Blockchain and cryptocurrencies: Model,
techniques, and applications. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 48(9):1421–1428, 2018.

Psychometry for Researching Usable
Security

Fajar Malik
fajar.malik@aalto.fi

Tutor: Sanna Suoranta

Abstract

As software becomes increasingly intricate and plays a greater part in

daily lives, it is crucial to verify not only its security, but also its usability.

Usability testing is one of many methods to verify that systems are easy

to use. One of the approaches is user-based evaluation, where a user di-

rectly participates in the evaluation. However, asking directly from users

may introduce the problem of lack of motivation to complete the tasks. For

this reason, psychometric tools could be preferred, as it produces more au-

thentic evaluation on user experience. However, there has been few human-

centered research that focuses on improving usability of security.

This paper aims to review various techniques in psychometry currently

used to study usability of security features. The analysis concluded that

the use of psychometry has yielded positive outcomes in the field of usable

security, facilitating the ultimate goal of making the most secure practice

to be the most user-friendly approach. Recent studies suggest that person-

alization of security features by utilizing psychometry is likely to continue

in the future. However, the sparseness of studies in this topic indicates that

there is still a long way to go until psychometry could be widely applied in

usable security.

KEYWORDS: psychometry, usability, security

1 Introduction

As software becomes increasingly intricate and plays a greater part in

daily lives, it is important to verify not only its security, but also the us-

ability of the security features. The term usability describes the capability

of a system to provide a condition for its intended users to use it safely,

effectively and efficiently, while generating positive response from users.

Usability testing is one of many methods to verify that such capability is

achieved. One of the approaches to usability testing is user-based evalua-

tion, where a user directly participates in the evaluation [1].

However, asking directly from users introduce the problem of amoti-

vation, the lack of motivation to persist in completing tasks towards a

goal. Due to this reason, psychometric tools have been utilized in order to

test usability. Psychometry refers to the extraction of qualitative mental

and emotional state into quantitative or numerical values. Rusu et al. [2]

found that the use of psychometry produces more authentic evaluation

on user experience, therefore should be preferred instead of asking users

opinion. There is increasing amount of research that investigates usage of

psychometric tools in improving usability of systems. Progress has been

made to improve usability of security products and user comprehension

of security issues [3]. However, there has been few human-centered re-

search that focuses on improving usability of security.

Consequently, this paper aims to review various techniques in psychom-

etry that are currently being used to study the usability of security fea-

tures. While the topic seem to suggest a broad scope of review, the limited

literatures on this subject provide a relatively narrow discussion. This

paper is organized as follows. Section 2 first discusses definitions of us-

ability. Subsection 2.1 presents key concepts and theories in psychometry.

Subsection 2.2 presents the definition and main concepts in usable secu-

rity. Section 3 presents researches related to the use of psychometry in

usable security. Section discusses the techniques presented in this pa-

per along with their results. Finally, Section 6 presents some concluding

remarks.

2 Usability

The term usability describes the capability of a system to provide a condi-

tion for its intended users to use it safely, effectively and efficiently, while

generating positive response from users. Nielsen [4] defined 10 general

rules of thumb for creating user-friendly and effective interfaces. These

heuristics are: displaying system status clearly, aligning the system with

the real world, empowering users with freedom and control, maintaining

consistency, preventing errors, prioritizing recognition over recall, opti-

mizing flexibility and efficiency of use, focusing on aesthetic and minimal-

ist design, aiding users in recognizing and recovering from errors, and

providing comprehensive help and documentation. These heuristics as-

sist designers to create interfaces that are intuitive, efficient, and enjoy-

able for users, improving the overall user experience.

To verify that these heuristics are achieved, usability testing is gener-

ally conducted. One of the approaches to usability testing is user-based

evaluation, where a user directly participates in the evaluation [1]. How-

ever, asking directly from users introduce the problem of amotivation, the

lack of motivation to persist in completing tasks towards a goal. Due to

this reason, psychometric tools have been utilized in order to test usabil-

ity.

2.1 Psychometry

Psychometry is a field of study within psychology that focuses on devel-

oping as well as validating questionnaires and tests used for measur-

ing psychological variables, such as personality traits, knowledge, atti-

tudes, abilities, emotions, and mental states [5]. The aim of psychometry

is to develop reliable and valid measurement instruments that can be

used to measure these variables in individuals and groups. These instru-

ments range from questionnaires to performance tests, and are designed

to provide objective and quantifiable data about various psychological con-

structs.

The main challenge in the psychometry field is the difficulty to insti-

tute ground truth, as the psychological variables are qualitative, while

the measurement instruments are quantitative [6]. Psychometry could

be effectively implemented in human-computer interaction (HCI), where

the software retrieves psychometric traits from its users. This data could

then be calculated with the aim to adjust the experience to suit the par-

ticular user better, therefore improving overall user experience.

2.2 Usable security

Usable security seeks to combine the need for strong security with the

need for usability, in order to ensure the security measures are not only

effective, but also practical and accessible to the average user. It is impor-

tant to understand this definition, since providing a high level of security

may break usability [7]. For example, having a long and complex pass-

word provides strong security. However, this complexity would require

more effort from the user to remember it. On the other hand, having

a short and readable password is more vulnerable for attackers to guess.

The ideal goal is to make the most secure method to be the easiest. There-

fore, there are needs to replace the text-based password system, one al-

ternative is graphical password. However, due to its nature of involving

graphics, it is vulnerable to shoulder-surfing attacks. To solve this prob-

lem, recent researches [8, 9] have developed a new type of personal au-

thentication system using electroencephalography (EEG) signals, which

is a measurement of the electrical activity inside the human brain. Com-

pared to the currently widely-used authentication systems, this method

allows easier use and it is more difficult for attackers to steal.

3 Psychometry applications in usable security

Psychometric methods have been beneficial in solving usable security prob-

lems. There are few researches that have studied the applications of psy-

chometry to investigate usability of security features.

3.1 User comfort and password construction

In order to assess the usability of IT security management tools (ITSM),

Jaferian et al. [10] constructed usability herustics that utilized activity

theory, a ground-breaking theory that emerged from Soviet psychology.

This theory, formulized by Engeström [11] in 1999, indicates that all ac-

tivity possesses a subject that conducts the activity, and an object which

the activity is aimed towards. The heuristics constructed by Jaferian et

al. [10] was found to have similar degrees of relevance, applicability, and

learnability compared to the 10 heuristics developed by Nielsen [4].

This research by Jaferian et al. [10] then inspired Haque et al. [5], who

measured user comfort when interacting with a certain user interface to

create an effective password. The study built a scale to measure user

comfort, after which it is used by their users to assess their password

construction experience. Using the scale, this research concluded that

older users tend to report lower level of comfort. This research, conducted

in 2016, also claimed to be the first to investigate the use of psychometric

concepts in researching usable security, pioneering research in this area.

3.2 Cognitive factors and text-based passwords

Loos et al. [12] attempted to correlate user cognitive variability factors

with passphrase selection. The user cognitive variability factors used in

this research is the locus of control personality types. Locus of control

describes the degree of control to which a person feels they possess in

their behavior [13]. Internally controlled individual view themselves as

having ample amount of personal control and tend to be more inclined to

take ownership of their actions. For instance, they may attribute their

success on a test to their dilligent efforts. On the other hand, externally

controlled individuals attributes their behaviors towards external factors

or influences, such as attributing their success on a test to the test being

easy.

The main inspiration to this research by Loos et al. [12] was to anal-

yse the challenges that emerge between the memorability and usability

of passwords. Participants were first asked to perform locus of control

personality test to determine whether they are internally or externally

controlled types. Having recorded their locus of control personality types,

participants were then presented with passphrases constructed from four

passphrase types: no vowels (NV), four categories (4C), room objects (RO),

and animal associatives (AA). Each of all four types are divided into two:

imposed by the researchers and user-created. Figure 1 presents the high

score result of recall ability tests. The first letter signifies whether the

passphrase type is imposed (I) or created by user (C).

Figure 1. Recall ability high score for all passphrase types [12]

The locus of control traits were found to affect decision making through-

out passphrase selection and recall tests. This study concluded that both

internally and externally controlled participants gave the passphrase from

created room objects (CRO) the highest recall ability. In addition, inter-

nally controlled individuals favour the created no-vowel category (CNV),

while externals favour the created animal associations (CAA). Meanwhile,

both locus of control personalities gave the imposed no vowel passphrase

the least favoritism.

3.3 Cognitive factors and CAPTCHA

While Loos et al. [12] correlated cognitive factors with passphrase prefer-

ence and recall ability, Belk et al. [14] correlated cognitive differences with

preference and performance of users in completing Completely Automated

Public Turing test to tell Computers and Humans Apart (CAPTCHA)

tests. CAPTCHA, which was first introduced by Blum et al. [15] in 2003,

is currently widely used by online services to determine whether the user

trying to access their service is human or an automated robot. The cur-

rent version generally shows a randomly generated series of letters or

numbers which appear distorted, and the user is asked to type what is

seen into the text box in order to pass the test and prove their human

identity.

Belk et al. [14] took two cognitive factors into consideration, namely

cognitive styles and cognitive processing abilities. The cognitive style test

Table 1. Factors investigated in the research [14]

Study
Cognitive

Factors

CAPTCHA

Design

Factors

Usability

Factors

A
Cognitive

styles
CAPTCHA Type

User preference

Completion time

Success rate

B
Cognitive

processing abilities

CAPTCHA

visual complexity

Completion time

Success rate

utilized Cognitive Style Analysis (CSA) test first developed by Riding [16].

The CSA test, specifically the Verbalizer-Imager (VI) dimension, aims to

distinguish the characteristics of an individual with regard to their infor-

mation presentation and learning performance. Verbalizer tends to learn

best from text, while imagers learn better from graphics. Even though

this test was initially found to have low reliability, it was improved by

following the guidelines provided by Rezaei and Katz [17].

In the research by Belk et al. [14], cognitive processing abilities, on the

other hand, were recorded from the users by testing their ability to re-

member words and images with varying difficulties. This data was then

calculated to split the users into two categories, namely limited and en-

hanced cognitive processing abilities. Table 1 presents the factor that

were investigated in this research. The users were also asked to solve

CAPTCHA challlenges with varying difficulties, such as the number of

letters or pictures and the amount of distortion. The researchers also col-

lected data on participants’ self-reported preference for different types of

CAPTCHA.

The findings of this study suggest that users with any combination of

the two cognitive factors yield varying performance, favourability, as well

as overall impact as they are interacting with various CAPTCHA mech-

anisms and level of visual complexity. More importantly, this research

suggested developing personalized CAPTCHA challenges, as an alterna-

tive to the one-size-fits-all CAPTCHA that is widely used nowadays as it

may have numerous benefits from the point of view of the users.

4 Discussion

There has been few but increasing amount of research related to the use

of psychometry in investigating the usability of security. Majority of these

researches have aimed to establish correlations between certain psycho-

metric traits of users and their tendency in using security features, such

as CAPTCHA tests [14] and password constructions [5, 12]. The studies

presented in the previous section support similar trends in this area.

Specifically, personalization of security features, which involves adjust-

ing the system to accommodate specific users, has shown to have several

benefits from both user and security perspectives. Personalization pro-

vides efficiency, by allowing users to digest information cognitively. In

addition, it also reduces cognitive load, increases user acceptance of the

security features, and ultimately enhances the overall user experience.

From a security standpoint, personalization could strengthen the se-

curity features, as malicious attackers would need to imitate a specific

individual along with their unique personality traits, as opposed to a gen-

eral person, which is necessary in order to circumvent a credible user

model [18]. Recent studies [8, 9, 19] suggest that this trend of personal-

ization by utilizing psychometry for usable security is likely to continue in

the future. However, the sparseness of studies in this topic indicates that

there is still a long way to go until psychometry could be widely applied

in security features.

5 Conclusion

This paper has reviewed various techniques in psychometry that have

been employed in the study of usable security. The dicussion presented

above indicates that the use of psychometry has yielded positive outcomes

in the field of usable security, facilitating the ultimate goal of making the

most secure practice to be the most user-friendly approach. The relatively

sparse research in this particular area suggests that there is significant

potential for growth in the coming years, but there is still a long way to

go until psychometry is widely used in security features.

References

[1] J. C. Bastien, “Usability testing: a review of some methodological and tech-
nical aspects of the method,” International Journal of Medical Informatics,
vol. 79, no. 4, pp. e18–e23, 2010.

[2] V. Z. Rusu, D. Quiñones, C. Rusu, P. Cáceres, V. Rusu, and S. Roncagliolo,
“Approaches on user experience assessment: User tests, communicability
and psychometrics,” in Social Computing and Social Media. User Experi-
ence and Behavior (G. Meiselwitz, ed.), (Cham), pp. 97–111, Springer Inter-
national Publishing, 2018.

[3] C. Carreira, J. F. Ferreira, A. Mendes, and N. Christin, “Exploring usable
security to improve the impact of formal verification: A research agenda,”
Electronic Proceedings in Theoretical Computer Science, vol. 349, pp. 77–84,
Nov. 2021.

[4] J. Nielsen, “Enhancing the explanatory power of usability heuristics,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI ’94, (New York, NY, USA), p. 152–158, Association for Computing
Machinery, 1994.

[5] S. M. T. Haque, S. Scielzo, and M. Wright, “Applying psychometrics to mea-
sure user comfort when constructing a strong password,” in 10th Sympo-
sium On Usable Privacy and Security (SOUPS 2014), (Menlo Park, CA),
pp. 231–242, USENIX Association, July 2014.

[6] B. Cowley, M. Filetti, K. Lukander, J. Torniainen, A. Henelius, L. Aho-
nen, O. Barral, I. Kosunen, T. Valtonen, M. Huotilainen, N. Ravaja, and
G. Jacucci, “The psychophysiology primer: A guide to methods and a broad
review with a focus on human-computer interaction,” Foundations and Trends
in Human-Computer Interaction, vol. 9, no. 3-4, pp. 151–308, 2016.

[7] R. Focardi, F. L. Luccio, and H. A. Wahsheh, “Usable security for qr code,”
Journal of Information Security and Applications, vol. 48, p. 102369, 2019.

[8] G.-C. Yang, “Next-generation personal authentication scheme based on eeg
signal and deep learning,” JIPS(Journal of Information Processing Systems),
vol. 16, no. 5, pp. 1034–1047, 2020.

[9] Z. Alkhyeli, A. Alshehhi, M. Alhemeiri, S. Aldhanhani, K. AlBalushi, F. A.
AlNuaimi, and A. N. Belkacem, “Secure password using eeg-based brain-
print system: Unlock smartphone password using brain-computer interface
technology,” in 2022 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pp. 1982–1987, 2022.

[10] P. Jaferian, K. Hawkey, A. Sotirakopoulos, M. Velez-Rojas, and K. Beznosov,
“Heuristics for evaluating it security management tools,” in Proceedings of
the Seventh Symposium on Usable Privacy and Security, SOUPS ’11, (New
York, NY, USA), Association for Computing Machinery, 2011.

[11] Y. Engeström, Activity theory and individual and social transformation,
p. 19–38. Learning in Doing: Social, Cognitive and Computational Per-
spectives, Cambridge University Press, 1999.

[12] L. A. Loos, M.-B. C. Ogawa, and M. E. Crosby, “Cognitive variability factors
and passphrase selection,” in Augmented Cognition. Human Cognition and
Behavior (D. D. Schmorrow and C. M. Fidopiastis, eds.), (Cham), pp. 383–
394, Springer International Publishing, 2020.

[13] J. B. Rotter, “Generalized expectancies for internal versus external control
of reinforcement.,” Psychological monographs, vol. 80(1), pp. 1–28, 1966.

[14] M. Belk, C. Fidas, P. Germanakos, and G. Samaras, “Do human cogni-
tive differences in information processing affect preference and performance
of captcha?,” International Journal of Human-Computer Studies, vol. 84,
pp. 1–18, 2015.

[15] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford, “Captcha: Using hard
ai problems for security,” in Advances in Cryptology — EUROCRYPT 2003
(E. Biham, ed.), (Berlin, Heidelberg), pp. 294–311, Springer Berlin Heidel-
berg, 2003.

[16] R. Riding and I. Cheema, “Cognitive styles—an overview and integration,”
Educational Psychology, vol. 11, pp. 193–215, 01 1991.

[17] A. R. Rezaei and L. Katz, “Evaluation of the reliability and validity of the
cognitive styles analysis,” Personality and Individual Differences, vol. 36,
no. 6, pp. 1317–1327, 2004.

[18] C. Fidas and A. G. Voyiatzis, “On users’ preference on localized vs. latin-
based captcha challenges,” in Human-Computer Interaction – INTERACT
2013 (P. Kotzé, G. Marsden, G. Lindgaard, J. Wesson, and M. Winckler,
eds.), (Berlin, Heidelberg), pp. 358–365, Springer Berlin Heidelberg, 2013.

[19] A. Constantinides, M. Belk, C. Fidas, R. Beumers, D. Vidal, W. Huang,
J. Bowles, T. Webber, A. Silvina, and A. Pitsillides, “Security and usabil-
ity of a personalized user authentication paradigm: Insights from a longi-
tudinal study with three healthcare organizations,” ACM Trans. Comput.
Healthcare, vol. 4, no. 1, 2023.

Web application session management
security

Farjad Ali
farjad.ali@aalto.fi

Tutor: Aleksi Peltonen

Abstract

This paper discusses the current state of security in web application ses-

sion management. Specifically, it highlights the significance of web session

protection and the potential risks of session hijacking, which can result in

data breaches, monetary loss, and personal harm. The paper presents some

vulnerabilities that may lead to session hijacking, the focus is specifically

on configuration faults. The paper also presents solutions developed by

both academia and industry to address and tackle configuration faults in-

cluding dynamic analysis tools, and a collection of industry best practices

in terms of session management security. Additionally, it discusses a spe-

cific analysis method proposed by academia, its limitations and proposes

some future research directions based on it. Finally, the paper concludes

by provides some concluding remarks.

KEYWORDS: session management, web application, security, OWASP, at-

tack tree, session, session hijacking, configuration faults

1 Introduction

Web applications are an integral part of our daily lives, their use span

from online shopping to healthcare services. With the evolution of web-

sites from static pages to full-front applications with complex logic and

functionalities, mechanisms known as sessions are required. Sessions are

a key component that allows users to authenticate, access preferences, ac-

cess personalized data and maintain a state throughout their interaction

with the application. Therefore, session management is a major aspect

of current web applications. Almost a fifth of all cyberattacks target web

application vulnerabilities [26], hence, ensuring security for session man-

agement is crucial to guarantee a web application’s privacy, confidential-

ity, and overall reliability [13].

This paper aims to review the current state of session management secu-

rity in web applications by examining the trends in web application secu-

rity research in order to explore gaps between industry and academia and

provide directions for future research. Specifically, this paper discusses

vulnerabilities regarding session management security and compares so-

lutions developed by both academia and industry in order to tackle them.

By doing so, we hope to provide a comprehensive understanding of session

management security in web applications and address the importance of

its issues to ensure the privacy, confidentiality, and reliability of web ap-

plications.

The rest of the paper is organized as follows. Section two explains the

functioning of HTTP sessions, session management, and configuration

faults that may cause a vulnerabilities. Section three illustrates miti-

gations to configurations faults, illustrating solutions developed by both

industry and academia. The fourth section discusses these solutions. Fi-

nally, the last section provides some concluding remarks.

2 Web application sessions

Web applications use a stateless protocol, HTTP/HTTPS, to communicate

with web browsers. This implies that web applications that require track-

ing a state throughout their lifecycle need to have an additional mecha-

nism to implement it. Currently, this mechanism is known as sessions.

2.1 Session mechanism

Sessions allow grouping HTTP/HTTPS requests with a state for the web

applications [12]. Sessions allow an application to implement functional-

ities such as asking for authentication only once, authorization, storing

User Web Server

POST User Credentials

Session ID to cookie

GET User profile page + session ID cookie

User profile page

Figure 1. Interaction between a web server and user during authentication [16]

personal UI preferences, and keeping track of the user application data

within each session. As illustrated in Fig. 1, at session generation, which

typically occurs at either log-in or first visit, the web server saves the

session’s ID on the user’s browser as a cookie. The cookie, with each user

request, will be sent back to the server [12], allowing it to keep track of the

session. Sessions can be used for unauthenticated and authenticated web

applications. Session management refers to managing and maintaining

sessions. This typically includes tasks related to authentication, autho-

rization, session tracking, session termination, and session protection.

2.2 Session security

Since sessions are the main mechanism used to maintain a state in web

applications, including uses in social media, government, healthcare, and

banking, it is crucial to have good protection on the session IDs, espe-

cially on authenticated web applications. Plenty of research [14][18][19]

has been done to find potential attacks. The most important of them is

hijacking, which allows an attacker to retrieve a valid session ID for an

active session. When this happens, the attacker can easily impersonate

a user by including the stolen session ID for an authenticated HTTP/S

request to the server [25]. As illustrated in Fig. 2, the server has no other

way to authenticate a user that is sending the request other than using

the session ID and, if it is valid, will respond with the content requested.

The consequences of an attack like this can be severe since an aggressor

could carry out several operations posing as the victim for monetary gain,

Attacker Web Server

GET User profile page + stolen session ID cookie

Victim's user profile page

Figure 2. Interaction between a web server and an attacker [16]

cause personal harm, or access sensitive or confidential data.

2.3 Configuration faults

Session management needs to be implemented correctly by following the

industry best practices [17][24] to have maximum security. In particu-

lar, developers need to focus on the following aspects of a web applica-

tion: Session ID length, Session ID value, Cookie attributes/flags, Session

ID transfer protocol, Communication protocol, Changing session ID after

login, Session ID change or expiration after logout, Session ID timeout

value, and Cache-Control value [10][11][15]. Fig. 3 illustrates an attack

tree that allows a developer to quickly assess if a web application is vul-

nerable due to any development or configuration issues. The leaves are

the specific causes or features while all the other nodes represent the

threat [15]. Configuration issues are relatively easy to solve, and current

best practices for web app development are constantly updated and main-

tained by organizations such as Open Web Application Security Project

(OWASP) [23]. For session management best practices, OWASP provides

a thoroughly compiled list of best practices with quite a clear explanation.

[24] All the threats in the attack tree in Fig. 3 are preventable if the best

practices are followed. Nonetheless, the human factor and design issues

in application development influence the final outcome of an application

in terms of security [9]. Vulnerabilities can be introduced involutarily by

distractions or errors, and engineers can be not up to date with the latest

practices [9].

Figure 3. Attack tree to cause session hijacking [15]

3 Mitigation methods

This section illustrates some of the solutions developed by academia and

industry to tackle the aforementioned problem. The first part details the

OWASP best practices to avoid security issues for session management.

The second part discusses a method developed by Garmabi et al. [15] and

its software implementation to avoid configuration faults while develop-

ing a web application.

3.1 OWASP best pratices

OWASP is a nonprofit foundation that works to improve the security of

web applications [23]. OWASP offers a series of guidelines for web ap-

plication security in aspects spanning the whole lifecycle of a web ap-

plication such as authorization, logging, denial of service, input valida-

tion, and session management. The collection of guidelines, namely the

OWASP cheat sheet series [24], is written by several industry profession-

als with expertise in specific topics. The session management guidelines

are a comprehensive collection of recommended practices to follow dur-

ing the development and deployment of a web application to significantly

improve session management security. The guidelines include aspects re-

lated to session IDs, such as length, entropy, duration, transmission, and

storage. Additionally, it provides instructions to implement session attack

detection using methods such as anomaly detection and log monitoring

[24]. Nonetheless, human engineers still design and develop applications,

which means there must be a failsafe to account for the human factor.

3.2 Software analysis

There are several software solutions that perform static and dynamic

analysis that allows engineers to check the presence of common anti-

patterns, code smells, and faulty configurations. Solutions for code in-

clude SonarQube [8], Checkmarx [4], and Fortify [5], while solutions for

a deployed web app include OWASP ZAP [7], Netsparker [6], AppScan

[2], Acutenix [1], and Burp Suite [3]. While extremely helpful, these ap-

plications have limitations as pointed out by Garmabi et al. [15], specifi-

cally, related to session management issues detection [15]. The mentioned

applications fail to detect basic session management security issues in-

cluding session ID timeouts, insecure communication method, and cache

attributes [15].

New approach Garmabi et al. [15] propose a new method to perform

session management security analysis. In this method, they first extract

the session management features present in traffic between a web client

and server to associate them with vulnerabilities and weaknesses. Subse-

quently, the vulnerabilities and weaknesses are mapped in an attack tree,

as seen in Fig. 3, which allows for pinpointing specific vulnerabilities for

a given attack. The proposed method also assesses the total risk for a

specific attack listed in the attack tree. The risk is computed by R = SP

where S is the severity of the damage caused and P is the probability of

the attack occurring.

Additional rules There are some further rules that need to be followed to

compute the risk of an attack. Firstly, each feature represented as the at-

tack tree leaf needs to be assigned the severity of its impact on the attacks.

The severity levels used in this specific case are HIGH, MEDIUM, and

LOW. There is no specific strategy to assign the severity values to the tree

leaves, so an intuitive approach is used. For example, in the case of the

"Session ID observing" attack, the only node under it represents the fea-

ture to indicate whether the session ID gets used in the URL. Therefore,

the severity level of that particular leaf is estimated to be HIGH since it is

the only aspect that allows somebody to perform the attack. To calculate

the total risk, however, the leaves also need to have a probability value

associated with them. This is trivial because they can be either present or

not present which makes the probability either 1 or 0 respectively. Lastly,

referring to the attack tree in Fig. 3, AND and OR operations are defined.

If there is an OR or sum relation between two nodes, the sum of the risk

× LOW MEDIUM HIGH

LOW LOW LOW MEDIUM

MEDIUM LOW MEDIUM MEDIUM

HIGH MEDIUM MEDIUM HIGH

Table 1. Multiplication for risk levels [15]

between two nodes is defined as so R = R1 +R2. For the AND or multipli-

cation relation, the multiplication of the risk between two nodes is defined

in Table 1. The defined AND and OR operations have distributive proper-

ties, which means that for example the following expression R1(R2 + R3)

can be reduced to R1R2 +R1R3.

The attack tree easily allows mapping detectable properties that lead

to attacks. These properties are detected in the HTTP traffic between the

client and the web server. The risk level assessment, combined with the

attack tree, allows one to effortlessly compare the security levels between

examined web applications and to quickly intervene.

Implementation Garmabi et al. implement this method using PHP and

a MySQL database. The implementation receives the HTTP traffic as a

text file input and extracts the features denoted in the leaves of the attack

tree. Afterward, the implementation outputs the discovered weaknesses

and the total risk level of the examined web application [15].

Method implementation performance The implemented tool has been con-

fronted in terms of session management security measurement with three

existing vulnerability scanners, namely Acunetix [1], Netsparker [6], and

OWASP ZAP [7]. The target websites used for the comparisons were

three simple vulnerable web applications, such as Buggy web application

(BWAPP) [22], an extremely insecure test web application provided by

OWASP. Results showed that in addition to computing the total risk of

a web application, the method implementation also wastly outperformed

the current tools used by the industry [15].

Limitations The implementation requires the traffic samples to be input

as text files, which can be problematic in specific environments. One ex-

ample where traffic sample gathering might be challenging is a highly

secure environment with restricted access to traffic or web application

servers. Another disadvantage is the extra configurations that need to be

added to the existing web application deployments to capture the traffic

and convert it into a text file. These limitations are somewhat present

in all of the tools that require a traffic analysis to evaluate the security

properties of an application, including the ones used in the comparison.

4 Discussion

Session management is a crucial aspect of modern web applications due

to its involvement in the entire life cycle. Therefore, it is necessary to

guarantee solid security. Engineering guidelines [24][17], such as the

cheat sheet series provided by OWASP have allowed engineers to have

a shared knowledge of state-of-the-art practices in terms of web appli-

cation security. Designing and developing a web application has become

easier terms of security features since every guide is written and updated

by industry experts on specific topics. Although the guidelines are broadly

adopted by the industry, software engineering is still affected by the hu-

man factor. As a consequence, errors or distractions could bring a web

application into an insecure state. Hence, there are several tools avail-

able to analyze an application and measure its security properties. Cur-

rently, for web applications, there is a gap between academia and indus-

try in security assessment tools, especially for session management secu-

rity measurement. Garmabi et al. [15] propose a contemporary method

based on feature extraction, attack trees, and risk evaluation that sub-

stantially outperformed the industry tools and provided an overall risk

assessment measurement for the examined application. The limitation of

this method, however, is in its current implementation, which requires a

sample of traffic between client and server in order to analyze it. Not only

can this be challenging for applications deployed in severely controlled

environments, but it also might require additional configuration in exist-

ing deployments. As a future direction, perhaps, a new implementation

for this method would improve its effectiveness. The method could be

implemented as a static analysis tool powered by data mining [21] or ma-

chine learning [20] that detects features directly from the source code of

the application. This would allow the measurements to be made more im-

mediately without the need to deploy the application and generate traffic

between it and a user. Additionally, it would work instantly on every web

application code base, since it would not require deployments or ad-hoc

setups. Finally, this method would also allow integration of the static

analysis in a CI/CD pipeline with gateway metrics, hence, automatically

analyzing and green-flagging versions that would meet the security re-

quirements set by an administrator. A static analysis approach for the

method would save the engineers several hours in manual testing since it

would be completely automated by a CI/CD pipeline.

5 Conclusion

The aim of this paper was to find a gap between industry and academia

in terms of web application session management security. We found a

method proposed by Garmabi et al. [15] that performs substantially better

than the ones available in industry. This indicates a gap that needs to be

taken into consideration by industry and professionals. We also proposed

a future research direction in order to improve the illustrated method in

order to make it effective.

References

[1] Acutenix. https://www.acunetix.com/. Accessed: April 12, 2023.

[2] Appscan. https://www.hcltechsw.com/appscan. Accessed: April 12, 2023.

[3] Burp suite. https://portswigger.net/burp. Accessed: April 12, 2023.

[4] Checkmarx. https://checkmarx.com/. Accessed: April 12, 2023.

[5] Fortify. https://www.ndm.net/sast/hp-fortify. Accessed: April 12, 2023.

[6] Netsparker. https://www.invicti.com/. Accessed: April 12, 2023.

[7] Owasp zap. https://www.zaproxy.org/. Accessed: April 12, 2023.

[8] Sonarqube. https://www.sonarsource.com/products/sonarqube/. Accessed:
April 12, 2023.

[9] Munir Ahmed, Lukman Sharif, Muhammad Kabir, and Maha Al-Maimani.
Human errors in information security. International Journal, 1(3):82–87,
2012.

[10] Wafaa Al-Kahla, Ahmed S. Shatnawi, and Eyad Taqieddin. A taxonomy
of web security vulnerabilities. In 2021 12th International Conference on
Information and Communication Systems (ICICS), pages 424–429, 2021.

[11] Anuj Baitha and Smitha Vinod. Session hijacking and prevention tech-
nique. International Journal of Engineering Technology, 7:193, 03 2018.

[12] A. Barth. Http state management mechanism. RFC 6265, RFC Editor, 04
2011.

[13] Stefano Calzavara, Riccardo Focardi, Marco Squarcina, and Mauro Tem-
pesta. Surviving the web: A journey into web session security. ACM Com-
puting Surveys, 50:1–34, 03 2017.

[14] Siromani Duddu, Arigela Rishita sai, Ch. L S Sowjanya, G.Ramakoteswara
Rao, and KarthikSainadh Siddabattula. Secure socket layer stripping at-
tack using address resolution protocol spoofing. In 2020 4th International
Conference on Intelligent Computing and Control Systems (ICICCS), pages
973–978, 2020.

[15] Nasrin Garmabi and Mohammad Ali Hadavi. Automatic detection and risk
assessment of session management vulnerabilities in web applications. In
2021 11th International Conference on Computer Engineering and Knowl-
edge (ICCKE), pages 41–47, 2021.

[16] Md Maruf Hassan, Shamima Nipa, Marjan Akter, Rafita Haque, Fabiha
Deepa, Md Mostafijur Rahman, Md Asif Siddiqui, and Md Hasan Sharif.
Broken authentication and session management vulnerability: A case study
of web application. International Journal of Simulation: Systems, Science
Technology, 19, 04 2018.

[17] IBM. Best practices for session management. Available at: https://www.ibm.com/docs/en/was/8.5.5?topic=sessions-
best-practices-using-http. Accessed: April 12, 2023.

[18] Vineeta Jain, Divya Sahu, and Deepak Tomar. Session hijacking: Threat
analysis and countermeasures. 02 2015.

[19] Mainduddin Ahmad Jonas, Md. Shohrab Hossain, Risul Islam, Husnu S.
Narman, and Mohammed Atiquzzaman. An intelligent system for prevent-
ing ssl stripping-based session hijacking attacks. In MILCOM 2019 - 2019
IEEE Military Communications Conference (MILCOM), pages 1–6, 2019.

[20] Ibéria Medeiros, Nuno Neves, and Miguel Correia. Dekant: A static analy-
sis tool that learns to detect web application vulnerabilities. In Proceedings
of the 25th International Symposium on Software Testing and Analysis, IS-
STA 2016, page 1–11, New York, NY, USA, 2016. Association for Computing
Machinery.

[21] Ibéria Medeiros, Nuno Neves, and Miguel Correia. Detecting and removing
web application vulnerabilities with static analysis and data mining. IEEE
Transactions on Reliability, 65(1):54–69, 2016.

[22] OWASP. Broken web application. Available at: https://github.com/chuckfw/owaspbwa.
Accessed: April 12, 2023.

[23] Open Web Application Security Project (OWASP). Available at: https://owasp.org/.
Accessed: April 12, 2023.

[24] Open Web Application Security Project (OWASP). Session management
cheat sheet. Available at: https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html.
Accessed: April 12, 2023.

[25] Cisco Press, Andrew Whitaker, and Daniel P Newman. Penetration testing
and network defense.

[26] Terranova Security. Cybersecurity statistics. Available at: https://terranovasecurity.com/cyber-
security-statistics/. Accessed: April 12, 2023.

An Analysis of Security Vulnerabilities in
JWT Implementations and Proposed
Mitigations

Dang Hai Luong
hai.luong@aalto.fi

Tutor: Aleksi Peltonen

Abstract

JSON Web Tokens (JWT) have emerged as a prominent authentication

method for accessing remote critical systems, offering a convenient and

scalable approach to secure data transmission. Despite its widespread

adoption, JWTs, like any other authentication method, exhibits certain ad-

vantages and disadvantages, including security flaws. This paper delves

into the design and inherent security issues of JWTs, providing a system-

atic analysis of the relevant Request for Comments (RFCs) and recent re-

search papers on the usage of JWTs in software systems. This study high-

lights the strengths and vulnerabilities of JWTs, underscoring the impor-

tance of adhering to best practices to mitigate the associated risks. While

JWTs possess flaws, effective solutions and strategies exist to address these

challenges. By employing best practices and maintaining a proactive secu-

rity posture, developers can harness the power of JWTs while minimizing

potential security threats.

KEYWORDS: JWT, JWE, vulnerabilities, mitigations

1 Introduction

The JSON Web Token (JWT) is a widely adopted authentication standard

for securing user sessions and authorization information. It functions as

a secure means of transmitting data between two entities, such as an

Application Programming Interface (API) server and a client application,

by encoding user claims, such as identity and attributes, into a compact

and self-contained structure [25]. The digital signature embedded within

the JWT provides a secure method of verifying the authenticity of the

token, thereby mitigating threats such as session hijacking, man-in-the-

middle attacks, and replay attacks [18].

However, despite its widespread use and security features, JWT tokens

are subject to security vulnerabilities that must be understood and prop-

erly addressed by developers. This requires a comprehensive examination

of the token structure, signature algorithms, and potential attack vectors,

as well as the implementation of appropriate mitigation strategies to en-

sure the secure use of JWT in authentication and authorization processes

[1].

This paper comprehensively examines the various security vulnerabili-

ties associated with JWT. The vulnerabilities discussed include improper

storage of secret keys, the absence of expiration time, the absence of revo-

cation mechanisms, and the predictability of token generation logic. Fur-

thermore, the paper presents thorough and effective countermeasures to

mitigate these risks and enhance the security of JWT implementations.

Section 2 describes the technical details of JWT tokens. Section 3 in-

troduces the best usages and security issues of JWT tokens. Section 4

outlines the effective countermeasures that can be implemented against

these attacks. Section 5 closes out the article with some final thoughts.

2 JSON Web Token structure

This section provides an in-depth analysis of the structural composition

of JSON Web Tokens (JWT) and its underlying security model.

2.1 JavaScript Object Notation

JavaScript Object Notation (JSON) is a lightweight data-interchange for-

mat that is easy for humans to read and write and easy for machines to

parse and generate. JSON is a text-based format, which means that it

consists of key-value pairs written as strings. RFC 8259 [2] specifies that

keys are always strings, while the values can be strings, numbers, objects,

arrays, or a few other simple data types. Here’s an example of a simple

JSON object:

1 {

2 "name": "John Doe",

3 "age": 35,

4 "email": "john.doe@example.com"

5 }

The widespread use of JSON as a data interchange format in modern

web applications has led to its incorporation as the underlying structural

format for JSON Web Tokens (JWT). The lightweight and easily readable

nature of JSON makes it an ideal candidate for facilitating communica-

tion between client and server in these applications [24].

2.2 Content of JWT Tokens

A JSON Web Token (JWT) typically consists of three parts: a header, a

payload, and a signature [22].

1. Header: The header defines the type of the token (JWT) and the sign-

ing algorithm used to secure the token. It is a JSON object that is

Base64Url encoded to form a compact and URL-safe string.

2. Payload: The payload contains the claims, which are statements about

an entity (typically, the user) and additional data. Claims can be used

to represent user identity, roles, and permissions, as well as other infor-

mation. The payload is also a JSON object that is Base64Url encoded.

3. Signature: The signature is used to verify that the sender of the JWT

is who it claims to be and to ensure that the contents of the JWT have

not been tampered with. It is generated using the header and payload

and a secret key known only to the server, or a public/private key pair.

Figure 1 outlines an example JWT Token with headers, payload and

signature parts.

The three parts are concatenated with dots, forming a compact and self-

contained string, which can be transmitted securely between parties. The

Figure 1. An example of JWT Token

recipient of the JWT can then decode the token and use the information

contained within it for authentication and authorization purposes [22].

2.3 JWT token claims

The claims in the payload of a JSON Web Token (JWT) are statements

about an entity, typically a user, that can be used for authentication and

authorization purposes. Claims can include information such as the user’s

identity, roles, and permissions, as well as other information that may be

relevant to the application. There are three types of claims: registered,

public, and private claims [11].

1. Registered Claims: These are a set of predefined claims, such as "iss"

(issuer), "sub" (subject), "aud" (audience), "exp" (expiration time), and

"iat" (issued at time), that are standardized and widely used.

2. Public Claims: These are claims that are defined by the application

and are not part of the registered claims set. They can be used to convey

additional information about the user or the application, such as the

user’s name, email address, or custom attributes.

3. Private Claims: These are claims that are used only between the par-

ties involved in the JWT exchange and are not meant to be shared with

other parties.

The claims contained in the payload of a JWT are encoded as a JSON

object and can be read and processed by the recipient of the token.

3 JWT Token usage

The utilization of JSON Web Tokens (JWT) as a mechanism for authenti-

cation and authorization in modern systems is a prevalent and powerful

approach. However, it is crucial to employ proper usage strategies in or-

der to mitigate potential security vulnerabilities and ensure the secure

implementation of JWT in such systems.

3.1 Correct usage of JWT Tokens

JSON Web Tokens (JWT) should be used in a secure manner to ensure the

protection of sensitive information and to prevent unauthorized access.

The following are general best practices for using JWT:

1. Signing: JWT tokens should be signed using a secure signing algo-

rithm, such as Hash-based Message Authentication Code with Secure

Hash Algorithm 256-bit (HMAC SHA-256) [10] or Rivest-Shamir-Adleman

(RSA) [14]. The secret key used for signing should be kept confidential

and securely stored on the server.

2. Encryption: If the payload of the JWT contains sensitive information,

it should be encrypted using a secure encryption algorithm, such as Ad-

vanced Encryption Standard (AES) [17]. The encryption key should also

be kept confidential and securely stored.

3. Validation: The recipient of the JWT should validate the signature of

the token to ensure that it was not tampered with during transmission.

The recipient should also validate the claims contained in the payload,

such as the expiration time and issuer, to ensure that the token is still

valid.

4. Expiration: JWT tokens should have an expiration time set, after

which they are no longer valid. This helps to prevent replay attacks,

where a token that has already been used is resubmitted for unautho-

rized access.

5. Revocation: JWT tokens should be revocable, so that they can be in-

validated if necessary. This can be achieved by maintaining a list of

revoked tokens on the server, or by using an OAuth2.0 revocation end-

point [6].

6. Secure storage: JWT tokens should be stored securely on the client,

such as in an HTTP-only and secure cookie, to prevent theft by malicious

JavaScript code.

By following these best practices, JWT tokens can be used in a secure

and reliable manner for authentication and authorization purposes in

modern web applications and APIs [20].

3.2 Malicious use of JWT Tokens

The utilization of JSON Web Tokens (JWT) as a form of authentication

for remote access to critical systems is a widely adopted practice. The

tamper-resistant nature of JWT, achieved through digital signatures, pre-

vents malicious forgery and ensures the authenticity of the token [18].

However, tampering with the payload of the JWT can result in an invalid

signature and grant unauthorized access to the critical system. Addition-

ally, malicious manipulation of the JWT’s issuance time claim, allowing

for early use, can lead to malicious acts. Tampering with the user iden-

tifier stored within the JWT token can also result in the approval of re-

quests on behalf of other users. This vulnerability was demonstrated in

scenario number 5, test 8 of the JWT Token attack scenario. Further-

more, JWT tokens can potentially be utilized for the retrieval of sensitive

information from a user’s account or for the dynamic generation of data in

mobile applications, highlighting the need for proper security measures to

be in place. [3].

3.3 JWT Token vulnerabilities

If a JWT Token is not properly secured, an attacker can gain access to a

user’s account without having to provide any credentials. This is because

the token is a self-contained structure that contains all the information

needed for authentication, including the user’s identity and access rights

[15]. Here are the popular vulnerabilities of JWT tokens:

1. Insecure storage of secret key: The secret key used to sign and

verify JWT tokens must be kept secure. If an attacker gains access to

this key, they can create their own tokens and impersonate a legitimate

user [5].

2. Lack of expiration: JWT tokens do not have an expiration time by

default. This means that if a token is stolen, it can be used indefinitely.

To mitigate this, the JWT token should include an expiration time in

the claims of the token and validate it on the server [12].

3. Lack of revocation: Once a token is issued, there is no built-in mech-

anism for revoking it. Attackers may use social engineering tactics to

trick users into providing their JWT, such as phishing or pretexting.

This implies that in the event of a user’s account being compromised, it

is infeasible to instantaneously inhibit the attacker from utilizing the

tokens that have previously been issued [12].

4. Predictable token generation: Attackers can predict token genera-

tion if the secret key used to sign the tokens is not sufficiently random

or is compromised in some way. To prevent this, it is important to use a

strong and secure secret key and to rotate it periodically [4].

4 Prevention methods

In order to protect JWT Tokens, it is essential to understand the various

aspects of the JOSE (JavaScript Object Signing & Encryption) collection

of specifications which define the JWT token format [16]. To secure the

transmission of JWTs with confidential information that is unencrypted,

it is important to use encryption protocols that provide endpoint authen-

tication, such as Transport Layer Security (TLS), an encrypted JWT and

authentication of the recipient should be used [11]. A set of unguessable

tokens should be created employing different modes for encryption and

token signing listed in RFC 7515 [16, 8], while the "iss", "sub", and "aud"

Header Parameter names should be registered for unsecured replicas of

these claims in encrypted JWTs [11].

Furthermore, a rule should be implemented that checks whether a JWT

is encrypted before decrypting it [11]. To securely represent claims be-

tween two parties, a JWT should be used in OpenID Connect 1.0 [19] or

OAuth 2.0 protocols [6], in a compact, URL-safe format. It is advisable to

compare the size of the JSON MEC Access Token (JMAT) and the time

required for generation and encryption of these tokens using a variety

of encryption algorithms and signing modes. The JSON Web Encryption

(JWE) approach provides security by encrypting data with a secret key,

making it inaccessible to rogue clients or Man-in-the-middle attackers. In

the event that an attacker attempts to tamper with the payload, the JWE

Authentication Tag verification will fail, causing the server to reject the

signature [16].

To further protect JWTs, a hash function that is collision-resistant and

produces a unique hash for each object should be used. Rules should be

implemented that ensure only authorized JWTs can be used to make Ap-

plication Programming Interface (API) requests, and that only authorized

users can access JWTs [11].

4.1 What kind of encryption algorithm is used for JWT Token
security?

In order to ensure the security of JWT Token data, encryption algorithms

are used to protect the data from unauthorized access. [21] JSON Web

Encryption (JWE) is the primary encryption algorithm used for JWT To-

ken security [16, 21]. JWE is defined in the RFC 7516 [9] and uses a

symmetric encryption key to protect the JWT data from unauthorized ac-

cess [21]. In addition, the symmetric encryption key is derived from the

symmetric encryption key used to encrypt the JWT. The key generation

process can be done together with the token generation process, and the

symmetric encryption key used is the same as the symmetric encryption

key used to encrypt the JWT [16]. Unencrypted JWTs, however, should

only be used when a JWT is cryptographically protected by other means,

and JWT libraries should not consume or generate JWTs using the "none"

algorithm unless explicitly requested by the caller [21].

4.2 Use rate limiting and request logging to detect attacks and
protect data

In order to protect data and detect malicious attacks, rate limiting and

request logging are two important steps. Rate limiting is a technique that

is used to restrict the rate of requests sent from a particular source to

a server. This technique is used to protect against malicious attacks by

limiting the number of requests that can be sent from a specific source in

a given period of time [13].

Request logging is also used to protect data and detect malicious attacks.

It is the process of logging all requests sent to a server in order to monitor

and detect suspicious activities. Using this method can be used to detect

malicious requests, such as those sent by an attacker attempting to gain

access to the server. It can also be used to detect suspicious activities,

such as a user attempting to access data they are not authorized to access

[7, 23].

Together, rate limiting and request logging can be used to protect data

and detect malicious attacks. They can help to ensure that only autho-

rized requests are sent to the server and that suspicious activities are

identified and dealt with quickly and effectively.

5 Conclusion

The utilization of JSON Web Tokens (JWT) has become a prevalent method

for authenticating and authorizing access within web applications. the

token offers a standardized format for exchanging information between

parties, thus facilitating integration with various systems. Despite its

advantages, the implementation and usage of JWT are not immune to

security vulnerabilities.

Incorrect implementation and usage of JWT can lead to security risks.

Nevertheless, these risks can be mitigated through the implementation

of appropriate security measures. The utilization of strong signing algo-

rithms can significantly enhance the security of JWT. Furthermore, the

implementation of token expiration and revocation mechanisms can pre-

vent replay attacks and guarantee the invalidation of tokens as necessary.

In conclusion, JWT has become a widely adopted method for authentica-

tion and authorization in web applications due to its standardization and

ease of integration. Although it is not without its security vulnerabilities,

these risks can be effectively mitigated through proper implementation

and the adoption of appropriate security measures.

References

[1] Salman Ahmed and Qamar Mahmood. An authentication based scheme for
applications using JSON web token. In 2019 22nd International Multitopic
Conference (INMIC), pages 1–6, 2019. ISSN: 2049-3630.

[2] Tim Bray. The JavaScript object notation (JSON) data interchange format.
Num Pages: 16.

[3] Rasa Bruzgiene and Konstantinas Jurgilas. Securing remote access to in-
formation systems of critical infrastructure using two-factor authentication.
Electronics, 10(15), 2021.

[4] Dedipyaman Das, Sibi Chakkaravarthy Sethuraman, and Suresh Chandra
Satapathy. A decentralized open web cryptographic standard. Computers
and Electrical Engineering, 99:107751, 2022.

[5] Manik Lal Das and Navkar Samdaria. On the security of SSL/TLS-enabled
applications. Applied Computing and Informatics, 10(1):68–81, 2014.

[6] Dick Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, October
2012.

[7] Bartosz Jasiul, Rafal Piotrowski, Przemysław Bereziński, Michal Choraś,
Rafal Kozik, and Juliusz Brzostek. Federated cyber defence system —
applied methods and techniques. In 2012 Military Communications and
Information Systems Conference (MCC), pages 1–6, 2012.

[8] Michael Jones, John Bradley, and Nat Sakimura. JSON web signature
(JWS), 2015. Num Pages: 59.

[9] Michael Jones and Joe Hildebrand. JSON web encryption (JWE). Num
Pages: 51.

[10] Dr. Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing
for Message Authentication. RFC 2104, February 1997.

[11] Jones M., Bradley J., and Sakimura N. JSON Web Token (JWT), 5 2015.

[12] Ryan Melton. Securing a cloud-native c2 architecture using sso and jwt. In
2021 IEEE Aerospace Conference (50100), pages 1–8, 2021.

[13] Jarmo Mölsä. Effectiveness of rate-limiting in mitigating flooding dos at-
tacks. In Communications, Internet, and Information Technology, pages
155–160. Citeseer, 2004.

[14] Kathleen Moriarty, Burt Kaliski, Jakob Jonsson, and Andreas Rusch. PKCS
#1: RSA Cryptography Specifications Version 2.2. RFC 8017, November
2016.

[15] Alison PhD Munsch and Peter MBA Munsch. The future of api (application
programming interface) security: The adoption of apis for digital communi-
cations and the implications for cyber security vulnerabilities. Journal of
International Technology and Information Management, 29(3), 2021.

[16] Wojciech Niewolski, Tomasz W. Nowak, Mariusz Sepczuk, and Zbigniew Ko-
tulski. Token-based authentication framework for 5g mec mobile networks.
Electronics, 10(14), 2021.

[17] National Institute of Standards and Technology. Advanced encryption stan-
dard (AES), Nov 2001.

[18] Badr Eddine Sabir, Mohamed Youssfi, Omar Bouattane, and Hakim Allali.
Authentication model based on JWT and local PKI for communication se-
curity in multi-agent systems. In Mohammed Serrhini, Carla Silva, and
Sultan Aljahdali, editors, Innovation in Information Systems and Technolo-
gies to Support Learning Research, Learning and Analytics in Intelligent
Systems, pages 469–479. Springer International Publishing, 2020.

[19] N Sakimura, J Bradley, Ping Identity, M Jones, B de Medeiros, and E Jay.
Openid connect standard 1.0-draft 15, 2012.

[20] Y Sheffer, D Hardt, and M Jones. Json web token best current practices.
RFC 8725, 2020.

[21] Y. Sheffer, D. Hardt, and M. Jones. JSON Web Token Best Current Practices,
2 2020.

[22] Krishna Shingala. JSON web token (JWT) based client authentication in
message queuing telemetry transport (MQTT).

[23] Uttam Thakore. A quantitative methodology for evaluating and deploying
security monitors, 2015.

[24] Ming Ying and James Miller. Refactoring legacy AJAX applications to im-
prove the efficiency of the data exchange component. Journal of Systems
and Software, 86(1):72–88, 2013.

[25] Gongxuan Zhang, Mingyue Zhang, and Xinyi Fan. Improvements based
on JWT and RBAC for spring security framework. In Shui Yu, Peter
Mueller, and Jiangbo Qian, editors, Security and Privacy in Digital Econ-
omy, Communications in Computer and Information Science, pages 114–
128. Springer, 2020.

A Survey of Deep Learning Based Video
Codecs

Henri Katvio
henri.katvio@aalto.fi

Tutor: Matti Siekkinen

Abstract

With resolutions growing in video the bandwidth requirements are ever

growing. Transmitting video over the Internet takes a lot of the capacity.

To combat this, video codecs are being developed to compress the video for

lower bandwidth requirement while retaining the quality of the video. This

paper takes a look at deep learning based video codecs to understand the

challenges with and different approaches of deep learning video codecs.

KEYWORDS: deep learning, neural network, video, codec, HEVC, VVC,

super resolution, frame interpolation

1 Introduction

As of 2023, more than 80% of the internet traffic could be attributed to

video content [12]. Thus it is of utmost importance to develop more ef-

ficient video codecs. More efficient video codecs mean that the bitrate of

the video should be lower without a reduction in perceived video quality.

Additionally, Internet of Things (IoT) devices have become prevalent, with

Machine to Machine (M2M) connections becoming all the more common in

2023 [6]. In 2023, it is estimated that there are 14.7 billion M2M connec-

tions. A lot of these connections are home security and video surveillance

systems, telemedicine and smart car navigation systems.

Traditional video codecs are constantly evolving to be more efficient.

However, transformations on the video are not always obvious and can

not always be implemented to traditional codecs. Deep learning allows

for a few novel approaches, such as pixel probability modelling and auto-

encoder [11]. This, however, also enables a novel adversarial attack pos-

sibility [4].

This paper explores the most important approaches to reducing the bi-

trate of the video with deep learning based video codecs as well as takes a

deeper look at one of the proposed codecs. Additionally, an attack against

deep learning based video coding is quickly presented.

This paper is organised as follows. Section 2 introduces the approaches

to reduce the bitrate mainly concerning itself in the algorithms. Section

3 presents one deep learning based video codec more thoroughly, while

section 4 introduces an adversarial attack on learning based video codecs

and finally section 5 concludes the paper.

2 Approaches to Reduce Bitrate

As over 80% of the internet traffic is video, it is important that the bitrate

of the video is reduced to as low as possible. Bitrate means the amount

of bits the video takes per second of the video, measured in megabits per

second. A common format for storing pictures and video is the YCbCr

420, a colour format that stores luminance and chrominance instead of

the raw colour values like RGB does [13]. The bitrate for uncompressed

YCbCr 420 video can be calculated as follows: to represent four pixels,

there are four Y samples, one Cb sample and one Cr sample, a byte each.

This means that six bytes are used, averaging 12 bits per pixel. In FullHD

video at 30 frames per second, a single frame consists of 1920*1080*12

= 24883200 bits and a single second 30 times that, meaning 746496000

bits per second, or about 747 Mbps. Since the vast majority of wireless

networks, or wired networks to end users cannot transmit that amount of

data, a codec is needed that can compress the video to use less data.

There are numerous approaches to reduce the bitrate. [5] uses a predic-

tive encoder, residual encoder and Huffman entropy coding. On the other

hand, [12] uses more traditional methods, motion estimation, compres-

sion and compensation, transforms and quantization, entropy coding and

frame reconstruction. Each of these steps are done using neural networks.

This section presents two different approaches to reducing the bitrate of

the video used in deep learning based video codecs.

2.1 Traditional video codecs

The most used video codec in the internet is the H.264 or Advanced Video

Coding (AVC) [7]. This can be seen for example with YouTube, where

livestreaming is only possible using the AVC format [1]. AVC does a

few things to reduce the bitrate [14]. A lot of the information is dis-

carded through quantization, by analysing the information frequency of

the frame and then removing unnecessary parts. Of course, since YCbCr

takes less space than full RGB colour, it is used instead. The process of

transforming from RGB colour space to YCbCr is called Chroma Subsam-

pling. While those techniques work within the context of a single frame,

compression is done in temporal dimension too. In AVC, some frames are

full frames, but some are only a difference from the last full frame. This

means that the these frames containing only motion vector deltas are a

small fraction of the space of a full frame. When decoding the video, the

delta is added to the last full frame to get a full frame for viewing.

2.2 Super-Resolution Neural Networks

One efficient way to reduce the bandwidth is to drop the resolution of the

transmitted video. If the resolution is dropped from FullHD to HD, the re-

quired bandwidth for the same uncompressed format would drop with the

same proportion than the resolution, meaning (1280*720) / (1920*1080)

= 0.444. This means that the resulting bandwidth is less than half of the

original bandwidth.

To still achieve the same quality and resolution at the viewers end,

techinques such as super-resolution is needed. The idea behind super-

resolution is to train a neural network, commonly a deep convolutional

neural network (DCNN), to reconstruct the high-resolution image from

the low-resolution one. An enchanced deep super-resolution network (EDSR)

is presented in [10] that applies to single images. In the work, EDSR

is created from few convolutional layers with 64 feature maps, residual

blocks and a pre-trained x2 network, that can be replaced to gain different

upscaling factors. As the algorithm is essentially conventional ResNet ar-

chitecture with unnecessary modules removed, it can be trained and used

quicker and the model size is reduced. While the work is created for single

images, it can be applied to video by computing the results for consecutive

frames.

Nvidia has used the same idea with their deep learning supersampling

(DLSS) and AMD with their FidelityFX Super Resolution (FSR). Both

technologies show that upscaling with neural networks is both a feasible

and a practical approach to improving image quality from a lower reso-

lution image. It is possible to perform the operation quickly enough for

framerates of the video. Downside of the technique is the still heavy cost

of computing power required.

2.3 Frame interpolation

The bandwidth required to transmit the video is heavily impacted by the

framerate of the video. If half of the frames can be dropped in the encoding

stage and reconstructed during the decoding stage, a lot of the bandwidth

could be saved. There are many ready solutions to do frame interpolation

but they are often computationally and/or spatially heavy. For example,

Super SloMo, presented in [8], takes up 158.4MB of space [16]. As the re-

search has continued, however, more effective methods have been created

that take less space, such as using convolutional neural network based

spatial pyramids [16]. This methodology achieves generally either as good

or better results as Super SloMo while taking only 9.0MB of space. Of

course, the research into the topic continues and more advanced methods

are always being developed. Today, there are various different commercial

players working on the topic too, such as Runway.

3 Enhancing Versatile Video Coding With Deep Learning

Deep learning based video codecs can also be used to improve traditional

video codecs not utilising deep learning. This section presents one such

technology: WSE-DCNN-based in-loop filtering for VVC [2]. Before that,

Versatile Video Coding is presented.

3.1 Versatile Video Coding

After the resolution of streamed video quickly rose to UHD or 4K and

the average television in homes used that resolution, it became clear that

more efficient codecs were needed. HEVC or H.265, follower of AVC im-

proved the bitrate for the same quality video by 50%, but it was not quite

enough. After a Joint Video Exploration Team comprised of VCEG and

MPEG joined forces and created a Joint Exploration Test Model demon-

strating more than 30% improvement over HEVC, it was decided that it

was a time for a new standard [3]. The resulting standard was named

Versatile Video Coding, VVC for short. VVC is also known as H.266.

The format has inherited many high level features from the previous

codecs, AVC and HEVC. As an example, the data is processed in coding

tree units (CTU) that are further partitioned to coding tree blocks (CTB),

one for each luma and chroma components [15, 9]. CTUs can be divided

into coding units (CU). To enable random access (meaning the video does

not need to always be watched from the start), instantaneous decoding

refresh (IDR) or sometimes clean random access (CRA) pictures are used.

A difference to previous codecs is that the spatial resolution can change

in other places than at an IDR picture too. Reference picture resampling

(RPR) allows for down- or upsampling of inter-coded pictures so that ad-

ditional IDR are not needed for resolution changes mid-stream. VVC also

adds support for bitstream extraction and merging (BEAM) operations,

meaning that only a subpicture of the whole video can be transmitted at a

time, an important feature for a 360° video, where user is looking at only

a small portion of the whole picture at a time [3].

In VVC, the last step before acquiring the reconstructed frame is the

in-loop filtering. In-loop filtering is not a concept that has been intro-

duced specifically for VVC, but it was used in HEVC previously. The

block is comprised of different filters combined together, all being ap-

plied to the frame. These filters are luma mapping with chroma sampling

(LMCS), long deblocking filters, luma-adaptive deblocking, adaptive loop

filter (ALF) and cross-component ALF [9]. The filters are called in-loop

filters as they are applied in both encoding and decoding loops. Each of

the filters serve a different purpose, but collectively they increase coding

efficiency, reduce artefacts and blocking discontinuities, and enhance the

reconstructed signal.

3.2 In-loop filter replacement with WSE-DCNN

Bouaafia et al. [2] have developed a way to replace the conventional in-

loop filters of VVC with a so called wide-activated squeeze-and-excitation

deep convolutional neural network (WSE-DCNN) model. It eliminates

compression artifacts to increase perceived visual quality and end user

quality of experience (QoE). As only the in-loop filters of VVC are changed,

visual quality could be improved without any increase in bandwidth.

The proposed model has six inputs, three for YUV components and three

for quantization parameter and coding unit for luminance and chromi-

nance. As outputs, the model gives the three components luma Y and

chroma U and V. The structure of the model is beyond the scope of this

paper, but it is available to read in [2].

In the paper, the model is trained offline with TensorFlow GPU frame-

work using an NVidia RTX 2070 graphics card. As the loss function, mean

square error is used and peak signal-to-noice ration (PSNR) is used for

validation. Bjontegaard delta bit rate (BD rate) is used as the assess-

ment metric. The researchers show that the BD rate reduction for luma Y

component is 2.85%, while the reduction for chroma U and V components

is 8.89% and 10.05% respectively. At the same time, the time overhead

for encoding is increased to 122%. For decoding, the time overhead is

increased to 1648.76% due to CPU-GPU memory copy operations [2]. It

could therefore be noted that the increase in decoding makes the technol-

ogy not yet suitable for resource constrained IoT devices. For encoding,

the difference seems sufficiently small.

4 Reduction of Video Service Quality via Adversarial Attacks

As with all other machine learning based technologies, video codecs can

be targets for attack too. Chang et al. [4], therefore have developed novel

adversarial attacks against deep learning video codecs. Their goal is to

either reduce the video quality, increase the bandwidth required or both

simultaneously, depending on the attack.

The attack is carried out in the first stage of the pipeline from camera to

the back-end, meaning the picture is modified before being encoded. Their

assumption is this is done using malware or man-in-the-middle scheme.

As the goal of the researchers is for the attack to last a longer period of

time, the perturbations on the image should be imperceptible to visual

examination as to hide the source of the attack.

Applying the perturbations in offline mode, where there is access to the

whole video is not time constrained and the attack can be customised to

the video. In online mode, there is however a time constraint and no

access to the whole video, but only a single frame at a time. This is the

case in, for example, streaming. In this case, a universal perturbation

designed beforehand offline is needed. This can be applied to the frame

essentially in real time.

The researchers show that their methodology is indeed effective at re-

ducing the quality of experience. Their attack can drop the PSNR by 2.30

- 3.24dB in different scenarios and increase the required bandwidth over

2x in offline scenarios and 1.52x even in unseen models in online scenar-

ios. Additionally, the attack on video quality introduces visible artefacts

and noise on the video after decoding. As of April 12th, 2023, a demon-

stration for the attack is available in https://sites.google.com/view/demo-

of-rovisq/home .

5 Conclusion

As the few examples show, deep learning based video codecs can offer ad-

vantages over more traditional simple algorithm based ones. With many

devices having a lot of computational power, their main idea is to ex-

change that power to reduced network bandwidth requirement. While

this is true for many of the devices, such as smartphones and computers,

many devices are computationally limited. These include many multime-

dia IoT devices which include only a small microcontroller but their func-

tionality relies on sending video over internet. For example baby mon-

itors and surveillance cameras belong to this category. For these, deep

learning video codecs are not a good fit. In these environments, replac-

ing just parts of existing video codecs with light pre-trained models, such

as WSE-DCNN introduced in subsection 3.2, can offer promising alterna-

tives. With the encoding being the only process done on the device, a 22%

increase to encoding time could be acceptable.

Nevertheless, the research to these types of codecs has been ongoing

mainly in very recent years and the technology is not yet matured to the

point where traditional codecs could be given up entirely in coming years.

Algorithm-based video codecs will continue to improve as well, together

with deep learning based ones.

References

[1] Choose live encoder settings, bitrates, and resolutions.

[2] Soulef Bouaafia, Randa Khemiri, Seifeddine Messaoud, Olfa Ben Ahmed,
and Fatma Ezahra Sayadi. Deep learning-based video quality enhancement
for the new versatile video coding. Neural Computing and Applications,
34(17):14135–14149, Sep 2022.

[3] Benjamin Bross, Ye-Kui Wang, Yan Ye, Shan Liu, Jianle Chen, Gary J. Sul-
livan, and Jens-Rainer Ohm. Overview of the versatile video coding (vvc)
standard and its applications. IEEE Transactions on Circuits and Systems
for Video Technology, 31(10):3736–3764, Oct 2021.

[4] Jung-Woo Chang, Mojan Javaheripi, Seira Hidano, and Farinaz Koushan-
far. Rovisq: Reduction of video service quality via adversarial attacks on
deep learning-based video compression. Network and Distributed System
Security Symposium 2023, Dec 2022. arXiv:2203.10183 [cs].

[5] Tong Chen, Haojie Liu, Qiu Shen, Tao Yue, Xun Cao, and Zhan Ma. Deep-
coder: A deep neural network based video compression. In 2017 IEEE
Visual Communications and Image Processing (VCIP), page 1–4, Dec 2017.

[6] Cisco Company. Cisco annual internet report (2018-2023) white paper.
2020.

[7] H Y El-Arsh, A S Elliethy, A M Abdelaziz, and H A Aly. Performance com-
parison among popular implementations of h.264 encoders. IOP Conference
Series: Materials Science and Engineering, 1172(1), Aug 2021.

[8] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik G.
Learned-Miller, and Jan Kautz. Super slomo: High quality estimation of
multiple intermediate frames for video interpolation. CoRR, abs/1712.00080,
2017.

[9] Marta Karczewicz, Nan Hu, Jonathan Taquet, Ching-Yeh Chen, Kiran Misra,
Kenneth Andersson, Peng Yin, Taoran Lu, Edouard François, and Jie Chen.
Vvc in-loop filters. IEEE Transactions on Circuits and Systems for Video
Technology, 31(10):3907–3925, 2021.

[10] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu
Lee. Enhanced deep residual networks for single image super-resolution.
(arXiv:1707.02921), Jul 2017. arXiv:1707.02921 [cs].

[11] Dong Liu, Yue Li, Jianping Lin, Houqiang Li, and Feng Wu. Deep learning-
based video coding: A review and a case study. ACM Computing Surveys,
53(1):1–35, Jan 2021. arXiv:1904.12462 [cs, eess].

[12] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong
Gao. Dvc: An end-to-end deep video compression framework. (arXiv:1812.00101),
Apr 2019. arXiv:1812.00101 [cs, eess].

[13] Charles Poynton. Merging computing with studio video: Converting be-
tween r’g’b’ and 4:2:2. Feb 1998.

[14] International Telecommunication Union. Advanced video coding for generic
audiovisual services, Aug 2021.

[15] International Telecommunication Union. Versatile video coding, Apr 2022.

[16] Jiankai Zhuang, Zengchang Qin, Jialu Chen, and Tao Wan. A lightweight
network model for video frame interpolation using spatial pyramids. In
2020 IEEE International Conference on Image Processing (ICIP), page 543–547,
Oct 2020.

Comparative of security tools for the
cloud

Iikka Näsälä
iikka.nasala@aalto.fi

Tutor: Jose Luis Martin Navarro

Abstract

The cloud-native technology Kubernetes is getting more and more atten-

tion from businesses and organizations. It is a powerful tool that is redefin-

ing the way that applications are built and deployed. But regardless of its

popularity, it comes with vulnerabilities and many misconfiguration pos-

sibilities. The goal of this paper is to investigate various security tools for

Kubernetes, including Kube-bench, Kube-hunter, Clair, Istio, Calico, and

Falco, and evaluate their capabilities in securing different layers of Ku-

bernetes infrastructure. By employing multiple security tools users benefit

from each tool’s strengths, leading to a robust, defense-in-depth approach

that secures every layer of Kubernetes. The paper is a literature review that

mostly investigates the documentation of the tools, in addition to other sci-

entific articles and surveys.

KEYWORDS: Cloud Computing, Kubernetes, Cybersecurity, Security tools,

Best practices

1 Introduction

The cloud is a broad term referring to a global network of remote servers

and data centers that are accessible over the Internet. These servers are

used for cloud computing, which according to the U.S. National Institute of

Standards and Technology (NIST) is defined as "a model for enabling ubiq-

uitous, convenient, on-demand network access to a shared pool of config-

urable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction" [1]. Nowadays, cloud

computing is becoming increasingly popular among businesses, organiza-

tions, and other private users, due to its flexibility, scalability, and rel-

atively low cost of use compared to traditional computing [2]. The way

the cloud provides scalable on-demand delivery of information technol-

ogy (IT) resources via the Internet brings an easy approach to storing,

sharing, and organizing data without having to manage or maintain the

infrastructure [3].

However, cloud computing does not come without concerns, with secu-

rity being the main one. Many businesses and educational organizations

are cautious about depending entirely on cloud computing and transfer-

ring their digital resources to third-party vendors. Even if the cloud ser-

vice provider (CSP) trusts its customers, the users may not trust one an-

other. [4] The security of cloud-native technology Kubernetes (K8s) was

declared a major priority in 2022 [5].

This paper examines the problem of the lack of consensus on the de-

fense approach for security threats connected to a cloud-native technology

Kubernetes. More specifically, the paper explores different types of open-

source security tools for K8s and investigates their compatibility. The

paper also describes known K8s vulnerabilities and lists the best security

practices to be used when deploying a K8s cluster.

The paper is a literature review and is organized into six sections as

follows. Section 2 provides an overview of cloud security and briefly dis-

cusses the Kubernetes framework. The third section presents best prac-

tices for safe K8s cluster deployment and touches upon vulnerabilities

that K8s users should be aware of. Section 4 lists and describes popu-

lar open-source security tools, with different focus areas, for K8s. Finally,

section 5 analyses the tool usage, and section 6 concludes the literature

review.

2 Cloud security overview

As businesses and organizations transition to cloud-based solutions for

storing and processing data, understanding the security requirements be-

comes progressively crucial [4]. Regarding this problem, cloud security

has its own tools, protocols, policies, best practices, standards, and compli-

ance procedures for protecting against cyber threats [6]. Although these

methods are impressive, they do not come without difficulties.

In the cloud computing environment, the customers take care of their

own applications, data, and access control, but no longer own the infras-

tructure, and thus the traditional security architecture does not apply

anymore [7]. A compromise in the availability, integrity, or confidentiality

of cloud resources may generate new security issues [8]. Hence it is im-

portant for businesses and organizations to have a clear consensus about

their responsibilities and what security measures to implement to protect

their data [7].

In the following chapters, the paper will shift its focus to the cloud-

native technology K8s, as it is the most prominent and popular option for

orchestrating container-based solutions, according to Datadog’s container

report (2022). [9]

3 Kubernetes

Kubernetes is an open-source container orchestration platform that sim-

plifies declarative configuration and automation for containerized work-

loads and services. It provides the user with a framework with many

useful qualities, such as service discovery and load balancing, storage

orchestration, secret and configuration management, self-healing, and

more. [10] K8s’s primary design objective is to facilitate the deployment

and management of complex distributed systems while maintaining the

advantages of container usage [11].

However, setting up a Kubernetes cluster and configuring it to deploy

the desired applications can be challenging and gets more difficult the

more complex the distributed systems are. This often results in configura-

tions that focus more on functionality rather than security. Nevertheless,

security should be one of the top priorities. The following subsection will

shed some more light on the Kubernetes architecture, in order to deepen

the understanding of the various threat-prone surfaces.

Figure 1. Kubernetes cluster.

3.1 Components

The main purpose of Kubernetes is to deploy, control, and scale container-

ized applications. This is done by running the containerized workloads

on Pods, which are the basic units of K8s deployment. By using Pods, it

becomes feasible to logically structure and segregate containers that op-

erate collectively. Nodes are the element that handles the workloads us-

ing container-runtime, kube-proxy, and kubelet. [10] Container-runtime

refers to the software that runs the containers e.g. Docker, Containerd, or

CRI-O. Every node in the cluster runs a kube-proxy, a network proxy that

takes care of inside and outside communications, as well as the network

rules on nodes in addition to acting as a load balancer. Kubebelet on the

other hand is an agent that manages the containers running in the Pod.

It also takes care of the communication between the application program-

ming interface (API) server, also known as kube-apiserver. [12] New Pods

are scheduled to run on a node in a Kubernetes cluster, as figure 1 demon-

strates. These nodes and Pods are managed by the control plane, con-

sisting of etcd, kube-apiserver, kube-scheduler, kube-controller-manager,

and cloud-controller-manager. The etcd is a key-value store that contains

all data related to the cluster’s status. Kube-apiserver is an interface

used by admins to control Kubernetes and kube-controller-manager is a

component that handles various control processes, e.g. monitoring and

responding to Pod failures. The cloud-controller-manager also runs con-

troller processes, but specific to the cloud provider. It is used to link the

cluster to the cloud provider’s API. [10]

3.2 Vulnerabilities and best practices

Kubernetes can be easily misconfigured and exposed to attackers. The

following subsections will discuss some common vulnerabilities and the

corresponding security best practices that every user should know.

3.2.1 Defense-in-depth

K8s deployment can be divided into four layers: (a) the code, (b) the con-

tainers the code runs on, (c) the cluster, and (d) the cluster’s infrastruc-

ture, whether it is on-premise or in the cloud. Securing all of these layers

individually is recommended according to the defense-in-depth cybersecu-

rity model. This strategy recognizes the possibility of some of the defenses

being breached and instead of counting on a singular security perimeter, it

employs additional barriers to thwart an attacker’s advancement. [10, 13]

3.2.2 Running containers as non-root

Containers should be run as a non-root user and all privileges should be

kept as restrictive as possible. For this purpose, when building an image

a service user with minimal permissions should be created and used for

running the application. This complicates the attacker’s advancements

since even if they get inside a container, they still have to gain the root

permissions in order to get access the host. Also, the Pod configuration

should not allow any unnecessary privileges, since the image configura-

tion can be overwritten by the Pod configuration. [10, 13]

3.2.3 Managing users and permissions

Kubernetes does not manage users natively. Normal user accounts are

not represented by objects nor can they be added through an API call.

Instead, the addition of users to the cluster is done by importing a list

of users or by generating a client certificate for a specific user to access

the K8s API server. [10] Any user with a legitimate certificate issued by

the cluster’s certificate authority (CA) is regarded as authenticated. If

this user’s identity is stolen, the adversary gets all the privileges the user

had. For minimizing the damage, it is important to limit privileges as

much as possible, as suggested by the zero-trust cloud approach. [12, 14]

This can be done with role-based access control (RBAC). It is used for

regulating access through set permissions in namespaces, a method for

dividing cluster resources among numerous users, groups, or applications

inside a cluster. Permission should be set for humans, but also service

accounts. [10, 15]

3.2.4 Official registries and image scanning

The first stage in the continuous integration and continuous deployment

(CI/CD) pipeline is to produce a secure image. Code and libraries should

only be downloaded from trusted sources. Unofficial registries and base

images can contain malware which might enable an attacker to compro-

mise the container and gain access to the underlying infrastructure. Af-

ter breaking out of the container the attacker can easily obtain data from

the file system or the host’s volumes. Further, the kubelet’s authenti-

cation tokens and certifications, which it uses to communicate with the

kube-apiserver can now be compromised through the kubelet’s configura-

tion files. Also, unnecessary dependencies should be removed and smaller

base images with only the essential tools should be used. Along with

using trustworthy sources, image scanning is an important practice for

securing containerized applications. [15] Procedures such as identifying

vulnerabilities, out-of-date libraries, or configuration errors, can be car-

ried out easily with image scanning. Security tools, such as Clair [16],

Trivy [17], and Kube-hunter [18], have a database of constantly evolving

vulnerabilities that they use for scanning the image.

3.2.5 Allowing only the necessary connections

In Kubernetes, every Pod can communicate with each other by default.

As a consequence, authorized connections must be defined, permitting

only the necessary connections, and the cluster’s internal communications

must be encrypted. [19] Network Policies are a K8s resource, which en-

ables configuring the desired communication rules between the Pods, on

the network level. To implement Network Policies a Container Network

Interface (CNI) must be chosen. [10] On the other hand, configuration on

the service level can be done by adding a service mesh, an infrastructure

layer enabling the user to add observability, traffic management, and se-

curity, to the desired application. Moreover, a service mesh often takes

care of more complicated operational needs such as end-to-end authenti-

cation, rate restriction, access control, encryption, and A/B testing. [15]

Popular service meshes for K8s include Istio [20], Consul [21], and Link-

erd [22].

3.2.6 Harden the control plane

As mentioned in the components section, the control plane is a central

part of Kubernetes and needs to be well-protected because of its vulnera-

ble capabilities. Important procedures to follow when securing the control

plane include configuring TLS encryption, establishing reliable methods

for authentication, preventing unwanted modifications to kubeconfig files,

and disabling internet access along with other unnecessary networks. [10]

The most crucial component of the control plane to protect is the etcd key-

value storage. It stores secrets and other K8s configuration data. It can be

run inside or separately managed outside of the cluster, but nevertheless,

it should be isolated behind a firewall and allowed to access only from the

API server with proper authentication. [15] The secrets stored in the etcd

are only base64 encoded strings and can be decoded by anyone with per-

mission to read the secrets. It is recommended to use a third-party key

management service (KMS) to keep sensitive data outside of the cluster

or at least configure K8s to encrypt data at rest. [10]

3.2.7 Audit logging

Kubernetes audit logs document cluster actions, memory, and CPU usage,

but are not enabled by default. These attributes are not enough to assure

full system security, hence logging should be expanded to every level of the

system and should include information about critical actions, such as API

request history, changes in privileges and permissions, network traffic,

and operating system calls in a cluster. Once collected, these logs ought

to be combined and analyzed by a security tool to ensure the system’s

security. [15]

4 Security tools for Kubernetes

While Kubernetes offers many built-in security features, it is also highly

configurable. This means that there are many opportunities to uninten-

tionally create vulnerabilities in a cluster. This section provides a more

thorough examination of some static and dynamic K8s security tools.

4.1 Kube-bench

Kube-bench is an open-source analysis tool that examines Kubernetes

clusters against the Center for Internet Security (CIS) Kubernetes bench-

marks and provides a report of any security issues or misconfigurations

found. It runs mostly static, but can also be used for scanning an active

cluster. The CIS benchmarks are a set of security configuration guidelines

that are designed to improve Kubernetes deployments. [23]

4.2 Kube-hunter

Unlike Kube-bench, Kube-hunter is a security tool that focuses on iden-

tifying potential security vulnerabilities and threats in Kubernetes envi-

ronments by dynamically searching for weaknesses in the system. It is

a pragmatic, open-source tool from Aqua Security, with a wide range of

passive and active tests. These tests vary from accessing the API server

and discovering open ports to retrieving log information and privilege es-

calations. [18]

4.3 Clair

Clair is a Red Hat-initiated open-source static analysis tool for monitoring

container security. It scans the container image on each layer to produce

a list of all the dependencies required by the image. Then after compar-

ing each dependency to public vulnerability databases it notifies the user

of flaws that may pose a threat. One aspect that sets Clair apart from

other scanners is that it recognizes which of the current container layers

are vulnerable when new vulnerabilities are uncovered and added to the

databases. It does it without having to re-scan the system and notifies the

user. [16]

4.4 Istio

As briefly explained earlier, Istio is a service mesh, an infrastructure layer

for managing communications between microservices. Its basic architec-

ture consists of a sidecar proxy in each Pod and the Istiod, which is a con-

trol plane component for managing and injecting all the proxies into the

Pods. These proxies work together to create a mesh network that filters

network traffic between the microservices. In addition to traffic manage-

ment Istio also provides security features, such as authentication, autho-

rization, and communication encryption, and observability features, such

as logging, tracing, and monitoring to view how service activity affects

both upstream and downstream performance. [20]

4.5 Falco

Falco is an open-source runtime security tool made to watch over and

spot malicious activity, such as privilege escalation, unanticipated socket

changes or network connections, mode and ownership changes, and al-

tered login binaries in Linux and Kubernetes environments. Falco was

initially created by Sysdig, but was given to the CNCF and is currently

being incubated. Falco also provides alerts and notifications to help users

respond quickly to potential threats. [24]

4.6 Calico

Calico is a highly scalable, high-performance, open-source networking and

network security solution for Kubernetes. Its advanced security features

include network encryption, threat detection, and fine-grained network

policy enforcement using Kubernetes NetworkPolicies or Calico’s own pol-

icy language. In addition to network security, Calico also provides service

load balancing and observability tools like flow logging and packet cap-

ture. Calico is developed and maintained by Tigera. [25]

5 Analysis

Kubernetes makes it possible to easily deploy, scale, and manage con-

tainerized applications. However, with this power comes also the need for

robust security measures. For this purpose, various security tools have

emerged. Regardless of these tools simply reporting issues, rather than

attempting to fix them, they are still a valuable source of information for

the users to better understand and secure the Kubernetes environment.

This paper covers a range of tools from static to dynamic analysis and

from container security to network scanning. These tools are strong by

themselves, but will also integrate well together. For example, a possible

way to provide a more comprehensive networking and security solution for

Kubernetes is to combine Istio’s secure Pod-to-Pod or Service-to-Service

communication with Calico’s enforced network policies to prevent unau-

thorized access to the cluster. "Calico policy integrates with Istio to allow

you to write policies that enforce against application layer attributes like

HTTP methods or paths as well as against cryptographically secure iden-

tities" [25]. While there are some overlappings, such as load balancing

and observability tools, between the features provided by Calico and Istio,

they have different focus areas and are thus often used together.

Another security tool that can be integrated to protect K8s, at the same

time as Calico and Istio, is Falco. Where Calico and Istio are in charge

of securing the networks, Falco provides container runtime security by

monitoring the Kubernetes cluster for potential security threats. Falco

is highly configurable and can be customized with user-defined rules to

meet the specific needs of different environments. [24] Where Falco de-

tects runtime behavior anomalies, it does not check the configuration of

the Kubernetes cluster. If there are any possibilities of misconfigurations

a tool like Kube-bench should be used to ensure that the cluster is config-

ured securely and that known vulnerabilities have been addressed.

Each of these security tools has its own set of features and capabilities

that address specific areas of security, such as network security, runtime

security, or configuration management. By utilizing a combination of se-

curity tools, users can leverage the unique strengths of each tool, achiev-

ing a comprehensive defense-in-depth approach that secures every layer

of Kubernetes.

6 Conclusion

This paper reviewed a set of common security tools for Kubernetes and

evaluated their usage together. The paper clearly demonstrates that Ku-

bernetes can be a complex environment to configure perfectly and moni-

toring it for security purposes is highly recommendable. The paper also

provided an overview of security best practices, to illustrate the state of

Kubernetes security.

Kubernetes security should be approached with a defense-in-depth strat-

egy that involves securing every layer of the Kubernetes infrastructure.

This means that users should use a combination of security tools that

work together to provide a comprehensive security solution. The tools

discussed in this paper cover a range of security features and can help

users better secure their Kubernetes clusters.

References

[1] P. Mell, T. Grance, et al., “The nist definition of cloud computing,” 2011.

[2] J. Surbiryala and C. Rong, “Cloud computing: History and overview,” in
2019 IEEE Cloud Summit, pp. 1–7, IEEE, 2019.

[3] R. Mogull, J. Arlen, F. Gilbert, A. Lane, D. Mortman, G. Peterson, M. Roth-
man, J. Moltz, D. Moren, and E. Scoboria, “Security guidance for critical
areas of focus in cloud computing v4. 0,” Cloud Security Alliance, 2017.

[4] M. Ali, S. U. Khan, and A. V. Vasilakos, “Security in cloud computing: Op-
portunities and challenges,” Information Sciences, vol. 305, pp. 357–383,
2015.

[5] A. Mayr, “Kubernetes in the wild report 2023.” https://www.dynatrace.
com/news/blog/kubernetes-in-the-wild-2023/, Feb 2023. [Online] Ac-
cessed: Apr. 6, 2023.

[6] Z. Talab, “Traditional security vs. cloud security overview.” https://www.
developer.com/security/, December 2021. [Online] Accessed: Feb. 25,
2023.

[7] G. S. Puri, R. Tiwary, and S. Shukla, “A review on cloud computing,” in
2019 9th International Conference on Cloud Computing, Data Science &
Engineering (Confluence), pp. 63–68, 2019.

[8] A. Singh and K. Chatterjee, “Cloud security issues and challenges: A sur-
vey,” Journal of Network and Computer Applications, vol. 79, pp. 88–115,
2017.

[9] Datadog, “9 insights on real-world container use.” https://www.datadoghq.
com/container-report/, November 2022. [Online] Accessed: Mar. 13, 2023.

[10] Kubernetes. https://kubernetes.io/, January 2023. [Online] Accessed:
Feb. 27, 2023.

[11] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, omega,
and kubernetes: Lessons learned from three container-management sys-
tems over a decade,” Queue, vol. 14, no. 1, pp. 70–93, 2016.

[12] P. Raj, S. Vanga, and A. Chaudhary, Kubernetes Architecture, Best Practices,
and Patterns, pp. 49–70. John Wiley & Sons, Inc, 2023.

[13] K. Feldsher, “Kubernetes security best practices.” https://coralogix.com/
blog/kubernetes-security-best-practices/, Oct 2022. [Online] Accessed:
Feb. 27, 2023.

[14] S. Sarkar, G. Choudhary, S. K. Shandilya, A. Hussain, and H. Kim, “Se-
curity of zero trust networks in cloud computing: A comparative review,”
Sustainability, vol. 14, no. 18, 2022.

[15] Cybersecurity and Infrastructure Security Agency, “Kubernetes Hardening
Guide,” tech. rep., National Security Agency, August 2022.

[16] Clair, “Clair documentation.” https://quay.github.io/clair/. [Online]
Accessed: Apr. 3, 2023.

[17] Aqua Security, “Trivy.” https://aquasecurity.github.io/trivy/v0.39/
docs/. [Online] Accessed: Apr. 6, 2023.

[18] Aqua Security. https://aquasecurity.github.io/kube-hunter/, May 2022.
[Online] Accessed: Apr. 1, 2023.

[19] M. S. I. Shamim, F. A. Bhuiyan, and A. Rahman, “Xi commandments of
kubernetes security: A systematization of knowledge related to kubernetes
security practices,” in 2020 IEEE Secure Development (SecDev), pp. 58–64,
IEEE, 2020.

[20] Istio. https://istio.io/, 2023. [Online] Accessed: Mar. 6, 2023.

[21] HashiCorp Consul. https://developer.hashicorp.com/consul/docs. [On-
line] Accessed: Apr. 4, 2023.

[22] Linkerd. https://linkerd.io/2.13/overview/. [Online] Accessed: Apr. 4,
2023.

[23] Aqua Security. https://github.com/aquasecurity/kube-bench, April 2023.
[Online] Accessed: Apr. 11, 2023.

[24] Falco, “The falco project.” https://falco.org/docs/, 2023. [Online] Ac-
cessed: Apr. 6, 2023.

[25] Calico. https://docs.tigera.io/calico/latest/about/. [Online] Ac-
cessed: Apr. 6, 2023.

Quantum Natural Language Processing

Ioana Moflic
ioana.moflic@aalto.fi

Tutor: Alexandru Paler

Abstract

The accurate understanding of natural language is a challenging task for

classical computers. Quantum computing has the potential to significantly

improve the accuracy of natural language processing. This paper reviews

quantum computing and quantum natural language processing (QNLP).

The potential of QNLP is highlighted by implementing, and successfully

evaluating, a novel, state-of-the-art method for generating song lyrics.

KEYWORDS: quantum computing, natural language processing

1 Introduction

Quantum computing could facilitate progress in areas where research is

arduous and would benefit from a high speed of execution, such as natural

language processing.

Natural Language Processing (NLP) is a branch of computational lin-

quistics which focuses on making computers understand human language

and speech [13]. The most common tasks of NLP are dialogue manage-

ment, question answering, speech recognition, etc.

The computational advantage of quantum computers allows conducting

complex simulations. Quantum computing was born in the 1980’s when

Paul Benioff described the first quantum computer model [1]. Quantum

computers are based on the principles of quantum mechanics. Quantum

mechanics is a branch of physics that describes the properties of nature

at the atomic and subatomic level. The latter arose around the 1900s

when the science of classical physics did not seem to provide sufficient

explanations for all experimentally observed physical phenomena.

Quantum computers and classical computers share some similarities,

but are different. Classical computers use bits to encode classical informa-

tion, which take either the value 0 or value 1. Unlike classical computers,

quantum computers use quantum bits, also known as qubits. Qubits are

considered the fundamental unit of quantum information. Qubits mimic

the unique behavior of subatomic particles that can simultaneously exist

in several states, which means that a qubit can be 0, 1 or a superposition

(linear combination of 0 and 1 [17]).

Current approaches to NLP use rule based modeling of natural language

borrowed from linguistics together with various machine learning models

to enhance the capability of machines to analyze and interpret the content

and nuances of human language [13]. The most common tasks of NLP

are dialogue management, question answering, speech recognition, etc.

Moreover, ChatGPT [15], use textbooks, articles and Internet sources to

generate dialogues with humans.

Recently, NLP tasks started to be run on quantum computers [6]. NLP

tasks that can be run on quantum computers are commonly referred to as

Quantum Natural Language Processing (QNLP) [6].

The first question answering task being was performed on a real quan-

tum computer in 2020 [16]. With the help of diagrammatic structures

borrowed from ZX-Calculus [7], the authors of [16] show how human lan-

guage can be translated to quantum computers, and machine learning

tasks, such as classification, are performed by encoding these structures

into parametrised quantum circuits.

Quantum Machine Learning (QML) [10] refers to a family of variational

quantum circuits that perform and improve machine learning tasks with

the help of quantum computers. The parameters of the circuits are up-

dated during the optimisation procedure and are learnt using various dif-

ferentiation techniques, just as in the classical setting. NLP tasks can be

translated to quantum computer software in the form of variational cir-

cuits. Such circuits contain parameterised quantum rotation gates, where

the parameter of the rotation is its angle (Figure 1a).

This paper is an overview of the state of the art QNLP methods on real

hardware. Section 2 presents the theoretical foundations needed for the

implementation of QNLP, and Section 3 reviews and discusses novel and

original results beyond the state of the art.

2 Background

This section reviews QML and QNLP and introduces the necessary back-

ground on quantum circuits, quantum gates and the ZX-Calculus, which

is used as a diagrammatic representation of quantum processes.

2.1 Quantum circuits

The software used in quantum computing is presented in general in the

form of quantum circuits (e.g Figures 1 b), 1 c)). The quantum circuit

model represented by sequences of quantum gates and measurements

arranged and read from left to right along the time axis. Quantum cir-

cuits are similar to a set of assembly language instructions sent to the

Quantum Processing Unit (QPU). The instructions are known as quan-

tum gates. Although there are infinitely many quantum gates, it is agreed

that there exists a finite set of gates, namely the Clifford+T group, that

acts as a generator used to represent any quantum computation. The Clif-

ford group is formed of a few standard gates: X, Y, Z (the Pauli gates), S,

Hadamard, and CNOT and the T gate [17].

Figure 1. The horizontal line is a wire that holds a qubit. Information is processed from
left to right. a) The box represents a rotation gate around the X axis with the
angle θ. b) A quantum circuit consisting of two qubits and two gates: a one
qubit Hadamard gate and a two qubit gate, known as CNOT gate. c) A simple
Quantum Neural Network (QNN). The parameterised RY gates act as a data
encoder, and the CNOT gate, together with the parameterised RX gates from
the trainable circuit, also called ansatz.

2.2 ZX-Calculus

The ZX-Calculus is a graphical language that describes quantum interac-

tions between qubits used for quantum circuit optimisation, measurement

based quantum computation, quantum error correction and more [19].

A ZX-diagram is a graphical representation of a quantum computation

which is often described as a map between qubits. The translation be-

tween a quantum circuit and a ZX-diagram is straightforward, and can

be realised by associating each quantum gate in the Clifford+T group [17]

with its representatives in ZX-Calculus (Fig. 2).

Figure 2. The translations of the Clifford gate group: gates S, X, Hadamard, T, T daggger,
CNOT, into their respective ZX-diagrams.

The main benefit of translating quantum circuits to ZX-diagrams is that

certain circuit optimisation patterns or gate identities are easier to per-

form on the ZX-diagram rather than directly on the quantum circuit. A

ZX-diagram has the structure of an undirected graph, where nodes are

colored either white or grey and are annotated with the phase angle of

the gate. The colour of a dot is either white for the S gate, the T gate, and

the control of a CNOT, or grey for the X gate or the target of a CNOT. One

of the most important components of a ZX-diagram are spiders, which are

of two types: Z-spiders (Figure 4) and X-spiders (Figure 3).

Figure 3. The X-spider is depicted on the left hand-side and the state vector it represents,
on the right hand-side.

Figure 4. The Z-spider is depicted on the left hand-side and the state vector it represents,
on the right hand-side.

Z-spiders are the white dots seen in the figures above, and X-spiders

are the grey ones. The name "spider" is inspired by the arbitrarily many

wires (inputs and outputs) that these dots have. The name Z-spider is

derived from operating with respect to the eigenbasis of the Z matrix: |0⟩
and |1⟩. In turn, the X-spider operates with respect to the eigenbasis of

Figure 5. A few of the most common optimisation patterns used in ZX-Calculus.

the X matrix: |+⟩ and |−⟩. Here, |0⟩, |1⟩, |−⟩ and |+⟩ are defined as column

vectors

|0⟩ =

 1

0

 |1⟩ =

 1

0

 |+⟩ = 1√

2

 1

1

 |−⟩ = 1√

2

 1

−1

The simplicity of ZX-Calculus comes from a set of predefined patterns

used to transform the diagram, that are easier to use than the ones used

in the quantum circuit setting (see Figure 5).

2.3 Quantum Machine Learning

Quantum Machine Learning (QML) is of a family of machine learning

tasks that can be performed on a quantum computer. QML consists of

hybrid methods (require both classical and quantum processing of data),

combined with the computationally demanding subroutines being per-

formed on the quantum device. Figure 6 is the QML training loop.

The domain is new and continuously evolving. Therefore a preliminary

classification, according to [10], is:

1. Quantum Boltzmann Machines (QBM) are similar to classic Boltz-

mann machines. QBMs are based on the Ising Hamiltonian instead

of the classical Boltzmann distribution.

2. Variable depth quantum circuits (vVQC) are an adaptation of the

Variational Quantum Classifier (VQC) that claims to resolve its in-

Figure 6. The general framework of a quantum machine learning model is composed of
a variational quantum circuit that consists of two sections: 1) one that per-
forms angle embedding of the data, denoted V , and 2) the quantum model,
also known as ansatz, denoted U . After measurement, data is processed by the
classical machine learning model, which outputs the result of a cost function
at each training step. The hybrid model updates the parameters and the gra-
dients of the variational circuit towards the minima of the cost function.

flexibility problem by varying the size of the circuit.

3. Hybrid quantum autoencoders (HQA) encode data in the classical

latent space using amplitude quantum states. The encoder learns

characteristics of the data by clustering similar data points.

4. Quantum reservoir computing (QRC) uses multiple small scale quan-

tum systems that communicate, and are used for forecasting.

5. Quantum multiclass classifier (QMCC) is used to classify multiple

class data by optimizing the adjustable parameters of variational

quantum circuits.

6. Support vector machines with a quantum kernel estimator (QSVM-

Kernel) classifies by encoding data in a quantum state space and

searches for the hyperplane that linearly separates data.

7. Quantum neural networks (QNN) are similar to classical neural net-

works, but use a quantum perceptron model.

8. Hybrid k-neighbours-nearby model (HKNN) use the SWAP test cir-

cuit as a similarity measure between quantum states to perform the

K-Nearest-Neighbours (KNN) algorithm.

9. Orthogonal neural networks enforce orthogonality on the parame-

ters of the network.

10. Quantum fully self-supervised neural networks (QFS-Net) use qutrits

(three-level quantum system where basis states are |0⟩, |1⟩ and |2⟩)
to encode quantum states in a way that enables a self-organized

counter-propagation between the layers of the network.

11. CNOT neural networks (CMN) are only composed of CNOT gates

and measurement gates and are used to implement discrete Boolean

functions that benefit from computational complexity improvements.

12. Quantum convolutional deep convolutional neural networks (QDCNN)

employ quantum convolutional layers inspired from variational cir-

cuit where parameters are updated using hybrid optimization.

13. Quantum backpropagation neural networks (QBP) are based on the

quantum neural model and classical backpropagation.

14. Feed foward neural networks (ffNN) are based on an efficient method

of approximating inner products between vectors and benefit from

computational complexity improvements because the computed val-

ues are stored on QRAM [11].

15. Quantum generative adversarial networks (QGAN) learn the proba-

bility distributions of the data points by encoding them into quan-

tum states. QGANs use both variational quantum circuits and clas-

sical neural networks.

16. Quantum recurrent encoding-decoding neural networks (QREDNN)

use a quantum neuron to jointly train the encoder and the decoder

of the autoencoder.

2.4 Quantum Natural Language Processing

Quantum Natural Language Processing (QNLP) is a technique which pro-

poses the modelling of natural language in a diagrammatic form, which

is then processed by the quantum computer. There exist many state-of-

the-art techniques in NLP [3, 9, 4], and it is widely accepted that the area

would benefit of quantum speed-up [20].

QNLP [6] is the quantum adaptation of classical NLP and is different

from NLP in the sense that meanings of words are encoded as state vec-

tors into the quantum computer. The advantage of QNLP is the composi-

tion of word meanings that further gives meaning to more complex struc-

tures such as sentences and texts. The interaction of words that gives

meaning to sentences is achieved by the DisCoCat (Categorical Compo-

sitional Distributional) [5] algorithm. Its generalization, the DisCoCirc

(Circuit-shaped Compositional Distributional) algorithm [5], is able to

give meaning to texts by composing meaning of sentences.

The DisCoCat model is based on grammatical algebra that is borrowed

from linguistics. The author of [5] states that pregroup grammar, pro-

posed by Joachim Lambek in the 1950s [14], is the foundation of the

DisCoCat algorithm for language modelling. The unexpected similarities

that pregroup algebra used in linguistics and circuit diagrams have led to

the idea of modelling language using Lambek’s findings into circuit dia-

grams. The advantage is that the circuit diagrams are then translated to

quantum computers to solve various NLP tasks.

Although believed to be impossible to achieve on near-term quantum

devices, it was recently proved that NLP is "quantum native" [6, 18]. This

indicates that human language is easier and more natural to translate

to quantum computers than it is in the classical setting, which in turn

requires heavy data preprocessing.

Diagrammatic reasoning (sections 2.1 and 2.2) has a very important ad-

vantage, that it combines the meaning of the words with the linguistic

structure and grammar of the sentences into one [6]. Apart from DisCo-

Cat, Categorical Quantum Mechanics (CQM) and ZX-Calculus are also

theories used in modelling language as quantum processes [7]. Out of the

three, ZX-Calculus has the role of translating and optimizing linguistic

diagrams to quantum circuits, as seen in Figure 2 [6].

3 Discussion

This section introduces software libraries that enable preprocessing and

training of QNLP tasks in the form of variational quantum circuits, as

well as a novel, state of the art QNLP experiment.

3.1 Lambeq

Lambeq [12] is a Python library that contains modules that convert text

into diagrams, tensor networks or variational quantum circuits that can

be processed on a quantum computer. Lambeq facilitates the preprocess-

ing step of QNLP tasks that rely on the DisCoCat framework. Lambeq

is useful for syntacting parsing of natural language, rewriting and opti-

mization of string diagrams, as well as for creating and manipulating the

ansatz. Lambeq has the following pipeline [12]:

1. Depending on the compositional model selected, a specific parser can

be used for constructing the syntax tree of the input sentence.

2. DisCoPy [8] is used for converting the syntax tree into a string dia-

gram, according to the DisCoCat algorithm.

3. The string diagram is optimised by the application of rewrite rules

that aim to eliminate redundant connections.

4. The resulting string diagram is converted into a tensor network (for

classical simulation) or a parametrised quantum circuit (for running

on real hardware).

3.2 Pennylane

Pennylane is a Python library used for hybrid classical-quantum machine

learning tasks. In the same way as classical machine learning relies on

heavy GPU computations, quantum machine learning involves running

the same computations on quantum hardware. Pennylane enables this

by relying on quantum differentiable programming similar to other deep

learning frameworks, such as NumPy, PyTorch, Tensorflow or JAX.

Pennylane integrates classical deep learning Python libraries together

with libraries that enable running quantum circuits on real hardware.

Pennylane allows the creation of an end-to-end quantum machine learn-

ing application. The framework also has support for simulating the cir-

cuits classically, by using the lightning module.

Quantum circuits, also called QNodes in Pennylane, are used to define

the variational quantum circuit and the device interface that will execute

it: classical or quantum. The library integrates quantum computations by

adapting the circuit to various library-dependant data-structures or opti-

mizers. Optimizers update both the parameters of the variational circuit

and the gradients towards the minima of the cost function used to assess

the performance of the model (as seen in Figure 6). Pennylane does this

by making the gradients of the variational circuit visible to the classical

library, which will employ its own optimizers for optimizing the circuit

parameters.

3.3 Experiment

This review paper includes a proof-of-concept implementation of a QNLP

model, namely a Quantum Long Short Term Memory (LSTM) model, that

generates songs based on an available dataset of lyrics.

LSTM is a type of Recurrent Neural Network (RNN) used for generating

sequences of words in which the relations between the words are kept

long term during training. This allows for using LSTMs for complex NLP

tasks such as sentiment analysis, question answering or text generation,

where the first one is a many-to-one task and the last two are many-to-

many tasks. Many-to-many tasks are different from many-to-one tasks

in the sense that they require a human-like responses such as sentences

or lengthy texts, rather than just a one-word classification. Two types of

RNNs are used to account for the relations between words that generate

meaningful sentences: LSTMs and Gated Recurrent Units.

Our implementation uses a quantum variant of the LSTM layer, also

known as QLSTM, in which the input, output, forget and update compo-

nents are replaced with trainable quantum circuits. This is achieved by

employing Pennylane for the translation between the variational quan-

tum circuit and a PyTorch layer [2], which enables the integration of the

QLSTM layer seamlessly into the classical NLP model. These LSTM lay-

ers are converted to quantum circuits by first embedding the data tensors

into the angles of the single qubit rotation gates, and then applying an em-

bedding quantum layer that entangles the qubit wires with the scope of

creating connections between the state vectors that represent the words.

The implementation does not currently use the DisCoCat model for the

preprocessing step, but its classical variant, the bag-of-words model. The

model is predicting verses of songs based on a "prompt" word. Preliminary

results (see Figure 7) show that this is functioning as expected.

Figure 7. Example lyrics generated by our QNLP model.

4 Conclusion

Classical NLP is challenging and computationally demanding. Quantum

computers could offer a computational advantage by speeding up and im-

proving NLP accuracy. QNLP is the quantum version of classical NLP,

and its main advantage is the use of a more natural way of representing

human language for computers.

This paper reviews the concepts of quantum computing, quantum ma-

chine learning, ZX-Calculus and of QNLP. The potential of QNLP is illus-

trated by implementing a novel generative model of song lyrics. Future

work will focus on improving the accuracy of the generated lyrics.

References

[1] Paul Benioff. The computer as a physical system: A microscopic quantum
mechanical hamiltonian model of computers as represented by turing ma-
chines. Journal of Statistical Physics, 22:563–591, 05 1980.

[2] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shahnawaz
Ahmed, Vishnu Ajith, M. Sohaib Alam, Guillermo Alonso-Linaje, B. Akash-
Narayanan, Ali Asadi, Juan Miguel Arrazola, Utkarsh Azad, Sam Ban-
ning, Carsten Blank, Thomas R Bromley, Benjamin A. Cordier, Jack Ceroni,
Alain Delgado, Olivia Di Matteo, Amintor Dusko, Tanya Garg, Diego Guala,
Anthony Hayes, Ryan Hill, Aroosa Ijaz, Theodor Isacsson, David Ittah,
Soran Jahangiri, Prateek Jain, Edward Jiang, Ankit Khandelwal, Ko-
rbinian Kottmann, Robert A. Lang, Christina Lee, Thomas Loke, Angus
Lowe, Keri McKiernan, Johannes Jakob Meyer, J. A. Montañez-Barrera, Ro-
main Moyard, Zeyue Niu, Lee James O’Riordan, Steven Oud, Ashish Pani-
grahi, Chae-Yeun Park, Daniel Polatajko, Nicolás Quesada, Chase Roberts,
Nahum Sá, Isidor Schoch, Borun Shi, Shuli Shu, Sukin Sim, Arshpreet
Singh, Ingrid Strandberg, Jay Soni, Antal Száva, Slimane Thabet, Ro-
drigo A. Vargas-Hernández, Trevor Vincent, Nicola Vitucci, Maurice We-
ber, David Wierichs, Roeland Wiersema, Moritz Willmann, Vincent Wong,
Shaoming Zhang, and Nathan Killoran. Pennylane: Automatic differentia-
tion of hybrid quantum-classical computations, 2022.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei.
Language models are few-shot learners, 2020.

[4] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay,
Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Is-
ard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, San-
jay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant
Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou,
Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta,
Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. Palm: Scaling language modeling with pathways, 2022.

[5] Bob Coecke. The mathematics of text structure. Joachim Lambek: The
Interplay of Mathematics, Logic, and Linguistics, pages 181–217, 2021.

[6] Bob Coecke, Giovanni de Felice, Konstantinos Meichanetzidis, and Alexis
Toumi. Foundations for near-term quantum natural language processing.
arXiv preprint arXiv:2012.03755, 2020.

[7] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First
Course in Quantum Theory and Diagrammatic Reasoning. Cambridge Uni-
versity Press, 2017.

[8] Giovanni de Felice, Alexis Toumi, and Bob Coecke. Discopy: Monoidal cate-
gories in python. arXiv preprint arXiv:2005.02975, 2020.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[10] David Peral García, Juan Cruz-Benito, and Francisco José García-Peñalvo.
Systematic literature review: Quantum machine learning and its applica-
tions. arXiv preprint arXiv:2201.04093, 2022.

[11] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random
access memory. Physical Review Letters, 100(16), apr 2008.

[12] Dimitri Kartsaklis, Ian Fan, Richie Yeung, Anna Pearson, Robin Lorenz,
Alexis Toumi, Giovanni de Felice, Konstantinos Meichanetzidis, Stephen
Clark, and Bob Coecke. lambeq: An efficient high-level python library for
quantum nlp. arXiv preprint arXiv:2110.04236, 2021.

[13] Diksha Khurana, Aditya Koli, Kiran Khatter, and Sukhdev Singh. Natu-
ral language processing: State of the art, current trends and challenges.
Multimedia tools and applications, 82(3):3713–3744, 2023.

[14] J. Lambek. Pregroup grammars and chomsky?s earliest examples. Journal
of Logic, Language and Information, 17(2):141–160, 2008.

[15] Christoph Leiter, Ran Zhang, Yanran Chen, Jonas Belouadi, Daniil Lari-
onov, Vivian Fresen, and Steffen Eger. Chatgpt: A meta-analysis after 2.5
months, 2023.

[16] Konstantinos Meichanetzidis, Alexis Toumi, Giovanni de Felice, and Bob
Coecke. Grammar-aware question-answering on quantum computers. arXiv
preprint arXiv:2012.03756, 2020.

[17] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-
tum Information: 10th Anniversary Edition. Cambridge University Press,
2011.

[18] John Preskill. Quantum computing in the NISQ era and beyond. Quantum,
2:79, aug 2018.

[19] John van de Wetering. Zx-calculus for the working quantum computer sci-
entist. arXiv preprint arXiv:2012.13966, 2020.

[20] William Zeng and Bob Coecke. Quantum algorithms for compositional nat-
ural language processing. Electronic Proceedings in Theoretical Computer
Science, 221:67–75, aug 2016.

Programming Orchestration of Data
Analysis Workflows in Edge Cloud
Continuum

Ishani Bhardwaj
ishani.bhardwaj@aalto.fi

Tutor: Linh Truong

Abstract

The proliferation of computing-capable devices in recent years has facili-

tated the emergence of a new computing paradigm at the Edge. Despite

being resource-limited compared to cloud servers, Edge devices offer lower

latency, making the combination of cloud and Edge computing paradigms

an attractive infrastructure for data analysis workflows that have diverse

requirements, which cannot be easily achieved using either paradigm in

isolation. Therefore, effective orchestration of workflows in Edge-cloud

computing environment presents significant challenges that must be ad-

dressed in order to realize the full potential of edge-cloud continuum. This

paper examines the challenges associated with programming and building

workflows, and discusses various workflow management systems that can

be leveraged to support automation of data analysis tasks.

KEYWORDS: edge-cloud continuum, data analysis workflow, orchestra-

tion

1 Introduction

Over the years, the rapid expansion of the Internet of Things (IoT) and

cloud resources have resulted in a significant increase in the number of

internet-connected devices situated on the network edge. The data gen-

eration rate has also increased; hence, processing and computation of

insights from the data became complex. Orchestration of data analysis

workflow can serve as a beneficial abstraction that performs computa-

tional tasks and controls interdependencies among the tasks.

In edge computing, the computation takes place near the data source,

which includes devices embedded with sensors, thus enabling data anal-

ysis, information monitoring and sharing [9]. Edge computing comprises

numerous benefits, such as high responsiveness, scalability, potential for

enforcing data privacy restrictions, and the capability of masking cloud

outages [17]. Continuum computing refers to a computing paradigm where

distributed resources can be seamlessly combined and orchestrated to

support dynamic and complex application workflows [4]. The goal of con-

tinuum computing is to provide a flexible and scalable infrastructure for

data-driven applications, where resources can be allocated and managed

dynamically to meet the changing needs of the workflow. By leveraging

analytics in the edge cloud continuum, organizations can take advantage

of the benefits of both the network edge and cloud analytics, including

real-time processing, scalability, cost saving, reliability, data locality, and

low latency. This can lead to improved data-driven decision-making and

more effective use of data-driven applications.

This paper discusses programming orchestration of data analysis work-

flows in the edge cloud continuum. It examines the challenges associated

with building and management of data analysis workflows in the edge-

cloud continuum and explore the tools and techniques available to address

these issues.

The paper is structured as follows: Section 2 briefly introduces the archi-

tecture and expansion of the edge cloud continuum; Section 3 covers vari-

ous challenges in orchestrating data analysis workflows; Section 4 evalu-

ates different tools and techniques to orchestrate data analysis workflows;

Section 5 discusses the challenges and tools presented in this paper; fi-

nally, Section 6 provides concluding remarks.

2 Edge computing: literature work

2.1 Origin and expansion of edge computing

Edge computing has its roots in the late 1990s with the introduction of

content delivery networks (CDNs), which aim to improve web and video

content. Akamai was one of the pioneers in CDNs that brought the idea of

edge computing during early 1999 for improving the performance of web-

sites, and prevent them from crashing or slow response time [6]. CDNs

use edge nodes deployed close to the end-users to cache and serve content,

which can significantly improve web performance by reducing latency and

bandwidth requirements [17]. It also offers some level of customization,

such as adding location-specific content, which can enhance the user ex-

perience. During the early 2000s, CDNs developed further to enable the

hosting of distributed applications and their components on edge servers,

providing high fault tolerance and scalability [14].

In recent years, edge computing has expanded beyond CDNs to include a

wide range of applications and use cases, from IoT devices to autonomous

vehicles and more. This marked the beginning of the shift towards more

decentralized and distributed computing architectures, where computing

resources are located closer to end-users to provide better performance,

lower latency, and improved user experience [5]. Since then, edge com-

puting has continued to evolve, driven by cutting edge technologies, such

as IoT, artificial intelligence (AI), and 5G, among others. According to

Statista, the number of IoT connected devices worldwide was 13.1 billion

in 2022, and it is expected to exceed 29 billion by 2030 [19]. With such

a vast number of devices generating data, transmitting data to the cloud

for processing would be slow and could cause network congestion [25]. By

leveraging edge computing, the amount of data that needs to be sent to the

cloud would reduce, thereby enhancing performance and data security.

2.2 Architecture of edge cloud continnum

Edge-cloud continuum computing is a hybrid approach that combines the

strengths of both edge computing and cloud computing to process and

analyze data efficiently. The architecture typically consists three main

layers: the device layer, the edge layer and the cloud layer as shown in

Figure 1 [11]. The cloud layer comprises of large-scale data centers or

Figure 1. Edge cloud continuum architecture Adapted: [1]

remote servers that provide high-performance computational and storage

resources for data processing and warehousing. The edge layer consists

of edge nodes, which are small-scale data centers or cloudlets that are lo-

cated closer to end-users and can provide low-latency and high-bandwidth

computing and storage resources [17]. The device layer involves electronic

devices, such as smartphones, tablets, IoT sensors, and other edge devices

that are capable of generating, processing, and transmitting data. The

working of the edge-cloud continuum can be summarized as follows:

• Data is collected from edge devices such as sensors, cameras, and mo-

bile devices present in device layer. This data may be raw data or pre-

processed data.

• The edge layer processes and analyzes the data that is collected from

the device layer. This layer is composed of edge servers, edge nodes and

other computing resources located closer to the devices. It can perform

initial skimming and pre-processing on site to reduce the volume of data

that requires transmission to cloud queue. This decentralization allows

a reduction in data latency.

• After the completion of data processing and analysis at the edge layer,

data beneficial for real-time analysis is processed and strategic infor-

mation is sent to the reference cloud provider for detailed data-analysis,

storage, and visualization. The cloud layer provides advanced machine

learning algorithms and other analytical tools to process the data and

provide valuable insights. It can also store the data for long-term anal-

ysis.

Overall, the architecture of the edge cloud continuum is designed to pro-

vide a flexible, high-performance and scalable infrastructure that has a

broad range of practical applications and services.

2.3 Data analysis workflows

Data analysis workflow refers to a systematic process of transforming

raw data into meaningful insights. It typically involves a sequence of

computational tasks, connected through control-flow (operations or tasks

specified by edges) or data-flow (data movement), that are undertaken to

extract, process, clean, transform, and analyze data to obtain actionable

insights [10]. There are four primary categories of data analysis, which

include descriptive, diagnostic, predictive, and prescriptive analysis [8].

• Descriptive Analysis: It involves summarizing and presenting key per-

formance indicatiors (KPIs) of a dataset. The goal of descriptive analysis

is to provide insights into what has happened in the past and what is

currently happening.

• Diagnostic Analysis: It is used to detect the root cause of a problem or

to understand why a particular outcome occurred. It involves analyzing

data to determine the factors that contributed to a particular event or

outcome.

• Predictive Analysis: It is a technique that utilizes statistical algorithms

and machine learning methods to examine data and anticipate future

results. The objective is to make predictions about future occurrences

based on past data patterns and trends.

• Prescriptive Analysis: It involves using optimization and simulation

techniques to identify the best course of action to achieve a desired

outcome. It takes into account various constraints, such as limited re-

sources, and suggests the best possible solution to optimize the outcome.

Utilizing different data analysis methods, workflows can be divided into

two main categories: abstract and executable workflows [18].

An abstract workflow, which is resource independent, provides a high-

level description of the data analysis process, outlining the steps involved

in cleaning, preprocessing, transforming, and analyzing the data. It is

typically represented in YAML format and can be generated using the

Workflow API. An executable workflow, on the other hand, is a detailed,

resource-dependent and automated workflow that performs the steps out-

lined in the abstract workflow by mapping the tasks to the target re-

sources. By using an executable workflow in the edge-cloud continuum,

data analysis tasks can be executed on both edge devices and cloud re-

sources, depending on the available resources and the specific require-

ments of the task. This approach enables more efficient and scalable data

analysis, with the ability to perform tasks closer to the data source when

needed, leading to faster and more reliable results. Liew et al. [10] ana-

lyzed several Workflow Management Systems (WMSs), e.g., Airavata [13],

Kepler [12], KNIME [7], Pegasus [18], Taverna [24], and Swift [23], that

are commonly used to orchestrate the distribution of tasks to resources

based on availability and dependency. The paper focus on Pegasus, KN-

IME Edge and KubeEdge WMS which can be utilized to manage and ex-

ecute complex workflows that involve both edge and cloud resources, al-

lowing for more efficient and effective data analysis.

3 Orchestration of data analysis workflows: key challenges

There has been a surge of interest in processing big data, as it offers the

potential to uncover valuable insights that can transform corporate busi-

nesses, government schemes, and research outcomes. This has resulted

in the development of new programming, communication, and processing

technologies, such as Hadoop, Storm and Spark, as well as cloud com-

puting services. Analytical applications have evolved to comprise multi-

ple analytical steps that run as workflows, which are markedly different

from traditional workflows, presenting researchers and data scientists

with the challenge of managing and orchestrating their execution effec-

tively. These challenges include edge-cloud integration, data security and

consistency, workflow scheduling and management, and the adoption of

heterogeneous data analysis tasks.

3.1 Edge-cloud integration

The integration of edge and cloud computing results in a complex exe-

cution environment that requires the consideration of various factors to

effectively utilize both computing paradigms. The challenges include visi-

bility of available resources, efficient scheduling decisions, resource provi-

sioning, software systems to handle failures, and capturing performance

metrics for optimization [18]. The limited resources and dynamic nature

of edge devices, combined with the high computing and data movement

costs of the cloud, make it challenging to balance the trade-off between

these two computing paradigms. However, with proper planning and

management, the benefits of edge-to-cloud computing can be realized, in-

cluding reduced latency, improved reliability, and increased security.

3.2 Data security and consistency

Data analysis workflows enable the combination of diverse processing

tasks in data pipelines, which can involve distinct types of data-flow, in-

cluding stream or batch processing. These different data flows are related

with various data programming models that constitute a part of the work-

flows. For instance, stream processing frameworks, such as Apache Storm

and message queuing systems, for example, Apache Kafka receive data

streams via Kafka producer or spout, respectively. Conversely, batch pro-

cessing frameworks, such as Apache Hadoop require large datasets to be

stored in cloud storage and then sent to the Hadoop cluster using HDFS

[2]. Since data workflows are typically executed in the cloud, the diverse

storage requirements of the different tasks in the workflow present vari-

ous challenges for managing cloud storage resources to meet their needs.

These challenges may include issues, such as data security, data consis-

tency, data durability, and data transfer costs. As a result, researchers

and data scientists must carefully consider the storage requirements of

different workflow tasks and adopt appropriate strategies and tools for

managing cloud storage resources effectively.

3.3 Workflow scheduling and management

When data workflow scheduling involves the use of edge resources, new

challenges arise in efficiently mapping and deploying data analysis tasks

on edge devices that may have limited resources. Ensuring isolation, or-

chestration, and scheduling in containers becomes critical [16], necessi-

tating the use of lightweight hardware and containerization software [22].

To optimize resource selection and allocation, researchers and data sci-

entists must consider the hardware limitations and heterogeneity of the

tasks involved in the workflow.

3.4 Adoption of heterogeneous data analysis tasks

One of the major challenges researchers face is to adapt heterogeneous

data processing and analysis tasks from virtual machine to container

based workload for Kubernetes, which requires creating efficient container

images for the workloads. Additionally, management of containers on the

edge resources is complex because edge resources have a dynamic na-

ture and their performance fluctuates. Defining runtime configurations

and deploying them into the container environment is crucial. Container

management is further complicated by the need to maintain Service-Level

Agreement (SLA) and Quality of service (QoS) requirements on constrained

resources and respond to unexpected changes at runtime [15]. Overall,

the process of orchestration becomes increasingly complex when schedul-

ing in edge environment is virtualized that uses lightweight containers.

Researchers and data scientists must develop effective strategies to ad-

dress these challenges and ensure the efficient deployment and manage-

ment of big data workloads on edge resources, while maintaining SLA and

QoS requirements.

4 Tools and Techniques for orchestrating data analysis workflows

To address the challenges of programming orchestration of data analy-

sis workflows in the edge cloud continuum, several tools and techniques

have emerged [10]. This section focuses on Pegasus [18], KNIME [7], and

KubeEdge [21] that enable the orchestration of data analysis workflows,

but they differ in their approaches and the steps involved. Here is a com-

parison of the various steps involved in each platform:

Define the Workflow: This step is common across all three platforms.

Users need to identify the data sources, the data processing steps, and the

output targets to define the workflow.

Create the Workflow: Pegasus and KNIME Edge provide graphical

user interfaces (GUI) for creating workflows, while KubeEdge relies on

Kubernetes deployment files. KNIME Edge also provides the ability to

import workflows created in KNIME Analytics Platform.

Configure Nodes: This step involves configuring the individual nodes

that make up the workflow. In KNIME Edge and KubeEdge, this involves

selecting the data processing algorithms and configuring their parame-

ters, while in Pegasus, this involves defining the workflows using a di-

rected acyclic graph (DAG).

Manage Resources: This step involves optimizing the use of resources

available on edge devices, such as CPU, memory, and power. Pegasus sup-

port tools and KubeEdge provide Edge controller, metadatasyncservice,

and Edgecore for managing resources, while KNIME Edge provides vari-

ous extensions to optimize the workflow for the resources available on the

edge device.

Package the Workflow: This step involves packaging the workflow so

that it can be deployed on the edge device. In Pegasus, this process re-

quires the creation of scripts that are dependent on resources, and which

are used for job submission and data movement. In KNIME Edge, this

involves selecting the nodes and data sources required for the workflow

and packaging them into a container. In KubeEdge, this involves creating

Kubernetes deployment files for the workflow.

Deploy the Workflow: In Pegasus, this involves submitting the gen-

erated scripts to the HTCondor DAGMan. In KNIME Edge, this involves

deploying the workflow on KNIME Server. In KubeEdge, this involves

deploying the Kubernetes deployment files to the edge device.

Manage Data Flows: This step involves managing the flow of data be-

tween the various components of the workflow. In Pegasus and KubeEdge,

this involves managing data transfer between jobs using suitable data

transfer protocols. In KNIME Edge, this involves specifying the input

data sources, applying data transformation algorithms to preprocess the

data, and specifying the output data destinations.

The data analysis methods in the aforementioned WMS depends upon

the type of data and requirements of the researchers and data scientists.

Furthermore, programming workflows efficiently can significantly reduce

the challenges mentioned in section 3. All the above mention WMS sup-

port edge-cloud integration and provide scalability and fault tolerance.

A recent development in Pegasus-Kickstart has been the introduction

of GPU monitoring extensions, which provide improved performance of

workflows [3].

5 Discussion

In contrast to cloud computing, edge-cloud computing extends the capa-

bilities of cloud computing by facilitating data processing and analysis at

the endpoints and edges. This proximity eliminates the need for data to

traverse over a network to a remote data center or cloud, thereby signifi-

cantly reducing latency. However, there are significant challenges in pro-

gramming orchestration of data analysis workflows in the edge cloud con-

tinuum, such as edge-cloud integration, data security, workflow sechedul-

ing, and heterogeneous data analysis tasks. Additionally, network in-

frastructure at the edge is often characterized by limited bandwidth and

unstable connectivity. Based on the analysis of WMSs, this paper pro-

poses that to mitigate the impact of these limitations, it is essential for

edge nodes to be autonomous, enabling them to operate independently

of the network and prevent interruptions due to the lack of connectivity.

The data transferred from edge devices for analysis should be secured by

encryption/decryption strategies to avoid any attack on data in network

layer. Data storage in cloud is secured, hence, complicated data analysis

can occur in edge-cloud continuum environment.

The choice of WMS depends upon the use case, all the tools explained

in section 4 can be used to orchestrate workflows in both Edge and Cloud.

Pegasus provides built-in support for resource management and job ex-

ecution through HTCondor, KNIME Edge can be resource-intensive but

uses it’s own built-in workflow engines to support orchestration, parallel

processing and streaming. On the contrary, KubeEdge requires signifi-

cant setup, configuration and orchestration is done through kubernetes

deployment files. All the WMSs provides fault tolerance and supports

containerization.

According to Gartner, it is estimated that by 2025, a significant major-

ity of data, i.e., approximately 75%, will be processed outside of the tradi-

tional data center or cloud [20]. This suggests that edge computing, with

its ability to process data closer to the source, is likely to gain increased

adoption in the coming years.

6 Conclusion

In conclusion, programming orchestration of data analysis workflows in

the edge cloud continuum requires careful consideration of the resources

available on each device and the heterogeneity of devices in the system.

However, with the right tools and techniques, it is possible to build and

manage data analysis workflows that can run seamlessly across different

devices. As edge computing continues to grow, it is crucial to develop new

tools and techniques that can be used to manage the complexity of the

edge cloud continuum.

References

[1] Hossein Ashtari. Edge computing vs. fog computing: 10 key comparisons,
Feb 2022.

[2] Mutaz Barika, Saurabh Garg, Albert Y. Zomaya, Lizhe Wang, Aad Van
Moorsel, and Rajiv Ranjan. Orchestrating big data analysis workflows in
the cloud: Research challenges, survey, and future directions. ACM Com-
put. Surv., 52(5), sep 2019.

[3] Henri Casanova, Ewa Deelman, Sandra Gesing, Michael Hildreth, Stephen
Hudson, William Koch, Jeffrey Larson, Mary Ann McDowell, Natalie Mey-
ers, John-Luke Navarro, George Papadimitriou, Ryan Tanaka, Ian Tay-
lor, Douglas Thain, Stefan M. Wild, Rosa Filgueira, and Rafael Ferreira
da Silva. Emerging frameworks for advancing scientific workflows re-
search, development, and education. In 2021 IEEE Workshop on Workflows
in Support of Large-Scale Science (WORKS), pages 74–80, 2021.

[4] Ali Reza Zamani Anthony Simonet Daniel Balouek-Thomert, Eduard Gib-
ert Renart and Manish Parashar. Towards a computing continuum: En-
abling edge-to-cloud integration for data-driven workflows. The Interna-
tional Journal of High Performance Computing Applications, 33(6), 2019.

[5] A. Davis, J. Parikh, and W. E. Weihl. Edgecomputing: Extending enterprise
applications to the edge of the internet. In Proceedings of the 13th Interna-
tional World Wide Web Conference on Alternate Track Papers amp; Posters,
WWW Alt. ’04, page 180–187, New York, NY, USA, 2004. Association for
Computing Machinery.

[6] John Dilley, Bruce M. Maggs, Jay Parikh, Harald Prokop, Ramesh K. Sitara-
man, and William E. Weihl. Globally distributed content delivery. IEEE
Internet Comput., 6:50–58, 2002.

[7] Alexander Fillbrunn, Christian Dietz, Julianus Pfeuffer, René Rahn, Gre-
gory A. Landrum, and Michael R. Berthold. Knime for reproducible cross-

domain analysis of life science data. Journal of Biotechnology, 261:149–156,
2017.

[8] Bunmi Funmilola and Amos David. Evaluation of diagnostic analysis and
predictive analysis for decision making. 08 2019.

[9] In Lee and Kyoochun Lee. The internet of things (iot): Applications, invest-
ments, and challenges for enterprises. Business Horizons, 58(4):431–440,
2015.

[10] Chee Sun Liew, Malcolm P. Atkinson, Michelle Galea, Tan Fong Ang, Paul
Martin, and Jano I. Van Hemert. Scientific workflows: Moving across
paradigms. ACM Comput. Surv., 49(4), dec 2016.

[11] Dongqi Liu, Haolan Liang, Xiangjun Zeng, Qiong Zhang, Zidong Zhang, and
Minhong Li. Edge computing application, architecture, and challenges in
ubiquitous power internet of things. Frontiers in Energy Research, 10, 2022.

[12] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Scientific work-
flow management and the kepler system. Concurrency Computation, 18(10):1039–
1065, August 2006.

[13] Suresh Marru, Lahiru Gunathilake, Chathura Herath, Patanachai Tangchaisin,
Marlon E. Pierce, Chris Mattmann, Raminderjeet Singh, Thilina Gunarathne,
Eran Chinthaka Withana, Ross Gardler, Aleksander Slominski, Ate Douma,
Srinath Perera, and Sanjiva Weerawarana. Apache airavata: a framework
for distributed applications and computational workflows. In Grid Comput-
ing Environments, 2011.

[14] Erik Nygren, Ramesh Sitaraman, and Jennifer Sun. The akamai network:
a platform for high-performance internet applications. Operating Systems
Review, 44:2–19, 01 2010.

[15] R. Ranjan, Saurabh Garg, Ali Khoskbar, Ellis Solaiman, Philip James, and
Dimitrios Georgakopoulos. Orchestrating bigdata analysis workflows. IEEE
Cloud Computing, 4:20–28, 01 2017.

[16] T Ramalingeswara Rao, Pabitra Mitra, Ravindara Bhatt, and Adrijit Goswami.
The big data system, components, tools, and technologies: a survey. Knowl-
edge and Information Systems, pages 1–81, 09 2019.

[17] Mahadev Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, 2017.

[18] Ryan Tanaka, George Papadimitriou, Sai Charan Viswanath, Cong Wang,
Eric Lyons, Komal Thareja, Chengyi Qu, Alicia Esquivel, Ewa Deelman,
Anirban Mandal, Prasad Calyam, and Michael Zink. Automating edge-to-
cloud workflows for science: Traversing the edge-to-cloud continuum with
pegasus. In 2022 22nd IEEE International Symposium on Cluster, Cloud
and Internet Computing (CCGrid), pages 826–833, 2022.

[19] Lionel Sujay Vailshery. Iot connected devices worldwide 2019-2030, Nov
2022.

[20] Rob van der Meulen. What edge computing means for infrastructure and
operations leaders. Gartner Research, 2018.

[21] Rafael Vaño, Ignacio Lacalle, Piotr Sowiński, Raúl S-Julián, and Carlos E.
Palau. Cloud-native workload orchestration at the edge: A deployment
review and future directions. Sensors, 23(4), 2023.

[22] David von Leon, Lorenzo Miori, Julian Sanin, Nabil El Ioini, Sven Helmer,
and Claus Pahl. A lightweight container middleware for edge cloud archi-
tectures. In Fog and Edge Computing, 2019.

[23] Michael Wilde, Mihael Hategan, Justin M. Wozniak, Ben Clifford, Daniel S.
Katz, and Ian Foster. Swift: A language for distributed parallel scripting.
Parallel Computing, 37(9):633–652, 2011.

[24] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David
Withers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Ne-
nadic, Paul Fisher, Jiten Bhagat, Khalid Belhajjame, Finn Bacall, Alex
Hardisty, Abraham Nieva de la Hidalga, Maria P. Balcazar Vargas, Shoaib
Sufi, and Carole Goble. The Taverna workflow suite: designing and execut-
ing workflows of Web Services on the desktop, web or in the cloud. Nucleic
Acids Research, 41(W1):W557–W561, 05 2013.

[25] Shihong Zou, Xitao Wen, Kai Chen, Shan Huang, Yan Chen, Yongqiang Liu,
Yong Xia, and Chengchen Hu. Virtualknotter: Online virtual machine shuf-
fling for congestion resolving in virtualized datacenter. Computer networks,
67:141–153, 2014.

A comparison of classification
approaches in likelihood-free model
selection

Jana Fischer
jana.fischer@aalto.fi

Tutor: Ayush Bharti

Abstract

Model selection is the task of choosing the best-fitting model for a given

data set. Due to a complex model or complex data, the likelihood func-

tion of the model can become intractable, and therefore methods like Ap-

proximate Bayesian Computation (ABC) are needed for model selection.

ABC-RF is an approach that uses the random forest (RF) classifier in com-

bination with ABC for the model selection. This paper examines if other

classifiers are suitable to replace the RF classifier in ABC-RF.

KEYWORDS: ABC, likelihood-free, model selection, random forest

1 Introduction

In many fields of science and engineering, models are used to describe

or examine a phenomenon. These models can be built with already ex-

isting expert knowledge. For training, the models require access to the

data-based likelihood function. However, if the models get too complex,

the likelihood function gets intractable and cannot be used. Intractable

likelihood functions occur for complex models with many parameters, as

well as for complex training data [2]. In addition, the model may con-

tain many hidden states which make the computation of the likelihood

function difficult [1].

The problem of intractable likelihood functions is solved by Approximate

Bayesian Computation (ABC). In ABC, data is simulated from a sampled

parameter vector θ and the parameter vector is accepted or rejected de-

pending on the similarity of simulated and observed data [1].

In addition to the parameters θ, the model structure itself has an im-

pact on the quality of the result. Model structure refers to both the type

of model and its hyperparameters. In classic machine learning tasks, the

model and hyperparameter selection is often performed with methods,

such as k-fold cross-validation or information criteria, such as the Akaike

information criterion (AIC) or Bayesian information criterion (BIC) [2].

However, all these approaches use the likelihood function and are inap-

propriate for models with intractable likelihoods. The previously intro-

duced likelihood-free ABC method can also be used for model selection.

The basic ABC approach faces several challenges, such as the choice

of hyperparameters and summary statistics. Pudlo et al. [8] use an RF

classifier to avoid the challenge of summary statistic selection. Since its

introduction, ABC-RF was applied in various fields.

A random forest (RF) is not the only classifier suitable for a large amount

of data. However, comparison studies for different classifiers have not

been made. Therefore, this paper compares the ABC algorithm for model

selection with different classifiers.

This paper overviews ABC and ABC-RF and examines an approach where

the RF is substituted with other classifiers. It focuses on the performance

and computation time of different classifiers. Section 2 gives an overview

of ABC and likelihood-free model selection. Section 3 describes the ABC-

RF method and classifiers that can replace the RF in the selection process.

An experiment and its results are described in Section 4 and discussed in

Section 5.

2 ABC methods

This section gives a motivation for the use of ABC methods and describes

its usage in parameter estimation and model selection. In addition, the

section describes the drawbacks of ABC and overviews approaches to solv-

ing these problems.

2.1 Background on Bayesian inference

Parameter estimation approaches use observed data y and a parameter

vector θ that describes the model in detail. It is assumed that y is sampled

from an unknown distribution and therefore is stochastic. In addition,

the model parameters θ are considered to be stochastic, and thus follow

a distribution p(θ). The aim is to fit the model to the observed data y,

finding a parameter vector θ such that the model output with θ and the

data y are similar. The probability of a parameter vector θ is computed

depending on the data points y with Bayes’ theorem:

p(θ|y) = p(y|θ)p(θ)
p(y)

(1)

This method is known as Bayesian inference [1]. In Equation 1, p(θ|y)
is the posterior distribution, p(y|θ) is the likelihood of the model depend-

ing on θ, and p(θ) is the prior distribution. Intuitively, p(θ) is the prior

knowledge about the model, and with the data and likelihood p(y|θ) the

prior knowledge is updated with each data point y. The denominator p(y)

of Equation 1 is named evidence and scales the product of likelihood and

posterior distribution to create a probability distribution.

The Bayesian inference method can only be applied if the likelihood

function p(y|θ) can be evaluated. However, p(y|θ) often is complex or in-

tractable and the posterior p(θ|y) cannot be computed in closed form [11]

nor can samples be obtained from it. Therefore, an approach to compute

the posterior p(θ|y) without using the likelihood is needed.

2.2 ABC

The ABC method was first introduced by Rubin [10] in 1984. The key

idea of the method is that the samples x are simulated from a distribution

p(θ, y), and if the samples are similar to the observed data, the distribu-

tion p(θ|y) is adjusted to the samples. The accepted parameters θ follow

the approximate posterior probability distribution p(θ|y) [1]. The terms

ABC and likelihood-free inference are often used interchangeably [6]. The

basic ABC algorithm is denoted Rejection sampling ABC [11]:

Algorithm 1 Rejection sampling ABC
Require: Given are observations y.

while fewer than N samples are accepted do

Draw parameters θi ∼ p(θ)
Simulate xi ∼ p(·|θi)
If ρ(S(xi), S(y)) > ϵ, reject xi

end while

In Algorithm 1, S(·) is a summary statistic, ρ measures the distance and

ϵ is the threshold for accepting or rejecting a sample xi. A summary statis-

tic S(·) is used because x and y often are high-dimensional data sets. In

high dimensions, the curse of dimensionality leads to distances in high di-

mensions being exponentially more difficult to estimate. Summary statis-

tics usually reduce the dimensionality of the data vectors x and y [1]. Due

to the dimensionality reduction, information gets lost when using sum-

mary statistics. To counteract this effect, a combination of several statis-

tics can be used. The combination can preserve the information from high

dimensional data x and y.

A combination of summary statistics, however, causes another problem.

Assume that several statistics are used and the rejection rate of the al-

gorithm is 90%, then it is up to 99% for the combination of two statistics

and up to 99.9% for three statistics, where the combined rejection rate

depends on the correlation of model parameters [1]. As a consequence,

sparse and correct statistics should be chosen. Selecting the summary

statistics is a difficult task in ABC and an insufficient choice of statistics

can result in a poorly performing model [9].

The first rejection sampling ABC algorithm from 1984 used the equality

of sample xi and observed data y as a criterion for accepting xi [10]. How-

ever, this results in a high rejection rate and a large amount of generated

samples. Therefore, the distance measure ρ and tolerance region ϵ are

applied [8]. A larger threshold ϵ leads to a smaller sample rejection rate,

but also to a larger approximation error. One approach to finding a good

balance is to use a list of decreasing threshold values instead of a fixed ϵ

[6]. In addition, if a combination of summary statistics is used, ϵ might

need to be different for each summary statistic due to different scaling

[1, 6]. An approach to solve these challenges regarding the selection of a

good ϵ value is to use the k nearest neighbors of the observed data y. This

method will be further described in Section 3.1.

2.3 ABC for model selection

Until now, the described ABC method only focused on parameter selec-

tion. However, it can also be applied for model selection. In this task,

several models m are compared and the one that best fits the observed

data y is chosen. Therefore, the parameter selection ABC needs a previ-

ous model sampling step [8].

In the end, the model with the highest probability is selected. For the

model selection task, the posterior probabilities p(θ|y,m) do not need to be

estimated [5]. Therefore, the set of summary statistics that is most impor-

tant for parameter selection differs from the summary statistics suitable

for model selection [5]. Experiments by Pudlo et al. [8] confirm this.

2.4 Challenges of ABC for model selection

The ABC approach faces two major challenges: the computational and

the calibration challenge [8]. The computational challenge means that

many simulations are needed. Therefore the computational cost is high in

particular for large data sets. A lower computational cost can be achieved

by increasing the threshold ϵ. This, however, increases the approximation

error.

The calibration challenge includes the choice of hyperparameters and in

particular the choice of summary statistics, which is a difficult task. A

poor choice of summary statistics can result in poor performance of the

model. In addition, ABC is applied in a wide field. Therefore, it is difficult

to generalize in terms of summary statistics and also distance measures

ρ(.), because they depend on the problem and data [6]. In addition, as

mentioned in Section 2.3, the suitable summary statistics for parameter

selection might not be suitable for model selection.

3 ABC model selection with classifiers

For ABC model selection, an estimation of the posterior probabilities p(θ|y,m)

is not needed. Therefore, classification approaches can be used. This sec-

tion first introduces the classification view on ABC and then the ABC RF

method, and finally compares two other classifiers that can be used in

ABC methods.

3.1 Classification view on ABC

The choice of the threshold ϵ is not trivial. In addition, the best value for

ϵ can vary for different summary statistics or different iterations of the

algorithm. An alternative approach to using a fixed threshold ϵ is the k-

nearest neighbors (kNN) approach. Instead of rejecting all models with a

distance ρ(S(xi), S(y)) > ϵ, the k models with the smallest distance are re-

turned, and therefore the threshold ϵ is chosen dynamically depending on

the simulations xi [5]. Those k returned models can be seen as an approx-

imation for the posterior distribution p(m|y). The kNN ABC algorithm for

model selection is given in Algorithm 2 [5]:

Algorithm 2 kNN ABC
Require: Given are observations y and a list of models m.

for i = 1 to N do

Draw model mi ∼ p(m)

Draw parameters θi ∼ p(θ|mi)

Simulate xi ∼ p(y|θi,mi)

end for

return the k models mi with the smallest distances ρ(S(xi)|S(y))

Before returning the k nearest neighbors in the last step, Algorithm 2

creates a reference table. This table contains all model-parameter-sample

combinations (mi, θi, xi) and the distances on all summary statistics for

each sample xi [8].

The kNN ABC can be seen as a classification task on the data from the

reference table. However, due to the curse of dimensionality, a large num-

ber of summary statistics in this approach still leads to high computation

time and poor model performance [5].

3.2 ABC-RF

In model selection, the posterior probability p(θ|y,m) does not need to be

estimated. Therefore, a classification approach can be used for this task.

Pudlo et al. [8] use a random forest (RF) as classifier. As in Algorithm 2,

a reference table is generated for N simulations. In contrast to previously

described methods, there is no rejection of samples. The whole reference

table is used to train the RF classifier. The classes are the models mi, and

the training data are the summary statistics on the samples xi. To select

a model, the summary statistics of the observed data y are given into the

trained RF and the prediction is the selected model.

A random forest is an ensemble of decision trees (DTs) and uses the

concepts of bootstrapping and boosting [3]. In detail, N DTs are trained

on the data and, after training, predict the class with a majority vote. The

N trees are trained on different subsets of the training data. In addition,

each set of training samples only uses a subset of the features. Therefore,

an RF needs three hyperparameters: The number N of trees, the number

Nsample of training samples per tree and the number Nfeature of training

features per tree [8].

An RF was chosen as the classifier, because due to the majority vote

the output also gives information about how often the predicted model is

selected and how often other models are selected. However, the model vote

frequency in RF and the posterior probability are not directly connected

[8].

Another reason for RFs is their good generalization ability. Neither

strong feature correlations nor noise have a large impact [8]. In addition,

a large set of summary statistics can be used, which solves the calibration

challenge of ABC in terms of summary statistic selection. In an exper-

iment by Marin et al. [5], several features containing only noise were

added to the model choice task. A comparison of ABC-RF and kNN-ABC

showed that the prior error rate grew much slower for the RF approach

than for kNN-ABC. Another advantage is that ABC-RF needs fewer train-

ing samples than other methods [8].

3.3 Other classifiers

The RF is only one classifier in a wide range of other classifier models.

In this section, two of them will be described in more detail: the neural

network (NN) and the support vector machine (SVM).

A NN consists of layers of neurons and weighted connections between

the neurons [2]. To learn non-linear behaviour, the neurons have a non-

linear activation function. In NN training, the error between output and

true class is back-propagated through the network and the weights be-

tween the neurons are adapted.

The idea of support vector machines (SVMs) is to use lines, planes or

hyperplanes to separate samples of different classes [2]. The goal is to

find the hyperplanes with the maximum margin, which is the distance to

the closest samples. The classes are often not linearly separable. There-

fore, the data is non-linearly embedded into higher-dimensional space

Figure 1. Distributions for the generated observed data.

with kernel methods. The separating hyperplanes are then computed in

high-dimensional space and are transformed back into the original space.

A commonly used type of kernel is the radial basis function (RBF) kernel,

which depend on geometric distance.

4 Experiments

The experiments compare the performance of the RF, NN and SVM clas-

sifiers. Four models are used for the model selection: Model 1 is a normal

distribution with mean µ and variance σ, with uniform prior distribu-

tions [-5, 5] on µ and [10, 20] on σ. The observed data y is generated with

[µ, σ]=[0, 10]. Model 2 is a student-t distribution with mean µ and ν de-

grees of freedom, and the prior distributions are [-5, 5] on µ and [1, 10]

on ν. For model 2, the observed data is generated with the parameters

[µ, ν]=[0, 10]. Model 3 is an exponential distribution with parameter λ

and the prior distribution is exponential with parameter [1]. The param-

eter value for data generation is λ=1. Model 4 is a log-normal distribution

with parameters µ and σ and uniform prior distributions [0, 1] for µ and

[1] for σ. The observed data is generated with [µ, σ]=[0, 1]. For each exper-

iment, n=100 samples of the distribution are generated as observed data

y. Figure 1 shows a plot of the four distributions.

The summary statistics used are
∑n

i=1 xi and
∑n

i=1 x
2
i , which refer to

the mean and variance of the samples x. In addition, the reference table

is normalized before the training of the classifier. In the ABC step of

the model selection, N=10000 samples are generated, which means 2500

Figure 2. Confusion matrix for the RF classifier. (accuracy 0.915)

samples per model.

The model selection is performed with three different classifiers: The

RF classifier, as used by Pudlo et al. [8], a NN and an SVM. The model

selection is performed using the abcpy package of Dutta et al. [4] and

scikit-learn [7] for the classifiers. The parameters of the classifiers are

mostly kept at the default settings. The RF uses 100 decision trees (DTs)

and each tree is trained on all data for one of the summary statistics.

The NN classifier is a Multilayer Perceptron (MLP) with one hidden layer

containing 100 neurons. It uses the rectified linear unit (ReLU) as an

activation function for the hidden layer. The SVM uses an RBF kernel.

There are 50 runs per model and classifier.

5 Results and discussion

For each classifier, a confusion matrix of the correct and predicted mod-

els is created. Figure 2 shows the confusion matrix for the RF classifier.

Out of 50 models, 47 were correctly predicted for the normal distribution

and 49 for both the student-t and exponential distributions. In the log-

normal distribution, some models were incorrectly classified as exponen-

tial. This might be due to the fact that the distributions are quite similar,

as Figure 1 shows. Overall, the RF reaches an accuracy of 0.915 for model

selection.

Figure 3 shows the confusion matrices for the model selection with the

NN and SVM classifiers. They both perform poorer than the RF classifier,

which also becomes apparent in the accuracy values. The results of the

NN classifier are similar to the RF for the exponential and log-normal dis-

tribution. However, it wrongly predicts many of the normal and student-t

(a) NN (accuracy 0.715) (b) SVM (accuracy 0.45)

Figure 3. Confusion matrices for the NN and SVM classifiers.

models. The SVM classifier predicts both the normal and student-t distri-

bution mostly as student-t and second-most as normal. It similarly pre-

dicts the exponential and log-normal model mostly as log-normal and sec-

ond most as exponential. A possible explanation is that the SVM weights

the first summary statistic, which is related to the mean, higher than the

second. The mean values are 0 for the normal and student-t distribution

and larger than 0 for the exponential and log-normal distribution (see

Figure 1).

The computation times for the model selection are 2.25 s for RF, 21.53 s

for NN and 21.38 s for the SVM. Therefore, the RF classifier needs only

about a tenth of the other classifiers’ time for model selection. In addi-

tion, the training of RF classifiers can easily be parallelized, because each

decision tree is trained individually. Therefore, RFs are a good choice

when it comes to large data sets in model selection.

6 Conclusion

This paper gives an overview of likelihood-free model selection with the

ABC-RF approach. The approach solves several problems of the basic

ABC, including the difficult task of choosing summary statistics. In ex-

periments, the RF classifier was replaced with two other classifiers, NN

and SVM. However, the results show that the RF outperforms the other

classifiers both in terms of accuracy and computation time.

References

[1] Mark A. Beaumont. Approximate bayesian computation in evolution and
ecology. Annual Review of Ecology, Evolution, and Systematics, 41(1):379–
406, 2010.

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning. Infor-
mation Science and Statistics. Springer, 2006.

[3] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.

[4] Ritabrata Dutta, Marcel Schoengens, Jukka-Pekka Onnela, and Antoni-
etta Mira. ABCpy: A User-Friendly, Extensible, and Parallel Library for
Approximate Bayesian Computation. Proceedings of the Platform for Ad-
vanced Scientific Computing Conference, 6 2017.

[5] Jean-Michel Marin, Pierre Pudlo, Arnaud Estoup, and Christian P. Robert.
Likelihood-free model choice, 2016.

[6] Osvaldo Martin, Ravin Kumar, and Junpeng Lao. Bayesian modeling and
computation in Python. Texts in statistical science series. CRC Press, first
edition edition, 2022.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[8] Pierre Pudlo, Jean-Michel Marin, Arnaud Estoup, Jean-Marie Cornuet, Math-
ieu Gautier, and Christian P. Robert. Reliable ABC model choice via random
forests. Bioinformatics, 32(6):859–866, 2016.

[9] Christian P. Robert, Jean-Marie Cornuet, Jean-Michel Marin, and Natesh S.
Pillai. Lack of confidence in approximate bayesian computation model
choice. Proceedings of the National Academy of Sciences, 108(37):15112–
15117, 2011.

[10] Donald B. Rubin. Bayesianly justifiable and relevant frequency calculations
for the applied statistician. The Annals of Statistics, 12(4):1151–1172, 1984.

[11] S. A. Sisson, Y. Fan, and M. A. Beaumont. Overview of approximate bayesian
computation, 2018.

Animating interactions using neural
networks

Janne Hölttä
janne.s.holtta@aalto.fi

Tutor: Henry Mauranen

Abstract

This literature review examines the latest developments and applications

of neural networks in animating interactions. By analyzing selected ar-

ticles, it is evident that neural networks have contributed significantly to

generating more realistic and interactive virtual environments through the

creation of more accurate and responsive animations of objects. Among

the different types of neural networks, GAN-based approaches have shown

great promise in the image generation field while different neural network

approaches such as ManipNet have shown advantages in animating in-

teractions. However, when it comes to scenarios with multiple animated

objects involved, different neural network approaches struggle to model

complex relationships in more complex interactions with dynamic objects.

Additionally, creating image generation models that work well in real-life

scenarios is a challenging task due to the unpredictable and diverse nature

of real-world situations.

KEYWORDS: Neural network, Animation, Object

1 Introduction

Recently animation interactions has been an active research area in im-

age recognition, facial animation and interactive character animations [11].

As deep learning techniques continue to improve, there has been a grow-

ing interest in using neural networks in animating interactions. Among

other techniques, the ability of neural networks to learn complex patterns

and relationships in data has played a significant role in the creation of

more engaging and realistic virtual environments. In particular, the use

of a variety of neural network architectures, including those that utilize

GANs, have shown great promise in modeling and generating realistic an-

imation images [10]. In this literature review, we explore the latest devel-

opments and applications of neural networks in animating interactions.

Specifically, we analyze the methodology and results of selected articles

and finally, discuss about the relevance and contribution of the selected

articles. This literature review aims to provide insights into the current

state-of-the-art techniques and challenges while highlighting their impor-

tance in this area.

2 Background

One of the articles discussed in Result section introduces neural net-

work approaches utilizing auto-regressive models to generate facial ex-

pressions. They are used for predicting a sequence of values or events

where each prediction is based on the previous predictions in the se-

quence. For example, the authors of the article "Example-Based Facial

Animation of Virtual Reality Avatars Using Auto-Regressive Neural Net-

works" use an auto-regressive approach to generate facial animation [10].

The authors of the article 2021, Zhang et al. introduces neural network

architecture that is based on ResNet architecture [14]. ResNet (Residual

Network) is a specific type of neural network which is designed to address

the problem of degradation in deeper neural networks. As more layers are

added to the network, it becomes difficult to train them and the accuracy

starts saturating and then degrading which is especially due vanishing

problem. ResNet introduces residual connections that skip over a few lay-

ers and allow the gradients to flow directly from the output of one block

to the input of another. The skip connections address the issue of vanish-

ing gradient by providing alternate shortcut paths for the gradient to flow

through [4].

Autoencoder is a type of neural network that operates in an unsuper-

vised manner and has the capability to compress and encode input data

efficiently. It aims to learn the most salient features of the input data and

create a reduced encoded representation of it. The network then tries to

reconstruct the original data from this reduced representation, with the

objective of minimizing the difference between the original input and the

reconstructed output. Autoencoder consist of four parts: Encoder, Code,

Decoder, Loss function. The encoder compresses the input data into a

lower-dimensional representation or code, the code represents the com-

pressed version of the input data, the decoder reconstructs the data from

the code, and the loss function measures the difference between the re-

constructed data and the original input data [3].

VAE refers to variational autoencoder which address the issue of non-

regularized latent space in autoencoder and provides the generative ca-

pability to the entire space. VAE is trained with regularization to prevent

overfitting and ensure that the learned latent space has useful proper-

ties for generative modeling [1]. Variational autoencoders can be used in

generative modeling task such as generating new images. For example,

the authors of the article 2021, Paier et al. utilize VAE among with other

neural networks to generate facial expressions [10].

In addition to VAE the authors of the article 2021, Paier et al. combine

GAN in their proposed model. Generative Adversial Network (GAN) is an

approach to generative modelling utilizing deep learning methods, such

as convolutional neural networks (CNN). GANs have been used for tasks

such as image synthesis and creating art [5]. GAN method is also utilized

in the article 2020, Malik et al. and in the article 2021, Belova et al.

GANs consists of two neural networks: a generator and a discrimina-

tor.The generator is trained to create fake data that are similar to real

data, while the discriminator is trained to distinguish between the fake

and real data. The two networks are trained together in a game-like pro-

cess, where the generator tries to create more realistic fake data and the

discriminator tries to correctly identify the fake data. This competition

between the two networks leads to the generator becoming better at cre-

ating realistic fake data [5].

In the article 2021, Starke et al. the authors use LSTMs as a part of

their proposed model to predict motion of a virtual character [11]. Long

Short-Term Memory (LSTM) is a type of recurrent neural network (RNN)

architecture that is capable of storing information over long sequences of

data and capturing long-term dependencies. It uses a memory cell and

gates to control the flow of information, allowing it to avoid the vanishing

gradient problem that traditional RNNs face when dealing with long se-

quences. This makes it effective for tasks such as natural machine trans-

lation and speech recognition [6].

3 Methodology

The methodology for this literature review involved conducting a litera-

ture search using the IEEE Xplore digital library with the keywords "neu-

ral netwrork", "animation" and "objects". The search was limited to peer-

reviewed journal articles published between 2020 and 2023 which gave

me about 32 results. After an initial screening of the search results based

on relevance, abstracts and full-text articles 10 were chosen for the study.

Articles were included if they described the use of neural networks in

the context of animating objects, such as character animation and image

animation. Exclusion criteria included articles that did not use neural

networks, were not related to animation, or did not involve object. The

selected articles were then analyzed to identify common neural network

architectures and techniques used in animating objects. The findings of

this study contribute to the understanding of the current state-of-the-art

in neural network-based animation techniques and provide insights for

future research in this area.

Additionally, article 2021, Starke et al. and article 2021, Zhang et al.

were chosen as primary sources. The reason for selecting these articles

was that they were provided by the school, and they were deemed rele-

vant to the research topic. Also, I selected the article "Example-Based Fa-

cial Animation of Virtual Reality Avatars Using Auto-Regressive Neural

Networks" by W. Paier, A. Hilsmann, and P. Eisert because I found it to be

very interesting and relevant to my research topic. All of these three ar-

ticles involve the use of neural networks in animation, which aligns with

the research’s focus on the application of neural networks in this field.

Moreover, the articles provide an in-depth analysis of the methodologies

used and the results obtained, making them a suitable source for drawing

insights into the subject matter.

4 Results

In this section, we present the results of analysis of the selected articles on

neural network-based animation of interactions. The structure is divided

into two subsections based on the neural network approach used: Other

approaches and GAN approaches. The subsection Other approaches in-

cludes articles that utilize architectures such as ManipNet, Long Short-

Term Memory (LSTM) networks and ResNet, while the GAN approaches

subsection includes articles that utilize Generative Adversarial Networks

(GANs).

4.1 Approaches that utilize GAN

In the article 2021, Paier et al. the authors introduce autoregressive neu-

ral network that generates sequences of facial expressions from a learned

latent representation. The network is trained on a dataset of example

facial animations and can then generate new sequences by conditioning

on user-defined input features. Facial expressions are generated by vari-

ational autoencoder based on a given input sequence while generative ad-

versarial network refines the generated facial expressions to make them

more realistic [10].

The goal of the proposed framework is to perform examaple-based an-

imation which consist of three stages. In the first stage authors creates

database for relevant facial expressions using captured multiview video

footage. In a second step, an animatableface model is created from the

captured data. To efficiently use the extracted face performance data, a

neural face model variational autoencoder is trained to synthesize both

geometry and texture from a low-dimensional facial expression vector. In

the third step of the proposed framework, an animation network is trained

on annotated sequences of latent expression vectors. These vectors are

annotated with textual labels that describe the facial expression. Dur-

ing training, the animation network learns how to predict the subsequent

facial animation parameters from the previous parameter [10].

The proposed system can synthesize realistic facial animations from

a sequence of semantic expression labels after training. It several has

advantages such as animating visual speech directly from text and per-

forming fast facial animation based on a high-level description of the con-

tent [10].

The generative adversial network (GAN) is also used in the paper 2021,

Belova et al. to generate anime opening frames. The authors used a

dataset of existing anime opening frames to train the GAN model. The

discriminator of the GAN approach is trained to differentiate between

real images from the original dataset and images generated by the gen-

erator. On the other hand, the generator is trained to create images that

are realistic enough to trick the discriminator into thinking that they are

real. In this way, the generator and the discriminator work together to

improve the quality of the generated images until they are visually sim-

ilar to the real images from the dataset. The discriminative network is

constructed using convolutional layers while the generative network is

implemented on the basis of deconvolution layers, using the idea opposite

to convolutions [2].

The article 2020, Malik et al. presents a method for generating deepFake-

based animations on driving videos and detecting such generated anima-

tions. In the the authors proposed model they animated a source image

on driving video and using conditional generative adversarial networks to

create new predicted images based on two inputs: a target image and sev-

eral source images. The GAN was trained to learn the mapping between

these inputs and to generate a new predicted image that combined the ap-

pearance of the target image with the facial expressions and movements

from the source images [8].

Also, in the paper 2022, Manjula et al. the authors utilize generative

adversial networks (GAN) architecture to generate deep fake images. The

model is trained on a dataset of real images to learn the distribution of

the real images. During the training process, the generator network is

optimized to produce images that are similar to the real images, while the

discriminator network is optimized to accurately classify the generated

images as fake or real [9].

The article 2020, Wang et al. proposes a self-supervised approach for

adapting the pose of a source image to a target domain for image ani-

mation. In the authors proposed model framework called DIPA-GAN (Do-

main Independent Pose Adaptation) the architecture consists of three net-

works: a appearance encoder, a pose encoder, and a video generator. The

appearance encoder is responsible for extracting the appearance features

of the input image. It takes as input the source image and generates a

high-level feature representation of the appearance information. The pose

encoder is responsible for extracting the pose information of the source

image. It takes as input the source image and generates a high-level fea-

ture representation of the pose information. The video generator takes as

input the appearance and pose feature representations generated by the

appearance and pose encoders, respectively, and generates the animated

output image. The proposed approach allows for the creation of realistic

animated images with a desired pose, and the DIPA-GAN architecture

is shown to perform this conveniently in terms of animation quality and

pose adaptation accuracy [13].

4.2 Other approaches

In the article 2021, Zhang et al. propose a deep neural network model

called ManipNet for synthesizing natural hand-object interactions in vir-

tual environments. The model employes a deep neural network to learn

the spatial features of hand-object interactions from data. The authors

demonstrate that their model is capable of synthesizing various manipu-

lation movements [14].

ManipNet is a autoresgressive model that consists of multiple fully con-

nected layers incorporating both convolutional and recurrent neural net-

works. ManipNet predicts hand-object interactions over time using a

residual dense network architecture [14]. Residual dense networks are

based on the ResNet architecture. In addition to skip connections residual

dense networks use dense connections which enable information to flow

more efficiently through the network [4]. ManipNet takes the previous

hand pose, sensor features, and control signals such as past and future

trajectories of both wrists and the object as input and predicts the dis-

tance between the fingers and the object as well as a new hand pose [14].

Also, in the article 2021 by Xiuling Tian proposed method the author

utilized residual networks for evaluating image aesthetic quality using a

multi-task residual network. The proposed model is trained on a dataset

of images with aesthetic quality labels, using a combination of classifi-

cation and regression loss functions. The proposed network is designed

to simultaneously perform two tasks: aesthetic quality classification and

image score regression. The approach solves the degradation problem

by using residual learning unit. This unit allows the network to learn

residual functions, which can help to preserve important features as the

network gets deeper. By preserving these important features, the perfor-

mance of the network can be improved even with increased depth. The

article also mentions that if the later layers of the network are identity

mapping (which means they simply pass the input through unchanged),

then the network becomes a shallow network. This means that the resid-

ual learning unit is necessary for the network to have depth and be able

to learn more complex representations of the input data [12].

In 2020, Ma et al. presented a method for detecting moving objects

in video sequences using a 3D convolutional neural network (CNN). The

paper proposes a pixel-level classifier for moving object detection, which

uses a 3D convolutional neural network to classify pixels as foreground

or non-foreground. The network has six layers, including four alternating

3D convolutional and pooling layers, a fully connected layer, and a soft-

max classifier. The input to the classifier is a video cube centered on a

pixel, and the output indicates whether the pixel is a moving object. The

model achieves classification by dividing pixels into a two-class model of

foreground and non-foreground, with the final output of the model being

the classification result. [7].

The article 2021, Starke et al. proposes a new framework for simulating

interactive scenes between virtual characters and objects. The authors

introduce a neural network architecture, called a neural state machine,

that combines the advantages of state machines with deep learning tech-

niques. Neural state machine consists of Motion Prediction Network and

Gating Network. The Motion Prediction Network component is respon-

sible of generating predictions for the autoregression of the character-

related information. In addition, it defines the geometry of the surround-

ing environment and high-level instructions such as the goal location and

action state. The Motion Prediction Network uses this information to pre-

dict the character’s motions in the current frame. The Gating Network

determinate blending coefficients of each expert (sub-network) which al-

lows for the creation of a Motion Prediction Network that adapts to the

current context. The Gation Network is used to generate more accurate

predictions for the character’s motion [11].

5 Discussion

Many of the articles discussed in this paper utilized GANs in their pro-

posed model or framework. Along with multiple different neural network

architecture approach GANs have shown great potential in generating

animation interactions. Many studies have successfully applied GANs to

generate various types of image animation such as facial expressions and

deep fake images [9].

Despite the significant progress made in this field, several challenges

and limitations remain, especially in the character-scene interaction field

where interactions can involve multiple objects. For example, in the ar-

ticle 2021, Zhang et al. the authors listed limitations for their proposed

model ManipNet such as that the model requires a large of amount of

training data to learn the intricate relationship between the hand and

the object. In the article 2019, Starke et al. also highlighted the problem

where they model fails to adapt to geometry that is rather different from

that in the training set [11]. Additionally, Zhang et al. acknowledged

that their approach is not suitable for real-time applications due to the

computational complexity of the model [14].

The authors of the paper 2021, Paier et al. faced similar limitations of

their proposed model than the articles mentioned earlier. When generat-

ing facial expressions the first problem is that the approach relies on a

limited set of training data which limit the generalizability of the gener-

ated animations to other facial expressions. Second, the approach strug-

gle to work in real-world scenarios, because the input images are well-

aligned and frontal which may not be the case all the time. In addition,

the method may generate unrealistic or exaggerated facial expressions,

which may not be suitable for all applications [10].

6 Conclusion

As a conclusion, among with other types of neural networks, GAN-based

approaches have shown great success in image generation field. In ad-

dition, different neural network architectures such as ManipNet have

shown significant advances in animating interactions. However, when

multiple animation objects involved, different neural network approaches

find it difficult to model complex relationships in more complex interac-

tions with animation objects. Additionally, image generation in real-life

scenarios is harder to implement due to unpredictable and diverse situa-

tions in real life making it difficult to capture and represent all possible

variations in the training data.

References

[1] Humam Alwassel, Rui Zhang, Zeyu Wang, and Xiaofei Liu. Bimodal varia-
tional autoencoder for audio-visual speech recognition. ResearchGate, 2021.

[2] Polina Belova, Ksenia Urkaeva, and Anna Gamova. Generating "ideal"
anime opening frames using neural networks. In 2021 IEEE Conference
of Russian Young Researchers in Electrical and Electronic Engineering (El-
ConRus), pages 229–232, 2021.

[3] C. Borghesi and Z. Lu. Autoencoders. ResearchGate, 2019.

[4] Wen Chen, Yifan Wang, Jiarui Xu, and Jizhe Zhao. Neural network-based
animation synthesis: A review. Applied Sciences, 12(18):8972, 2022.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial networks. ResearchGate, 2014.

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Re-
searchGate, 1997.

[7] Linfei Ma, Fei Xu, Taowei Li, and Haisu Zhang. A moving object detection
method based on 3d convolution neural network. In 2020 7th International
Conference on Information Science and Control Engineering (ICISCE), pages
55–59, 2020.

[8] Yushaa Shafqat Malik, Nosheen Sabahat, and Muhammad Osama Moaz-
zam. Image animations on driving videos with deepfakes and detecting
deepfakes generated animations. In 2020 IEEE 23rd International Multi-
topic Conference (INMIC), pages 1–6, 2020.

[9] A K Manjula, R. Thirukkumaran, K Hrithik Raj, Ashwin Athappan, and
R Paramesha Reddy. Deep fakes image animation using generative adver-
sarial networks. In 2022 International Conference on Advances in Comput-
ing, Communication and Applied Informatics (ACCAI), pages 1–6, 2022.

[10] Wolfgang Paier, Anna Hilsmann, and Peter Eisert. Example-based facial
animation of virtual reality avatars using auto-regressive neural networks.
IEEE Computer Graphics and Applications, 41(4):52–63, 2021.

[11] Alexander Starke, Tobias Heck, and Dietrich Paulus. Neural state ma-
chine for character-scene interactions. In Proceedings of the 20th ACM
SIGGRAPH International Conference on Virtual-Reality Continuum and Its
Applications in Industry, pages 225–232, 2021.

[12] Xiuling Tian. Using multi-task residual network to evaluate image aes-
thetic quality. In 2021 IEEE 5th Advanced Information Technology, Elec-
tronic and Automation Control Conference (IAEAC), volume 5, pages 171–
174, 2021.

[13] Chaoyue Wang, Chang Xu, and Dacheng Tao. Self-supervised pose adap-
tation for cross-domain image animation. IEEE Transactions on Artificial
Intelligence, 1(1):34–46, 2020.

[14] Jie Zhang, Liancheng Zhu, Ruiqi Gao, and Yue Gao. Manipnet: Neural
manipulation synthesis with a hand-object spatial representation. ACM
Transactions on Graphics, 40(4):Article 46, 2021.

Overview of Adversarial Attacks for
Neural Networks Classifiers

Javier Rosales
javieralberto.rosalesflores@aalto.fi

Tutor: Blerta Lindqvist

Abstract

Neural networks can classify images with human-like performance, this

is why image classifiers are now being used in all kinds of tasks, includ-

ing critical ones such as medical diagnosis, malware detection, and au-

tonomous driving. Nevertheless, image classifiers are vulnerable to evasion

attacks causing them to misclassify inputs. These attacks modify images in

subtle ways to cause errors. These altered images, also called adversarial

examples, can be generated by various adversarial attacks. These attacks

can be developed with or without using information about the target sys-

tem. The high success rates of these attacks and the ability of adversarial

examples to successfully attack many classifiers and not only the targeted

ones make adversarial attacks a concerning matter for image classifier sys-

tems.

KEYWORDS: adversarial attacks, machine learning, attacks, security, neu-

ral networks, DNN, classifiers

1 Introduction

Neural networks, a type of machine learning system, have evolved to

have near-human-level performance on multiple natural visual recogni-

tion tasks [8]. Image classification systems, one of these tasks where the

system labels images, are already in use in a wide range of applications

and fields.

In cybersecurity criminals typically use pre-existing malicious code to

build new variants of the malware. This practice makes it highly im-

portant to classify the malware families to apply effective malware mit-

igation and prevention strategies. Chaganti et al. [3] propose Efficient-

NetB1, an efficient neural network model, which performs malware fam-

ily classification using malware byte-level image representation. Effi-

cientNetB1 achieved an accuracy of 99% on the Microsoft Malware Clas-

sification Challenge (MMCC) using malware image representation with

fixed image width.

Image classifiers are also a widespread tool for medical image process-

ing [11]. This technology has been implemented to support medical di-

agnoses such as the severity stage of diabetic retinopathy from retinal

fundoscopy, lung diseases from chest X-ray, or skin cancer from dermo-

scopic photographs. The deep learning-based diabetic retinopathy diag-

nosis system was the first application approved by the US Food and Drug

Administration (FDA).

Advanced Driving Assitance Sytems (ADAS) is constantly evolving and

implementing new technologies [15]. Self-governing cars are an upcoming

trend that implements image classifiers. The ability of these cars to de-

tect, accurately classify, and act upon the different traffic signs can be the

difference between life and death. This is why traffic sign classification

needs to have real-time performance [4] while using images or videos from

different distances as input. Even if traffic signs are designed to stand out

and be easy to detect it is still a challenging task due to the wide variety

of colors, shapes, environmental conditions, occlusion, and illumination.

Nevertheless, neural network classifier systems are not perfect. Neural

networks learn uninterpretable solutions with counter-intuitive proper-

ties [14]. These properties make classifiers vulnerable to malicious inputs,

also called adversarial examples, which can make classifier systems give

wrong and undesired outputs. In [5] it is observed that the robustness of

adversarial examples unveils a vulnerability in neural network systems

that could be especially concerning for security-critical tasks where this

kind of system is implemented.

This paper reviews the current research on the strongest evasion adver-

sarial attacks for classifying neural networks aiming to give the reader a

better understanding of how these adversarial attacks work and how they

could mean harm. This paper will cover the basics of classifying neural

networks under attack, and what kinds of adversarial attacks there are.

2 Background

2.1 Neural Netwroks

As described by Carlini and Wagner [2] a neural network is a mathemati-

cal function F that takes an input x ∈ Rn and produces an output y ∈ Rm.

F (x) = y

The function depends on the model parameters Θ, and neural networks

can consist of one or more layers of functions.

Fi(x) = σ(θi · x) + θ̂1

Where σ represents the non-linear activation function, θi represents the

matrix of model weights and θ̂1 a vector of model biases. This paper will

focus on neural networks used as classifiers with multiple classes.

The resulting output vector y is treated as a probability distribution,

where each value represents the probability that the input belongs to a

specific class. The classifier assigns a label C(x) to the input based on the

class with the highest probability.

2.2 Adversarial Attacks

Deep neural networks have excellent performance in visual recognition

problems, but they also have some drawbacks, such as the uninterpretable

solutions they learn and the counterintuitive properties of these solutions.

One of the strongest ones is the instability of neural networks concerning

small perturbations on their inputs [14]. Inputs that are indistinguish-

able from natural data and are classified incorrectly due to perturbations

that maximize the prediction error are named "adversarial examples".

The algorithms that produce these examples are called adversarial at-

tacks [12].

When the attack is aimed only to give a wrong classification, it’s called

an untargeted attack; this attack is less powerful than targeted attacks,

where a specific classification is a target. An example is developed to be

classified as the target class [2].

Figure 1. Natural images give the wrong classification after a black-box attack [5].

Adversarial attacks can be classified as black-box and white-box attacks.

Black-box attacks characterize because the attacker has no knowledge

regarding the trained model, parameters, the training dataset, or any

other information available to a user with full access to the model. Black-

box attacks are common in online machine-learning services. In a white-

box attack, opposite to a black-box, the attacker has all the information

and access to the trainer model, such as the training data set, network

structure, parameters, or weights [10].

Adversarial training presents a phenomenon called transferability where

adversarial examples transfer between independently trained networks

with entirely different training sets. This is concerning for practical ap-

plications since it implies that other deep networks, which are not the

target of adversarial training, can be vulnerable to the same examples

[13].

3 Adversarial Algorithms

3.1 Fast Gradient Sign Method

Goodfellow, Shelns, and Szegedy [7] developed the fast gradient sign method

(FGSM) for linear models showing that adversarial examples are not ex-

clusive to nonlinear neural networks. Individual input features have lim-

ited precision; digital images frequently utilize only 8 bits per pixel, so

all information below 1/255 is disregarded. Therefore, when an input x

is added, a perturbation n, which is smaller than the precision of the fea-

tures, the classifier should respond in the same way to the original input

x and the adversarial input x ′. Nevertheless, when the input x goes un-

der many microscopic perturbations, these changes add up to one large

change in the output, a misclassification. These ideas are the base of the

fast gradient sign method, which is defined as:

n = ϵsign(∇xJ(θ, x, y))

Where ϵ is a negligible value to the sensor associated with the problem,

θ represents the parameters of the model, x the input, y the targets asso-

ciated with x, if any, and J the cost used to train the neural network. This

method obtains an optimal max-norm perturbation n [7].

3.2 L-BFGS

L-BFGS is an optimization algorithm that uses limited computer memory

to approximate the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS).

Szegedy et al. [14] used box-constrained L-BFGS to create adversarial ex-

amples by modeling it as a constrained minimization problem, as shown

below.

minimize ∥ x− x ′ ∥22

such that C(x ′) = l

x ′ ∈ [0, 1]n

This method aims to find another image x ′ that is similar to x under

the L2 distance that is labeled differently by the classifier. The problem

by itself is very tough, so Szegedy et al. added the lossF,l(x ′) function.

minimize ∥ x− x ′ ∥22 +lossF,l(x ′)

such that C(x ′) = l

This function maps the image to a positive real number[2]. With this

method, Szegedy et al. created adversarial examples that were given a

wrong classification, like the following.

Figure 2. Adversarial example A[14].

Figure 3. Adversarial example B[14].

The previous figures include on the left an image correctly classified as a

car, in the center the adversarial example that was not classified as a car,

and on the right, the maximized absolute value of the difference between

the first two images.

3.3 Jacobian-based Saliency Map Attack (JSMA)

JSMA is a white-box attack algorithm developed for image classification

deep neural networks. It modifies some pixels in an image to create ad-

versarial examples. It does this by constructing a saliency map using

the Jacobian matrix, which characterizes the relationship between the

input and output of a targeted deep neural network (DNN). The most

significant pixel is identified and modified in each iteration based on the

saliency map. The algorithm re-computes the saliency map and uses the

DNN derivative with respect to the input image to indicate modifications

for adversarial attacks. JSMA is not limited to image classification but

has also been applied to other machine learning tasks, such as malware

classification, and different DNN architectures, such as recurrent neural

networks (RNNs) [5].

3.4 Deepfool

DeepFool is an untargeted attack algorithm that aims to find the least

amount of distortion in an image that will result in misclassification. It is

inspired by linear classification models where the separating hyperplanes

indicate the decision boundaries of each class. The algorithm projects

an image to the closest separating hyperplane to find the minimum dis-

tortion. A modified version of DeepFool has been proposed for DNNs to

handle the nonlinearity of classification [14].

3.5 Carlini Wagner

As Szegedy with L-BFGS, Carlini, and Wagner also formulated the prob-

lem of finding an adversarial example for an image x. D stands for a

distrance metric, L0, L2, or L∞.

minimize D(x, x+ δ)

such that C(x+ δ) = t

x+ δ ∈ [0, 1]n

where the objective is to encounter a δ that minimezes D(x, x+ δ) while

x is fixed. Nevertheless, the constraint C(x + δ) = t is very non-linear, so

Carlini and Wagner defined an objective function f such that C(x+ δ) = t

if and only if f(x + δ) ≤ 0. This new function changes the formulation of

the problem to:

minimize D(x, x+ δ) + c · f(x+ δ)

such that x+ δ ∈ [0, 1]n

To guarantee the modifications result in a valid image, the problem had

a box constraint on δ: for all i, 0 ≤ xi + δi ≤ 1.

Carlini and Wagner created attacks for L0, L2, and L∞. The L0 and L2

attacks found examples with 2 to 10 times less distortion than Deepfool,

JSMA, and L-BFGS and a 100% success probability. The L∞ has compa-

rable quality to the other attacks but with a higher success rate. The new

attacks can use any image and find an adversarial example for any tar-

get with a runtime of no longer than a few minutes. Making the attacks

unrestrictive for any attacker [2].

Figure 4. Targeted attacks for each of the 10 digits where
the starting image is black for each of the three

distance metrics.[2].

3.6 Projected Gradient Descent

The projected gradient descent (PGD) attack is a variant of the fast gra-

dient sign method (FGSM) attack, previously discussed in this paper, con-

sisting of a multi-step projected gradient descent on the negative loss

function [13]. The perturbed data in each step is defined as follows.

xt = Πx+S(x
t−1 + α · sign(∇xJ(θ, x

t−1, y)))

where Πx+S represents the projecting perturbatin into the set S and α

the setp size. PGD is a more powerful adversary than FGSM [9].

3.7 Auto Projected Gradient Descent

Croce and Hein [6] identified weaknesses in the projected gradient de-

scent (PGD) attack; the fixed step size, the agnostic budget, and the trend

unawareness. The fixed step size greatly influences the algorithm’s per-

formance, and it is suboptimal since it does not guarantee convergence.

The agnosticism of the attack budget does not ensure better results, as

shown in [6] decreases significantly after a few iterations. Finally, the

algorithm is unaware of how the optimization is evolving. Therefore, it

is unable react to the optimization outcomes. To fix the identified weak-

nesses, Croce and Hein suggest dividing the available N iterations into

phases.

1. Exploration: where a set of good initial points is searched.

2. Exploitation: where the accumulated knowledge is maximized.

The shift between phases is handled by progressively reducing the step

size. A smaller step maximizes the objective function locally. On the other

hand, a larger step allows so move quickly in S. The step decrease is made

based on the optimization trend; if the objective value grows sufficiently

fast, the step is not adjusted; otherwise, it is decreased. When the step

size is adjusted, the maximization restarts from the best point encoun-

tered.

3.8 Square Attack

The square attack is a black-box query-efficient attack that implements

random search, an iterative technique in optimization. The algorithm

samples a random update δ in each iteration, and if it improves the objec-

tive function, it is added to the current iterate x ′. Random search does not

rely on any gradient information from the objective function. The attack

uses two sampling distributions, one for l∞ and l2, which are motivated

by how neural networks with convolutional filters process images and the

shaper of lp-balls for different p. The suggested scheme varies from the

classical random search by how are perturbations x ′ constructed. In each

iteration, the perturbation is within the boundary of l∞ or l2 ball before

the projection onto the image domain [0, 1]d, where d denotes the input

dimension. All changes are localized in the image squares formed by con-

tiguous pixels; thus, the attack’s name [1].

3.9 Zero Order Optimization

The Carlini and Wagner (C&W) attack is the base of the Zero Order Opti-

mization (ZOO) attack. C&W is a very strong white-box attack, but ZOO

is designed as a black-box attack that modifies the two key aspects: a loss

function f(x, t) that is only dependent on the class label t and the output

of a deep neural network F ; and computing an approximate gradient, not

by using the actual backpropagation of the attacked DNN but by the use

of a finite difference method and then solving the optimization problem

with zeroth order optimization [5].

The proposed loss function is defined as:

f(x, t) = max{maxi ̸=tlog[F (x)]i − log[F (x)]t,−k}

Log(0) is defined as - ∞ and k ≥ 0. Since log(·) is a monotonic function

for any x and y greater than 0, log(y) is greater than log(x) whenever

y ≥ x. Because of it maxi ̸=tlog[F (x)]i − log[F (x)]t ≤ 0 giving x the high-

est confidence score for the class t. Pin-Yu et al. [5] found that the log

operator was crucial for the black-box attack since DNN with extensive

training yield probability distributions from F (x), where the confidence

score of one class is significantly higher than those of the other classes.

With the log operator and its monotonicity, the dominance effect is di-

minished without losing the order of confidence scores since k ensures a

constant gap between maxi ̸=tlog[F (x)]i and log[F (x)]t

4 Conclusions

Neural network classifiers have excellent performance and a wide range

of applications. They are already being used in critical tasks that make

them a target for malicious users that would benefit from errors in these

systems. A hacker that needs malware to go undetected, a patient that

wants a wrong diagnosis, or a criminal that wants a stop sign to be mis-

classified to name a few.

Adversarial attacks are a reality, numerous algorithms can provide ad-

versarial examples with high success rates. These examples can be un-

detectable to the human eye since the perturbations can be microscopic.

Furthermore, these examples can be transferred to other classifiers and

have successful results. Resulting in different systems being vulnerable

to these adverbial examples, even if they are not a target and their infor-

mation is not public.

This is why, when implementing a neural network classifier, it is impor-

tant to implement the appropriate security measures to ensure misclas-

sification, and suspicious behaviors do not go undetected. Classifications

systems should not be blindly trusted and security checks should be in

place to mitigate these attacks.

References

[1] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias
Hein. Square attack: a query-efficient black-box adversarial attack via ran-
dom search, 2019.

[2] Nicholas Carlini and David Wagner. Towards evaluating the robustness of
neural networks, 2016.

[3] Rajasekhar Chaganti, Vinayakumar Ravi, and Tuan D. Pham. Image-based
malware representation approach with EfficientNet convolutional neural
networks for effective malware classification. Journal of Information Secu-
rity and Applications, 69:103306, September 2022.

[4] Lingying Chen, Guanghui Zhao, Junwei Zhou, and Li Kuang. Real-time
traffic sign classification using combined convolutional neural networks. In
2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), pages 399–
404, 2017.

[5] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh.
ZOO. In Proceedings of the 10th ACM Workshop on Artificial Intelligence
and Security. ACM, nov 2017.

[6] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free attacks, 2020.

[7] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples, 2014.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[9] Tianjin Huang, Vlado Menkovski, Yulong Pei, and Mykola Pechenizkiy. Bridg-
ing the performance gap between fgsm and pgd adversarial training, 2020.

[10] Sara Kaviani, Ki Jin Han, and Insoo Sohn. Adversarial attacks and de-
fenses on AI in medical imaging informatics: A survey. Expert Systems
with Applications, 198:116815, July 2022.

[11] Xingjun Ma, Yuhao Niu, Lin Gu, Yisen Wang, Yitian Zhao, James Bailey,
and Feng Lu. Understanding adversarial attacks on deep learning based
medical image analysis systems. Pattern Recognition, 110:107332, Febru-
ary 2021.

[12] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards deep learning models resistant to adversarial
attacks, 2017.

[13] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards deep learning models resistant to adversarial
attacks, 2017.

[14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural
networks, 2013.

[15] Njayou Youssouf. Traffic sign classification using CNN and detection using
faster-RCNN and YOLOV4. Heliyon, 8(12):e11792, December 2022.

Microservices: Describing usage based
upon granularity.

Jawad Zaheer
jawad.zaheer@aalto.fi

Tutor: Antti Ylä-Jääski

Abstract

KEYWORDS: microservices, granularity, monoliths, machine learning, se-

mantic clustering, Application Programming Interface (API)

Microservices are an increasingly used architectural pattern, hence choos-

ing the most optimal value for it affects the software quality making it a

widely researched topic. This paper conducts a literature review by identi-

fying different approaches used by different authors to address granularity

with reference to microservices using different machine learning and clus-

tering techniques. We also evaluate the different performance and quality

attributes associated with these approaches. Finally, we discuss these ap-

proaches and concluded granularity has no standard definition and that

there are trade-offs between the different approaches used. Hence, a stan-

dard definition regarding microservice granularity, based on its size and

complexity is proposed. Thus, we concluded that achieving low coupling,

complexity, and high cohesion should be our goal which can further lead

to improved performance, maintainability, and scalability for our applica-

tion.

1 Introduction

Microservices are a software development approach where a large system

is divided into smaller and independent services communicating and col-

laborating with each other, thus forming a complete application. Each

microservice focuses on a specific task and can be developed, tested, and

deployed independently of the others. This architecture allows for more

flexible and scalable development and deployment, as well as easier main-

tenance and testing [3]. At present, many companies including, Netflix,

eBay, and Amazon have transitioned their software and services to cloud

servers, owing to their capability to adapt computing resources based on

usage needs. Microservices Architecture, as described by Fowler [6], in-

volves creating a collection of services operating like a single application.

All these services communicate using methods, like, an HTTP resource

Application Programming Interface (API), and run independently in sep-

arate processes [5].

Some challenges pertaining to the maintenance of distributed systems

include agility, reduction of costs, and granularity [20]. Service modular-

ization is also a major challenge since it involves figuring out which are

the correct modules with the right size and the correct distribution of re-

sponsibilities. Front-End Integration User Interfaces (UIs) are very crit-

ical in microservice architectures because they are not the focus of many

of the designers of the microservice approach since they are mostly archi-

tects referring to back-end portions of the application leading to systems

having a monolithic front-end using a number of back-end microservices.

In addition, resource management of different resources in this architec-

ture also poses a significant challenge since necessary filters and alerts

have to be defined, so as to notify developers whenever something goes

wrong. Finally, building fault-tolerant services by developers in order to

avoid inter-process communication failures [10].

This paper studies the problem of determining whether to use the mi-

croservices architecture in a system based on measuring the granularity

of the services involved. We can define granularity based on size (num-

ber of operations and microservices) and complexity (coupling, cohesion,

and dependencies). Having a lower complexity of independent services,

higher cohesion, and low coupling between the different microservices in-

volved is one of the major goals of granularity. The challenge is to find

the correct boundary for each service that has a concrete purpose and is

decoupled from other services while at the same time maximizing system

modularity and minimizing complexity.

As noted by Hassan et al. [8], granularity levels determine the size as

well as the scope of the service-provided functionality. Adjusting gran-

ularity parameters can involve either combining or breaking down mi-

croservices to either a finer or coarser level. As suggested by Homay et al.

(2020) [9], difficulty in determining the right amount of granularity for

any number of services lies in determining the correct boundary size for

each one, ensuring each has a clear purpose and is independent as possi-

ble, while maximizing system modularity and minimizing complexity.

The paper begins by explaining the difference between the monoliths

and microservices, then discusses the different approaches that could be

used to measure granularity using a systematic literature review, and

finally, we would be discussing those and provide our conclusions.

2 Microservices vs Monolith

A monolithic architecture includes an application with a set of different

services deployed in a single codebase rather than in a distributed system.

These services communicate with external systems or consumers through

interfaces, such as Representational State Transfer (REST) Application

Programming Interfaces (APIs), various HTML pages, or different types

of Web Pages [21].

Microservices architecture offers several benefits. Firstly, it allows for

technology heterogeneity, allowing different services in the system to use

different technology to achieve their goals and performance. Secondly, it

provides resilience, if one component fails, it does not impact the entire

system. Thirdly, It allows for easier scalability, by allowing only those

services that need it rather than the entire monolithic application, thus

leading to higher hardware usage. Fourthly, It allows for services to be de-

ployed independently without affecting each other’s performance. Fifthly,

it aligns with the organizational structure, reducing personnel working

on a single application codebase [14].

In contrast, monolithic architecture involves tightly coupling tens or

hundreds of services within a single codebase, making it difficult for teams

to coordinate on different independent services within the same develop-

ment environment. This has led many companies to adopt the microser-

vices architecture in favor of the monolithic one, thus facilitating better

team collaboration [18].

3 Survey Methodology

This section reviews literature using an approach introduced by Kitchen-

ham [11]. Firstly, this section addresses the microservices granularity

problem by identifying the different proposals, then identifying the met-

rics to be used to evaluate it and finally, then evaluate the quality at-

tributes for those works.

3.1 Addressing Microservices Granulairty

Traditionally, the granularity of microservices was measured using trial

and error approaches which depended much on the experience of the ar-

chitect or developer. Moreover, it was defined according to the total lines

of code, and on the basis of implementation, business capabilities, and, fi-

nally domain driven design [3]. Each paragraph below describes granular-

ity based upon manual, automatic, and semi-automatic approaches where

manual approaches are techniques performed by the developer, automatic

techniques are those defined by some algorithm and semi-automatic are

those which include part of the technique designed by the developer and

another part by the algorithm.

A few methods have been proposed to determine how small a microser-

vice ought to be in order to select the most optimal granularity. Some of

the manual techniques proposed by Shadija et al. [17] used the university

admission system as a case study and proposed a technique of evaluating

a microservice in a single container using two different containers. Has-

san et al. [7] provided a reference architecture using architecture defini-

tion language (ADL), which describes an architectural system based upon

its elements and their relationships, for selecting the optimal granularity.

Moreover, Munezero et al. [13] used a domain-driven design method, fo-

cusing on software modeling with the domain according to the input from

that particular domain experts, for granularity selection, and Tyszberow-

icz et al. [19] used a functional decomposition method that split microser-

vice bases upon functional capabilities into independent units.

Some of the automated approaches proposed by De Alwis et al. [4] used

functional heuristics and microservice discovery algorithms on the source

code to split it into different microservices for enterprise systems. It used

open-source projects, such as SUGAR CRM as a case study for evaluating

this method. Mazlami et al. [12] used graph-based clustering algorithms

on the source code of Git repositories for developing clusters to determine

the granularity.

Semi-automated approach by Nunes et al. [15] used a clustering algo-

rithm on aggregated domain entities as a methodology to determine gran-

ularity for call graphs and source code from different repositories, and by

Ren et al. [16] used K-means clustering, Markov Chains to represent

migration characteristics, which defined the factors for determining the

optimal granularity for microservice applications.

3.2 Evaluating Microservices Granularity

Software metrics used at levels of design, deployment, and implemen-

tation of software and its testing and maintenance allow monitoring its

different characteristics, which enables taking preventive actions in case

something goes wrong.

Metrics mostly used to measure and evaluate granularity includes cou-

pling, performance, and cohesion metrics followed by complexity measure-

ment metrics. Coupling measures the dependencies of a software compo-

nent on another which means highly coupled components cannot function

independently. Thus, the low coupling is a goal between different mi-

croservices. Similarly, high cohesion between internal modules within a

microservice is also one of the most important goals of a microservice.

Performance Metrics, such as the number of API calls or requests, execu-

tion time, maximum request and response time, along with the number

of packets sent and received are some of the most critical points for a

microservice-based application. Finally, complexity metrics should also

be low for different microservices enabling lesser rewrites of code thus,

making them easier to improve and extend.

Coupling classes together that have the same meaning is defined as se-

mantic coupling. A score is computed using this technique that deter-

mines how related files are in relation to the domain [12]. Candela et

al. [2] defined structural coupling as classes that are outside of a pack-

age referenced by classes that are inside it divided by the total number of

packages. Mazlami et al. [12] defined logical coupling with the value of

one if classes (A1, A2) change together in a certain commit. Thus, they

used logical coupling aggregate defined as the sum of the logical coupling

for each pair of classes.

Silhouette score defined by Nunes et al [15] is the difference between the

mean of the nearest-cluster distance x and the mean of the intra-cluster

distance y divided by the greatest value of both. This score has a value

between -1 to 1, representing incorrect clustering and highly dense clus-

tering, respectively. Moreover, granularity metrics, such as how many

microservices are used, determine the services that are part of the appli-

cation or the system in question.

Shadija et al. [17] used performance metrics by measuring the response

time as well as the number of API calls for different services to determine

the efficacy of their technique. In [4], structural coupling and cohesion

metrics, along with performance metrics, such as the number of requests

and execution time were used to determine the efficiency of their heuris-

tic and discovery algorithms. Furthermore, in [12], logical and semantic

coupling was used to determine granularity efficacy for their clustering

algorithm. Nunes et al. [15] used the coupling metrics Silhouette Score

for its clustering algorithm, and Ren et al. [16] used granularity met-

rics such as a number of interfaces and microservices for evaluating their

Markov Chains and K-means clustering algorithms.

3.3 Evaluating Quality Attributes Defining Granularity

Quality attributes such as availability, scaling, maintainability, perfor-

mance, security, and fault tolerance are important attributes pertaining

to any software application. The granularity of microservices directly af-

fects these attributes such as increasing the microservices of a software

application would increase its maintainability due to an increase in the

cost of testing the application.

These software quality attributes can be divided into two broader cat-

egories namely run-time characteristics that include scalability, perfor-

mance, reliability, availability, and functionality, which are features ob-

servable during the execution of software. and the other category would

be software described using artifact which would include maintainabil-

ity, re-usability, and modularity which are features not observable during

software execution [1]. The below papers mostly focused on the run-time

characteristics for evaluating the quality metrics for defining granularity.

Dharmendra Shadija et al. [17] explained the granularity and its effect

on application latency by simulating a microservice-based application in-

side a single container and another one in multiple ones. Alwis et al. [4]

addressed the scalability, performance as well as availability of an appli-

cation through the identification of parts in a consumer-based system that

could be redesigned in a microservices-based architecture with high avail-

ability, scalability, and processing efficiency using a microservices-based

discorvery algorithm. Genc Mazlami et al. [12] presented logical, seman-

tic, and contributory coupling embedded in a graph-based clustering algo-

rithm and then, measured its performance characteristics. Finally, Ren et

al. [16] measured scalability and performance characteristics of run-time

logs and the source code using a semi-automatic program analysis method

that used a function call graph and Markov chain for representing migra-

tion characteristics, and a k-means method for hierarchical clustering.

This method was useful for migrating legacy monolithic applications to a

microservices architecture as well.

4 Discussions

The trend of utilizing artificial intelligence techniques for the identifi-

cation of microservices or to determine their granularity is on the rise.

This includes employing clustering algorithms based upon machine learn-

ing techniques as well as genetic algorithms, enabling usage of semantic

similarity for grouping microservices related to similar entities. While

Domain Driven Design (DDD) as well as domain level engineering tech-

niques are still quite popular, migration of software systems necessitates

a systematic evaluation of architectural decisions in order to evaluate as-

sociated risks and trade-offs between different services. This process be-

gins with a monolithic system to be composed, and critical data sources

such as the databases and the execution stack trances help identify and

evaluate potential microservices. Development of microservice-based ap-

plications relates with agile development and practices, only run-time, de-

velopment, deployment or production related artifacts are focused by the

currently proposed methods, which may not be readily available during

the design phase when starting a project from scratch.

Determining appropriate granularity is also essential, and it should be

defined based on the application characteristics, available resources, op-

erational trade-offs and non-functional requirements. Testing and de-

ployment become more complex when dealing with numerous or larger

microservices, making it important to determine the correct number of

microservices needed since that will later impact upon continuous devel-

opment. Few papers above used agile development artifacts as input data,

making it necessary to propose new practices or agile methods to evalu-

ate the microservices that will make up the application. Case study is the

most commonly used validation method and performance and coupling

being the most frequent ones. The most addresses quality attributes in-

cludes scalability and performance alongside modularity, maintainability

and fault-tolerance.

The gaps highlighted in the text are areas where further research is

needed to propose new studies and ideas. Specifically, there is a need for

research on techniques used to evaluate the impact of granularity on tests,

using security controls and fault-tolerance mechanisms. Additional met-

rics are needed for the development team and process categories. There

are also quite fewer proposed methods for determining granularity dur-

ing testing or development phases of a software. Hence, there is a need

to research for methods utilizing artifacts for agile development as inputs

to figure out new agile practices for defining or assessing microservices’

granularity. Finally, agile software development has need been the focus

of any of the proposals identified in our review.

5 Conclusion

This literature review aimed to identify the existing research on microser-

vice granularity, including methods and techniques for determining it.

The review found that there is currently no standard definition of mi-

croservice granularity, and there are gaps in knowledge regarding the

trade-offs between development and operation, continuous improvement,

and conceptual reuse. To address these gaps, a definition of microservice

granularity based on its size, complexity, and dependencies was proposed.

The goal is to achieve low complexity and coupling along with high level of

cohesion, which can lead to improved performance, maintainability, scal-

ability, and cost-effectiveness, particularly in cloud-based deployments.

References

[1] Len Bass, Paul Clements, and Rick Kazman. Software Architecture In Prac-
tice. 01 2003.

[2] Ivan Candela, Gabriele Bavota, Barbara Russo, and Rocco Oliveto. Using
cohesion and coupling for software remodularization: Is it enough? ACM
Trans. Softw. Eng. Methodol., 25(3), jun 2016.

[3] R. Chen, Shanshan Li, and Zheng Li. From monolith to microservices:
A dataflow-driven approach. 2017 24th Asia-Pacific Software Engineering
Conference (APSEC), pages 466–475, 2017.

[4] Anuruddha De Alwis, Alistair Barros, Artem Polyvyanyy, and Colin Fidge.
Function-splitting heuristics for discovery of microservices in enterprise
systems. pages 37–53, 11 2018.

[5] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Maz-
zara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices:
yesterday, today, and tomorrow. Present and ulterior software engineering,
pages 195–216, 2017.

[6] Martin Fowler and James Lewis. Microservices. 2014.

[7] Sara Hassan, Nour Ali, and Rami Bahsoon. Microservice ambients: An ar-
chitectural meta-modelling approach for microservice granularity. 04 2017.

[8] Sara Hassan, Rami Bahsoon, and Rick Kazman. Microservice transition
and its granularity problem: A systematic mapping study. Software: Prac-
tice and Experience, 50, 06 2020.

[9] Aydin Homay, Mario de Sousa, Alois Zoitl, and Martin Wollschlaeger. Ser-
vice granularity in industrial automation and control systems. In 2020
25th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), volume 1, pages 132–139, 2020.

[10] Pooyan Jamshidi, Claus Pahl, Nabor das Chagas Mendonça, James Lewis,
and Stefan Tilkov. Microservices: The journey so far and challenges ahead.
IEEE Softw., 35:24–35, 2018.

[11] Barbara Kitchenham. Procedures for performing systematic reviews. Keele,
UK, Keele Univ., 33, 08 2004.

[12] Genc Mazlami, Jürgen Cito, and Philipp Leitner. Extraction of microser-
vices from monolithic software architectures. In 2017 IEEE International
Conference on Web Services (ICWS), pages 524–531, 2017.

[13] Immaculée Josélyne Munezero, Doreen-Tuheirwe Mukasa, Benjamin Kanagwa,
and Joseph Balikuddembe. Partitioning microservices: A domain engineer-
ing approach. In 2018 IEEE/ACM Symposium on Software Engineering in
Africa (SEiA), pages 43–49, 2018.

[14] Sam Newman. Building Microservices: Designing Fine-Grained Systems.
O’Reilly Media, 1st edition, February 2015.

[15] Luis Nunes, Nuno Santos, and António Silva. From a Monolith to a Mi-
croservices Architecture: An Approach Based on Transactional Contexts,
pages 37–52. 09 2019.

[16] Zhongshan Ren, Wei Wang, Guoquan Wu, Chushu Gao, Wei Chen, Jun Wei,
and Tao Huang. Migrating web applications from monolithic structure to
microservices architecture. In Proceedings of the 10th Asia-Pacific Sympo-
sium on Internetware, Internetware ’18, New York, NY, USA, 2018. Associ-
ation for Computing Machinery.

[17] Dharmendra Shadija, Mo Rezai, and Richard Hill. Microservices: Granu-
larity vs. performance. arXiv, 2017.

[18] Vindeep Singh and Sateesh Kumar Peddoju. Container-based microservice
architecture for cloud applications. 2017 International Conference on Com-
puting, Communication and Automation (ICCCA), pages 847–852, 2017.

[19] Shmuel Tyszberowicz, Robert Heinrich, Bo Liu, and Zhiming Liu . Identi-
fying microservices using functional decomposition, 08 2018.

[20] Mario Villamizar, Oscar Garces, Harold E. Castro, Mauricio Verano, Lorena
Salamanca, Rubby Casallas, and Santiago Gil. Evaluating the monolithic
and the microservice architecture pattern to deploy web applications in the
cloud. 2015 10th Computing Colombian Conference (10CCC), pages 583–
590, 2015.

[21] Mario Villamizar, Oscar Garcés, Lina Ochoa, Harold Castro, Lorena Sala-
manca, Mauricio Verano Merino, Rubby Casallas, Santiago Gil, Carlos Va-
lencia, Angee Zambrano, and Mery Lang. Cost comparison of running web
applications in the cloud using monolithic, microservice, and aws lambda
architectures. Service Oriented Computing and Applications, 11, 06 2017.

Docker Container
Networking for Local-Network Applications

Je-Ruei Yang
je-ruei.yang@aalto.fi

Tutor: Tuomas Aura

Abstract

This paper explores the use of various Docker network drivers, particularly the

MACVLAN and IPVLAN drivers, as alternatives to the commonly used Bridge

and Host drivers. This study focuses on non-cloud applications of containers,

such as deploying containerized servers in the local network. We analyze the

connectivity, isolation, performance, and usability of each driver. Additionally,

we propose application scenarios to which each driver is best suited and eval-

uate them through experiments. The experiments demonstrate that MACVLAN

and IPVLAN drivers offer superior performance while maintaining isolation

and simplicity. Our study suggests that the MACVLAN and IPVLAN drivers

are preferable for small-to-medium-sized projects. These drivers have the po-

tential to significantly improve the performance and flexibility of containerized

applications.

KEYWORDS: Docker, container networking, MACVLAN, IPVLAN

1 Introduction

In recent years, the container has become one of the most prominent tech-

nologies for virtualizing and deploying applications. Containers provide vir-

tualization that enables multiple applications on a single host to run safely

and securely. Furthermore, containers are more lightweight than traditional

virtual machines (VMs) as they share the host operating system (OS). As a re-

sult, containers have characteristics such as rapid startup time and negligible

overhead to the host [1].

Although containers offer advantages over VMs in resource usage, they

present challenges in the communication network. Containers lack a complete

network stack and individual network addresses since they are launched

as processes [2]. However, it is crucial to facilitate communication between

containers while maintaining isolation. Container network addresses this by

providing abstraction models on connectivity and isolation [3]. These models

enable software developers to implement network drivers or plugins to achieve

traditional networking capabilities.

Docker [4], a widely used container runtime, offers network drivers out of the

box to provide core networking functionality. These network drivers can be clas-

sified into single-host and multi-host settings. Single-host network drivers aim

to provide containers with network interfaces for containerized applications,

while multi-host network drivers focus on interconnecting containers on differ-

ent hosts [5]. Despite the power of orchestration tools, such as Kubernetes [6],

in multi-host settings, these tools can be intricate and require significant

learning effort. Standalone Docker without an orchestration tool is suitable for

small- to medium-sized projects. Understanding Docker networking solutions

increases flexibility on such projects while keeping simplicity.

This paper overviews the state-of-the-art container networking models and

dives deep into the Docker network drivers, focusing on the single-host and

non-cloud settings. Specially, we explore the MACVLAN and IPVLAN drivers,

which facilitate direct connection to the physical networks. By comparing the

strengths and weaknesses, we propose and implement example use cases that

illustrate the optimal scenarios for each driver.

The remainder of this paper is organized as follows. Section 2 and 3 introduce

the container networking models and the Docker network drivers. Section 4

and 5 propose and implement use cases where each network driver is most

suitable. Finally, Sections 6 and 7 evaluate and discuss the experiment results

and summarize the paper.

2 Container Networking Models

This section briefly introduces the designs and features of the two main-

stream specifications for container networking: Container Network Model

Figure 1. CNM architecture [3, 9, 10]

Figure 2. CNM components and their relationships [8]

(CNM) and Container Network Interface (CNI).

2.1 Container Network Model (CNM)

CNM [7] is a standard proposed by Docker that defines the interface between

a user, such as Docker Engine, and network drivers. Libnetwork [8] is an im-

plementation of CNM and is used as the basis for Docker networking. Figure 1

shows the architecture of the CNM, and Figure 2 outlines the fundamental

components of CNM and their relationships. As shown in Figure 2, CNM has

three components: sandbox, endpoint, and network.

Sandbox is an isolated environment that contains the network specification

of a container, such as network interfaces, IP addresses, MAC addresses, and

routing and DNS configurations [8, 10].

Endpoint acts as a virtual network interface located in a sandbox and is

responsible for joining the sandbox to a network. It should be noted that one

endpoint belongs to one sandbox and one network, whereas one sandbox may

have multiple endpoints.

Network is a group of endpoints that can communicate with one another.

Each network is in a separate network namespace on the host OS [3]. This

creates network isolation for the containers.

2.2 Container Network Interface (CNI)

CNI [11] is a specification proposed by CoreOS that acts as a lightweight

contract between a container runtime and network plugins [3]. CNI is min-

imalistic and is able to intergrate with any container runtime [9]. As a result,

CNI is adapted and used by container orchestration tools, such as Kubernetes,

as their networking solution. Since the network solutions of orchestration

tools are out of the scope of this paper, we will not dive deeper into this model.

3 Docker Network Drivers

As mentioned in Section 2.1, CNM forms an interface between Docker En-

gine and network drivers. Network drivers are network implementations

that provide core networking functionality [12]. They handle connectivity

and isolation between containers [10]. Docker ships with built-in network

drivers on Linux, including Bridge, Host, Overlay, MACVLAN, and IPVLAN.

The following sections introduce the main characteristics and features of each

driver. In addition, we indicate the connectivity, isolation, and advantages and

disadvantages of each driver.

3.1 Bridge

The Bridge driver is the default option for Docker containers on a single

host [5]. When starting a Docker container without specifying the network

type, the container will connect to the default Bridge driver. In addition to

the default Bridge driver, users can create a user-defined Bridge for improved

isolation and built-in DNS resolution.

In a Bridge network, each container is assigned a private IP address, and

the containers connecting to this network are within the same subnet. The

default Bridge network enables the containers to communicate using private

IP addresses. Furthermore, containers in a user-defined Bridge network can

utilize DNS resolution and communicate using the container names as domain

names. Lastly, containers connecting to different Bridge networks cannot

communicate, thereby ensuring isolation.

The Bridge driver is easy to use and is suitable for most scenarios. In conjunc-

tion with this, the DNS resolution functionality available within user-defined

Bridges decouples the containers from relying on potentially changing private

IP addresses. Consequently, applications involving multiple containers are

more robust by leveraging such functionality.

On the negative side, the Bridge driver suffers from performance over-

head due to network address translation (NAT) while accessing external

networks [5]. Moreover, ports must be explicitly published to make the con-

tainer visible from the external network. This might create problems such as

port conflicts. For example, a containerized DNS server might conflict with

the host default DNS resolver on the standard DNS port 53.

3.2 Host

The Host driver uses the same network stack as the host machine. As a

result, all containers connected to the host network have the IP address of the

host. Containers connected to the host network can communicate with one

another via the ports they expose.

The Host driver allows near bare metal performance [13] and is suitable for

cases where the container needs to handle an extensive range of ports [14].

However, the Host driver has two main drawbacks. First, it has no isolation

between containers using the host driver, which poses security risks. Second,

the host driver also suffers from port conflict problems. This limits the number

of containerized services on a single host [13].

3.3 Overlay

The Overlay driver enables the communication between multiple hosts. This

driver is utilized by Docker’s orchestration tool swarm to create multi-host

networks spanning multiple Docker hosts. Since the Overlay driver is used

mainly in multi-host settings, we will not discuss it further in this paper.

3.4 MACVLAN

The MACVLAN driver makes the containers appear as connecting directly

to the physical network. It creates virtual network interfaces behind the

physical interface of the host and assigns unique MAC and IP addresses to

each container [15]. Therefore, the MACVLAN driver is suitable for tackling

legacy applications that require separate MAC addresses [16]. Furthermore,

the MACVLAN driver eliminates port mapping and provides better perfor-

mance [10] than the Bridge driver.

However, MACVLAN requires networking devices to work in promiscuous

mode, allowing multiple MAC addresses on an interface. The requirement

is unachievable if the user lacks permission to access the host network set-

tings. Moreover, the MACVLAN driver is unable to obtain an IP address

from external DHCP, for instance, the DHCP server on the home router. This

necessitates manually assigning IP addresses outside the DHCP range or

through the Docker compose configuration.

There are two modes for the MACVLAN driver: bridge mode and 802.1Q

trunk bridge mode. In bridge mode, network traffic goes through a physical

interface on the host. On the other hand, in the 802.1Q trunk bridge mode,

network traffic goes through an 802.1Q sub-interface [16], which is useful

when users have existing VLANs on their physical network.

3.5 IPVLAN

The IPVLAN driver is similar to the MACVLAN driver, except containers

connecting to an IPVLAN network have the same MAC address. This solves

the promiscuous mode issue while maintaining the physical appearance ad-

vantage. Moreover, since IEEE 802.11 wireless networks allow each wireless

station to have only one MAC address, the MACVLAN driver is generally

not supported by wireless networks [17]. The IPVLAN driver is a preferred

alternative in this use case.

The IPVLAN driver has three modes: L2 mode, 802.1Q trunk L2 mode and

L3 mode. The L2 mode is the default mode for IPVLAN. The IPVLAN L2 mode

and IPVLAN 802.1Q trunk L2 mode are analogous to the MACVLAN bridge

mode and the MACVLAN 802.1Q trunk bridge mode. They require the IP

addresses to be in the same subnet as the physical network [15]. Containers

within the same IPVLAN L2 network can communicate with one another

either using an IP address or domain name.

In contrast, the IPVLAN L3 mode offers completely different functionalities.

Instead of connecting to the physical network, containers in IPVLAN L3 mode

create virtual subnets (different than the parent interface) within the host and

make the parent interface acts as a router [18]. Containers in an IPVLAN L3

network can communicate even if they are in different subnets. This mode

aims to give total control and finer granularity over the routing for network

professionals. However, since the container in an L3 network does not act

as a physical device on a physical network and is isolated from the external

network. We will not discuss this mode further.

4 Scenarios

Connectivity, isolation, and performance are the key aspects to consider in

container networking problems. This section compares local-network and non-

cloud settings scenarios with these notions to find suitable network drivers

for such use cases.

4.1 Applications with multiple containers

A common scenario is a web application, which usually comprises a web

server and a database. Generally, exposing the database to the external net-

work is undesirable. Therefore, it is prudent to employ the Bridge driver

to establish connectivity between the web server and the database while

maintaining segregation between the database and the external network.

Nonetheless, the overhead of publishing ports for the web server still exists.

We will propose a solution to this issue in the following section.

4.2 Applications with standard ports

Specific applications operate on standardized ports, such as port 53 for DNS

and port 80 for HTTP. However, these ports may already be used by applica-

tions on the host, resulting in a port conflict when running a containerized

version of the same application. Consequently, the Bridge and Host drivers

are inadequate for this scenario and implementing MACVLAN or IPVLAN

drivers is recommended to circumvent the issue.

In addition, when multiple containers of the same type are operated simulta-

neously, utilizing MACVLAN or IPVLAN drivers may be beneficial. A typical

scenario for developers is the operation of multiple websites on the same host.

In such cases, the MACVLAN or IPVLAN drivers simplify the process of

managing a large number of published ports.

4.3 Performance-critical application

Particular applications, such as media and gaming servers, require high net-

work performance to operate smoothly. The Host, MACVLAN, and IPVLAN

drivers optimize the network performance for containerized applications of this

nature. Among these options, the MACVLAN and IPVLAN drivers provide

better isolation than the Host driver. This makes them more suitable for sce-

narios where enhanced network performance is essential while maintaining

isolation between the application and the host.

4.4 Network-level security application

Applications that handle sensitive data may require network-level security to

protect against security threats, such as unauthorized access. This could be, for

instance, government applications that process personal identities and hospital

applications that store patient data. However, these organizations may have a

limited number of servers, restricting their ability to run all applications under

distinct IP addresses. MACVLAN and IPVLAN drivers are instrumental in

Figure 3. Experiment setup

this scenario. They provide applications with separate IP addresses and allow

an external firewall to have individual filtering rules for the host and each con-

tainerized service. Moreover, MACVLAN and IPVLAN 802.1Q trunk mode also

help the network administrator to isolate the services into different VLANs.

5 Experiment and Evaluation

This section demonstrates the advantages of MACVLAN and IPVLAN

drivers by implementing the scenarios mentioned in Section 4.2 and 4.3.

The experimental environment is composed of three devices within a private

network 192.168.1.0/24: a router (192.168.1.1), a laptop acting as a client

(192.168.1.3), and a Raspberry Pi acting as the server (192.168.1.7). Figure 3

shows the setups of the experiment.

5.1 Multiple web servers on the same host

This experiment shows how MACVLAN and IPVLAN drivers solve the port

conflict issue. We run three containerized instances of Nginx [19] web servers

on the Raspberry Pi host using the Bridge, MACVLAN, or IPVLAN driver,

one at a time. The experiment involves measuring the port availability of

each driver and verifying that multiple Nginx web server instances can run

simultaneously without any port conflict issues.

5.1.1 Bridge driver

The Bridge driver restricts the visibility of the containers to the IP address of

the server (192.168.1.7). Only one of the three containers can be published on

standard HTTP port 80. This necessitates the allocation of non-standard ports.

As a result, users must additionally specify a port number while accessing the

application via a web browser.

Figure 4. Multiple containerized web servers connected with MACVLAN/IPVLAN driver

5.1.2 MACVLAN/IPVLAN driver

Adapting the MACVLAN/IPVLAN driver allocates IP addresses for the con-

tainers, therefore, removing the need for non-standard port allocation. In

this experiment, the containers are assigned to IP addresses ranging from

192.168.1.101 to 192.168.1.103. Figure 4 shows the outcome of this experiment.

These separate IP addresses facilitate access via the web browser from clients

in the same local network without specifying a port number. Furthermore,

when combined with a nameserver, these IP addresses can be mapped to

human-friendly domain names.

5.2 Performance test on a web server

This experiment shows how the MACVLAN and IPVLAN drivers provide

high network performance while maintaining isolation between the container

and the host. We run an Nginx container on the Raspberry Pi using Bridge,

Host, MACVLAN, or IPVLAN driver, one at a time. The network performance

of each network driver is measured by the client using Grafana k6 [20]. Fig-

ure 5 shows the experiment results. The Host, MACVLAN, and IPVLAN

drivers statistically have better performance in terms of round-trip time for

a request. The maximum is not shown since the first round-trip is typically an

outlier. Especially for the IPVLAN driver, the first round-trip is in the range

of 1000 to 2000 ms.

6 Discussion

In the previous section, we showed that MACVLAN and IPVLAN drivers

effectively solve the port conflict problem, provide better network performance

than the Bridge driver, and offer better isolation than the Host driver. They can

be a great fit for developers’ home lab projects for their flexibility, performance,

Bridge Host MACVLAN IPVLAN L2
0

100

200

300

400

m
s

Figure 5. The round-trip time for a request over a one-minute period with a hundred parallel
virtual users. The figure shows the minimum (3–4ms), 25th, 50th, 75th, and 99th
percentiles.

and simplicity. The remaining decision between MACVLAN and IPVLAN

depends on whether the user has permission to enable the promiscuous mode

on network devices, whether the application needs a separate MAC address,

and whether the parent interface uses a wireless connection.

Although the MACVLAN/IPVLAN drivers have some handy features, some

places still require improvements. One example is the IP allocation for newly

created containers. Currently, there is no official support to communicate

with an external DHCP server. As a result, the simplest but still cumbersome

approach is to assign an IP address for each container in the container config-

uration. There are open-source projects [21, 22] aiming to solve this problem,

but they are neither mature nor production-ready.

7 Conclusion

This paper explores various container network models and Docker network

drivers, focusing on the MACVLAN and IPVLAN drivers in a non-cloud local

setup. By comparing the drivers, we propose several use cases where each

driver is most suitable, such as multi-container and performance-critical ap-

plications. Moreover, we implement and evaluate the scenarios we proposed

through various experiments.

The experiments highlight the benefits of the MACVLAN and the IPVLAN

drivers, including having a direct connection to the physical network and en-

suring isolation while maintaining high performance. Our study suggests that

the MACVLAN and IPVLAN are preferable for small-to-medium-size projects.

These drivers have significant potential for enhancing the performance and

flexibility of containerized applications.

References

[1] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated
performance comparison of virtual machines and Linux containers. In 2015
IEEE international symposium on performance analysis of systems and software
(ISPASS), pages 171–172. IEEE, 2015.

[2] Lucas Litter Mentz, Wilton Jaciel Loch, and Guilherme Piegas Koslovski. Com-
parative experimental analysis of Docker container networking drivers. In 2020
IEEE 9th International Conference on Cloud Networking (CloudNet), pages 1–7.
IEEE, 2020.

[3] Hao Zeng, Baosheng Wang, Wenping Deng, and Weiqi Zhang. Measurement and
evaluation for Docker container networking. In 2017 International Conference
on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC),
pages 105–108. IEEE, 2017.

[4] Docker. https://www.docker.com/ (Accessed Feb. 02, 2023).

[5] Kun Suo, Yong Zhao, Wei Chen, and Jia Rao. An analysis and empirical study of
container networks. In IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, pages 189–197. IEEE, 2018.

[6] Kubernetes. https://kubernetes.io/ (Accessed Feb. 02, 2023).

[7] Container network model. https://github.com/moby/libnetwork/blob/master/docs/
design.md (Accessed Feb. 02, 2023).

[8] libnetwork - networking for containers. https://github.com/moby/libnetwork/
(Accessed Feb. 02, 2023).

[9] Lee Calcote. The container networking landscape: CNI from CoreOS and CNM
from Docker. https://thenewstack.io/container-networking-landscape-cni-coreos-
cnm-docker/ (Accessed Feb. 14, 2023).

[10] Nigel Poulton. Docker Deep Dive. Packt Publishing, 2020.

[11] CNI – the container network interface. https://github.com/containernetworking/
cni (Accessed Feb. 14 2023).

[12] Networking overview | Docker documentation. https://docs.docker.com/network/
(Accessed Feb. 16, 2023).

[13] Ubaid Abbasi, El Houssine Bourhim, Mouhamad Dieye, and Halima Elbiaze. A
performance comparison of container networking alternatives. IEEE Network,
33:178–185, 2019.

[14] Host networking | Docker documentation. https://docs.docker.com/network/
(Accessed Feb. 16, 2023).

[15] Lee Calcote. Container networking: A breakdown, explanation and analysis.
https://thenewstack.io/container-networking-breakdown-explanation-analysis/
(Accessed Feb. 20, 2023).

[16] Macvlan networks | Docker documentation. https://docs.docker.com/network/
macvlan/ (Accessed Feb. 20, 2023).

[17] Peini Liu and Jordi Guitart. Performance characterization of containerization for
HPC workloads on InfiniBand clusters: an empirical study. Cluster Computing,
pages 1–22, 2022.

[18] Ipvlan networks | Docker documentation. https://docs.docker.com/network/
ipvlan/ (Accessed Feb. 20, 2023).

[19] Nginx: Advanced load balancer, web server, & reverse proxy. https://www.nginx.
com/ (Accessed Mar. 5, 2023).

[20] Grafana k6: Load testing for engineering teams. https://k6.io/ (Accessed Mar.
18, 2023).

[21] Jack O’Sullivan. docker-net-dhcp. https://github.com/devplayer0/docker-net-dhcp
(Accessed Mar. 5, 2023).

[22] Brent Salisbury. Experimental Docker libnetwork DHCP driver. https:
//gist.github.com/nerdalert/3d2b891d41e0fa8d688c (Accessed Mar. 5, 2023).

Audio-Visual Speaker Recognition using
Deep Learning: A Survey

Jiehong Mo
jiehong.mo@aalto.fi

Tutor: Abduljalil Saif

Abstract

The confluence of visual and auditory data has emerged as a promising

solution for speaker recognition (SR) applications, where it has given rise

to the concept of audio-visual speaker recognition (AVSR). The implemen-

tation of deep learning methods into this domain has contributed to the

acceleration of its advancement. However, AVSR shows a paucity of review

articles, especially in the area of deep learning, hindering researchers from

gaining insight into the field. This paper presents a survey on AVSR sys-

tems in perspective of performing thorough analysis to find the gaps for

future. AVSR systems were branched into three major types, which are

audio-visual speaker identification, audio-visual speaker verification, and

audio-visual speaker diarization. Distinctive aspects and main shortages

for various types of AVSR systems are provided. Despite of several promis-

ing AVSR methods in the literature, it is still unsolved research topic. The

integration of the visual and audio systems poses a challenge to AVSR.

KEYWORDS: Audio-visual Recognition, Speaker Recognition, Deep Learn-

ing

1 Introduction

Voice is one of the physical characteristics of human beings can be used

to identify speakers. Based on this logic, automatic speaker recognition

research (ASR) has been developed. This research has piqued the interest

of researchers since it can be used in a wide range of applications, such as

surveillance [11].

In the last two decades, with the advancement of deep learning algo-

rithms, deep learning has brought great developments in SR. For deep

learning ASR, a considerable amount of research has been conducted to

exploit a single modality, which is the audio or visual, mostly based on au-

dio only [16]. Recently, due to the complementary nature of audio-visual

(AV) biometrics, its research has attracted attention [2]. Researchers

have found that visual cues carry complementary information on the au-

dio cues, and its integration into an ASR models significantly improves

the performance [18]. Furthermore, the National Institute of Standards

and Technology (NIST) has proved that AV fusion significantly improves

performance in comparison to audio-only or visual-only systems [21]. Re-

cently, the major research challenge in AVSR is related to the best meth-

ods of integrating visual and auditory modalities.

As a new direction of research, AVSR has few review articles and almost

none related to deep learning. The main goal of this paper is to fill this

gap by reviewing existing AVSR systems published in the last five years.

This paper will provide the advantages and disadvantages of each type of

AVSR and discuss potential research directions for each.

This paper is organized as follows. Section 2 presents the categories in

AVSR. Sections 3, 4 and 5 review the current approaches of the three tax-

onomies, respectively, while Section 6 introduces the datasets for AVSR.

Finally, Section 7 concludes this work.

2 Audio-Visual Speaker Recognition

This section presents the most prominent way of classification of speaker

recognition [13]. In general, speaker recognition systems can be divided

into three types: speaker identification (SI), speaker verification (SV),

and speaker diarization (SD). Similarly, as a branch of speaker recogni-

tion, AVSR also follows this classification [27]. The three types of speaker

recognition will be briefly described below, and Fig. 1 depicts the taxon-

omy of SR systems.

Speaker identification (SI) uses the speech information to determine

the identity of a speaker. This requires comparison with multiple known

speakers in the dataset to obtain the identity of the recorded speaker.

Speaker verification (SV) utilizes the voice information to determine if a

recording is belong to an individual. In other words, it verifies the claimed

identity of a speaker.

Speaker diarization (SD) segments the audio signal into distinct seg-

ments based on the speaker identity, to determine when and who is speak-

ing. Active speaker detection (ASD), which refers to the process of identi-

fying who is currently speaking in a multi-party audio recording or video

conference, is a critical prior step and can be broadly classified as SD [31].

Figure 1. The taxonomy of SR systems

3 Audio-visual Speaker Identification (AVSI)

In 2019, the NIST Speaker Recognition Evaluation (SRE), a benchmark

test for many systems, investigated a new direction on AVSR, causing this

direction to gain more attention from academic researchers [22]. Several

mechanisms of AV fusion have been introduced for AVSR models, includ-

ing early fusion and late fusion.

3.1 Early Fusion

Early fusion is the processing of audio and visual embedding as general

identity features as input to the system. For instance, a two-branch net-

work was proposed to learn joint representations of faces and voices in a

multimodal system before extracted features are used to train a classifier

for speaker recognition [25].

3.2 Late Fusion

Late fusion feeds audio and visual inputs to the speaker recognition and

face recognition systems, respectively, and then combines the results of

both systems. Late fusion is preferred by many researchers because of

its simplicity [29]. Late fusion only merges results of two systems with-

out altering their components. While purely visual deep learning speaker

recognition has generally not existed in the past, many mature systems

exist for both speaker recognition and facial recognition tasks [25]. Re-

searchers only need to combine the two systems to solve the AVSI task.

Accordingly, the researchers manage to enhance the performance of the

two subsystems separately to improve the overall performance.

Different strategies were used in the late fusion, such as the score-level

strategy [9] and the greedy strategy [29]. Score-level strategy aggregates

the scores from each model into a single score, which is then used as the

final decision. In greedy strategy, the individual systems are calibrated

and evaluated, and the best system is selected based on its performance.

Then, all possible combinations that include the best system are evalu-

ated, and the best two-system fusion is selected based on its actual cost.

Although the score-level strategy is simpler and easier to implement, it

may not be as effective as the greedy strategy. On the contrary, the greedy

strategy is more likely to fall into the overfitting.

From our viewpoint, as early fusion has only one input, it can lead to

simple computations. However, early fusion does not take into account

the reliability of either modality. if a modality has much noise, the AV

feature vector will be compromised and catastrophic fusion may occur.

In late fusion, each modality can be processed independently, allowing

more specialized models to be built for each modality, which enhances the

performance. Nevertheless, the audio and visual modalities are disjoint

and one does not take into account the knowledge of the other, which can

lead to some loss of information.

4 Audio-visual Speaker Verification (AVSV)

A common method of SV is to extract a representative speaker embedding

from a given corpus and compare pairs of embeddings with the distance

metric to identify whether the given corpus belongs to the same person

[23]. For AVSV, it is essential to incorporate visual information into this

process, and this section classifies the network according to the different

levels of fusion of visual and audio information.

4.1 Score-level Fusion

Score-level fusion strategy is to assign the best weights to model scores

from multiple biometric sources and then combine these scores [14].

In the 2019 NIST SRE Challenge, Grigory et al. [3] explored automated

quality assessment that automatically estimates the quality of represen-

tations produced by the single-modality system, resulting in enhanced

fractional-level fusion of multimodality.

Although score-level fusion is simple, it is still competitive among other

strategies. For the three-model system, Madin et al. [1] compared embedding-

level fusion with fractional-level fusion and demonstrated that the latter

achieved better results. This may be because for three subsystems, in-

cluding thermal facial system, visual system and audio system, coarse-

grained fusion is a better representation of the overall performance of the

system by achieving a more balanced fusion than the uneven fusion that

results from fine-grained fusion.

4.2 Feature-level Fusion

The feature-level fusion represents the fusion of the extracted audio fea-

tures with the visual features [24]. In AVSV, most of the time, the features

are represented as embedding, hence they can also be called embedding-

level fusion. In this strategy, the attention mechanism is frequently ap-

plied to feature fusion, since it dynamically identifies salient features as

needed, without compressing the overall message into vague abstractions,

and this combination of audio-visual salient features leads to better re-

sults.

In 2019, a feature-level fusion approach based on a neural network

model was proposed that uses an attention mechanism to evaluate the

face and speaker representation contributions extracted from each sub-

system and combine them to obtain a joint representation [26]. This at-

tention mechanism can learn to evaluate the salient modality of input

data to produce a strong fusion representation. In addition to the atten-

tion mechanism, Chen et al. [4] proposed more embedding fusion meth-

ods, including simple soft attention fusion, multi-modal compact bilinear

pooling fusion, and gated multi-modal, and then conducted experimental

comparisons (more information can be found in [4]). The three feature fu-

sion strategies showed significant improvements over the single-modal

system, with the gated multimodal fusion architecture performing the

best. However, score-level fusion outperformed all three strategies. The

likely reason is the presence of a more powerful modality in this work.

4.3 Hybrid Fusion

In addition to using the score-level and feature-level fusion methods in-

dividually, it is also possible to use a mixture of them. A multi-view ap-

proach was introduced by Facebook which generates high-level represen-

tations for audio and video modalities in a space shared across the two

modalities with feature-level fusion [23]. It also showed that the best per-

formance was obtained by combing two fusion strategies.

From our perspective, for feature-level fusion, the learned features of the

modalities share a compatible space, resulting in a fused representation.

It performs better than traditional fractional-level fusion and has advan-

tages in severe cases with corrupted or missing modalities.

In terms of the advantages of score-level fusion, score-level fusion sim-

ply needs the results of modalities, making it easier to apply to the model.

Moreover, it is more likely to perform better when a single modality is

overpowered. Score level fusion can also help avoid overfitting. As it only

uses the final decision or score, which has already integrated information

from all modalities, this makes it more representative of the overall per-

formance and less likely to lead to overfitting. In contrast, feature-level

fusion may lead to overfitting due to an overly fine-grained feature extrac-

tion process.

Currently, feature-level fusion be further differentiated into multiple fu-

sions characterized by varying granularity. This approach has garnered

superior outcomes in comparison to the traditional score-level method on

many models. As a result, one of the ongoing research objectives involves

optimizing the extraction of AV features and effecting a more astute fu-

sion. However, score-level is sometimes comparable to surpasses feature-

level. Therefore, researchers need to consider which is the appropriate

fusion strategy. In addition, some researchers are considering hybrid fu-

sion to compensate for shortcomings and improve overall results.

5 Audio-visual Speaker Diarization (AVSD)

For AVSD, visual information can help with speech overlap and predict-

ing active speakers among candidate speakers [31]. In particular, lips

and facial features are highly correlated [32]. Consequently, researchers

have studied the association of AV information in AVSD based on both lip

visual information and facial visual information. Therefore, this section

divides AVSD into two categories based on the association between talk-

ing faces and voice tracks and on synchronization between utterances and

lip movements.

5.1 Speech and Lip Movements Synchronization for SD

Lip synchronization refers to determining the movement of the mouth and

tongue during speech [17]. Lip information is often used as visual infor-

mation in the field of speech synchronization [8], which is an important

prior step in AVSD and is sometimes used by AD tasks only as part of the

network [10]. This has led researchers to improve overall performance

with lip synchronization.

Recently, an end-to-end multimodal model was proposed to distinguish

speech from non-speech regions in an audio segment [12]. It is based on

audio features, multi-speaker regions of interest (ROI) of lips and multi-

speaker i-vector embeddings. This model also explores the impact of dif-

ferent levels of lip absence on speaker diarization through experiments

where fragments of lip ROIs were manually removed. Similarly, Abuduke-

limu et al. [30] proposed a Dynamic Vision-Guided Speaker Embedding

(DyViSE), which uses dynamic lip motion information to denoise the au-

dio in latent space and then fuses the denoised audio and facial features

together to obtain an embedding of each segment’s identity. Unlike [12],

this network does not fuse the lip information directly with the facial and

audio information as feature embeddings into the system, instead it lever-

ages the lip information as supplementary dynamic information for audio

denoising.

5.2 Face and Voice Association for SD

As speech rhythm and word pronunciation are closely related to facial

movements, a number of researchers have built their solutions for AVSD

based on facial and audio information. Face-based AVSD can be consid-

ered as different tasks according to different assumptions, including as-

signment task and classification task. Juan et al. [15] proposed a mul-

timodal assignment technique, which is a straightforward strategy to di-

rectly establish a correspondence between the audio and the facial fea-

tures of all possible speakers in the scene. However, this assumption does

not hold when there is an off-screen speaker or only background sound.

Considering the assumption of the assignment task does not always hold,

the researchers performed the AVSD as a classification task through eval-

uating the on-screen visual faces one by one. A new model based on a 3D

convolutional neural networks (CNN)s and LSTMs was introduced to pre-

dict an active speaker among candidate speakers [5]. The model is based

on temporal frame processing, but it does not consider temporal depen-

dencies between frames. To address this problem, TalkNet was invented,

which makes decisions by considering both short-term and long-term fea-

tures [28].

In our viewpoint, vertical displacement of the face (movement of the lips

and chin) is the most correlated visual feature to speech production and

can be used to increase the discriminative power of audio features in SD

tasks. However, detecting a speaker’s lips from visual data is more chal-

lenging than detecting the face due to the smaller area it occupies. More-

over, lips are only better detected in close up images from the person front,

while lip reading is difficult when subjects are not facing the camera.

In contrast, face information is less correlated with verbal information

though, which may lead to lower accuracy in SD task. However, the data

for face information is easier to obtain, and face information can generally

be obtained correctly in the case of non-frontal shots. Apart from using a

single visual information, lips or face, some researchers have also tried to

combine all three to get a better performance. In general, the selection

of visual information is a point that needs to be carefully considered in

AVSD. Furthermore, successful extraction of visual information depends

on the speaker facing the camera. Nevertheless, if the speaker is back

to the camera or off-screen, the model needs to be more robust and fault-

tolerant. This is a challenge for future researchers.

6 Datasets for Audio-Visual Speaker Recognition

This section introduces some available datasets for AV speaker recogni-

tion based on three categories in Section 2. VoxCeleb1 [19] and Vox-

Celeb2 [7] are currently the most popular datasets on SI and SV. AVA-

ActiveSpeaker [20], AVA-AVD Dataset [31] and VoxConverse [6] are widely

used for AVSD tasks, the first two of which are primarily to solve active

speaker recognition tasks. Table 1 shows the statistics of these datasets.

6.1 VoxCeleb1

VoxCeleb1 [19] is a large scale audio-visual speaker identification dataset.

The dataset includes a total of 22,496 YouTube videos containing real-

world noise, including background chatter, overlapping speech, laughter

and recording devices, with 1,211 speakers and 148,642 utterances. Each

speaker has both a video and corresponding audio. This dataset is gender

balanced, with 45% of speakers being female.

6.2 VoxCeleb2

VoxCeleb2 uses a similar approach as VoxCeleb1 to collect data on YouTube,

but on a larger scale, with 150,480 videos containing 5,994 speakers and

1,092,009 utterances, and is also multilingual, with speeches from 145

speakers of different nationalities, covering a range of accents, ages, eth-

nicities and languages [7].

Compared with VoxCeleb1, VoxCeleb2 is more than 5 times larger. More-

over, VoxCeleb2 addresses the problems of the VoxCeleb1 dataset still be-

ing an order of magnitude smaller than the popular face dataset and the

lack of ethnic diversity.

6.3 AVA-ActiveSpeaker

AVA-ActiveSpeaker is the first publicly available, large-scale benchmark

for the ASD task [20]. AVA-ActiveSpeaker is based on 160 videos from

YouTube movies. The dataset contains about 3.65 million human labelled

frames or about 38.5 hours of face tracks, and the corresponding audio. It

consists of three types of labels, including Not Speaking, Speaking and

Audible, as well as Speaking but Not Audible, which account for 21.8

hours, 9.46 hours and 0.35hours respectively.

Dataset Videos Speakers Hours Scenario Language Aim

VoxCeleb1 22,496 1,211 352 multi En SI, SR

VoxCeleb2 150,480 5,994 2,442 multi multi SI, SR

AVA-ActiveSpeaker 160 - 38.5 movies multi ASD (AV)

AVA-AVD Dataset 351 1,500 20.25 movies multi ASD (AV)

VoxConverse 448 8,268 64 debate, news En SV

Table 1. Datasets for AVSR systems

AV datasets are still far inferior to image datasets in quantity and variety.

The reason for this may be that auditory datasets are more difficult to

collect and require higher conditions than image datasets.

In terms of the AV datasets for SR, the characteristics of the datasets

differ depending on the classification of recognition. Table 1 shows larger

datasets for SI and SV compared to SD with more videos, diverse sce-

narios and languages. Regarding the datasets for SD, the datasets for

ASD contain more scenes and languages, although the number of videos,

speakers and duration are not as large as those for general AD.

With regard to the trend of AVSR datasets, AVSR datasets are evolv-

ing to employ automated video data collection pipelines, resulting in a

larger dataset. Moreover, videos will tend to comprise multifaceted sce-

narios and encompass diverse forms of noise to improve model stability.

Language will be multilingual, not just English.

7 Conclusion

This paper has provided a comprehensive overview of the deep learning

based AV speaker recognition. The paper begins with an introduction to

the classification of AVSR. With the focus on these classifications, exist-

ing AVSR systems are reviewed. The classification, strengths as well as

weaknesses and challenges of these systems are explored. Prominent AV

datasets are also detailed, compared and classified.

References

[1] Madina Abdrakhmanova, Saniya Abushakimova, Yerbolat Khassanov, and
Huseyin Atakan Varol. A study of multimodal person verification using
audio-visual-thermal data. In The Speaker and Language Recognition
Workshop (Odyssey 2021), 2021.

[2] Petar S. Aleksic and Aggelos K. Katsaggelos. Audio-visual biometrics. Pro-
ceedings of the IEEE, 94(11):2025–2044, 2006.

[3] Grigory Antipov, Nicolas Gengembre, Olivier Le Blouch, and Gaël Le Lan.
Automatic quality assessment for audio-visual verification systems. the
love submission to nist sre challenge 2019. In INTERSPEECH 2020, pages
2237 – 2241, 2020.

[4] Zhengyang Chen, Shuai Wang, and Yanmin Qian. Multi-modality matters:
A performance leap on voxceleb. In INTERSPEECH 2020, pages 2252–
2256, 2020.

[5] Joon Son Chung. Naver at activitynet challenge 2019–task b active speaker
detection (ava). ArXiv, 2019.

[6] Joon Son Chung, Jaesung Huh, Arsha Nagrani, Triantafyllos Afouras, and
Andrew Zisserman. Spot the conversation: Speaker diarisation in the wild.
pages 299 – 303, 2020.

[7] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman. Voxceleb2: Deep
speaker recognition. In INTERSPEECH 2018, 2018.

[8] Joon Son Chung and Andrew Zisserman. Out of time: automated lip sync
in the wild. In ACCV Workshops, pages 251–263, 2017.

[9] Rohan Kumar Das, Ruijie Tao, Jichen Yang, Wei Rao, Cheng Yu, and Haizhou
Li. Hlt-nus submission for 2019 nist multimedia speaker recognition eval-
uation. Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC 2020), pages 605–609, 2020.

[10] Yifan Ding, Yong Xu, Shi-Xiong Zhang, Yahuan Cong, and Liqiang Wang.
Self-supervised learning for audio-visual speaker diarization. IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP
2020), pages 4367–4371, 2020.

[11] Rafizah Mohd Hanifa, Khalid Isa, and Shamsul Mohamad. A review on
speaker recognition: Technology and challenges. Computers & Electrical
Engineering, 90:107005, 2021.

[12] Mao-Kui He, Jun Du, and Chin-Hui Lee. End-to-end audio-visual neural
speaker diarization. In INTERSPEECH 2022, page 1461 – 1465, 2022.

[13] Muhammad Mohsin Kabir, M. F. Mridha, Jungpil Shin, Israt Jahan, and
Abu Quwsar Ohi. A survey of speaker recognition: Fundamental theories,
recognition methods and opportunities. IEEE Access, 9:79236–79263, 2021.

[14] Takuhiro Kimura, Yasushi Makihara, Daigo Muramatsu, and Yasushi Yagi.
Quality-dependent score-level fusion of face, gait, and the height biometrics.
Information and Media Technologies, 9(3):346–350, 2014.

[15] Juan León-Alcázar, Fabian Caba Heilbron, Ali K. Thabet, and Bernard Ghanem.
Maas: Multi-modal assignation for active speaker detection. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 265–274, 2021.

[16] Lantian Li, Ruiqi Liu, Jiawen Kang, Yue Fan, Hao Cui, Yunqi Cai, Ravichan-
der Vipperla, Thomas Fang Zheng, and Dong Wang. Cn-celeb: multi-genre
speaker recognition. Speech Communication, 137:77–91, 2022.

[17] David F McAllister, Robert D Rodman, Donald L Bitzer, and Andrew S Free-
man. Lip synchronization of speech. In Audio-Visual Speech Processing:
Computational & Cognitive Science Approaches, 1997.

[18] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. VoxCeleb: A
Large-Scale Speaker Identification Dataset. In INTERSPEECH 2017, pages
2616–2620, 2017.

[19] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. Voxceleb: A
large-scale speaker identification dataset. In INTERSPEECH 2017, 2017.

[20] Joseph Roth, Sourish Chaudhuri, Ondrej Klejch, Radhika Marvin, Andrew
Gallagher, Liat Kaver, Sharadh Ramaswamy, Arkadiusz Stopczynski, Cordelia
Schmid, Zhonghua Xi, and Caroline Pantofaru. Ava active speaker: An
audio-visual dataset for active speaker detection. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP 2020), pages
4492–4496, 2020.

[21] Seyed Omid Sadjadi, Craig Greenberg, Elliot Singer, Lisa Mason, and Dou-
glas Reynolds. The 2021 nist speaker recognition evaluation. ArXiv, 2022.

[22] Seyed Omid Sadjadi, Craig S Greenberg, Elliot Singer, Douglas A Reynolds,
Lisa P Mason, Jaime Hernandez-Cordero, et al. The 2019 nist audio-visual
speaker recognition evaluation. In The Speaker and Language Recognition
Workshop (Odyssey 2020), pages 259–265, 2020.

[23] Leda Sarı, Kritika Singh, Jiatong Zhou, Lorenzo Torresani, Nayan Singhal,
and Yatharth Saraf. A multi-view approach to audio-visual speaker verifi-
cation. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP 2021), pages 6194–6198, 2021.

[24] Milton Sarria-Paja, Mohammed Senoussaoui, Douglas O’Shaughnessy, and
Tiago H Falk. Feature mapping, score-, and feature-level fusion for im-
proved normal and whispered speech speaker verification. In IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP
2016), pages 5480–5484, 2016.

[25] Saqlain Hussain Shah, Muhammad Saad Saeed, Shah Nawaz, and Muham-
mad Haroon Yousaf. Speaker recognition in realistic scenario using multi-
modal data. ArXiv, 2023.

[26] Suwon Shon, Tae-Hyun Oh, and James Glass. Noise-tolerant audio-visual
online person verification using an attention-based neural network fusion.
In IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP 2019), pages 3995–3999, 2019.

[27] Ruijie Tao, Rohan Kumar Das, and Haizhou Li. Audio-visual speaker
recognition with a cross-modal discriminative network. In INTERSPEECH
2020, 2020.

[28] Ruijie Tao, Zexu Pan, Rohan Kumar Das, Xinyuan Qian, Mike Zheng Shou,
and Haizhou Li. Is someone speaking? exploring long-term temporal fea-
tures for audio-visual active speaker detection. In Proceedings of the 29th
ACM International Conference on Multimedia, pages 3927–3935, 2021.

[29] Jesús Villalba, Bengt J Borgstrom, Saurabh Kataria, Magdalena Rybicka,
Carlos D Castillo, Jaejin Cho, L Paola Garcıa-Perera, Pedro A Torres-Carrasquillo,
and Najim Dehak. Advances in cross-lingual and cross-source audio-visual
speaker recognition: The jhu-mit system for nist sre21. In The Speaker and
Language Recognition Workshop (Odyssey 2022), pages 213–220, 2022.

[30] Abudukelimu Wuerkaixi, Kunda Yan, You Zhang, Zhiyao Duan, and Chang-
shui Zhang. Dyvise: Dynamic vision-guided speaker embedding for audio-
visual speaker diarization. In IEEE 24th International Workshop on Multi-
media Signal Processing (MMSP 2022), pages 1–6, 2022.

[31] Eric Z. Xu, Zeyang Song, Chao Feng, Mang Ye, and Mike Zheng Shou. Ava-
avd: Audio-visual speaker diarization in the wild. Proceedings of the 30th
ACM International Conference on Multimedia, 2021.

[32] Hani Yehia, Philip Rubin, and Eric Vatikiotis-Bateson. Quantitative associ-
ation of vocal-tract and facial behavior. Speech Communication, 26(1-2):23–
43, 1998.

Service Mesh Technical Details

Jinjia Zhang
jinjia.zhang@aalto.fi

Tutor: Tuomas Aura

Abstract

Moving from monolithic approaches to microservice-based architectures

has been increasingly common in cloud-based software development and

delivery. Service meshes are the latest infrastructure development to sup-

port microservices even better. It provides many significant features for

microservices infrastructures, including routing, resilience, and monitor-

ing. This paper reviews the state-of-the-art service mesh implementation

Istio and conducts experiments on how the service mesh impacts applica-

tion performance. Finally, it discusses future opportunities in service mesh

technology.

KEYWORDS: Service Mesh, Istio, Kubernetes

1 Introduction

The microservices software architecture has gained considerable popular-

ity by enabling rapid, reliable delivery of complex applications. This archi-

tecture separates an application into multiple small and lightweight ser-

vices, which are independently deployable and loosely coupled [1]. How-

ever, the main disadvantage of microservices is that the integration of

microservice systems faces particular difficulties due to the complexity

and dynamism of the interfaces and communication patterns between the

services [19]. Therefore, a promising approach, known as service mesh,

has been developed and widely adopted in the industry. A service mesh

is a dedicated infrastructure component that facilitates traffic manage-

ment observing and securing communication between services without

code changes to the service implementations. It only focuses on service-

to-service communication rather than on business concerns.

Many open-source service mesh solutions exist, including Istio [10], Link-

erd [12], and Cilium Mesh [2]. This paper aims to review the key technolo-

gies behind the service mesh based on the Istio implementation, evaluate

its performance impact through experiments and discuss the future direc-

tions of service mesh technology.

The rest of this paper is organized as follows. Section 2 elaborates on the

definition of Kubernetes as well as the service mesh. Section 3 analyzes

the Istio architecture while Section 4 conducts experiments and discusses

the results. Section 5 surveys some future possibilities of service mesh.

Finally, Section 6 concludes the paper.

2 Background

This section overviews Kubernetes and the service mesh concept.

2.1 Kubernetes

Kubernetes is an open-source container orchestration framework for au-

tomatically managing containerized applications through simple configu-

rations [11]. It manages multiple distributed machines as a cluster, and

each working machine is referred to as a node. The commonly used con-

cepts in the framework are as follows:

• Pods are the smallest management and deployment unit in Kubernetes.

A pod might contain multiple containers sharing the same network stack

and storage resources. One pod typically implements one microservice

instance in the microservice architecture.

• Deployments control the behavior of pods by defining the desired num-

ber and types of pods in the system. The deployment can be scaled up

or down by changing the number of replicas of the pods in it.

• Services define a virtual static IP address that can be accessed by other

cluster services or outside services. When pods communicate with dy-

namic IP addresses, pods have to restart and connect new IP addresses

since they are ephemeral. In addition, a solution is needed for discover-

ing the pods and balancing the load among them.

2.2 Service Mesh

A service mesh is a dedicated infrastructure component to improve the

convenience of microservice development and to reduce its operational

complexity. The service mesh layer is located between the application

layer and the orchestration layer. It consists of the data plane and the

control plane. The data plane includes a series of proxies, also known as

sidecars. The sidecar function is to proxy ingress and egress (i.e., inbound

and outbound) traffic to and from a microservice and to collect as well

as report mesh telemetry data. The control plane manages the sidecars

through configuration and provides a visual interface to view the traffic

of the whole system. In particular, the service mesh layer consists of four

principal features, as follows:

• Traffic management ensures the connectivity of the various services and

provides functions to ensure high availability and resiliency, including

fault injection and circuit breaking. It allows fine-grained control of the

mesh traffic.

• Observability provides data and metrics on all service behaviors. Fur-

thermore, it improves the developers’ troubleshooting capabilities by in-

tegrating visualization tools.

• Security protects communication that traverses the physical network

between pods by encryption and authentication. Additionally, it isolates

the microservices and their communication from each other on the clus-

ter network. Imposing access control policies prevents unauthorized ac-

cess. Therefore, security aims to mitigate some threats. For example,

attackers can compromise microservices within the service mesh, gain-

ing access to the service mesh components and other microservices.

• Extensibility improves the flexibility of the service mesh and facilitates

Figure 1. Service mesh architecture adapted from [10]

the expansion of its capabilities.

3 Example: Istio

As mentioned before, Istio is an open-source implementation of the service

mesh, and it was released to the public in 2017 with the support of Google,

Lyft, and IBM [14].

3.1 Architecture

The architecture of Istio follows the core principle of the service mesh,

which involves separating the control plane from the data plane. Istio

1.5 changed the architecture of the control plane from microservices to

a monolith, which greatly simplifies the service mesh management for

administrators. The pod name is istiod that consists of Mixer, Citadel,

Galley, and Pilot. In terms of the data plane, each pod comprises two con-

tainers. One is the microservice, and the other is a proxy, which acts as an

agent to intercept inbound and outbound traffic of the microservice. In Is-

tio, Envoy [3], a high-performance proxy implemented in C++, is the only

supported sidecar. The latest Istio 1.17 architecture is shown in Figure 1.

3.2 Traffic Management

In traditional microservice application development, the microservices es-

tablish connections, such as HTTP connections, through domain names or

IP addresses to communicate with each other. In service mesh applica-

Pod

istio-proxy

microservice

istio-init

Figure 2. Pod architecture

tion development, the application code and development process require

no changes because the sidecars are transparently added to the microser-

vices. The sidecars will intercept the incoming requests and redirect them

to the microservices.

Istio provides three methods to inject a sidecar into a pod: automatic in-

jection, manual injection, and custom injection. The automatic injection is

mainly analyzed here. Istio takes advantage of Kubernetes mutating web-

hook to complete this task. Mutating webhook allows requests to invoke

the webhook server before reaching the Kubernetes API server. The web-

hook server attaches two additional containers, istio-init and istio-proxy,

to the pod. The pod architecture is shown in Figure 2. All containers in

the same pod share a network stack. The istio-init container is responsible

for initializing the network environment of the pod. In addition, it config-

ures iptables rules, enabling sidecars to intercept inbound and outbound

traffic. The container runs as a privileged user and exits after performing

these tasks. The istio-proxy container executes two processes. The first

one is the pilot-agent, and the second one is the Envoy proxy bootstrapped

by the pilot-agent. The pilot-agent process receives control plane instruc-

tions and Envoy-related configurations as an xDS server. The xDS refers

to a series of discovery service resources. For example, endpoint discovery

service (EDS) provides service addresses.

Additionally, Istio offers two methods to intercept traffic. It is based

on the istio-init container or the Istio Container Network Interface (CNI)

plugin. Both of them complete the traffic interception by writing iptables

rules. However, the istio-init container needs the NET_ADMIN and NET_RAW

Linux capabilities, which is the default method. The Istio CNI plugin im-

plements the same networking functionality but without requiring privi-

leges. It is added to the existing CNI plugin configuration and only writes

iptables rules in the Kubernetes pod lifecycle’s network setup phase.

Figure 3 analyzes how Istio traffic is routed in the two scenarios. The

numbers in the figure indicate the order of the processing steps. Appendix

Remote Pod

PREROUTING
istio-proxy

micro-
service

pilot-agent

envoy

Port 15006
Inbound
Handler

Port 15001
Outbound
Handler

1

inbound traffic

OUTPUT

INPUT

POSTROUTING

ISTIO_INBOUND

ISTIO_IN_REDIRECT

ISTIO_OUTPUT

ISTIO_REDIRECT

2

3

56

7

8

Local Pod

Remote Pod

PREROUTING
istio-proxy

micro-
service

pilot-agent

envoy

Port 15006
Inbound
Handler

Port 15001
Outbound
Handler

OUTPUT

INPUT

POSTROUTING

ISTIO_INBOUND

ISTIO_IN_REDIRECT

ISTIO_OUTPUT

ISTIO_REDIRECT

Local Pod

1

outbound traffic

2

6

4

5

7

8

4

3

Figure 3. Traffic flow adapted from [18]

1 shows detailed iptables rules.

3.3 Observability

Istio generates three types of data to provide observability of the service

mesh. The first data type is metrics such as latency and response times

for requests. These metrics are organized into three classes, namely proxy

level, service level, and control-plane level. Prometheus is the database

that collects metrics by default and scrapes metrics from the specific end-

point /metrics at intervals [17]. Specifically, the control-plane level met-

rics are collected on port 15014 by the Istio control plane (i.e., the istiod

pod). and the proxy level and service level metrics are collected on port

15020 of the sidecar.

The second data type is distributed traces, which provide a method to

monitor the dependencies of the services and interactions between differ-

ent services. Istio leverages Envoy’s distributed tracing feature to imple-

ment the tracing integration. Although the sidecars automatically gener-

ate trace spans on behalf of the applications they proxy, the applications

need to forward the appropriate request context to ensure that the spans

in the same request are in a single trace. For example, application devel-

opers must collect some HTTP headers from each incoming request and

forward these headers to the next application.

The third data type is access logs, which provide an approach to record

the behavior of services, including request source and destination meta-

data. Microservices output log data to a file in the pod to help debug appli-

cations or sends data to an OpenTelemetry Collector, which can receive,

process, and export telemetry data [16].

3.4 Security

Istio ensures the security of the service mesh by a Certificate Author-

ity (CA), authentication policies, and authorization policies. It securely

provisions strong identities to every pod with X.509 certificates. In Ku-

bernetes, the ServiceAccount resource serves as the Istio identity model.

Each pod is assigned a service account to run. By default, Istio provides

certificate management out of the box. When Istio starts, it will create

a self-signed certificate for the istiod pod as the root CA. However, Is-

tio can also integrate an external CA, thus securing the communication

in multiple service meshes with the same trusted root CA. When a pod

starts, pilot-agent running in the data plane creates a key pair and cer-

tificate signing request (CSR), and sends the CSR to the istiod pod. The

CA verifies the credentials in the CSR. If the validation succeeds, the CA

generates a certificate and returns it to the pilot-agent, which sends the

certificate and private key to the Envoy via the Envoy secret discovery

service (SDS) API. After this, the sidecar proxy has credentials to com-

municate with the control plane and other proxies.

Peer authentication and request authentication are provided by Istio.

Peer authentication is used for service-to-service communication and sup-

ports three modes: permissive mode, in which a service accepts both plain-

text traffic and mutual TLS traffic at the same time, strict mTLS mode,

and disabled mTLS mode. Request authentication adopts JSON Web To-

ken (JWT) validation for end-user authentication. Furthermore, an Au-

thorizationPolicy resource is introduced to define authorization policies,

which offers mesh-wide, namespace-wide, and workload-wide access con-

trol. The authorization policies impose access control to the inbound traf-

fic in the server-side Envoy sidecar based on the runtime authorization

engine running in the Envoy process, which verifies the request context

against the current authorization policies and returns the authorization

result, either ALLOW or DENY. In Kubernetes, the access control is based

on the labels to restrict policies to apply to specific workloads and the ser-

vice accounts to restrict policies to apply to specific identities.

Istio can be extended to support joining virtual machines into the Ku-

bernetes mesh. Various infrastructures identify workloads differently, for

example, identifying a workload by its IP address and port in virtual ma-

chines or by service names in Kubernetes. Therefore, in a multi-cloud

environment, it is important to have a unified identity authentication

standard. Istio 1.14 supports the Secure Production Identity Framework

for Everyone (SPIFFE) standard by enabling SPIFFE Runtime Environ-

ment (SPIRE), which is a production-ready implementation to identify

workloads in dynamic and heterogeneous environments. The heart of the

SPIFFE specification is defining short-lived cryptographic identity docu-

ments, also known as SPIFFE Verifiable Identity Documents (SVIDs) by

simple APIs. SPIRE consists of the SPIRE server and the SPIRE agent.

The server is responsible for issuing SVIDs and registering workloads.

The agent running on every node requests SVIDs from the server and of-

fers Workload APIs the identity documents in the X.509 or JWT format.

The SPIRE agent communicates with pods on the same node through the

shared UNIX Domain Socket (UDS) and supports the Envoy SDS APIs,

i.e., each Envoy sidecar can fetch the SVID through the SDS API.

3.5 Extensibility

Istio utilizes the Envoy WebAssembly to provide extensibility. WebAssembly

is a portable binary instruction format for a stack-based virtual machine [7].

In previous versions of Envoy, extending its functions (e.g., adding custom

filters) required a specific language, C++, and these programs needed to

be compiled into the Envoy binary, i.e., the developers were responsible for

maintaining a fork of Envoy [13]. After the introduction of WebAssembly,

extensions can be loaded into Envoy dynamically at runtime.

4 Experiments And Results

We set up the service mesh cluster using Minikube in one node [15]. It

was allocated 2 CPUs and 2 GB of memory. We utilized Istio’s load test-

ing tool Fortio [5]. Fortio can run at a specified number of queries per

second (QPS) and calculates percentiles for the response times. Our test

scenario is to simulate 10 users concurrently requesting the Fortio server

for 20 seconds with or without sidecar proxies in one cluster. The files

used for this experiment are shared on our GitHub page1 for community

access. The performance impact of introducing sidecars is the focus of this

experiment. The experimental results are shown in Figure 4. The 99th

percentile is a crucial metric to know microservices latencies [6].

According to the experimental results, as the expected QPS increases,

1https://github.com/jinjiaKarl/Istio-experiment

Figure 4. Experiments

the actual QPS fastly reaches the maximum QPS with sidecars and the

maximum QPS with sidecars is lower than without sidecars. The laten-

cies increase faster with sidecars than without sidecars. The introduction

of sidecar proxies causes some performance degradation because the traf-

fic between services transits the proxies’ network protocol stack, resulting

in an increased delay. Furthermore, Istio collects some additional teleme-

try data, such as, tracing data. The more services a user’s request passes,

the more obvious the application performance impact will be.

5 Future Directions

The sidecar model requires a large number of proxies, many additional

network connections, and a complicated redirection logic to feed network

traffic into the proxies, which leads to performance degradation. There-

fore, the sidecar-less model has attracted the attention of the community.

Cilium Service Mesh, which utilized Extended Berkeley Packet Filter

(eBPF), is the advocate of this architecture. eBPF programs run directly

on the Linux kernel instead of calling syscalls and passing packets back

and forth between kernel space and user space. However, it is difficult to

write and debug eBPF programs, and the model has many limitations. For

example, the size of the program is limited. Although eBPF powers for-

warding, filtering, and monitoring of IP layer (L3) and transport layer (L4)

packets, it is difficult to process application layer (L7) data such as HTTP

retries. Therefore, Cilium Service Mesh currently adopts the following

method. If eBPF programs are not capable of processing the request, the

Envoy proxy running per node handles the request. In a multi-tenant

data center with shared hosts, Envoy needs to be multi-tenant aware since

it handles all connections in this node. Although this architecture reduces

the number of proxies and network delays, it also causes other problems.

First, the failure of the proxy has a wider impact on the service mesh. Sec-

ond, all traffic on the host is handled by the same proxy. If one application

has extremely high traffic and consumes all of the proxy’s resources, the

other applications on the host risk being starved. Therefore, choosing

the sidecar model or eBPF model is similar to choosing virtual machines

or containers. The sidecar model provides stricter isolation, whereas the

eBPF-based model can share resources more effectively.

Currently, several directions in the service mesh deployment model have

been developing. The first direction is to improve the ability of eBPF in

managing L7 traffic in order to substitute sidecar proxies. The second di-

rection is the introduction of the Proxyless Service Mesh based on Google

Remote Procedure Call (gRPC) [8]. The development team only needs

to maintain gRPC versions in different languages, and the service mesh

has no sidecar injections. The third direction is Istio launched sidecar-

less Ambient Mesh [9], which splits Istio’s functionality into two distinct

layers: the L7 processing layer and the secure overlay layer. When the

complicated L7 functions are not required, it is not necessary to deploy

sidecars. Finally, the fourth direction is to persist in the sidecar model

and continuously optimize the performance of the control plane and data

plane.

In terms of security, Role-based access control (RBAC) is used by default

in Kubernetes for access control. It results in some problems such as

the explosion of the number of roles. Therefore, Next Generation Access

Control (NGAC) is proposed as a service mesh access control with fine-

grained granting or denying of user management capabilities [4].

6 Conclusion

This paper has reviewed the key technologies implemented by service

meshes, including traffic management, observability, security, and exten-

sibility. We used Istio as the example of a state-of-the-art service mesh.

Our experimental results show that the sidecar injection causes some per-

formance degradation due to more network hops and runtime overhead.

Finally, we discuss the future directions of service mesh.

References

[1] Washington Henrique Carvalho Almeida, Luciano de Aguiar Monteiro, Raphael Ro-
drigues Hazin, Anderson Cavalcanti de Lima, and Felipe Silva Ferraz. Sur-
vey on microservice architecture-security, privacy and standardization on
cloud computing environment. ICSEA 2017, page 210, 2017.

[2] Cilium. Online. https://cilium.io/. Accessed: 2023-01-29.

[3] Envoy. Online. https://www.envoyproxy.io/. Accessed: 2023-01-29.

[4] David Ferraiolo, Ramaswamy Chandramouli, Rick Kuhn, and Vincent Hu.
Extensible access control markup language (XACML) and next generation
access control (NGAC). In Proceedings of the 2016 ACM International Work-
shop on Attribute Based Access Control, ABAC ’16, page 13–24, New York,
NY, USA, 2016. Association for Computing Machinery.

[5] Fortio. Online. https://fortio.org/. Accessed: 2023-01-29.

[6] Mrittika Ganguli, Sunku Ranganath, Subhiksha Ravisundar, Abhirupa Layek,
Dakshina Ilangovan, and Edwin Verplanke. Challenges and opportunities
in performance benchmarking of service mesh for the edge. In 2021 IEEE
international conference on edge computing (EDGE), pages 78–85. IEEE,
2021.

[7] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael
Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bring-
ing the web up to speed with webassembly. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 185–200, 2017.

[8] Isito. Online. https://istio.io/latest/blog/2021/proxyless-grpc/. Accessed:
2023-01-29.

[9] Isito. Online. https://istio.io/latest/blog/2022/introducing-ambient-mesh/.
Accessed: 2023-01-29.

[10] Istio. Online. https://istio.io/latest/. Accessed: 2023-01-29.

[11] Kubernetes. Online. https://kubernetes.io/docs/home/. Accessed: 2023-01-
29.

[12] Linkerd. Online. https://linkerd.io/. Accessed: 2023-01-29.

[13] Antonio Lioy, Dott Ignazio Pedone, and Matteo Pace. Zero trust networks
with istio. Ph. D. dissertation, 2021.

[14] Nabor C Mendonça, Craig Box, Costin Manolache, and Louis Ryan. The
monolith strikes back: Why Istio migrated from microservices to a mono-
lithic architecture. IEEE Software, 38(05):17–22, 2021.

[15] Minikube. [online]. https://minikube.sigs.k8s.io/docs/. Accessed: 2023-01-
29.

[16] Opentelemetry. Online. https://opentelemetry.io/docs/concepts/components/.
Accessed: 2023-01-29.

[17] Prometheus. Online. https://prometheus.io/. Accessed: 2023-01-29.

[18] Jimmy Song. Online. https://jimmysong.io/en/blog/istio-sidecar-traffic-
types/. Accessed: 2023-01-29.

[19] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Wenhai Li, Chao Ji, and Dan
Ding. Delta debugging microservice systems. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering,
pages 802–807, 2018.

1 Appendix: Iptables Rules

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

ISTIO_INBOUND tcp -- anywhere anywhere

Chain INPUT (policy ACCEPT)

target prot opt source destination

target prot opt source destination

ISTIO_OUTPUT tcp -- anywhere anywhere

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

Chain ISTIO_INBOUND (1 references)

target prot opt source destination

RETURN tcp -- anywhere anywhere tcp dpt:15008

RETURN tcp -- anywhere anywhere tcp dpt:15090

RETURN tcp -- anywhere anywhere tcp dpt:15021

RETURN tcp -- anywhere anywhere tcp dpt:15020

ISTIO_IN_REDIRECT tcp -- anywhere anywhere

Chain ISTIO_IN_REDIRECT (3 references)

target prot opt source destination

REDIRECT tcp -- anywhere anywhere redir ports 15006

Chain ISTIO_OUTPUT (1 references)

target prot opt source destination

RETURN all -- 127.0.0.6 anywhere

ISTIO_IN_REDIRECT all -- anywhere !localhost owner UID match 1337

RETURN all -- anywhere anywhere ! owner UID match 1337

RETURN all -- anywhere anywhere owner UID match 1337

ISTIO_IN_REDIRECT all -- anywhere !localhost owner GID match 1337

RETURN all -- anywhere anywhere ! owner GID match 1337

RETURN all -- anywhere anywhere owner GID match 1337

RETURN all -- anywhere localhost

ISTIO_REDIRECT all -- anywhere anywhere

Chain ISTIO_REDIRECT (1 references)

target prot opt source destination

REDIRECT tcp -- anywhere anywhere redir ports 15001

Machine learning for fog and edge
service placement

Kwan Li
kwan.li@aalto.fi

Tutor: Jaakko Harjuhahto

Abstract

In recent years, technology is evolving in a rapid manner. In order to pro-

vide the best user experience, edge and fog computing are often used in

developing devices and applications. However, the environment for the

devices can be highly dynamic. As a result, optimal time and location

placement of fog services has been an issue that needs to be solved. This

study examines the utility of reinforcement learning in solving fog/edge

service placement problems by examining various reinforcement learning

algorithms that were proposed.

KEYWORDS: Reinforcement Learning, Deep Reinforcement Learning, Markov

Decision Process, service placement, fog computing, edge computing

1 Introduction

With the constant evolution of technology, many new applications and

devices are constantly developed. These applications and devices often

requires minimal latency to provide an excellent user experience. Some

of these latency issues can be solved with the services provided by fog and

edge computing. Yu et al. [1] describes edge computing as a paradigm

that is used to migrate storage and computation of data to the edge of the

network where it is closest to the end-users. This provides benefits such

as lower transmission latency between servers and application response

time improvements. On the other hand, fog computing can be seen as a

computing model that provides services such as networking and control in

addition to the services provided by edge computing [2]. However, despite

the benefits of fog and edge computing, there are challenges regarding

both computing models. The key issue being finding a way to determine

the optimal time and location to place to the services of fog and edge com-

puting. There are multiple methods proposed to solve this problem. One

of the approaches is to use reinforcement learning to accurately determine

the most optimized configurations for the fog and edge service placement.

This can be done with machine learning techniques such as reinforcement

learning (RL) and supervised learning (SL). This study will mainly focus

on the reinforcement learning approach.

2 Background

This chapter will introduce the fundamentals of fog and edge comput-

ing, as well as the challenges of service placement of the two computing

models. Additionally, the basics of reinforcement learning and the appli-

cations of it in fog and edge computing will be explained.

2.1 Fog and Edge computing

As a relatively new technology, the definition of fog computing may vary

drastically depending on the source. Many associates fog computing as

a way to provide services such as computing, storage and networking to

nodes in the network that is closer to the end-users [2]. However, as stated

by Bonomi et al. [3], the services provided by fog computing are not nec-

essarily only placed on the edges of the network and instead could be

positioned across the network.

Unlike fog computing, the services provided by edge computing such as

data computation and storages are only provided on the edge of the net-

work that is closest to the end-users. This allows edge computing to han-

dle common performance issues such as latency and connectivity much

better than the other computing models [2]. This does not imply that the

other computing models are to be replaced by edge computing. Instead,

according to Cao et al. [4], edge computing should be implemented in a

way that compliments other computing models.

2.2 Service placement

In order for the two previous computing models to work efficiently, one

major concern needs to be addressed. “How to optimize the deployment

of services?” This service placement problem can be quite challenging, as

unlike cloud computing services, the fog and edge services are resource-

constrained and highly dynamic [5]. Additionally, as opposed to the cloud

computing, the services provided by fog and edge are generally spread

out in the network which further complicates the service placement prob-

lem as there may be geographical complications that must be taken into

account as well. However, if the service problems are addressed and op-

timized properly, fog and edge computing provides great benefits to the

end-users.

2.3 Reinforcement learning

Reinforcement learning (RL) is a subarea of machine learning, where an

agent is placed in an environment for it to perform actions independently,

in hopes to finding the best actions to reach a specified goal [6]. The en-

vironment are often characterized by few factors. First, a state space is

defined, which is a set of states that typically depicts locations in which

actions can be taken. These actions also form another set called action

space. The goal of the agent is then defined as a policy which maps the

states to actions that would reach the specified goal. In order to find the

policy, each action is assigned a reward and the agent is then required to

perform the actions to find a goal while also maximizing the cumulated

reward. This is a lengthy process as the agent must explore multiple

different sequences of actions in order to optimize the reward obtained.

Another key aspect of reinforcement learning is that it differs from other

subareas of machine learning by not requiring data sets to be provided to

train the algorithm. This allows reinforcement learning a better ability to

explore more freely with less bias towards the data set used to train [7].

3 Reinforcement learning for service placement

Service placement problems are generally very complicated and would

require significant amount of effort only to find a sub optimal solution.

Therefore, reinforcement learning is used as an approach in hopes to pro-

duce better solutions more efficiently.

In order to utilize reinforcement learning, the service placement prob-

lem is formulated as a Markov Decision process (MDP). The MDP is gen-

erally characterized as tuples with different designs depending on the

author. Zhang et al. [8] formulated their MDP as a 4-tuple (S,A, P,R

), where S is defined as the finite state space and A as the finite action

space. P is the state transition strategy and R represents the reward func-

tion associated with the mappings of the states and actions. On the other

hand, Eyckerman et al. [9] also formulated their MDP as Multi-Objective

Markov Decision Process (MOMDP) with similar values but with few ad-

ditions. Their MOMDP is represented as 6-tuple (S,A, P,R, ω, fΩ), where

ω is the space of preference and fΩ is the preference function that takes

preference ω as input and outputs the scalar utility for each action in a

given state [9].

In addition to formulating the MDP, there are other factors that must be

taken into consideration when developing a reinforcement learning algo-

rithm to solve service placement problems. This chapter will first explore

the different optimizations that forms the service placement problem. Af-

terwards, the training process of RL algorithms for service placement is

discussed. Lastly, the relationship of deep learning with reinforcement

learning techniques and the usage of deep reinforcement learning in ser-

vice placement problems is examined thoroughly.

3.1 Defining the optimization

One of the core aspect of the service placement problem is to define the

value to optimize. Poltronieri et al. [6] explores the applications of deep

reinforcement learning by optimizing value of information (VoI) for ser-

vice placement. VoI is a form of utility that information objects (IO) brings

to end-users [10]. Using VoI as the resource management criterion, it can

be optimized to produce a resource management system that prioritizes

assigning resources to the services that provides the highest amount of

value to end-users. Consequently, the results of optimizing VoI shows

that it is an effective method for addressing resource management issues

of fog computing.

On the other hand, Liu et al. [11] prioritizes on minimizing total la-

tency of tasks in a long term. This is achieved by optimizing the service

placement and allocation. As a consequence, they hope to solve the issue

of low-latency requirements of computation-intensive applications in 5G

environments. Similarly, Eyckerman et al. [9] aims to solve the service

placement problem of optimizing energy efficiency while also minimizing

the total impact on the network. As a result, they have proposed a Multi-

Objective Reinforcement Learning (MORL) model to solve these conflict-

ing objectives.

3.2 Training the reinforcement learning model

As mentioned in chapter 2, RL algorithms does not require any data sets

to train the algorithm to produce results. With reinforcement learning,

there are other approaches which can be used to train the algorithms.

For example, Poltronieri et al. [6] proposed an algorithm FogReinForce

which is trained using a simulator. The simulator reenacts the proper-

ties of fog services which interacts with the algorithm through a HTTP

REST interface. The algorithm is then trained using the simulator in

1000 episodes of iterations in order to find the optimal policy. On the

other hand, Mohammadi et al. [12] explores the possibilities of training

the algorithm with data sets while still utilizing the deep reinforcement

learning model. Both of the model training methods produced results in-

dicating the benefits of the algorithms. However there is still an issue

regarding the training time of the RL algorithms. The training process

for RL models generally requires huge time investment, which is one of

the key concerns of developing a RL algorithm. Figure 1 describes an ex-

ample of the training process of RL model using simulation. An algorithm

is executed to interact with a simulation. The simulation then returns a

certain amount of reward based on the action taken to the algorithm. This

process is repeated for a finite amount of times, and the RL model is then

trained based on the results of this training component.

3.3 Utilizing deep learning with reinforcement learning

Deep learning (DL) is a subsection of machine learning techniques which

suited to solve high dimensional problems. Additionally, by making use

of deep neural networks (DNN), deep learning can model high-level ab-

stractions in data [13]. This property of deep neural network can also be

used in reinforcement learning. Li et al. [14] defines deep reinforcement

learning (DRL) as methods which utilizes deep neural networks to ap-

proximate the values of reinforcement learning components, such as the

Figure 1. An example of the training process for a model using simulation.

policy.

Deep reinforcement learning has been integrated in many of approaches

to solve the service placement problem. Poltronieri et al. [6] employs a

DLR based algorithm FogReinForce, to solve the VoI optimization prob-

lem. Specifically, the Deep Q-Network (DQN) algorithm was used to im-

plement the learning process for the FogReinForce algorithm. The algo-

rithm proved to be able to find a good-rewarding allocation policy that

optimizes VoI efficiently. This was evaluated by using a realistic fog com-

puting scenario, which represents a city where the citizens exploits the

functionalities of different Fog services.

DLR was also employed by Liu et al. [11] in their approach to solve the

online service placement and computation resource allocation problem.

They proposed an algorithm that is similar to the Deep Q-Network that

was used in the FogReinForce, namely the Parameterized Deep Q Net-

work (PDQN). PDQN is an algorithm which is used to evaluate the values

of service placement and computation resource allocation decisions. The

evaluation of the decisions is mainly handled by the two deep neural net-

works that were used in the algorithm. As opposed to the DQN algorithm,

PDQN is capable of handing discrete-continuous hybrid action spaces ef-

fectively, which was one of the reasons for adopting it in the approach to

solve the service placement problem. The performance of the PDQN algo-

rithm is evaluated using different simulation setups with various service

placement approaches, such as DQN-based approach. The results of the

evaluation indicate that PDQN performs better than other service place-

ment approaches by having significantly lower total latency [11].

Similarly, Eyckerman et al.[9] explored the DQN methodologies to solve

their Multi-Objective Optimization (MOO) problem. In their studies, Ey-

ckerman et al. [9] examined two different Multi-Objective Reinforcement

Learning algorithms, which were the Deep Optimistic Linear Support

(Deep-OLS) and the Conditioned Network. Deep-OLS is an algorithm

proposed by Mossalem et al. [15] that utilizes two Deep Neural Networks

for optimization. Conditioned network (CN) on the other hand is an al-

gorithm proposed by Abels et al. [16] which is trained based on the DQN

algorithm. These algorithms were further expanded by Eyckerman et al.

[9] using Double Dueling DQN. Lastly, the algorithms are then evalu-

ated by comparing their performance to other algorithms, such as Ran-

dom Search and Non-dominated Sorting Genetic Algorithm II (NSGA-II)

that previously proposed by Eyckerman et al. [9]. While the results show

that all of the algorithms were able to find solutions that fulfills the goal,

the MORL algorithms were shown to be more efficient by requiring less

execution time. Specifically, the CN algorithm is able to produce similar

results as the NSGA-II while requiring much less execution time.

The previously mentioned approaches to solve the service placement

problem all uses deep reinforcement learning in their solution. This is

due to dimensions of the state and actions spaces growing exponentially

[6, 11]. As a consequence, the traditional model free RL methods, such as

Q-learning are not as suitable for the problem [11]. On the other hand,

Zhang et al. [8] proposed the Q-placement algorithm, which is a model

free reinforcement learning technique. By utilizing Q-placement, they

have managed to achieve service cost reductions by optimizing the ser-

vice placement. The results were evaluated by comparing Q-placement to

other state-of-art service/data placement algorithms such as Least recent

used (LCU). Based on the results, the service cost reductions provided

by Q-placement were shown to be more significant compared to the other

service/data placement algorithms.

Comparision between Reinforcement Learning algorithms

Algorithm FogReinForce Parameterized

Deep Q Net-

work

Conditioned

Network

MDP model (S,A, P,R, π) (S,A, P,R, γ) (S,A, P,R, ω, fΩ)

Optimization Value of in-

formation

Latency Energy effi-

ciency, total

impact on

network

Training

method

Simulation Simulation Simulation

DRL usage Yes Yes Yes

Table 1. Comparison of different reinforcement learning algorithms that were discussed
in this study.

4 Discussion

The various reinforcement learning models that were examined in this

study all had a different strategy on solving the service placement prob-

lem. Despite the different approaches to solve the problem, there were

many similarities between them. The similarities can be seen in Table

1, which compares the different reinforcement learning algorithms and

their properties. The three main RL algorithm that were discussed in

this study all utilized deep reinforcement learning in their approaches.

Furthermore, the reinforcement learning models were trained using a

simulation. However, there are still key differences between the RL al-

gorithms, namely how the Markov Decision Process is defined and the

value to optimize.

Defining the value to optimize is one of the core aspects of designing a

RL algorithm, as value formulates the optimization problem that the al-

gorithm aims to solve. The different approaches in this study all chose

a different value to be optimized. The FogReinForce prioritizes on opti-

mizing VoI, PDQN algorithm focuses on minimizing the total latency and

Conditioned Network was used to improve energy efficiency while mini-

mizing the total impact on the network. The difference between the opti-

mizations has a huge influence on the techniques and technologies used

on solve the service placement problem. For example, in the case of op-

timizing energy efficiency and total impact on the network, Eyckerman

et al. [9] had to specifically formulate an extension of MDP to propose a

solution to the problem. On the other hand, FogReinForce had to use a

specific simulator to train model to evaluate VoI service components.

For the FogReinForce algorithm, the MDP was defined as the following

tuple: (S,A, P,R, π). This closely resembles a typical MDP model defined

by Zhang et al. [8] with the addition of π which describes the optimal pol-

icy that would maximize the amount of reward for each action taken. On

the other hand, the MDP model of PDQN algorithm differentiates from

the MDP model defined in FogReinForce. Instead of having the optimal

policy as one of the 5 elements of the tuple, γ was used to describe a dis-

count factor which is used to indicate the degree of future rewards looked

into. In contrast, the MDP model defined in Conditioned Network has

another additional element in the tuple. This is to be expected as Eyck-

erman et al. [9] defined it as Multi-Objective MDP, which an extension

of the traditional MDP model, in order to solve the Multi-Objective Opti-

mization problem. It is also important to note that while all of the MDP

models shares the same reward function element R, the function itself is

different.

In addition to the algorithms discussed in this study, there are also

other algorithms that can be used for solving issues of fog computing. For

example, Heuristic algorithms are often simple to implement while also

providing a decent solution to a given problem in a reasonable amount

of time. On the other hand, Fuzzy-based algorithms are the best suited

for solving problems that is involved with vagueness or uncertainty [17].

While these algorithms can be used as an approach to solve the service

placement problem, the demerits of the algorithms outweighs the bene-

fits gained from them. Heuristic algorithms are not as flexible as DLR

algorithms, which limits their potential in larger networks. On the other

hand, fuzzy-based algorithms does perform well in dynamic environment,

but DLR algorithms are able to solve complex problems efficiently in ad-

dition to the flexibility that fuzzy-based algorithms provides.

Based on the approaches that were reviewed in this study, reinforce-

ment learning methodologies is proven to be effective in solving service

placement problems. Specifically, deep reinforcement learning methods is

often used over traditional model free reinforcement learning methods as

DRL methods are better at handling high dimension problems more effec-

tively. Furthermore, simulations were used as the main training methods

for the models. This allows the models the freedom to explore with less

bias towards a given data set. This is especially important as the models

may produce unexpected results that is optimal towards the goal. The dif-

ferent algorithms also displays the flexibility of DRL, by showcasing the

various approaches to the service placement and allocation problem us-

ing different optimizations. There wasn’t a specific best optimization that

could be used to solve the service placement problem, however single ob-

jective optimization should be prioritized as Multi-objective optimization

is much more challenging.

5 Conclusion

This study explored the fog and edge service placement problem and re-

inforcement learning as a potential solution. The service placement prob-

lem is proved to be challenging since the environment are highly dynamic.

To present the possible solutions to the service placement problem, three

main reinforcement learning approaches were examined. The various RL

approaches all had a different value to be optimized, which had huge in-

fluence on the design on the algorithms. Deep reinforcement learning in

particular has proven to be effective at producing results to optimization

problems in the different approaches. Furthermore, simulations were also

used in all three approaches to train the model instead of using data sets.

As a consequence, the training process are generally very long. While

there was not a clear method that surpasses all the other approaches, the

methods displays the advantages of RL in solving the service placement

problems.

References

[1] Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu, Jie Lin,
and Xinyu Yang. A survey on the edge computing for the internet of things.
IEEE Access, 6:6900–6919, 2018.

[2] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh
Jalali, Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. All one needs
to know about fog computing and related edge computing paradigms: A
complete survey. Journal of Systems Architecture, 98:289–330, 2019.

[3] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog com-
puting and its role in the internet of things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing, MCC ’12, page
13–16, New York, NY, USA, 2012. Association for Computing Machinery.

[4] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on
edge computing research. IEEE Access, 8:85714–85728, 2020.

[5] Farah Aït Salaht, Frédéric Desprez, and Adrien Lebre. An overview of
service placement problem in fog and edge computing. ACM Comput. Surv.,
53(3), jun 2020.

[6] Filippo Poltronieri, Mauro Tortonesi, Cesare Stefanelli, and Niranjan Suri.
Reinforcement learning for value-based placement of fog services. In 2021
IFIP/IEEE International Symposium on Integrated Network Management
(IM), pages 466–472, 2021.

[7] Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Ri-
ley. Optimization of molecules via deep reinforcement learning. Scientific
reports, 9(1):1–10, 2019.

[8] Ziyao Zhang, Liang Ma, Kin K. Leung, Leandros Tassiulas, and Jeremy
Tucker. Q-placement: Reinforcement-learning-based service placement in
software-defined networks. In 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), pages 1527–1532, 2018.

[9] Reinout Eyckerman, Phil Reiter, Steven Latré, Johann Marquez-Barja, and
Peter Hellinckx. Application placement in fog environments using multi-
objective reinforcement learning with maximum reward formulation. In
NOMS 2022-2022 IEEE/IFIP Network Operations and Management Sym-
posium, pages 1–6, 2022.

[10] Filippo Poltronieri, Mauro Tortonesi, Alessandro Morelli, Cesare Stefanelli,
and Niranjan Suri. Value of information based optimal service fabric man-
agement for fog computing. In NOMS 2020 - 2020 IEEE/IFIP Network
Operations and Management Symposium, pages 1–9, 2020.

[11] Tong Liu, Shenggang Ni, Xiaoqiang Li, Yanmin Zhu, Linghe Kong, and
Yuanyuan Yang. Deep reinforcement learning based approach for online
service placement and computation resource allocation in edge computing.
IEEE Transactions on Mobile Computing, pages 1–1, 2022.

[12] Mehdi Mohammadi, Ala Al-Fuqaha, Mohsen Guizani, and Jun-Seok Oh.
Semisupervised deep reinforcement learning in support of iot and smart
city services. IEEE Internet of Things Journal, 5(2):624–635, 2018.

[13] Seyed Sajad Mousavi, Michael Schukat, and Enda Howley. Deep reinforce-
ment learning: an overview. In Proceedings of SAI Intelligent Systems Con-
ference (IntelliSys) 2016: Volume 2, pages 426–440. Springer, 2018.

[14] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274,
2017.

[15] Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon White-
son. Multi-objective deep reinforcement learning. arXiv preprint arXiv:1610.02707,
2016.

[16] Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckel-
macher. Dynamic weights in multi-objective deep reinforcement learning.
In International Conference on Machine Learning, pages 11–20. PMLR,
2019.

[17] Bushra Jamil, Humaira Ijaz, Mohammad Shojafar, Kashif Munir, and Ra-
jkumar Buyya. Resource allocation and task scheduling in fog computing
and internet of everything environments: A taxonomy, review, and future
directions. ACM Comput. Surv., 54(11s), sep 2022.

Digital Scent in Mulsemedia applications

Leonardo Pasquarelli
leonardo.pasquarelli@aalto.fi

Tutor: Nassim Sehad

Abstract

Multisensory media applications have gained a lot of traction in the past

years. Scent is one of the senses that has yet to be incorporated into com-

mercial products. Much research has been conducted on digital scent in

Mulsemedia applications, for which we aim to review the most relevant

ones. In this literature review, we investigate the application areas and

present state-of-the-art technologies and devices. Furthermore, we will dis-

cuss the future of scent in mulsemedia applications and how likely it is to

be a key component with the announcing date of 6G in 2030.

KEYWORDS: internet of senses, mulsemedia, metaverse, virtual reality,

digital scent

1 Introduction

The term Internet of Senses (IoS) was first introduced by Ericsson in their

Consumer Lab [1]. While most companies focus on delivering audio and

visual senses in their Virtual Reality applications [2], IoS looks beyond

these two senses. It can cover olfactory senses, and bodily senses, but also

a change of the environment.

Stimulating a wider array of senses than just audio and visual can lead

i

to a more realistic perception of the environment and overall to an im-

provement of the Quality of Experience (QoE), without increasing cyber-

sickness. On top of that, it was found that the stimulation of multiple

senses allow for a decrease of the quality of the VR video, without signif-

icantly damaging the QoE [3]. Other reasons to develop IoS applications,

is that there are numerous application fields including but not limited

to Healthcare, Military, Work and Education. Such types of Multimedia

applications are often referred to, as Multi-sensory multimedia (Mulse-

media) applications.

Mulsemedia applications face numerous technical challenges such as

Latency and QoE [2], later presented in Section 5. Such challenges can be

addressed via modern technologies. This paper reviews the technologies

that enable Mulsemedia applications, the application areas as well as the

open research and challenges, with a special focus on digital scent and

devices stimulating the olfactory system.

This paper is organized as follows. The most prominent enabling technolo-

gies, namely Digital Scent and Networking technologies, are presented in

Section 2. Next, application areas of Mulsemedia are discussed in Section

3. Furthermore, the state-of-the-art digital scent technology as well as

devices that are being developed are exhibited in closer detail in Section

4. Section 5 peeks at the Open Research, including the challenges that

Mulsemedia applications bring along and whether digital scent could be

commonly used in Mulsemedia applications by 2030. Lastly, we give a

final conclusion in Section 6.

2 Enabling Technologies

Many technologies and devices are already in place in commercial VR-

applications, such as audio devices and tracking devices. Such devices

focus on audiovisual senses.

In order to stimulate additional senses, additional technologies are needed.

We will first talk about Networking technologies, as they become relevant

in Mulsemedia applications in order to address latency and communica-

tion challenges. Afterwards, we will discuss scent technologies. More

research is required on some missing enabling technologies, such as the

synchronization of multiple senses [2].

ii

2.1 Networking

In order to provide a great user experience for Mulsemedia applications, it

is crucial to minimize the latency so that the virtual world’s interactions

feel smooth. To achieve an immersive user experience, a latency of at most

20 ms is needed, to provide the feeling of being in a different location

[4]. For other applications, such as digital twins, this constraint might

be more tight. In order to approximate this goal, it is desirable to make

efficient use of fast networking technologies.

The technologies listed in the following are based on a case study of a

remote UAV, deployed for a Mulsemedia application. If it is needed to

connect to a non-stationary remote device, 5G is typically used in order to

connect to the device. Such applications are often deployed on the Edge, in

order to leverage the computation to the cloud while keeping the latency

at its minimum. Lastly, the use of modern protocols, such as WebRTC

and QUIC help minimize the latency for video streaming and sending

commands from the local user to the remote machine. [5].

While video streaming mainly requires high-throughput, another chal-

lenge is to synchronize all incoming sense streams [6]. The transmission

of smells does not require high throughput, as little data about the scent

has to be transferred. We didn’t furhter look into existing protocols and

formats for transferring scnent, however, research on the topic has been

conducted [7].

2.2 Scent

In the following, the technologies related to digital scent are addressed.

Broadly speaking, digital scent can be split into scent recognition and

scent synthesis. Recognition works through electrochemical sensors and

classifying detected scents based on an existing data set, oftentimes in

combination with machine learning. [8]. Devices for both categories for

both chemical [9] and electrical stimulation [10] have been developed al-

ready.

Digital scent is synthesized through chemistry or electrical stimulation.

When producing a scent through chemistry, cartridges are used, typically

to release molecules, which evaporate in the air and create a certain smell.

However, using up and refilling the cartridges can be quite costly. On top

of that, the produced scents are limited by the variety of cartridges [8].

In the case of electrical stimulation, studies were conducted where par-

iii

ticipants were exposed to electrical stimulation at the trigeminal nerve

and the olfactory bulb. This would lead to a sensation of smell. Using

electrical stimulation, participants weren’t able to reliably feel a smell

and the electricity would sometimes lead to pain [8]. However, research

on finding more innovative scent synthesis technologies using electrical

signals is conducted [10].

Scent will be the main focus of this paper, and existing scent devices will

be discussed more thoroughly in Section 4.

3 Application areas

Mulsemedia serves a lot of different use cases. Following the theme of this

paper, we will focus on the applications which especially make use of the

olfactory sense. The application areas that we will focus on are on Health

and well-being and on the Industry.

There exist other use cases, where scent can be used, but where a differ-

ent sense has a greater impact on the application.

For instance, mulsemedia enables the healthcare industry to perform

surgeries remotely, by communicating Haptics [2]. While scent could be

used to communicate some data between the patient and the practitioner,

it’s by far not as relevant as the communication of haptics.

3.1 Health and well-being

Mulsemedia can be used to improve someone’s health and well-being. By

analysing the scent and air quality inside someone’s home, a remote prac-

titioner can make a diagnosis of certain medical conditions [8].

Since our olfactory system is linked to our emotions and memories, the

use of digital scents can have an impact on our well-being. Certain scents

can be used in order to create a relaxing environment. This holds for

scents that users associate with positive memories, as well as scents that

are relaxing, such as lavender or the smell of grass. This is especially

useful for moments in which a person faces anxiety. In combination with

digital scent, immersing oneself in a mulsemedia application of a walk in

nature can be utilized to reduce anxiety and stress [2].

iv

3.2 Industry

Tourism mulsemedia applications greatly benefit from enhancing the user

experience using mulsemedia. [8]. A common strategy would be to use

scents in virtual tours. Our olfactory system is linked to our memories,

and therefore smelling scents that are associated with different locations

can evoke an immersive feeling. As an example, woody smells could be

used at historical buildings, incense and myrrh could be used inside reli-

gious buildings and marine, citrusy and aquatic smells could be used for

beach resorts.

The same goes for art and entertainment. Digital art content can make

use of scent as an additional sense, to portray the piece of art differently.

Video games and movies can augment the perception as well. Similarly

to the tourism industry, scents can be attached to different scenes and

locations, to augment the experience.

Another branch benefiting from digital scent is marketing [8]. Likeable

and fitting smells can be attached to a brand in order to influence cus-

tomer behaviour unconsciously.

3.3 Food

Furthermore, scent cannot only be used to evoke more realistic experi-

ences, but also to simulate the taste of food [11]. The applications de-

scribed in the paper range from online taste sampling, research and po-

tentially reducing obesity such as by fighting flavour addiction using dig-

ital taste, without the user needing to eat.

4 Scent devices

In this section, we’ll talk about scent devices developed as commercial

and scientific devices. Our focus will be on scent-producing devices, rather

than scent-recognising devices, because scent-producing devices have more

use cases in Mulsemedia applications, than scent-recognising devices and

because the focus of mulsemedia research has been on scent production

devices [21]. Additionally, based on our findings, within the mulseme-

dia sector, companies have developed more scent-producing devices than

scent-recognising devices.

The devices were found on our own through search engines and through

v

Table 1. Overview of scent production devices

Ref Name Type Format Platform Use Cases
Cart-

ridges

Commercial devices

[12] OVR C WRBL
Unity,

Unreal

WELL,

ENT
1

[13] Olorama C DESK

Unity,

Unreal,

API

ENT 10-12

[14] Aromajoin C DESK
Unity,

SDKs
MAR 6

[15] Inhalio C DESK SDKs
WELL,

MAR
4

[16] ScentRealm C DIFF App
WELL,

ENT
12

Research Devices

[17] OSpace C DESK Arduino WELL 6

[9] inScent C WRBL FRA WELL 8

[18] Essence C WRBL API WELL 1

[19] BioEssence C WRBL API WELL 3

[20]
Season

Traveller
C WRBL

BLE

Nano
ENT 4

[10] Nose pin E WRBL - ENH -
Includes: Name (Either the company name, or the device name, or a conceptual
name if neither exist), Type (C=Chemical, E=Electrical), Format (WRBL=Wearable,
DESK=Desktop, DIFF=Diffuser), Platforms Disclosed (Unity, Unreal Engine, API for Pro-
gramming language, SDK for programming language, App, Arduino, FRA=Framework,
BLE Nano), Use Cases (WELL=Wellbeing, ENT=Entertainment, MAR=Marketing,
ENH=Enhancement of Smell), Number of Cartridges

vi

literature surveys [22, 23, 24]. We did not include all devices, as some

of them were outdated or not unique enough, compared to other devices.

Some of the devices, listed in [24], were not necessarily intended for Mulse-

media.

All the commercial scent production devices that we looked at produce

scent chemically and not electronically. A possible reason for this, is that

research has focused much more on chemical production, rather than the

electrical stimulation of the nose.

For an overview of the described devices, please look at Table 1.

4.1 Commercial Devices

The listed devices have their own unique features. The devices that OVR

develops combine different aromas from a single scent cartridge, to create

thousands of scents [12]. Olorama, Inhalio and ScentRealm all focus on a

wide array of use cases and have separate devices available [13, 15, 16].

Aromajoin supports a change of scents within 0.1 seconds, and it supports

blending scents granularly [14].

4.2 Research Devices

After OSpace was presented, it was reused in other studies [17]. In the

cited study, scents were released, to notify the driver about car-related

information.

inScent, Essence and Bioessence are wearable necklaces. With inScent,

mobile notifications could be paired with a scent [9]. For example, if

the user received messages from important contacts, or calendar notifica-

tions, different scents could be released. Essence and its modified version,

Bioessence rely on contextual and biometric data, to release scent in order

to improve wellbeing [18, 19].

The Season Traveller is a VR application, in which the user goes on a

journey through four seasons. On its journey, the olfactory, as well as

haptic senses are stimulated, in order to create a more realistic user ex-

perience.

Finally, the nose pin is a device developed to enhance the smell of gas

and thus locate gas leaks [10]. While the application itself is not related

to Mulsemedia, the device showed an improvement compared to previous

devices using electrical stimulation, as the device would work reliably and

not cause pain [8].

vii

5 Discussion

In the following, we will look at the challenges that research is facing, and

we will consider whether scent can become a key component by 2030, the

announcing date of 6G. We will also look at the negative aspects of digital

scent and take them into account in the discussion.

In terms of networking, mulsemedia applications face some challenges.

When it comes to scent, low latency is arguably one of the most important

components. Given that 6G networks aim to provide latencies of 1ms or

less, this requirement would be satisfied. [25]

Another aspect regarding quality of experience is to synchronize the

streams of senses, which requires more research.

High throughput is not required for scent-intensive applications, but

rather for applications which are heavy on video transmission, such as

holographic communication.

Overall, the opportunities that digital scent brings in Mulsemedia ap-

plications are great, as laid out in Section 3. The scent devices themselves

are capable enough already, to be used in mulsemedia applications.

Although there still exist some challenges, regarding Quality of Expe-

rience and networking, it doesn’t seem unrealistic that those challenges

will be solved by 2030.

A potential problem with distributing digital scent to consumers is the

cost of digital scent. Olorama’s Scented VR Pack that comes with a device

and 10 scents retails for C2,449 [13]. A more affordable alternative is to

build a scent device on its own. However, it is questionable, whether the

average consumer would be willing to invest the time into this process.

Moreover, based on our findings, it is unknown what the user retention

is, that is how long the users keep using a scent device. Users might stop

being interested in using scent devices for various reasons. Scent may

cause headaches for some subjects. Finally, when using chemically pro-

duced scents, which is the current norm of the industry, the scent needs

to be restocked, which increases the price point.

6 Conclusion

As presented in this literature review, digital scent has gained a lot of

attention in research and in the industry. Due to its large amount of ap-

viii

plications, some companies also decided to develop digital scent devices.

Based on our discussion, the technology behind digital scent is likely to be

mature enough to be widely used in multimedia applications by 2030, the

announcing date of 6G. On the other hand, it’s hard to predict how many

users of mulsemedia applications would acquire scent devices and regu-

larly restock cartridges. Further research is required for some challenges

presented earlier, such as the synchronization of scents.

References

[1] “Internet of touch - Future technologies,” https://www.ericsson.com/en/6g/internet-
of-senses. [Online]. Available: https://www.ericsson.com/en/6g/internet-of-
senses (Accessed 2023-01-21).

[2] T. H. Falk, L. B. Le, and R. Morandotti, “The Internet of Senses: A Position
Paper on the Challenges and Opportunities of Multisensory Immersive
Experiences for the Metaverse,” in 2022 IEEE International Conference
on Metrology for Extended Reality, Artificial Intelligence and Neural
Engineering (MetroXRAINE). Rome, Italy: IEEE, Oct. 2022, pp. 139–
144. [Online]. Available: https://ieeexplore.ieee.org/document/9967586/
(Accessed 2023-01-20).

[3] B. De Jesus Jr, M. Lopes, M.-A. Moinnereau, R. A. Gougeh, O. M. Rosanne,
W. Schubert, A. A. Oliveira, and T. H. Falk, “Quantifying Multisensory Im-
mersive Experiences using Wearables: Is (Stimulating) More (Senses) Al-
ways Merrier?” in Proceedings of the 2nd Workshop on Multisensory Experiences-
SensoryX’22. SBC, 2022.

[4] R. Vargic, M. Medvecký, J. Londák, and P. Podhradský, “Advanced Interac-
tive Multimedia Delivery in 5G Networks,” in Interactive Mobile Communi-
cation Technologies and Learning, ser. Advances in Intelligent Systems and
Computing, M. E. Auer and T. Tsiatsos, Eds. Cham: Springer International
Publishing, 2018, pp. 421–430.

[5] T. Taleb, N. Sehad, Z. Nadir, and J. Song, “VR-based Immersive Service
Management in B5G Mobile Systems: A UAV Command and Control Use
Case,” IEEE Internet of Things Journal, pp. 1–1, 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9951155/ (Accessed 2023-01-20).

[6] R. Joda, M. Elsayed, H. Abou-zeid, R. Atawia, A. B. Sediq, G. Boudreau,
M. Erol-Kantarci, and L. Hanzo, “The Internet of Senses: Building on Se-
mantic Communications and Edge Intelligence,” IEEE Network, pp. 1–9,
2022, conference Name: IEEE Network.

[7] P. Isokoski, K. Salminen, P. Müller, J. Rantala, V. Nieminen, M. Kar-
jalainen, J. Väliaho, A. Kontunen, M. Savia, J. Leivo, A. Telembeci,
J. Lekkala, P. Kallio, and V. Surakka, “Transferring scents over a commu-
nication network,” in Proceedings of the 23rd International Conference on
Academic Mindtrek, ser. AcademicMindtrek ’20. New York, NY, USA:
Association for Computing Machinery, Feb. 2020, pp. 126–133. [Online].
Available: https://doi.org/10.1145/3377290.3377301 (Accessed 2023-04-04).

ix

[8] D. Panagiotakopoulos, G. Marentakis, R. Metzitakos, I. Deliyannis, and
F. Dedes, “Digital Scent Technology: Toward the Internet of Senses
and the Metaverse,” IT Professional, vol. 24, no. 3, pp. 52–59, May
2022. [Online]. Available: https://ieeexplore.ieee.org/document/9811514/
(Accessed 2023-01-20).

[9] D. Dobbelstein, S. Herrdum, and E. Rukzio, “inScent: a wearable olfactory
display as an amplification for mobile notifications,” in Proceedings of
the 2017 ACM International Symposium on Wearable Computers. Maui
Hawaii: ACM, Sep. 2017, pp. 130–137. [Online]. Available:
https://dl.acm.org/doi/10.1145/3123021.3123035 (Accessed 2023-01-31).

[10] J. Brooks, S.-Y. Teng, J. Wen, R. Nith, J. Nishida, and P. Lopes,
“Stereo-Smell via Electrical Trigeminal Stimulation,” in Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems.
Yokohama Japan: ACM, May 2021, pp. 1–13. [Online]. Available:
https://dl.acm.org/doi/10.1145/3411764.3445300 (Accessed 2023-01-23).

[11] A. S. Duggal, R. Singh, A. Gehlot, M. Rashid, S. S. Alshamrani, and A. S.
AlGhamdi, “Digital Taste in Mulsemedia Augmented Reality: Perspective
on Developments and Challenges,” Electronics, vol. 11, no. 9, p. 1315,
Apr. 2022. [Online]. Available: https://www.mdpi.com/2079-9292/11/9/1315
(Accessed 2023-02-28).

[12] “OVR Technology,” https://ovrtechnology.com/. [Online]. Available:
https://ovrtechnology.com/ (Accessed 2023-02-13).

[13] “Olorama,” https://www.olorama.com/. [Online]. Available: https://www.olorama.com/
(Accessed 2023-02-13).

[14] “Aromajoin: Digital Scent Technology for Modern Scent Marketing, Aroma
Therapy and Olfactory Multimedia,” https://aromajoin.com. [Online].
Available: https://aromajoin.com (Accessed 2023-02-20).

[15] “Inhalio,” https://inhalio.com/. [Online]. Available: https://inhalio.com/
(Accessed 2023-02-20).

[16] “ScentRealm,” https://www.qiweiwangguo.com/. [Online]. Available:
https://www.qiweiwangguo.com/ (Accessed 2023-02-28).

[17] D. Dmitrenko, E. Maggioni, and M. Obrist, “I Smell Trouble: Using
Multiple Scents To Convey Driving-Relevant Information,” in Proceedings
of the 20th ACM International Conference on Multimodal Interaction.
Boulder CO USA: ACM, Oct. 2018, pp. 234–238. [Online]. Available:
https://dl.acm.org/doi/10.1145/3242969.3243015 (Accessed 2023-02-28).

[18] J. Amores and P. Maes, “Essence: Olfactory Interfaces for Unconscious
Influence of Mood and Cognitive Performance,” in Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems. Denver
Colorado USA: ACM, May 2017, pp. 28–34. [Online]. Available:
https://dl.acm.org/doi/10.1145/3025453.3026004 (Accessed 2023-02-20).

[19] J. Amores, J. Hernandez, A. Dementyev, X. Wang, and P. Maes,
“BioEssence: A Wearable Olfactory Display that Monitors Cardio-
respiratory Information to Support Mental Wellbeing,” in 2018 40th
Annual International Conference of the IEEE Engineering in Medicine and

x

Biology Society (EMBC). Honolulu, HI: IEEE, Jul. 2018, pp. 5131–
5134. [Online]. Available: https://ieeexplore.ieee.org/document/8513221/
(Accessed 2023-02-28).

[20] N. Ranasinghe, P. Jain, N. Thi Ngoc Tram, D. Tolley, Y. Liangkun, C. Eason
Wai Tung, C. C. Yen, E. Y.-L. Do, K. C. R. Koh, and K. Shamaiah, “A
Demonstration of Season Traveller: Multisensory Narration for Enhancing
the Virtual Reality Experience,” in Extended Abstracts of the 2018 CHI
Conference on Human Factors in Computing Systems, ser. CHI EA ’18.
New York, NY, USA: Association for Computing Machinery, Apr. 2018, pp.
1–4. [Online]. Available: http://doi.org/10.1145/3170427.3186513 (Accessed
2023-02-28).

[21] A. Covaci, L. Zou, I. Tal, G.-M. Muntean, and G. Ghinea, “Is Multimedia
Multisensorial? - A Review of Mulsemedia Systems,” ACM Computing
Surveys, vol. 51, no. 5, pp. 1–35, Sep. 2019. [Online]. Available:
https://dl.acm.org/doi/10.1145/3233774 (Accessed 2023-01-20).

[22] Y. Pan, K. Ono, J. Huang, and M. Watanabe, “A Review of Olfactory Dis-
play Devices from a Habit-Forming Perspective,” Journal of the Science of
Design, vol. 5, no. 1, pp. 1_27–1_36, 2021.

[23] E. B. Saleme, A. Covaci, G. Mesfin, C. A. S. Santos, and G. Ghinea, “Mulse-
media DIY: A Survey of Devices and a Tutorial for Building Your Own
Mulsemedia Environment,” ACM Computing Surveys, vol. 52, no. 3, pp. 1–
29, May 2020. [Online]. Available: https://dl.acm.org/doi/10.1145/3319853
(Accessed 2023-02-28).

[24] A. K. Holloman and C. S. Crawford, “Defining Scents: A Systematic
Literature Review of Olfactory-based Computing Systems,” ACM Trans-
actions on Multimedia Computing, Communications, and Applications,
vol. 18, no. 1, pp. 1–22, Jan. 2022. [Online]. Available:
https://dl.acm.org/doi/10.1145/3470975 (Accessed 2023-02-16).

[25] S. A. Abdel Hakeem, H. H. Hussein, and H. Kim, “Vision and
research directions of 6G technologies and applications,” Journal of
King Saud University - Computer and Information Sciences, vol. 34,
no. 6, pp. 2419–2442, Jun. 2022. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1319157822001033 (Accessed
2023-03-02).

xi

Algorithmic Power

Markus Kähkönen
markus.kahkonen@aalto.fi

Tutor: Antti Rannisto

Abstract

This paper investigates the concept of algorithmic power and its impact on

individuals, while also exploring various strategies for resistance against

it. The study examines academic literature on algorithmic power, high-

lighting the disconnect between research that portrays users as passive vic-

tims and research that emphasizes user agency and resistance. By analyz-

ing these two perspectives, the paper proposes a comprehensive approach

to better understand the complex dynamics of algorithmic power. Further-

more, it highlights the need for increased transparency from companies in

the context of algorithmic power. Ultimately, the paper calls for a more bal-

anced and nuanced analysis that considers both the power of algorithms

and the potential for individuals to resist or adapt to these influences.

KEYWORDS: algorithms, algorithmic power, sociology

1 Introduction

In recent years, algorithms have become an intrinsic part of our daily

lives, shaping and influencing our experiences and decisions in ways that

we often do not understand [1, 2]. The increasing influence of algorithms

has made the concept of algorithmic power a pressing concern. The term

algorithmic power refers to the control and influence that algorithms and

the companies that develop them have over individuals, society, and the

economy [1,3]. This power is derived from the ability of algorithms to pro-

cess and analyze vast amounts of data, automate decision-making pro-

cesses, and shape our experiences, beliefs and behavior [4]. Some chal-

lenges associated with algorithmic power include biased algorithms, lack

of transparency, and privacy concerns.

This paper examines the literature surrounding the concept of algorith-

mic power from two distinct perspectives. The first approach focuses

on the analysis of utilization of algorithmic power, which is examined

through the lens of critical sociology of algorithms. The second approach

addresses resistance to the use of algorithmic power and the efforts to

counteract its effects, studied within the framework of sociology of algo-

rithmic critique. The scope of this literature review is mainly limited to

peer reviewed articles and books relevant to algorithmic power and asso-

ciated concepts. Due to the field’s vast and rapidly changing nature, this

paper highlights a select few foundational sources, predominantly from

Western societies, which may not fully represent global experiences.

This paper is organized as follows: Section 2 provides an overview of

the critical sociology of algorithms, highlighting the key themes. Section

3 examines resistance to algorithmic power, exploring the strategies and

tactics that individuals and groups use to challenge or undermine the

influence of algorithms. Section 4 analyzes the main findings of the paper,

reflects on the implications of these findings, and suggests avenues for

future research in this field. Finally, section 5 draws conclusions from the

analysis and discusses the significance of algorithmic power in the future.

2 Utilization of Algorithmic Power

Algorithmic power is a relatively new type of power that has emerged from

the widespread use of digital technologies and big data. It refers to the

power that is exerted by algorithms, which are sets of rules or instructions

that are used to solve a problem or perform a task [3].

Companies are among the most prominent users of algorithmic power,

as they use algorithms as a tool to achieve their goals. Profit-oriented

companies in particular are likely to choose algorithms that maximize

their profits, rather than settling for neutral options. Thus, it is important

to analyze algorithmic power. This section analyzes the literature on the

overall power dynamics of algorithmic power, big data, and surveillance

capitalism in the context of algorithmic power.

2.1 The power of algorithms

Firstly, it is crucial to examine how algorithms can possess power. Unlike

traditional forms of power, such as economic or political power, algorith-

mic power usually functions on a subtler level [1,5]. Algorithms typically

exert power by shaping individuals’ or groups’ choices, rather than using

overt coercion or persuasion [6]. As a result, this form of power is less

noticeable to users compared to, for example, legislative power, since al-

gorithms often operate behind the scenes [7].

This does not mean that algorithms lack power, as Schwartz [1] argues

in his book that content recommendations, for instance, exert a form of

power since they can result in tangible changes in our lives. An example

he provides is that a navigation software cannot directly dictate which

route a user will take, but it significantly influences their decision-making

process. Furthermore, these decisions may also have unintended conse-

quences that are not immediately apparent. For instance, if a navigation

software consistently promotes a particular road to its users, it can lead

to increased traffic on that road, which may cause other issues.

The power of algorithms extends beyond recommendations, as individ-

uals and companies are becoming increasingly reliant on completely au-

tomated decisions made by algorithms [2,4]. This increase in automation

is advantageous for companies, as algorithms can analyze vast amounts

of data in milliseconds at a fraction of the cost instead of using humans

for the same task [7]. One major concern is that these algorithms are

not only used for trivial decisions, but can also decide who gets insurance

coverage, loans, and even job opportunities [4]. This raises significant

concerns about the implications of algorithmic power becoming too vast

and unregulated.

A key challenge in analyzing algorithmic power lies in understanding

its true impact. Olhede and Wolfe [8] suggest that public discourse tends

to swing between "unrealistic expectations" and "overblown fears," lead-

ing to significant uncertainty about the real implications of algorithmic

power. This can be attributed, in part, to science fiction films like Termi-

nator, which emphasize existential fears surrounding autonomous weapon

systems, even though such concerns may not be currently warranted [8].

As a result, the actual capabilities and limitations of algorithms might

not be clear to the average person. Furthermore, attempts to simplify al-

gorithmic capabilities often result in oversimplification, which can distort

their potential and functionality [9]. By recognizing the multifaceted na-

ture of algorithms, we can develop a more nuanced understanding of their

roles, applications, and potential impacts on various aspects of society and

human life [9].

2.2 Big data and Surveillance capitalism

One important term in relation to algorithmic power is big data. Big data

refers to the massive amount of data generated by individuals, organi-

zations, and machines that cannot be analyzed via traditional means [7,

10]. The extent to which data is collected is often not understood by in-

dividuals, since companies can effectively collect everything and use that

information to infer even minute details about a person [7,11]. The im-

mense value of big data incentivizes companies to gather as much infor-

mation as possible, often without meaningful consent or fair compensa-

tion [11]. While big data itself is not inherently a form of algorithmic

power, it serves as an essential foundation for algorithmic power to func-

tion effectively.

The rise of algorithms and availability of data in our daily lives has

given way to a new type of socio-economic structure called surveillance

capitalism [4, 12]. This structure is characterized by the collection of vast

amounts of data about individuals, which is not done for their benefit,

but rather for the benefit of large corporations[4]. As Zuboff writes in her

book "The Age of Surveillance Capitalism" [4] algorithmic power has led

to a new type of power structure that revolves around the use of data to

monitor, track, and manipulate individuals.

The model of surveillance capitalism as described by Zuboff [4] is a

really harsh depiction of algorithmic power where human experience is

used as “raw material” for behavioral data. This data is fabricated into

“prediction products” used to create behavioral futures markets, in which

surveillance capitalists trade on predictions of human behavior. Further-

more, Zuboff [4] claims that the power of surveillance capitalism is it can

shape and modify human behavior at scale, subordinating the means of

production to an increasingly complex means of behavioral modification.

She goes even as far as calling surveillance capitalism a parasitic force,

which threatens “to cost us our humanity“.

This portrayal of surveillance capitalism is rather dystopian, as it im-

plies that nothing good can come from algorithms. However, it is crucial

to recognize that Shoshana Zuboff [4] does not label algorithms as inher-

ently negative or positive. Instead, she highlights the exploitative nature

of surveillance capitalism and its associated practices, which often involve

the misuse of algorithmic power.

While surveillance capitalism’s abuses of algorithmic power are concern-

ing, algorithms can also be harnessed for positive outcomes, such as im-

proving healthcare, education, and environmental sustainability [8, 10].

Furthermore, it’s essential to acknowledge that algorithms are the only

realistic method for analyzing vast data amounts, making research into

them important [10]. Thus, it is crucial to carefully consider the ethical

implications of algorithmic decision-making and ensure that they align

with human values and rights.

2.3 Ethical considerations of Algorithmic power

Algorithmic power raises several ethical considerations that need to be

addressed [13]. A major concern is the potential for discrimination and

bias in algorithmic decision-making, as algorithms are only as objective

as the data they are trained on [13]. If the data contains biases, these

biases will be reflected in the decisions made by the algorithm. Moreover,

models can become outdated or flawed over time. For example, if an al-

gorithm is trained on historical data that reflects biased hiring practices,

the algorithm may continue to perpetuate these biases by favoring certain

groups of people over others [13].

Cathy O’Neil [13] in her book, as an example, relates problems of bad

data in algorithmic power to racism. She argues that racism, at an indi-

vidual level, can be seen as a predictive model operating in the minds of

billions of people around the world. This model is built from faulty, in-

complete, or generalized data that indicates certain types of people have

behaved badly, leading to the binary prediction that all people of that race

will behave in the same way. Racists rarely spend time searching for reli-

able data to train their models, and once their model becomes a belief, it is

hardwired and generates poisonous assumptions. While O’Neil’s example

is not inaccurate, it shares similarities with Zuboff ’s portrayal of Surveil-

lance capitalism, in that it lacks nuance and presents a predominantly

negative perspective.

2.4 Algorithmic accountability

As reliance on automated decision-making grows for critical aspects of hu-

man life, such as employment and prison sentencing, biases in algorith-

mic power have become a pressing concern [1]. The use of algorithms in

these contexts raises questions about accountability, as it is often difficult

to determine who is responsible for the outcomes of algorithmic decisions

[3]. This issue becomes even more significant when considering the fact

that algorithms are susceptible to errors [3]. Consequently, addressing

the matter of algorithmic accountability and determining who should be

held responsible for decisions made by automated systems is crucial [3].

Diakopoulos [3] argues that algorithms should be viewed as "objects of

human creation". As such, algorithmic accountability should take into

account the human influences embedded in algorithms, including crite-

ria choices, training data, semantics, and interpretation [3]. Addition-

ally, the intentions of any group or institutional processes that may have

influenced the algorithm’s design and the agency of human actors in in-

terpreting the output of algorithms must be considered when evaluating

algorithmic accountability [3]. However, this approach can become prob-

lematic when attempting to pinpoint exactly who to blame for a mistake

made by an algorithm, as bad data might be considered a mitigating fac-

tor. This challenge is akin to determining fault when a company’s em-

ployee makes a mistake, since it can be difficult to discern whether re-

sponsibility lies solely with the individual or if the company should also

be held accountable as well.

3 Resistance to algorithmic power

The analysis of algorithmic power often neglects the role of user agency,

as the prevailing narrative tends to emphasize the negative impacts of

algorithms on individuals [5]. However, it is essential to recognize that

there are many forms of resistance to algorithmic power. These can range

from individual actions, such as modifying privacy settings, data collec-

tion settings or disregarding recommendations, to collective efforts, such

as advocating for algorithmic transparency and accountability.

The availability and use of data is a crucial aspect of algorithmic power,

particularly in the context of big data [14]. The accuracy of algorithmic

predictions heavily relies on the quality and quantity of accessible data

[14]. Without relevant data, algorithms cannot effectively perform their

intended functions. Consequently, the power of algorithms is intrinsically

connected to the availability and application of data. As a result, an effec-

tive method of resisting this power is by limiting data availability.

This section explores diverse strategies for resisting algorithmic power,

including transparency in algorithmic systems, legislative restrictions such

as GDPR, and individual-level tactics like selective information sharing

and using ad blockers. By examining these methods, we can empower

users, promote equitable and accountable algorithmic systems, and miti-

gate the negative consequences of algorithmic power on society.

3.1 Transparency

Achieving transparency is a key concept in resisting algorithmic power

as it involves making information about AI systems and their decision-

making processes accessible and understandable to individuals [3]. How-

ever, achieving transparency is not as easy for algorithms as it is for other

forms of power, such as political power. The hidden motives of politi-

cians can be analyzed by looking at who paid them, but algorithms are

often hidden behind layers of technical complexity, making it difficult for

individuals to understand how they work and the decisions they make

[3]. Thus, it is important to define how to achieve transparency, as large

algorithmic systems like neural networks are not human-readable, and

the data collected is immense [3]. Furthermore, there is the question of

whether companies should disclose their trade secrets.

Diakopoulos [3] emphasizes the importance of striking a balance be-

tween disclosure and secrecy when it comes to algorithmic systems. Re-

quiring companies to disclose their entire source code, for example, would

give away all of their trade secrets. Furthermore, creating a standard for

what should be disclosed will be challenging since different companies col-

lect and use data in completely different ways. Therefore, it is necessary

to carefully consider what information should be made public and what

can remain proprietary to ensure a fair and transparent system.

3.2 Legislative Restrictions

Legislative restrictions are another form of resisting algorithmic power.

Governments worldwide have recognized its potential negative consequences

and enacted laws to mitigate them [14]. These primarily focused on man-

aging data acquisition and usage [14]. One of the most prevalent legisla-

tive restrictions has been the European Union’s General Data Protection

Regulation (GDPR), which aims to protect individuals’ personal data and

regulate how it is collected, processed and stored by companies [15].

The GDPR provides individuals with greater control over their personal

data, including the right to access, correct, and erase it [15]. It also re-

quires companies to obtain explicit consent from individuals before col-

lecting and processing their data [15]. However, merely granting indi-

viduals control over their data may not necessarily diminish algorith-

mic power, as many users might consent to data collection without much

consideration. Additionally, consent forms, such as end-user licensing

agreements (EULAs), can be one-sided, non-negotiated, and presented in

lengthy, dense legal language, making it difficult for users to be fully in-

formed of the terms and conditions they are agreeing to [11]. However,

GDPR seeks to mitigate this issue by implementing a series of require-

ments that promote transparency and enhance user understanding.

While legislative restrictions can be effective in mitigating the nega-

tive consequences of algorithmic power, there are also challenges associ-

ated with their implementation. For example, there may be difficulties in

enforcing laws across different countries with varying legal systems and

cultural norms. Additionally, it is arguable that strict regulations may

reduce innovation and hinder technological progress [3]. Another limita-

tion of legislative restrictions is that they can be slow to adapt to rapidly

changing technological advancements, which may require immediate re-

sponses. However, overarching legislative changes are crucial in combat-

ing algorithmic power, as changes at the European Union(EU) level are

likely to have a significant impact on companies operating outside of the

EU. This is because companies operating outside of the EU might find it

challenging to maintain two different systems.

Overall, legislative restrictions can be an effective way to empower users

to control their personal data and ensure that sensitive information, such

as health and personal information, is protected from being sold or mis-

used [15]. In this regard, legislative restrictions are crucial for safeguard-

ing individuals’ privacy and rights.

3.3 Individual-Level Resistancel

Although legislative measures have expanded users’ control over their

data, there are additional strategies for resisting algorithmic power at

the individual level. One such approach involves selectively sharing infor-

mation with algorithms, providing only necessary data while withholding

or falsifying other details [5]. In recent times, the use of virtual private

networks has increased, making it increasingly challenging to obtain ac-

curate location data. This effect can also extend to other users, since if a

noticeable proportion of users falsifies their data, the overall dataset be-

comes less trustworthy since algorithms cannot distinguish between au-

thentic and fake information. Users can also limit the data they generate

by adjusting their online activity or declining data collection entirely. By

employing these tactics, individuals can undermine the accuracy and ef-

fectiveness of algorithms, reducing their power over personal information.

A powerful tool for individuals to resist algorithmic power is the use of

ad blockers. This method is significant as it effectively neutralizes one

of the most prevalent forms of algorithmic power meaning manipulation

through targeted advertising [4]. This is also important for resisting the

power of larger tech companies such as Google and Meta as advertisement

constitutes a large portion of their income [1].

4 Analysis

After reviewing the literature in this paper, it is evident that there is a

disconnect between some academic writing and the reality of algorithmic

power. While some academic works (e.g. [4], and [13]) depict algorithmic

power as something exerted over unsuspecting victims who are unaware

of its influence, writing from the perspective of resistance (e.g., [5] and

[15]) highlights ways in which individuals can resist and undermine its

power, demonstrating that users are not merely passive victims. More-

over, in academia, the focus on individual users’ resistance to algorithmic

power seems to be less prevalent, potentially contributing to the discon-

nect in perspectives within the literature.

For example, academic works focusing on the negative aspects of algo-

rithmic power might discuss how algorithms can be used to manipulate

user behavior and exploit personal information, often portraying users

as helpless in the face of these forces. On the other hand, research on

resistance to algorithmic power showcases the agency and resilience of

users and governments, revealing their ability to selectively share infor-

mation, alter their online behavior, and employ other tactics to counteract

algorithmic power. This contrast between passive victimhood and active

resistance highlights the discrepancy found within the literature.

By combining the approaches discussed in this paper, a more compre-

hensive understanding of algorithmic power can be achieved. For exam-

ple, a study could investigate a company’s use of algorithms for data anal-

ysis and the resulting conclusions. It could also examine the impact of

user resistance, such as selective information sharing or behavior modifi-

cation, on algorithmic outcomes. This research would deepen our under-

standing of algorithmic power dynamics and potential resistance. How-

ever, effectiveness of such analysis would require a greater transparency

from companies, as black box testing alone would be challenging due to

limited access to what data is tracked.

One aspect not covered in this review is the impact of artificial intel-

ligence on algorithmic power, which has received limited academic re-

search. This is partly due to the capabilities of AI-generated content not

being fully realized until the emergence of large language models like

ChatGPT, which can generate text closely resembling human language,

blurring the line between human-generated and AI-generated content.

Given this development, it is crucial to demand greater transparency from

companies regarding how they utilize this technology.

5 Conclusions

This paper analyzed the complex dynamics of algorithmic power, its po-

tential negative consequences and resistance to it. A key finding is that

combining perspectives from usage of algorithmic power and resistance to

it can lead to a more comprehensive understanding of algorithmic power.

However, the effectiveness of resistance to algorithmic power is often con-

tingent on greater transparency from companies utilizing algorithms.

The growing impact of artificial intelligence on algorithmic power, espe-

cially through large language models like ChatGPT, underlines the impor-

tance of transparency in AI-generated content. Future research should fo-

cus on deepening our understanding of algorithmic power dynamics and

exploring AI’s role in this context. Regulatory bodies, such as the EU,

should consider requiring companies to disclose when content is gener-

ated by AI models to maintain accountability and protect users from po-

tential manipulation.

6 References

[1] O. Schwarz, "Sociological Theory for Digital Society: The Codes That

Bind Us Together" Cambridge, Polity, 2021, pp. 114-160. ISBN 978-

1509542970

[2] D. Beer, "The social power of algorithms," Inf. Commun. Soc., vol.

20, no. 1, pp. 1-13, 2017, doi: 10.1080/1369118X.2016.1216147.

[3] N. Diakopoulos, "Algorithmic Accountability," Digit. Journal., vol. 3,

no. 3, pp. 398-415, 2015, doi: 10.1080/21670811.2014.976411.

[4] S. Zuboff, The Age of Surveillance Capitalism: The Fight for a Hu-

man Future at the New Frontier of Power. New York: PublicAffairs,

2019, pp.20-200 ISBN: 9781781256855.

[5] J. Velkova and A. Kaun, "Algorithmic resistance: media practices

and the politics of repair," Inf. Commun. Soc., vol. 24, no. 4, pp.

523-540, 2021, doi: 10.1080/1369118X 2019.1657162.

[6] T. Gillespie, P. J. Boczkowski, and K. A. Foot, "The Relevance of Al-

gorithms," in Media Technologies: Essays on Communication, Mate-

riality, and Society, Cambridge, MA: MIT Press, 2013, pp. 167-193.

[7] V. Mayer-Schönberger and K. Cukier, Big Data: A Revolution That

Will Transform How We Live, Work, and Think. Boston, MA: Houghton

Mifflin Harcourt, 2013.

[8] S. C. Olhede and P. J. Wolfe, "The growing ubiquity of algorithms in

society: implications, impacts and innovations," Philos. Trans. R.

Soc. A, vol. 376, no. 2128, Sep. 2018, doi: 10.1098/rsta.2017.0364.

[9] T. Bucher, If...Then: Algorithmic Power and Politics, New York: Ox-

ford University Press, 2018, doi: 10.1093/oso/9780190493028.001.0001.

[10] Y. Wang, L. Kung, and T. A. Byrd, "Big data analytics: Understand-

ing its capabilities and potential benefits for healthcare organiza-

tions," Technol. Forecast. Soc. Change, vol. 126, pp. 3-13, Jan.

2018.

[11] J. Sadowski, "When data is capital: Datafication, accumulation, and

extraction," Big Data Soc., vol. 6, no. 1, 2019, doi: 10.1177/2053951718820549.

[12] S. Zuboff, "Big other: Surveillance Capitalism and the Prospects of

an Information Civilization," J. Inf. Technol., vol. 30, no. 1, pp.

75-89, 2015, doi: 10.1057/jit.2015.5

[13] C. O’Neil, Weapons of Math Destruction: How Big Data Increases

Inequality and Threatens Democracy, New York: Crown, 2016, ISBN:

978-0553418811

[14] S. Barocas and A. D. Selbst, "Big data’s disparate impact," Calif. Law

Rev., vol. 104, pp. 671-732, 2016.

[15] European Commission, "General Data Protection Regulation (GDPR),"

2018. [Online]. Available: https://ec.europa.eu/info/law/law-topic/data-

protectionen.

Secret Management in Infrastructure as
Code

Meri Lemponen
meri.lemponen@aalto.fi

Tutor: Jose Luis Martin Navarro

Abstract

This seminar paper explores the issues and challenges related to secret

management in infrastructure as code (IaC) practices. IaC is a software

development practice that configures system dependencies and provisions

remote and local instances. The paper analyzes the common issues and

practices found in the grey literature, discussing and analyzing two main

state-of-the-art resources in this area. The aim of the paper is to provide

a good overview of the topic and identify possible gaps in the two main

sources. The paper concludes that it is essential to develop common prac-

tices and spread awareness of the secret management issues in IaC for

practitioners to improve the quality of IaC scripts and ensure overall im-

plementation safety.

KEYWORDS: Secret Management, Infrastructure as Code

1 Introduction

Infrastructure as code (IaC) is a practice in software development that

automatically configures system dependencies and provisions remote and

local instances [1]. One of the main benefits of using IaC practices is

the increased deployment frequency which saves a significant amount of

time in software production. Despite the growing interest in IaC among

both the practitioners and the researchers, the state of research regarding

secret management in IaC has a lot of room for improvement in the future.

The lack of research on security and secret management in IaC is alarm-

ing since the lack of secure practices in IaC can cause significant conse-

quences [1]. One of the biggest issues in secret management in IaC is

that IaC scripts are vulnerable by nature to include secrets e.g., hard-

coded passwords, usernames, and private cryptographic keys [2]. There-

fore, it is vital to develop common practices and spread awareness of the

secret management issues of IaC for practitioners so that the quality of

IaC scripts will increase and the overall implementation of IaC will be-

come safer.

This seminar paper discusses issues and challenges regarding secret

management in IaC. The aim of this seminar paper is to analyze the com-

mon issues and practices found in the grey literature. The seminar paper

discusses and analyzes two main state-of-the-art resources in this area

and the aim of this paper is to provide a good overview of the topic and

identify possible gaps in the two main sources.

This paper is organized into 5 sections. Section 2 will provide the back-

ground information for understanding the discussion in the later sections.

Section 3 discusses the issues and common practices of secret manage-

ment in IaC. Section 4 will discuss the gaps and challenges found in the

literature. Lastly, section 5 will provide a summary of the main findings.

2 Background

The two main topics in this paper are secret management and infras-

tructure as code. This section defines both of the topics and provides the

background that is needed for following the deeper discussion.

2.1 Secret Management

Most common secrets during software development are related to authen-

tication and they can be passwords, credentials, and keys [3]. In some

cases, secrets can be considered as key-value pairs that contain secret

information and the key-value pair can be used to authenticate or au-

thorize access to services or APIs, e.g., databases and cloud services [4].

The unique key in a key-value pair is used to identify an item in a data

structure and the value is the data associated with the key. To keep the

secret safe, the key-value pair must be stored in a secure location and the

transition of the key-value must be protected.

Secret management is the management of multiple secrets, which might

be used in multiple projects in software development [4]. Secret manage-

ment stores the secrets safely and ensures that the transit of the secret is

protected. The creation, rotation, and revocation of secrets are also man-

aged by a secret management system. The same secrets might be needed

in different projects and phases in the software development cycle and

therefore secret management also aims to make the secrets available in

all phases of the cycle.

2.2 Infrastructure as Code

Infrastructure as code manages and provisions the infrastructure for com-

puting environment and the configuration of the source code [2]. One of

the main benefits of IaC is that it automates the process of provisioning

large infrastructure at scale. IaC uses dedicated programming languages,

such as Terraform [5], Puppet [6], Chef [7], and Ansible [8], to implement

the IaC system.

The biggest challenge for IT organizations to use IaC in their systems

is that IaC scripts contain secrets, such as hard-coded passwords and pri-

vate SSH keys [2]. It has been found that over 9000 hard-coded passwords

have been found in a collection of over 60 000 Open Source Software (OSS)

IaC scripts [9], which means that secret management in the OSS domain

for IaC scripts is predominant. The existence of secrets in Open Source

Software IaC scripts is harmful to the security of the computing infras-

tructures and, therefore the integration of proper secret management is

important in infrastructure as code development [2]. However, the lack of

crucial practices related to secret management for IaC makes it hard to

implement secure secret management integration into IaC systems.

Although secret management tools like Ansible Vault, Chef Vault, and

Hiera exist for storing secrets in IaC scripts, there is a lack of standard

secret management practices in the field of IaC which can limit the effec-

tive use of the secret management tools [2]. Thus, it is crucial to establish

a comprehensive set of best practices for secret management in IaC. This

can help practitioners better understand how to leverage secret manage-

ment tools and implement secure IaC scripts.

3 Secret Management in Infrastructure as Code

There are many issues relating to secret management in IaC because not

only that the IaC scripts store secrets but the management of creation,

storage, rotation, and revocation of the secrets is also difficult. As a result,

there is a pressing need for effective secret management practices that

can enable secure deployment of IaC scripts.

3.1 Security Threats in Secret Management in Infrastructure as
Code

This subsection will identify 4 security smells in IaC scripts that are re-

lated to secret management in IaC. A security smell is a recurring coding

pattern that is an indication of a security weakness that can potentially

lead to a security breach [10].

Empty Password

The first security smell refers to a situation where an empty string is used

as a password. An empty password is different from using no password

at all since ‘Empty Password’ occurs when an empty string is assigned to

an attribute or variable that is related to passwords. An empty password

is not considered a hard-coded secret since the value must be a string of

length of one or more to be considered a hard-coded secret [10].

Hard-Coded Secret

Hard-coded secrets reveal sensitive or secret information and the three

most common types of hard-coded secrets in IaC scripts are usernames,

passwords, and private cryptographic keys [9].

Use of HTTP Without TLS

This smell is about using the HTTP protocol without using Transport

Layer Security (TLS). TLS provides protection against various attacks,

such as man-in-the-middle attacks, and is therefore essential for main-

taining a secure system [10].

Use of Weak Cryptography Algorithms

Using weak cryptographic algorithms to encrypt sensitive information

can pose a security threat as they are vulnerable to attacks like the colli-

sion attack [10].

3.2 Recommended practices for Secret Management in
Infrastructure as Code

This subsection will present and discuss the recommended practices for

addressing the four security smells related to secret management in IaC.

Hard-Coded Secret

One of the main concerns in secret management for IaC is the creation,

rotation, and revocation of hard-coded secrets. To address this issue, se-

cret management tools like Ansible Vault, Hashicorp Vault, and Hiera

are commonly recommended [2]. It is important for developers to have

knowledge on how to effectively implement the security features offered

by these tools. Each tool also has its own set of recommended best prac-

tices for configuring them in a safe and efficient manner.

Ansible Vault is a secret management tool that can be used for password

management in IaC scripts [2]. Ansible Vault one can encrypt variables

and files with a password which will create a file called ’vault’ and there-

fore the IaC script does not include secrets anymore as plaintext. The

first recommended practice for Ansible Vault is that the vault files must

not be committed to a version control system (VCS) and therefore it is

recommended to implement a system that will notify the developer if a

vault file is being committed to a VCS. Ansible Vault also has command

line utilities that help the programmers to provide the Ansible Vault pass-

words for the vault file, otherwise the password needs to be given as a file.

By using the command line tool there are no risks that the file containing

the Ansible Vault password will end up in a VCS.

Hashicorp Vault is a tool that uses encrypts and decrypts data with an

encryption key [2]. The process of decrypting data is called unsealing

in Hashicorp Vault and there are two practices that are recommended

to use in order to accomplish appropriate unsealing. Hashicorp Vault

uses Shamir’s Secret Sharing principle for unsealing, which means that

the master key is split into multiple pieces. The developer needs to pro-

vide the pieces manually, which is an error-prone and lengthy process,

and therefore it is advised to use the ’autoseal’ tool that is provided by

Hashicorp Vault. The ’autoseal’ automates the process of providing the

information needed to unseal the data. It is also recommended to use

multiple vault servers so that the unsealing process is not susceptible to

the single point of failure.

Hiera is a secret management tool that can be used to manage secrets in

Puppet scripts [2]. However, the downside of using Hiera is that it affects

the readability of Puppet scripts and therefore it is recommended to place

secret data at the appropriate hierarchy: the secrets that are used in a

few Puppet scripts should be at the top of the hierarchy, and secrets that

are used in many Puppet scripts should be at the bottom of the hierarchy.

There are also recommended practices for managing the secret man-

agement tools that manage hard-coded secrets [2]. Adequate directory

structure and dedicated naming conventions are important for the main-

tainability and readability of managing secrets with the secret manage-

ment tools. By applying access control policies the developers can restrict

access to storing and reading secrets. Excessive encryption can lead to

maintainability issues and therefore it is recommended to prioritize the

secrets that need to be encrypted instead of encrypting all the data in

IaC scripts. It is also important to separate the secret management en-

vironments in a way that the separation is based on grouping the secrets

by a certain characteristic. Lastly, limiting the authentication attempts

for logging into the secret management tools and decreasing the authen-

tication duration minimizes the impact of unauthenticated access to the

hard-coded secrets.

Empty Password

The use of an empty password is related to secret creation. Empty pass-

words are strongly advised against and strong passwords should be used

instead [10]. In addition, the passwords need to be rotated to gain more

security against unauthorized users [2]. Password rotation helps to mini-

mize the exposure if a password is leaked or reused.

Use of HTTP Without TLS

The use of HTTP without TLS is related to managing certificates in secret

management. The transit of the data between the IaC compiler and the

secret management tool should be secured in end-to-end encryption [2]. It

is recommended to use HTTP with TLS [2], and some tool vendors offer

resources that help developers to set up HTTP with TLS [10].

Use of Weak Cryptographic Algorithms

The use of weak cryptographic algorithms is related to the secret creation

in secret management. To address this problem, developers can refer to

the list of recommended cryptographic algorithms provided by the Na-

tional Institute of Standards and Technology [11] [2].

4 Discussion

Many secret management tools discussed in this seminar paper encrypt

the data in IaC scripts with a key or a password, While this approach

effectively addresses the issue of hard-coded secrets in IaC scripts, it cre-

ates a new challenge of managing the keys and passwords required for

the secret management tools in IaC. Thus, to achieve complete manage-

ment of hard-coded secrets in IaC scripts, some practices should address

the password and key management of the secret management tools in IaC

scripts. Considering that IaC aims to automate manual-intensive tasks of

system administrators, it would be reasonable to automate the password

and key management for secret management tools at some level in IaC

scripts.

Evaluating the effectiveness of recommended best practices for man-

aging hard-coded secrets in IaC scripts can be challenging without prior

experience using the specific tools discussed in this paper. While each

tool has its own set of recommended practices, utilizing them can bring

about various management issues, such as reduced readability, complex

decryption processes, and the need to separate secret management files

from version control systems. Despite these challenges, secret manage-

ment tools effectively addresses the issue of having hard-coded secrets in

IaC scripts.

Other recommended practices related to managing secret management

tools can greatly benefit the maintainability and security of IaC scripts.

For example, namespace collision is a known issue in IaC scripts [2] [12],

and by following good folder organization practices and consistent naming

conventions code maintainability and debugging can be improved. Addi-

tionally, excessive encryption can cause maintainability issues, which is

important to be aware of when designing a secret management system for

IaC. Other recommended practices, such as access control, separation of

secret management environments, limiting authentication attempts, and

reducing authentication duration, are also beneficial practices for man-

aging the secret management tools. As tool vendors continue to develop

their products, it’s likely that they will include additional features to ad-

dress secret management issues in IaC.

The issue of having an empty password in IaC scripts can be solved with

a strong password. However, there are other secret management practices

that are considered as good practices that relate to secret creation, for

example, password rotation is a highly recommended practice for secret

management in IaC since it can minimize the exposure of secrets in case

passwords are leaked or reused in large-scale systems.

The issue of using HTTP without TLS is addressed by utilizing resources

that the tool vendors provide regarding this issue but otherwise, there

are not any other recommended practices relating to this issue. The pro-

posed best practice does not solve the issue of using HTTP without TLS

completely and therefore other practices are needed in order to achieve

end-to-end TLS to the secret transit in IaC. One possible approach is to

investigate the security functions and resources offered by tool vendors

to ensure secure secret transit before selecting a vendor for a project. It

is recommended to use end-to-end TLS in production and development

environments in IaC, although it is unclear from the two main sources

reviewed in this paper how this can be accomplished in IaC.

Using weak cryptographic algorithms in secret creation in IaC can be

avoided by employing encryption algorithms that are recommended by

the National Institute of Standards and Technology [11] or other trusted

source. Additionally, other recommended best practices discussed in the

literature that relate to secret creation and cryptographic algorithms in-

clude prioritized encryption and secure cryptographic key management

practices.

Overall, the 12 practices for secret management in IaC [2] covered the 4

security smells identified in this seminar paper, but the quality and quan-

tity were not consistent across the 4 security smells related to secret man-

agement in IaC. These 12 practices touched upon various aspects such as

access control, folder organization, and secret rotation. It is worth not-

ing that while hard-coded secrets were addressed in detail, issues such as

the use of HTTP without TLS received less attention in scientific papers,

indicating an opportunity for further research in this area. An another

opportunity for further research in this area would be the effectiveness

of the recommended practices. Lastly, this seminar paper focused on the

recommended best practices for secret management in IaC and therefore

it did not cover all of the best practices recommended for IaC in the litera-

ture. Consequently, there are other practices that can enhance the quality

and security of IaC scripts.

5 Conclusion

To conclude, this seminar paper aimed to explore the issues and chal-

lenges associated with secret management in IaC practices. Through

an analysis of the literature, this paper discussed the common practices

and issues related to secret management in IaC and reviewed two main

state-of-the-art resources in this area. The findings of this study include

the identification of four security smells related to secret management

in IaC, along with recommended best practices and tools for addressing

these issues. The paper also identified some gaps in the literature, such

as the lack of specific recommended practices for addressing the issue of

using HTTP without TLS. Overall, the 12 recommended practices for se-

cret management in IaC covered the four security smells identified in this

seminar paper. Future research could focus on further developing com-

mon practices for secret management in IaC and investigate the effec-

tiveness of the recommended practices.

References

[1] A. Rahman, R. Mahdavi-Hezaveh, and L. Williams, “A Systematic Mapping
Study of Infrastructure as Code Research,” Information and Software Tech-
nology, vol. 108, pp. 65–77, 2019.

[2] A. Rahman, F. L. Barsha, and P. Morrison, “Shhh!: 12 Practices for Secret
Management in Infrastructure as Code,” in 2021 IEEE Secure Development
Conference (SecDev), pp. 56–62, 2021.

[3] S. K. Basak, L. Neil, B. Reaves, and L. Williams, “What Are the Practices
for Secret Management in Software Artifacts?,” in 2022 IEEE Secure Devel-
opment Conference (SecDev), pp. 69–76, IEEE, 2022.

[4] M. Blomqvist, Secret Management in a Multi-Cloud Kubernetes Environ-
ment. PhD thesis, University of Turku, 2021.

[5] Terraform, “Terraform language documentation,” 2021.
https://www.terraform.io/docs/language/state/index.html.

[6] Puppet, “Puppet language documentation,” 2021. https://puppet.com/docs/.

[7] Chef, “About chef workstation,” 2021. https://docs.chef.io/workstation/.

[8] Ansible, “Ansible language documentation,” 2021. https://docs.ansible.com/.

[9] A. Rahman and L. Williams, “Different Kind of Smells: Security Smells
in Infrastructure as Code Scripts,” IEEE Security Privacy, vol. 19, no. 3,
pp. 33–41, 2021.

[10] A. Rahman, C. Parnin, and L. Williams, “The Seven Sins: Security Smells
in Infrastructure as Code Scripts,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pp. 164–175, 2019.

[11] E. Barker et al., “Guideline for using cryptographic standards in the fed-
eral government: Cryptographic mechanisms,” NIST special publication,
pp. 800–175B, 2016.

[12] I. Kumara, M. Garriga, A. U. Romeu, D. Di Nucci, F. Palomba, D. A. Tam-
burri, and W.-J. van den Heuvel, “The do’s and don’ts of infrastructure code:
A systematic gray literature review,” Information and Software Technology,
vol. 137, p. 106593, 2021.

The Biases of Algorithms

Murali Abinaov
muraliamudha.abinaov@aalto.fi

Tutor: Rannisto Antti

Abstract

This article provides a review of literature surrounding algorithmic bias,

its origins, effects and influence, and strategies for mitigating it. The main

emphasis is on assessing the social power of algorithms and the harm that

arises from bias, as well as how human-centered algorithm design can

minimize biases.

KEYWORDS: ALGORITHMIC BIAS, SOCIAL HARM, SOCIAL POWER,

ALGORITHMIC POWER

1 Introduction

Algorithms have become a highly influential aspect of modern technology.

Although not a new phenomenon, their widespread use by a plethora of

websites and social media platforms, including Amazon and YouTube, has

led to extensive research on the topic. Recent years have even brought the

role that algorithms play in the lives of people, into the public sphere of

consciousness. For example, YouTube’s video recommendation algorithm

has been the focal point of a multitude of discussions. These ranging from

the need for creators to change the format, style, or even subject matter

of content to be promoted and avoid being suppressed, to the algorithm’s

potential to guide viewers towards increasingly extremist content [3, 11].

A common concern associated with algorithms is their potential to have

biases.

Algorithms can be understood as a series of steps used to solve a mathe-

matical problem, consequently it is not inherently clear how an algorithm

could develop a bias [8]. The most prominent source of bias for an algo-

rithm originates at the intersection of big data input, and the black-boxed

internal logic of the algorithm itself [9]. Due to the sheer scale that many

of the major social media algorithms operate at, vast amounts of data

must be processed to provide the optimal solution within the capability of

the algorithm. Within this data, correlations may be found that society

collectively recognizes as morally problematic. These correlations may be

caused by poor training data with an inherent bias itself, or data that

was irrationally interpreted when taken out of context [5]. Nevertheless,

these correlations may be incorporated into the decision-making logic and

obfuscated by a lack of transparency derived from proprietary knowledge

and the complexity and scale of the systems themselves [4].

This paper reviews recent literature on the dangers of algorithmic bias

and some proposed solutions for alleviating the potential risks.

Algorithms can alter the perception of individuals and groups in soci-

ety via the intentional and unintentional promotion certain narratives.

Therefore, it is crucial to examine algorithms through a sociological frame-

work. Similarly, several prominent instances of harm resulting from al-

gorithms can be analyzed through the lens of digital zemiology and the

social harm framework, given the frequency of cited inequalities in these

cases. Finally, the integration of human elements during the design pro-

cess can significantly diminish algorithmic bias and the harm it can cause

in the resulting products.

The paper is structured as follows. Section 2 focuses on the overarching

sociological issues due to the bias seen in algorithms. Section 3 examines

the social harm framework to see how algorithmic bias detracts from soci-

ety as a whole. Section 4 details methods to mitigate its propagation and

effects. Finally, section 5 concludes the paper with a brief overview of the

points indicated throughout with some further analysis.

2 The Sociology of Algorithms and Power

David Beer, a professor of Sociology at the University of York, listed in his

paper, "The social power of algorithms", four key areas which are primary

vectors that enable algorithms to effect power on society [2]. The areas

are: questions on agency, how algorithms alter decision-making, "the pol-

itics of algorithmic sorting, ordering and prediction" which in part refers

to what information is presented and what is obscured by the algorithm,

and last the sense of trust people tend to have in algorithms due to their

perceived neutrality, objectivity, or rationality. It should be noted that the

author himself clarified that this short list is not all encompassing, rather

it represents some of the most significant factors for algorithmic social

power.

2.1 Algorithms and Agency

Algorithms are often attributed with their own type of agency as they

make decisions in situations where there is no one definitive ’correct’ an-

swer [13]. One example of such a scenario is when a news feed algorithm

acts as an editor, gate-keeping which articles are displayed to users by

determining the most relevant news. Since relevance is largely subjec-

tive, yet the non-sentient algorithm’s decision-making process still leaves

an impact on users, the agency of the algorithm is demonstrated. How-

ever, despite having their own agency, algorithms do not simply supplant

all human agency in interactions, instead they intertwine with it [2]. As-

pects of the human side appear in the creators of the algorithm and their

designs, which greatly influence the functionality and results of the algo-

rithm. Furthermore, users can assert their own agency by utilizing mul-

tiple news feeds or using the feed as a starting point to search for further

information.

2.2 Decision-making

While algorithms are entirely capable of autonomous decision-making, as

previously mentioned, they are also frequently utilized by various actors

to assist in their decision-making processes [2]. Companies often rely on

algorithms to filter resumes for job positions. Despite the fact that the

algorithm does not have the final say, it still impacts the decision-making

process and may even alter the outcome if a highly qualified candidate has

a resume that the algorithm cannot read. Institutions, organizations, and

governments all employ algorithmic input to make influential decisions,

such as for the allocation of public resources, determining which schools

receive funding, and selecting communities for reinvestment [10, 6]. An

increasing number of decisions, previously made entirely by humans, are

now recipient to algorithmic aid. This can conceal, entrench, and system-

atize possible bias in algorithms, making it near impossible to evade or

even identify its existence [2].

2.3 ’Politics’, What is Normal or Abnormal?

The ’Politics’ of algorithms are closely tied to their ability to rank and cate-

gorize information [2]. For instance, the same example that was used pre-

viously to illustrate the agency of algorithms could be employed here. Al-

ternatively, another example could be the propensity for grouping users in

like-minded digital communities that exists among some social media al-

gorithms. The act of connecting individuals to others who predominantly

share the same beliefs and values creates an echo chamber, which may

intensify people’s commitment to their convictions. A case in point is the

Facebook Myanmar crisis, where the Burmese population became increas-

ingly incensed at the Rohingya minority of the country. On Facebook, the

principal internet platform in Myanmar, the rhetoric became more and

more extreme, culminating in the outbreak of violence [14]. Algorithms

may also contribute to the perception that certain circumstances are more

abnormal than they are in actuality via censorship [12]. Search engines

provide an additional example, as they sort the numerous web pages of

the internet, rank the results, and channel traffic to sites that cater to

them best through search engine optimization.

2.4 The Power of the word, ’Algorithm’

The latter third of Beer’s article discusses the evolution of the term ’Al-

gorithm’ within the social consciousness. It has come to represent more

than its definition as a problem-solving series of steps [8], but instead as

something beyond human logic and capability - rational, efficient, precise,

and neutral [2]. The perceived objectivity of algorithms and their reduced

potential for error compared to human action lends them a certain trust,

closer to some subjective ’ideal’. This perceived superiority and reduced

infallibility when compared to the labours of man, can be used to perpet-

uate certain truths or to lend weight to an argument. Furthermore, the

idea of algorithms as objects greater than the sum of their code can lead to

the spread of algorithmic systems in and of itself, as systems are deemed

better for their incorporation, irrelevant of any actual substantive gain

[2].

3 Social Harm

Social harm, as written by the authors of, "Dynamics of social harms in

an algorithmic context", can be embedded, disseminated, and magnified

through the application of algorithms and their biases [6]. Zemiology, or

the study of social harms, provides a scientific approach to documenting

and researching the collective negative effects of an action on society, re-

gardless of intent as is key in criminology. This is a significant distinc-

tion to note, as algorithms lack intent, yet they nevertheless can severely

harm people at the macro level of structural societal pillars. The afore-

mentioned article presented three case studies which exemplify the harm

caused to economic and political pillars, as well as the degradation of trust

in institutions. These situations include the Michigan Integrated Data

Automated System (MDAS), which attempted to automate the state’s un-

employment insurance claim review process; the 2010 financial market

flash crash, which was largely caused by automated stock trading algo-

rithms; and the Cambridge Analytica (CA) scandal, in which the company

purchased user data from Facebook to target advertising for multiple ma-

jor elections worldwide [6].

3.1 Political Harm

Algorithms have the potential to increase political polarization, in addi-

tion to manipulate elections, as was the case with CA [6]. One source of

political harm was demonstrated in the previous section, as the ability of

some algorithms to define the normal and abnormal. This is done through

the silent grouping of users into echo-chambers or the misguided censor-

ing of potentially problematic content which may limit legitimate political

discourse [14, 12]. The Cambridge Analytica situation attempted to nudge

elections in order to orchestrate an outcome that was deemed materially

or culturally beneficial to the clients who hired the firm. This interference

provides external and internal actors a platform to support political tides

that may have remained minority opinions without such aid. Elections

such as Brexit or the 2016 Trump Presidential Campaign could have had

similar results regardless of the involvement of CA, but simply the fact

its interference occurred creates reverberations that eliminate trust and

spark apathy amongst the populace [6]. MDAS, likewise served as evi-

dence of the failures of government, which manufactured distrust in the

government and potentially ideological shifts to those affected.

3.2 Loss of Trust

Trust in institutions is a vital component of social cohesion in developed

countries. Without trust, social disengagement and tribalism can occur.

Algorithms can contribute to the erosion of trust when they are imple-

mented poorly into the systems that shape the lives of people. MDAS,

for instance, had a higher percentage of false positives post switching

from human-administered to automated due to an algorithmic bias, as

far more unemployment insurance claims were falsely flagged as fraudu-

lent [6]. Innocent individuals were suddenly deemed as criminals in the

eyes of the system, with limited avenues to seek human oversight to re-

solve the error. The 2010 flash crash similarly reduced trust in the stock

market due to the constant fluctuations and sudden shifts caused by al-

gorithms trading with each other, resulting in a greater complexity and

risk of financial losses for human investors. The CA situation can also be

used to highlight this narrative. Election interference erodes trust in the

outcomes of elections and increases tribalism, as supporters of opposite

sides of an issue can proclaim the other side has been influenced by an

outside party to disregard their arguments, while feeling as if the system

is unfairly rigged against them.

3.3 Economic Harm

Algorithms possess tremendous potential to transform various segments

of the economy; however, they also have the capacity to inflict financial

losses upon both individuals and society at large [6]. The flash market

crash of 2010 serves as a poignant illustration of this phenomenon, as the

instability caused by algorithms resulted in the savings of numerous indi-

viduals being wiped out. In another instance, the MDAS system created

significant but temporary savings for the state of Michigan by wrongly ac-

cusing unemployment insurance claimants of fraud, leading to devastat-

ing consequences for the affected individuals such as bankruptcy, rental

agreement rejections, homelessness, and seizure of income by the state to

recover non-existent debts [6]. In the long-term, whatever savings were

achieved for the state by these false positives was negated several times

over by the subsequent lawsuits.

4 Human-centered Algorithm Design

Human-centered algorithm design (HCAD) refers to the integration of so-

cial science techniques into the development of algorithms [1]. Concrete

examples of HCAD include the utilization of multidisciplinary teams and

the increased involvement of potential users during development [1]. The

inclusion of experts from diverse fields among the developers can help

mitigate the risk of unintended problems arising from the algorithm due

to the wider outlook on potential consequences. Nonetheless, it may be

exceedingly difficult for a team to identify all sources of bias or create

safeguards against all possible misuse, as people will interact with an al-

gorithm in ways never conceived of by its designers. The participation of

various groups during the development process can assist in addressing

many of these specific and obscure complications.

Value-sensitive design (VSD) modeling represents another approach for

implementing HCAD, but in a more abstract manner. VSD centers on the

values of various stakeholders, enabling the identification of specific as-

pects that demand special attention and preventing the algorithm from

compromising those values [7]. Utilizing VSD can be particularly advan-

tageous when the values of multiple stakeholders conflict. In such situa-

tions, some level of bias may be inevitable, and it is crucial to determine

which bias is least harmful and most fair to stakeholders. Deciding on

the extent and type of bias that is fair to incorporate into the algorithm

necessitates a careful examination of the consequences through both the

lenses of equality and equity. Equality refers to the even distribution of

both benefits and drawbacks, regardless of circumstances [7]. In practice,

this may entail counter-balancing a bias that provides a slight advantage

to a stakeholder in one aspect of an algorithm, with a slight disadvan-

tage offset in another. Conversely, equity differs from equality in that it

primarily takes into account the surrounding circumstances of a stake-

holder to determine the fairest decision [7]. Achieving the most equitable

outcome may necessitate providing some favorable bias towards the party

with unfavourably circumstances, in order to prevent them from being

entirely overshadowed.

5 Conclusion and Analysis

The present paper has showcased two frameworks through which the

power of algorithms and their biases can be viewed, in addition to some

approaches that may be employed to alleviate the negatives. The first

framework, explored in section two, is an over-arching social power lens

that scrutinizes algorithmic agency and its capacity to alter, blend, and

create power. The second, illustrated in section three, is the social harm

perspective, where algorithmic biases reinforce or diminish preexisting

forms of social power to negatively affect individuals. Finally, techniques

are provided to discover, model, and reduce biases and their ramifications

during development.

Ensuring HCAD is employed in conjunction with multiple frameworks,

including those not discussed here, to determine biases, consequences,

and stakeholders will assist in the creation of high quality algorithms

that have reduced detrimental impacts on society. To achieve this, some

projects may adopt a process similar to an open beta, allowing for the iden-

tification and resolution of issues, as well as an exploration of potential

user behaviors, both positive and negative. Any potential abuse can then

be further analyzed with relevant frameworks to ascertain how stake-

holders can be advantaged or disadvantaged, and limit those if deemed

necessary.

The articles referenced throughout here are not representative of the

totality of literature on algorithmic bias, but rather provide a sample that

highlights some significant ideas in the space. Other related areas that

have not been addressed include the possibility of biased big data leading

to algorithmic biases, or how the recent advancements in AI, such as deep

neural network art generators and large language model chat bots, are

affected by and perpetuate biases. Avenues for further research include

investigating the resistance that potential biases may generate towards

algorithms in general, and examining how algorithmic bias can also rein-

force bottom-up power dynamics as opposed to the top-down power mostly

discussed in this paper and in literature.

References

[1] Eric PS Baumer. Toward human-centered algorithm design. Big Data &
Society, 4(2):2053951717718854, 2017.

[2] David Beer. The social power of algorithms. Information, Communication
& Society, 20(1):1–13, 2017.

[3] Lauren Valentino Bryant. The youtube algorithm and the alt-right filter
bubble. Open Information Science, 4(1):85–90, 2020.

[4] Jenna Burrell. How the machine ‘thinks’: Understanding opacity in ma-
chine learning algorithms. Big Data & Society, 3(1):2053951715622512,
2016.

[5] David Danks and Alex John London. Algorithmic bias in autonomous sys-
tems. In Ijcai, volume 17, pages 4691–4697, 2017.

[6] Malik HM, Viljanen M, Lepinkäinen N, and Alvesalo-Kuusi A. Dynamics
of social harms in an algorithmic context. International Journal for Crime,
Justice and Social Democracy, 11(1):182–195, 2022.

[7] Min Kyung Lee, Ji Tae Kim, and Leah Lizarondo. A human-centered
approach to algorithmic services: Considerations for fair and motivating
smart community service management that allocates donations to non-profit
organizations. In Proceedings of the 2017 CHI Conference on Human Fac-
tors in Computing Systems, CHI ’17, page 3365–3376, New York, NY, USA,
2017. Association for Computing Machinery.

[8] Merriam-Webster. Algorithm. In Merriam-Webster.com dictionary. Ency-
clopædia Britannica, Inc., 2023.

[9] David Moats and Nick Seaver. “you social scientists love mind games”:
Experimenting in the “divide” between data science and critical algorithm
studies. Big Data & Society, 6(1):2053951719833404, 2019.

[10] Nuno Mota, Negar Mohammadi, Palash Dey, Krishna P Gummadi, and Ab-
hijnan Chakraborty. Fair partitioning of public resources: Redrawing dis-
trict boundary to minimize spatial inequality in school funding. In Proceed-
ings of the Web Conference 2021, pages 646–657, 2021.

[11] Emily Pedersen. "my videos are at the mercy of the youtube algorithm”:
How content creators craft algorithmic personas and perceive the algorithm
that dictates their work. Technical report, University of California, Berke-
ley, 2019.

[12] Uwe Peters. Algorithmic political bias in artificial intelligence systems.
Philosophy & Technology, 35(2):25, 2022.

[13] Zeynep Tufekci. Algorithmic harms beyond facebook and google: Emergent
challenges of computational agency. Colo. Tech. LJ, 13:203, 2015.

[14] Neriah Yue. The" weaponization" of facebook in myanmar: A case for cor-
porate criminal liability. Hastings LJ, 71:813, 2019.

Analysing the security properties of the
APT package manager

Niko Vänttilä
niko.vanttila@aalto.fi

Tutor: Jacopo Bufalino

Abstract

Package managers have huge impact on the security of the clients indi-

vidual machines and supply chain overall. Small bugs in packages and

libraries can spread to wide use causing a lot of harm due to wide distri-

bution of packages. This paper targets to analyse the security properties of

the APT package manager.

KEYWORDS: APT, security, cryptography

1 Introduction

Package manager is a software that allows clients to easily manage pack-

ages and libraries on their machines. It automates tedious tasks such

as install, update and configure of packages, typically softwares and li-

braries. Package managers are divided on two basic categories based on

the intended use. APT is built for Debian-based Linux distributions and

intended to install binaries. Other example of package manager is PIP for

Python which manages library dependencies in development environment

[1].

Package managers have huge impact to operating systems security since

they are in control of many packages on the machine. They usually have

additional privileges such as superuser which increases the potential harm

to machine. Package managers are vital part of the supply chain security,

since they are used in many stages among the developers and consumers.

Therefore, package managers should contain reliable security properties

which ensure that the packages are taken to use in a way they are in-

tended to.

This paper targets to analyse APT package managers security proper-

ties. Section 2. presents the basics of package manager and its main

security properties. Third section analyses specifically the security prop-

erties of APT package manager including ways to attack and how APT

protects against them. Section 4. discusses the conditions of an success-

ful attack and open vulnerabilities among the APT. Last section provides

a conclusion.

2 Background

2.1 Package managers

Package manager controls the packages on the operating machine. Such

tasks include installing, updating and deleting of packages. These pack-

ages are downloaded and installed from the package repositories. Pack-

ages provided by the repositories come typically in similar formats con-

sisting of necessary files and metadata. Metadata contains information

about the package itself and dependencies that are needed for this pack-

age to operate. Most of packages formats contain signatures whereas oth-

ers do not support this feature [2]. Signatures which are based on public

key cryptography are the main security property of repositories and pack-

ages.

A package repository is the place from where the manager downloads

necessary data and it is typically an HTTP or FTP server. Before down-

loading and installing actual packages, manager downloads the root meta-

data which contains location and signatures of the each package and their

metadata. With the package metadata and the signatures, the package

manager is able to verify the validity of the package and download the

actual package metadata and performs dependency resolution [2]. Figure

1. shows the common layout of the package data in repository. Root meta-

data contains all the individual packages needed. In APT, root metadata

contains its own signature but it is not used in every package manager.

As the figure shows, the package metadata gives information about the

individual package, which is needed to perform dependency resolution.

Hashes in the figure refer to checksums which are discussed later in the

paper.

Figure 1. Figure 1. Repository Layout [2].

Purpose of dependency resolution process is to automatically install or

locate all the necessary dependencies and the main software. Package

manager searches the machine to locate all the dependencies that are

needed before the main package files can be installed. Root metadata

provides the repository which contains the needed dependency in case it

is not in the machine already. [2]

The package repositories are divided into main repositories and mirrors.

Purpose of mirrors is to distribute repositories to more than one server.

Characteristics of main repository is that it is the one that is maintained

by the administrators. This means that all the modifications to repository

are done only to this main one. A mirror is a copy of the main repository,

so it contains all the same data as the main one. When main reposi-

tory is updated, the mirrors are synced via some tool [2]. Mirrors can

be divided into public mirrors that are available for anyone, and private

mirrors which are typically available to some specific organisations.

2.2 Security properties

One of the most significant factors in package manager security is how the

client communicates with the repository. Package managers should use

secure communication protocol such as HTTPS rather than basic HTTP.

HTTPS is using HTTP but with a different default port (443) and an addi-

tional TLS encryption/authentication layer between HTTP and TCP [3].

Communication between the client and repository should be secured in a

way that data flow cannot be tampered.

Package manager should check the integrity of the downloads to ensure

that files haven’t been modified [2]. One of the most used way to check

this is to calculate checksum between the downloads and check that it

matches. Cryptographic checksum is a way to determine whether changes

have been made to some file. It calculates a secure hash from data and if

changes have been made to the file, it produces different hash [4].

To support integrity checking, package manager should perform authen-

ticity checking in case of modified checksum. This can be done via public-

key cryptography. Each checksum is signed with private key by the ad-

ministrators and the manager can verify that the downloaded file can be

trusted [2].

3 Security of the APT package manager

3.1 Attacks against package managers

Successful attack against package manager may cause attacker to crash

or control clients computer. Attacks can be conducted in all stages of pack-

age installation process including resolution, verification, fetching and in-

stallation. These attacks can be divided into families such as package

manipulation, denial of service and code injection [5].

In package manipulation the process of package installation is corrupted

in a way that the authenticity and integrity of artefacts are not verified or

if the resolution of packages is done in an unpredictable manner [5]. This

can happen when the transmission is not using SSL/TLS to secure com-

munication or the validity of their certificate is not verified. Man in the

middle attack (MITM) is a known package manipulation example which

allows attacker to respond to requests made by a package manager [6].

Freeze attack is an example of MITM attack where the attacker is able to

provide its own package in place of the correct one. In replay attack the

package manager downloads the older version of the package. This way

the attacker can exploit the possible vulnerabilities which no longer exist

in the newest package version [2]. This only works when installing the

package first time and not when updating. On the other hand, in freeze

attack the attacker provides metadata that is not up to date. In this way

the client is not able to detect updates and might use old version of a

package with vulnerabilities. With ability to rewrite metadata, attacker

is able to provide extraneous dependencies. This means that the along

with necessary dependencies, some additional dependencies are installed

which could contain vulnerabilities. One of the different ways to exploit

MITM attack is to cause package manager to download endless stream of

data. This causes disk to fill up and possibly crash the clients computer

[2].

In denial of service the attacker aims to disable the computational re-

sources or access to the clients computer. Attacker may exploit the in-

ternet connection by flooding the client with multiple requests. Denial

of service attack can be either a single-source attack, originating at only

one host, or a multi-source, where multiple hosts coordinate to flood the

victim with a barrage of attack packets [7]. Other way to exploit the pack-

age manager which do not limit the amount of data extracted from com-

pressed package artifacts is a zip bomb. It is a malicious file which can

overflow clients memory or disk space, or by putting excessive load on it’s

CPU and eventually crash a computer [5].

Code injection is an attack where attacker tries to inject malicious com-

mand executions and especially shell commands on clients computer. Pack-

age managers use typically git repositories which are accessed via com-

mand line. This way attacker may provide malicious URL for git reposi-

tory which can lead to command injection [5].

3.2 How APT protects system against attacks

Various package managers have different focus areas when considering

the security of the system. APT package manager focuses on securing

the repository metadata rather than signing packages [8]. As mentioned

before the repositories store packages, package metadata, and the root

metadata. In different package managers the root metadata file is called

in different names even though the content is similar. In APT it is called

Release file [9].

Verification of signatures is based on public key cryptography which con-

tain one public key and one private key. Signature is encrypted with pub-

lic key, and it can be decrypted with private key. APT uses gpg as the

OpenPGP implementation to verify signatures [10]. APT contains a pro-

gram apt-key which manages the keyring of OpenPGP keys and it is used

to show, add and remove keys from the keyring. The keyrings are stored

in files in directory /etc/apt/trusted.gpg.d [10].

The Release file which is stored in archive is updated every time some

package changes. It contain the checksums of other files in the archive.

Packages file contain each checksum of individual package. This way APT

can compare two checksums and verify that the package to be downloaded

is the correct one. It can also compare the checksum of individual package

against the content of the Packages file [10]. However, the APT cannot still

verify that the Release file is valid and secure.

Secure-APT was created to overcome issues related to security of Re-

lease file and the properties of it are used in the latest versions of APT

[8]. Alongside Release file, the repository ships OpenGPG signature for

Release file and it is stored in file called Release.gpg. Security of the APT

depends on a Release.gpg file, which signs a Release file, and of APT check-

ing that signature using gpg. In order to check the signature, it has to

know the public key of the person who signed the file. These keys are kept

in APT’s own keyring /etc/apt/trusted.gpg.d, and managing the keys is

where secure Secure-APT comes in [10].

Figure 2. Figure 2. Example of key in keyring.

Figure 2. shows an example of key in the APT’s keyring. It shows the lo-

cation of the key in /etc/apt/trusted.gpg.d directory. The field pub shows

the key fingerprint and the expire date tells how long the key is valid [10].

4 Discussion

4.1 Conditions for a successful attack

Conditions required for an attacker can be divided to three levels which

each can cause increasingly damaging attacks [8]. Firstly, the attacker is

able to impersonate a repository and launch basic attack. It can be ob-

tained with MITM attacks and control of repository or mirror. In MITM

attack the attacker is able to interfere with communication between the

client and repository [6]. When using insecure protocol such as HTTP

the client is vulnerable to such attacks. However, impersonating a repos-

itory does not necessary mean that the attacker is able to crate their own

packages on repository.

In second condition attacker is able to sign metadata causing more dam-

aging consequences. When attacker is in control of repository it may be

able to tamper the metadata. This way attacker can cause client to add

their own key to the clients keyring making it vulnerable [8]. The most

dangerous way for attacker to cause harm is to sign packages. This way

the attacker may be able to sign their own arbitary packages. However,

since APT concentrates on signing the repository metadata, there is no

package keys to sign. Therefore signing the metadata is more dangerous.

Attacker can also bypass security with uploading arbitary packages to

repository in legit way. If attacker is able to compromise developers key,

and the package is correctly formatted it can be uploaded to APT distri-

bution. Reasons why this is doable is that the whole process is automated

and any developer can upload updated packages. There are thousands of

developer keys available and some of them are less secure (short keys)

and even decades old [8].

4.2 Open vulnerabilities

APT assumes that the downloaded file size can fit in a C unsigned long.

On 32 bit architectures it can download up to 4GB data but on 64 bit ar-

chitecture it tries to download over 10TB data [8]. Because of this, the

system is vulnerable to endless data attack. It could cause multiple prob-

lems such as not getting package updates, and consuming high amount of

disk space and CPU which can result big issues on the machine [2].

APT is quite lazy in some situations relating to metadata. For example,

it does not check the date of package which could refer to past or even

future. Even though the metadata is signed to avoid tampering, there

is no protection against replaying old metadata [8]. Additionally APT

overwrites current metadata with the files it is downloading. Because of

this, it cannot check the past state of the repository.

5 Conclusion

This paper has reviewed the security properties of a APT package man-

ager. APT is a system-wide package manager that controls the packages

on Debian based Linux distributions. Security of APT is based on se-

curing the repository metadata rather than signing individual packages.

Signatures are based on public key cryptography. APT uses latest secu-

rity properties from Secure APT, which as initially created to overcome

issues related to Release file. There are multiple ways to attack pack-

age managers including package manipulation, denial of service and code

injection.

References

[1] A. Athalye, R. Hristov, T. Nguyen, and Q. Nguyen, “Package manager secu-
rity,” tech. rep., 2014.

[2] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “A look in the mirror:
Attacks on package managers,” in Proceedings of the 15th ACM conference
on Computer and communications security, pp. 565–574, 2008.

[3] F. Callegati, W. Cerroni, and M. Ramilli, “Man-in-the-middle attack to the
https protocol,” IEEE Security & Privacy, vol. 7, no. 1, pp. 78–81, 2009.

[4] F. Cohen, “A cryptographic checksum for integrity protection,” Computers &
Security, vol. 6, no. 6, pp. 505–510, 1987.

[5] A. M. Bos, “A review of attacks against language-based package managers,”
arXiv preprint arXiv:2302.08959, 2023.

[6] M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the middle attacks,”
IEEE communications surveys & tutorials, vol. 18, no. 3, pp. 2027–2051,
2016.

[7] A. Hussain, J. Heidemann, and C. Papadopoulos, “A framework for clas-
sifying denial of service attacks,” in Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer commu-
nications, pp. 99–110, 2003.

[8] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “Package management
security,” University of Arizona Technical Report, pp. 08–02, 2008.

[9] “Debian repository format,” Debian Wiki, 2022.

[10] “Secure apt,” Debian Wiki, 2022.

Assessing Container Security: An
Overview of Best Practices and Popular
Tools

Nimer Amol Singh
nimer.singh@aalto.fi

Tutor: Jose Luis Martin Navarro

Abstract

Containerization has transformed how software is developed and de-

ployed, but the dynamic nature of containerized environments offers new

security issues. This paper describes the capabilities, limitations, and

use cases of four popular container security tools: Docker Bench, Clair,

Falco, and Anchore. Docker Bench evaluates container security setup, Clair

checks container images for known vulnerabilities, Falco detects suspicious

activity in containerized environments, and Anchore detects vulnerabili-

ties and policy violations in operating containers. To mitigate potential

security concerns, effective container security necessitates a complete strat-

egy that includes proactive security measures, continual monitoring, au-

tomated remediation capabilities, and regular assessments and training

activities.

KEYWORDS: docker, security tools, static tools, dynamic tools, vulnerabil-

ity analysis, Docker Bench, Clair, Falco, Anchore

1 Introduction

Docker has emerged from decades of evolution of microservices-based ar-

chitecture. The benefits it presents, such as scalability, flexibility, and

cost-effectiveness, make it an attractive option for organizations of all

sizes [1]. Despite these benefits, the shift to a cloud-based architecture

has introduced new security challenges [2]. The annual survey of the

Cloud Native Computing Foundation emphasizes the significance of secu-

rity vulnerabilities in the context of container security. 33% of the 2063

participants questioned for the report expressed concern about these vul-

nerabilities [3] [4]. This stresses how crucial it is to put in place strong

security mechanisms in containerized environments to reduce potential

hazards. Given the crucial role Docker plays in managing sensitive data

and critical systems in the cloud, it is important to ensure it’s safety and

effective deployment.

This paper focuses on the different approaches and tools utilized to test

Docker development and deployment security. The paper explores vari-

ous techniques, including manual and automated testing methods using

static and dynamic analysis tools. By comparing different approaches to

solve the problem, the paper will provide a guide for effective security

testing of applications developed and deployed using Docker as well as

safe development practices.

2 Background

It is important to consider the various components that can be selected

for evaluation during the process of vulnerability assessment in Docker

configurations and deployments. The various targets that can be studied,

such as the Engine, Images, Containers, Hub, and Compose will be cov-

ered in this section [5]. For a Docker deployment to be secure and to lower

the risk of security breaches, it is essential to understand the various tar-

gets and how they may be examined.

2.1 Docker Engine

The basic component of Docker is known as the Docker engine, which

facilitates container management. It comprises of a server-client archi-

tecture that communicates via a representational state transfer (REST)

application programming interface (API). The server (commonly known as

the Docker daemon or dockerd) is responsible for building, running, and

dispersing containers; in contrast, this functionality lies with the client

referred to as the docker command line interface (CLI) which interacts

Figure 1. Docker Architecture

with the above mentioned.

2.2 Docker Images

As the foundation for containers, Docker images become significant. These

are packages that have the ability to run code efficiently and contain all

elements essential in running a program including libraries, and depen-

dencies alongside codes. They are lightweight components, being able to

stand entirely on their own without any support system. Images are built

using Dockerfiles, which are a set of instructions that define how to build

the image.

2.3 Docker Containers

Containers are lightweight, portable, and self-contained environments

that have all the requirements to run an application. They package code

and dependencies so that the application can run quickly and reliably in

different environments. Containers are created using Docker images and

can be easily shifted between different development, testing, and produc-

tion setups.

2.4 Docker Hub

Docker Hub is a public registry and repository which hosts Docker Im-

ages. It is used for developing, storing, and distributing images with other

developers. Similar to Github, it offers version control systems, frequent

updates, and free sharing of images for unrestricted use. It is a crucial

Figure 2. Docker Security Lifecycle

part of the Docker ecosystem for managing images and deploying appli-

cations as it provides the capabilities to authenticate users and push and

pull images from the registry.

2.5 Docker Compose

The final component of Docker is the Docker Compose. It is a tool that

enables a developer to define and deploy multi-container applications. A

developer can specify the configuration of the containers in a single YAML

file, for ease of use and development. These are mostly used to implement

the declarative nature of Docker by describing the end result state of the

container instead of writing procedural instructions for how to build and

deploy an application.

3 Security Guidelines

With Docker, such as all tools, security guidelines must be followed in or-

der to ensure that the developments and deployments transpire in a safe

environment. This section mentions a few of them which must be fol-

lowed for Docker deployments and the repercussions of not implementing

the same [6] [7] [8].

3.1 Updates or Grenades

Every day, new vulnerabilities are detected in the existing software. To

tackle these, companies release patches and updates. Docker Inc. [9]

follows the same practices to prevent an attacker from using escape vul-

nerabilities and kernel exploits. Updates not only help with securing such

vulnerabilities but also help in improving performance.

3.2 User not loser

When configuring a Docker container, it’s crucial to ensure that the user

has low privileges to avoid escalation attacks. This step is essential to

reduce the significant risk in the event of a security breach.

3.3 Socket or Rocket

Networks act as an expressway for attackers, and as such, exposing the

docker daemon socket can potentially expose unencrypted and unauthen-

ticated direct access to the Docker daemon. This can lead to anyone from

the public net having access to the daemon, which is not an ideal condi-

tion. Hence, sockets should not be exposed to the outside world.

3.4 Disable inter-container communication and limit resources

The default setting allows containers to communicate with each other, us-

ing which malicious containers can interfere with the correct execution of

others. Moreover, malicious containers can also use or block resources for

the same purpose. Ensuring limited communication between containers

is a reliable way to avoid such mishaps.

To secure a container, tools like AppArmor can be used by configuring

it with specific profiles that grant access only to necessary resources like

network access, file permissions, and more. These profiles can be set to

either block access to disallowed resources or only report violations [10].

4 Tools

In order to ensure secure and reliable containerized environments, it is

essential to follow industry-standard guidelines and best practices for

container security. To help achieve these goals, various container secu-

rity tools can be used to assess, identify, and remediate security risks in

containerized environments. By utilizing these tools and adhering to rec-

ommended security guidelines, organizations can reduce the likelihood

of security breaches and better protect their containerized applications

and data. This section details a brief overview of some of the tools used

for such purposes. When it comes to security tools for container envi-

ronments, there are two main types: static and dynamic. Static tools, like

Docker Bench [11] and Clair [12], assess containers and images for known

vulnerabilities and misconfigurations without actually running them. Dy-

namic tools, such as Falco [13] and Anchore [14], monitor running contain-

ers and detect suspicious behavior in real time. While static tools are use-

ful for preventing known vulnerabilities from being introduced, dynamic

tools provide more comprehensive protection by identifying and respond-

ing to actual threats as they occur.

These have been chosen because of their popularity, the depth of analy-

sis each does, and the importance to key factors such as Open Worldwide

Application Security Project (OWASP) [15] guidelines and Center for In-

ternet Security (CIS) [16] benchmarks.

4.1 Docker Bench

Docker Bench is an open-source project, which aims to check the Docker

configurations against dozens of common best practices around deploying

Docker containers in production [17]. The project consists of an auto-

mated script, which tests the given container(s) according to the latest

CIS Docker benchmark.

The tool itself is meant for static analysis and is packaged as a docker

container that runs with numerous privileges on the host, such that it

shares the filesystem, process ID (pid), and network namespaces.

4.2 Clair

Clair is another open-source project used for static analysis of container-

ized applications including OCI and Docker [18] [19]. It parses the image

contents and reports the vulnerabilities affecting the contents. It is mostly

used for the official base containers of Ubuntu, Debian, RHEL, Suse, Or-

acle, Alpine, AWS Linux, VMWare Photon and Python but it can also be

used to scan custom container images not hosted in these registries.

Clair uses ClairCore library as its base, and the application itself can

be considered a service wrapper for the library. The application is di-

vided into three parts, namely indexing, matching, and notifications. The

tool utilizes libraries such as National Vulnerability Database (NVD),

Common Vulnerabilities and Exposures (CVE) database, and other open-

source databases to keep an updated list of threats.

4.3 Falco

Falco is an open-source dynamic analysis tool maintained by CNCF. It

parses the system calls made at runtime inside the containers and cross-

checks them against pre-defined as well as user-defined rules. The rules

are designed to detect a wide range of security violations, including unau-

thorized file access, execution of known vulnerabilities, and breakout at-

tempts. Upon a violation, the tool raises alerts for the developer to analyze

[20].

Among many others, Falco is mainly used to detect privilege escalation,

namespace changes, Read/Write to system directories, unexpected net-

work activity, and system process calls such as sh, csh, bash, and ssh [21].

4.4 Anchore

Another open-source project, Anchore provides a centralized service for

the inspection, analysis, and certification of docker images. It is capable

of running in a standalone environment, or inside a container orchestra-

tion (e.g. Docker Swarm and Kubernetes) to automate and rectify the

shortcomings of the application/images being analyzed.

The tool itself is hybrid, providing both static and dynamic analysis pos-

sibilities. The static analysis of the Anchore engine scans for vulnera-

bilities in software components, including OS packages, application de-

pendencies, and libraries while in a dynamic setting, it monitors running

containers in real-time to detect and prevent attacks such as privilege es-

calation, file tampering, and network scanning. It keeps an updated list

by scanning NVD, CVE, Vendor advisories, and Open Policy Agents (OPA)

as well as allowing users to create custom rules for detection.

5 Analysis

This section focuses on the features, advantages, and disadvantages of

each tool.

5.1 Docker Bench Security

Advantages

1. It performs automated scanning of Docker images for known vulnera-

bilities in software components.

2. The tool provides a standardized CIS checklist of security best practices

for Docker containers.

Limitations

1. Docker bench only checks security issues related to the configurations

and installations. The vulnerabilities within images or containers are

not identified by this tool.

2. While the tool does produce a report on the security risks, it fails to

provide remediation of those risks. The user must manually address the

issues, which can be both time-consuming and may require specialized

knowledge.

5.2 Clair

Advantages

1. Clair provides detailed information about each vulnerability, including

severity level and recommended fixes.

2. It can be easily integrated into existing container workflows and pipelines.

Limitations

1. Clair can only detect known vulnerabilities present in its database.

Hence, new vulnerabilities may not be detected in some cases.

2. The tool is designed to work with Docker images and containers, and

provides limited support for other container formats and languages.

5.3 Falco

Advantages

1. Falco performs real-time monitoring of running containers to detect

malicious activities.

2. It uses a set of rules to detect suspicious activities and alert security

teams to detect known and unknown vulnerabilities.

3. The tool can be integrated with various container orchestration plat-

forms and security information and event management (SIEM) systems.

Limitations

1. Falco requires some tuning and customization to minimize false posi-

tives.

2. It does not perform static analysis, so it cannot detect vulnerabilities

in container images.

5.4 Anchore

Advantages

1. Combines both static and dynamic analysis techniques to provide com-

prehensive security coverage as well as detailed information about vul-

nerabilities and recommendations.

2. Can be integrated with various container registries and continuous in-

tegration/continuous deployment (CI/CD) pipelines.

Limitations

1. Requires some tuning and customization to minimize false positives.

2. Can be more complex to set up and use compared to other tools.

Table 1 presents the analysis in a tabular format.

6 Conclusion

In conclusion, it is evident that Docker has gained immense admiration as

a tool for developing, initiating, and shipping software. However, dismiss-

Tool Type Checklist-Database Remediation

Docker Bench Static CIS Benchmark Manual

Clair Static+Dynamic NVD, CVE, Open Source

Databases

Manual

Falco Dynamic User defined rules Manual

Anchore Dynamic NVD, CVE, Vendors,

OPA, User Defined

Automated

with externals

Table 1. Analysis of the four tools

ing the significance of upholding top-notch safety measures could jeopar-

dize the protection and soundness of the Docker containers in addition to

their likenesses. Key security practices include using tools, such as those

mentioned above for static and dynamic analysis to check vulnerabilities

in the design and implementation of an application. It is important to not

only do these tests on the applications but also on the images, the system

processes, and the CI/CD pipelines.

When it comes to container security tools, all four tools have their own

benefits. However, Clair and Anchore beat the other options due to their

comprehensive vulnerability scanning capabilities. Clair excels at scan-

ning container images for known vulnerabilities and integrates well with

Docker, Kubernetes, and other container orchestration platforms. An-

chore, on the other hand, goes beyond image scanning and provides con-

tinuous security monitoring and policy enforcement for running contain-

ers. Additionally, Anchore integrates with external tools to provide auto-

mated remediation, making it a suitable choice for enterprise-scale con-

tainer deployments. Specific use cases for these tools could include scan-

ning images for vulnerabilities before they are deployed to production,

monitoring running containers for security violations, and enforcing secu-

rity policies across a large number of containers.

With these steps, deploying Docker applications becomes both secure

and efficient. These methods cement a protective strategy against po-

tential threats that could harm sensitive information or cause incidents

within operations. By adopting such protocols, users ensure their systems

have been set up with strong defenses in place before any mishaps occur.

References

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Sto-
ica, and Matei Zaharia. A view of cloud computing. Commun. ACM, 53:
50–58, apr 2010. ISSN 0001-0782. doi: 10.1145/1721654.1721672. URL
https://doi.org/10.1145/1721654.1721672.

[2] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011.

[3] CNCF. Cncf annual survey 2022. https://www.cncf.io/reports/

cncf-annual-survey-2022/. Accessed: 2023-01-31.

[4] Vijay B Mahajan and Sunil B Mane. Detection, analysis and countermea-
sures for container based misconfiguration using docker and kubernetes. In
2022 International Conference on Computing, Communication, Security and
Intelligent Systems (IC3SIS), pages 1–6, 2022. doi: 10.1109/IC3SIS54991.
2022.9885293.

[5] Thanh Bui. Analysis of docker security. arXiv preprint arXiv:1501.02967,
2015.

[6] Theo Combe, Antony Martin, and Roberto Di Pietro. To docker or not to
docker: A security perspective. IEEE Cloud Computing, 3(5):54–62, 2016.
doi: 10.1109/MCC.2016.100.

[7] Aparna Tomar, Diksha Jeena, Preeti Mishra, and Rahul Bisht. Docker
security: A threat model, attack taxonomy and real-time attack scenario
of dos. In 2020 10th International Conference on Cloud Computing, Data
Science Engineering (Confluence), pages 150–155, 2020. doi: 10.1109/
Confluence47617.2020.9058115.

[8] Kelly Brady, Seung Moon, Tuan Nguyen, and Joel Coffman. Docker con-
tainer security in cloud computing. In 2020 10th Annual Computing and
Communication Workshop and Conference (CCWC), pages 0975–0980, 2020.
doi: 10.1109/CCWC47524.2020.9031195.

[9] Docker Inc. Docker: Accelerated, containerized application development.
https://www.docker.com/, 2011. Accessed: 2023-04-10.

[10] Kubernetes. Restrict a container’s access to resources with apparmor.
https://kubernetes.io/docs/tutorials/security/apparmor/. Accessed:
2023-04-10.

[11] Docker Inc. Docker bench for security. https://github.com/docker/

docker-bench-security. Accessed: 2023-04-10.

[12] Red Hat. Vulnerability static analysis for container using clair. https:
//github.com/quay/clair. Accessed: 2023-04-10.

[13] Sysdig. The falco project. https://falco.org/docs/getting-started/

running/. Accessed: 2023-04-10.

[14] Anchore. Anchore engine. https://github.com/anchore/anchore-engine.
Accessed: 2023-04-10.

[15] Open Worldwide Application Security Project. Owasp top ten application
security risks. https://owasp.org/www-project-top-ten/. Accessed: 2023-
04-10.

[16] Center for Internet Security. Cis benchmarks list. https://www.

cisecurity.org/cis-benchmarks. Accessed: 2023-04-10.

[17] Aakriti Sharma, Bright Keswani, and Anjana Sangwan. Optimization of
docker container security and its performance evaluation. Journal of Dis-
crete Mathematical Sciences and Cryptography, 24(8):2365–2375, 2021.

[18] Maximiliano Osorio, Carlos Buil Aranda, and Hernán Vargas. Dockerpedia:
a knowledge graph of docker images. In ISWC (P&D/Industry/BlueSky),
2018.

[19] Olufogorehan Tunde-Onadele, Jingzhu He, Ting Dai, and Xiaohui Gu. A
study on container vulnerability exploit detection. In 2019 ieee international
conference on cloud engineering (IC2E), pages 121–127. IEEE, 2019.

[20] Scott Surovich and Marc Boorshtein. Kubernetes and Docker-An Enterprise
Guide: Effectively containerize applications, integrate enterprise systems,
and scale applications in your enterprise. Packt Publishing Ltd, 2020.

[21] Guan-Yu Wang, Hung-Jui Ko, Min-Yi Tsai, and Wei-Jen Wang. Module ar-
chitecture of docker image and container security. In New Trends in Com-
puter Technologies and Applications: 25th International Computer Sym-
posium, ICS 2022, Taoyuan, Taiwan, December 15–17, 2022, Proceedings,
pages 661–669. Springer, 2023.

A Survey on Security of Microservices

Parsa Sadri Sinaki
parsa.sadrisinaki@aalto.fi

Tutor: Antti Ylä-Jääski

Abstract

This paper presents a survey on the security of microservices, examining

both the challenges and solutions associated with this architecture. We cat-

egorize the security challenges into seven layers of Hardware, Virtualiza-

tion, Network, Host, Service, Orchestration, and Configurations. We dis-

cuss the specific security challenges in each layer and provide possible so-

lutions. Although microservices offer benefits, such as the isolation of vul-

nerabilities, they also introduce new challenges, such as increased attack

vectors. This paper underscores the importance of robust security practices

in a microservices environment and emphasizes the need for academia and

industry to invest in research on modern attack vectors. Ultimately, both

microservice users and cloud providers can benefit from the insights and

solutions provided in this paper.

KEYWORDS: Microservice, Serverless, Cloud Computing, Security

1 Introduction

Microservices are popular software architecture comprising multiple in-

dependent modules with well-defined network interfaces [10]. Deployed

in the cloud using containers, which can be easily scaled based on demand.

Microservices are increasingly used in critical domains, such as Fog

Computing [21], Internet of Things [17], and 5G core network functions

[2], necessitating enhanced security. Their inherent exposure to internal

services, however, raises potential security concerns.

This paper reviews the latest security challenges faced in microservices

hosted on cloud and serverless computing platforms, while also providing

solutions for these challenges. The structure of the paper is as follows.

Section 2 overviews microservices. Section 3 presents the significant se-

curity challenges faced in new domains, while Section 4 describes some

solutions to these security issues. Section 5 provides a discussion and

analysis of the topic. Finally, Section 6 provides concluding remarks.

2 Microservices

2.1 Definition

The phrase microservice was first used in 2011 [7]. It has various defi-

nitions, with Lewis and Fowler describing it as a development approach

that creates small, independently deployable services running in separate

processes and communicating through lightweight mechanisms [7]. These

services, have minimal centralized management and support diverse pro-

gramming languages and data storage technologies. While the microser-

vice architecture resembles the older service-oriented architecture (SOA)

pattern, it differs in that microservices are smaller, more independent,

and loosely coupled, requiring only a lightweight API protocol, such as

REST, rather than an enterprise service bus or simple object access pro-

tocol (SOAP) used in SOA [10].

2.2 Technologies related to Microservices

The success of microservices can be attributed to ten key technologies,

some developed prior to the concept and some assisting its mainstream

adoption [10]. Two of these technologies are containerization for eas-

ier deployment and container orchestration for management automation.

Four other technologies are related to the need for distributed commu-

nication. Two of these are service discovery and fault-tolerant commu-

nication libraries, which provide the tools needed for reliable communi-

cation between services. The other two are sidecars that abstract these

communication-related features from developers and service mesh that

provides secure communication and monitoring. The other four technolo-

gies are monitoring technologies, DevOps automation solutions, chaos en-

gineering tools to test reliability and security, and serverless computing,

which allows smaller and more fine-grained services.

Serverless computing is a cloud paradigm where the provider manages

infrastructure on-demand and automatically executes code in response to

events, such as hypertext transfer protocol (HTTP) requests or database

changes.

3 Security Challenges

The security challenges in this paper are divided into seven categories:

hardware, virtualization, network, host, service, orchestration, and con-

figurations. This categorization is simply a logical decomposition of mi-

croservices into layers. The categories are each an abstraction layer based

on a similar idea to the open systems interconnection (OSI) model. The

base layer starts with the physical layer consisting of the hardware of the

server. The next layer is the virtualization of each microservice; instead

of accessing the actual hardware, they each access a virtual environment

that simulates the hardware. The third layer is the communication layer

which represents the network communication between the microservices.

The next layer is the host. This layer consists of the operating system (OS)

and the platform this host represents, which could be part of paradigms,

such as a cloud computing node or a serverless function. The fifth layer

describes the service and the application. The orchestration layer con-

stitutes the orchestration and management of the microservices, such as

relaunching new instances of each microservice or the service discovery

that provides routing between these dynamically created microservices.

The last layer, Configurations, represents the layer with which develop-

ers directly interact. Table 1 summarizes security issues and solutions

mentioned in this paper.

3.1 Hardware

Sharing the same hardware with other cloud tenants poses a potential

security threat. It is possible for adversaries to take advantage of side-

channel exploits, such as Meltdown, Spectre [11] and the FLUSH+RELOAD

Category Threat Solution

Hardware Sidechannel exploits, such as Meltdown,

Spectre and the FLUSH+RELOAD tech-

nique and hardware backdoors [15]

Utilizing self Designed hard-

ware [15]

Virtualization Container breakouts, poisoned images and

hypervisor compromise and shared mem-

ory attacks

Intel Software Guard Exten-

sions

Network Great attack surface, complexity to en-

force security policies and Denial of Ser-

vice

Zero-trust network and Circuit

breaker pattern

Host Proprietary nature of cloud infrastruc-

tures and denial-of-wallet

Monitoring of virtual networks

using tools such as FlowTap

Service Race condition, data at rest and other crit-

ical web application security threats, such

as SQL injection and Cross-Site Scripting

(XSS)

Encrypting data at rest and

using static and dynamic code

analysis

Orchestration Integrity of service discovery and register-

ing malicious services

Secure implementation of ser-

vice discovery and registry

components

Configurations Privilege and deployment misconfigura-

tion

Zero-trust network, regular

audits, continuous monitoring

and automated security checks

Table 1. A table summarizing the security challenges of microservices and their solutions

technique [19], to gain access to the data of other tenants or to send data

to their virtual environment. Meltdown and Spectre are security vulner-

abilities that exploit the speculative execution of modern central process-

ing units (CPUs). In a simple example, the exploitation of speculative

execution results in the CPU loading data from memory before the actual

instruction by predicting the instruction and not checking the access priv-

ilege. The FLUSH+RELOAD technique exploits the shared data between

an attacker and a victim. Some Operation Systems merge pages with

the same data in the page tables. With this knowledge, the attacker can

flush this page from the cache and check if, after some time, the victim

will reload this page into the cache by accessing it. This scenario will re-

sult in the attacker inferring the private data of the victim. Compared to

Meltdown, Spectre could pose a more significant threat to cloud providers.

While Meltdown enables unauthorized access to privileged memory, Spec-

tre can possibly manipulate a hypervisor into sending data to a virtual

machine (VM) [1].

3.2 Virtualization

Virtualization is the technique of creating a virtual version of a resource.

By abstracting resources, multiple VMs can run on a single physical sys-

tem. One popular virtualization approach uses VMs, which are created

and managed by a hypervisor that creates a VM on the host machine.

Another type of virtualization that has led to the popularity of microser-

vices is containerization. Containerization is an OS level virtualization.

Containerization uses the same kernel for different containers and two

features of Linux kernel, namespaces and cgroups. With namespaces,

system resources are isolated, while cgroups provide limit enforcement

for those resources.

Containers have their own potential security issues, such as denial of

service (DoS) attacks, container breakouts, poisoned images, and compro-

mised credentials [21]. The attacks on containers can be categorized into

direct and indirect. Direct attacks focus on the shared kernel of the con-

tainers, with the intention of modifying it. Indirect attacks have similar

objectives to direct attacks, but instead, they aim to compromise the code

and image repositories.

3.3 Network

The main challenge of the network layer is the greater surface attack

area that results from making internal services accessible from the pub-

lic internet [5]. An additional challenge in securing modern systems is

network complexity [5]. As networks become more intricate, it becomes

more challenging to enforce security policies, monitor the network, and

conduct forensic analysis. These complexities make it difficult to detect

and respond to attacks. Another main challenge in the communication of

microservices is the trust between services. This challenge can be high-

lighted in an attack on Netflix, where a subdomain was compromised,

allowing an attacker to abuse the cookies of the user to access or modify

the data of the user since Netflix allowed the cookies of all users to be

accessed from any subdomain [18].

3.4 Host

Depending on the environment in which the microservice is deployed there

could be additional security challenges that have to be considered. Some

microservices are deployed in a private cloud but currently, the most pop-

ular choice is to host microservices in the cloud. Serverless technology can

also have some additional implications with respect to security.

Cloud

Cloud computing presents a challenge in securing microservices due to the

difficulties in developing, monitoring, debugging and auditing cloud-based

applications, and due to the transparency of these services [14]. Cloud

provider infrastructures are proprietary and they are not heavily scru-

tinized for security vulnerabilities. However, security-through-obscurity

alone is known in the security community as a dangerous and unreliable

approach [13]. Another issue is the privacy of the users which can be

broken due to the access of cloud vendors to the data of their users [21].

Serverless

In cloud computing, considering three main factors, security, performance,

and cost, is essential [13]. Users might prioritize security, which may con-

tradict the priority of cloud vendors, minimizing cost. This priority can

influence the choice of the execution environment. Virtualization tech-

nology, such as VMs, may be beneficial for security but that is not the

choice the cloud vendors have made. For example, Amazon has created

Firecracker, while Google has developed g-Visor as their execution en-

vironment for serverless functions. Additionally, it is important to dis-

tinguish between cold containers and warm containers. Cold containers

completely isolate and offer higher security at the expense of performance.

On the other hand, warm containers offer faster execution times but are

less secure. Attackers may execute a novel, persistent attack by storing

malicious code in the /tmp directory used by warm containers to keep the

malicious code through multiple instances of a function. Another impor-

tant factor is the choice of scheduling algorithms. Scheduling algorithms

based on randomization have an advantage over deterministic Scheduling

because they offer better protection against co-location exploits. However,

it is worth noting that randomized scheduling algorithms have drawbacks

with respect to resource utilization. Ultimately, finding the right balance

between security, performance, and cost is crucial in cloud computing.

In addition to these concerns, new types of attacks specific to serverless

technology need consideration [13]. Billing attacks known as "denial-of-

wallet" is one of them. Serverless functions are vulnerable to various

injection attacks, not limited to traditional SQL injections, due to multiple

exploitable entry points, resulting in new attack types.

Another problem that is faced when using Serverless functions is that

they do not possess sufficient information to identify the relationships of

other services with the same application the function belongs to, resulting

in the possibility of authentication bypass [13].

3.5 Service

One type of attack in this category is referred to as a race condition [13].

This can happen when some parameters, such as IAM roles or a microser-

vice’s code are modified while multiple replicas are running. During the

transition period, the platform is in an unstable state where different mi-

croservice versions process requests. Attackers may take advantage of

this opportunity to implement attacks with the aim of accessing data that

they should no longer have access to. Another point of vulnerability is the

data at rest, the data that is not actively accessed. These data should be

considered vulnerable.

3.6 Orchestration

The structure of a microservice network can frequently change because

services may be halted, initiated, or relocated, and service discovery plays

a crucial role in identifying services through a central point that works

similarly to a DNS. However, a risk exists for attacks, such as attackers

taking control of the discovery service or adding malicious services to the

system and diverting traffic to them [20]. It is essential to safeguard the

orchestration platform and its components, but this area has not been

thoroughly studied. It is crucial to develop a secure implementation of

service discovery and registry components.

3.7 Configurations

Some problems can be caused by human error. Privilege or deployment

misconfigurations can cause substantial damages that are sometimes eas-

ily avoidable. Microservice architectures have a large number of services;

mistakes, such as leaving a database unprotected or giving public access

to a service that is intended to be private and internal are not accept-

able. Subjects usually receive more permissions than they actually re-

quire. Often, software developers lack the needed information to define

fine-grained security controls to minimize privilege. More importantly, no

mechanisms exist to set up the minimum permissions needed by services

dynamically [13].

4 Security Solutions

This section offers some solutions to some of the challenges mentioned in

the previous section.

4.1 Redefining Perimeter Security

Microservices require defense-in-depth [20]. Zero-trust, a concept focus-

ing on identity-based security where all consumers within a network not

only have no authority but also have no knowledge of the location of ser-

vices in the network, is crucial for the safety of microservices. Istio [9],

a service mesh, offers security and monitoring features, including mutual

transport layer security (mTLS) with Kubernetes [12]. Moreover, A hard-

ened Istio configuration can also provide zero-trust security in microser-

vice architectures. Cilium [3] is also an open-source solution that provides

observability and security on top of Istio. Cilium can be integrated with

Istio to enhance security and performance. Cilium provides Layer 3 and

Layer 4 security policies for traffic between services and provides protec-

tion against a compromised sidecar proxy. Hubble [8] is also implemented

on top of Cilium and utilizes eBPF to provide deep visibility into the ser-

vices and their communication. Hubble can provide Layer 7 visibility by

extracting traffic without encryption from within the Istio sidecars when

integrated with Cilium. An implementation using these tools has been

proposed in [4].

4.2 Securing Data at Rest

While defense in depth can help protect against various types of attacks,

it is still crucial to ensure that data at rest is properly encrypted [20].

This indicates that data not actively being used or transmitted should be

stored in an encrypted format. Encrypting data at rest provides an addi-

tional layer of protection, which will also provide security for the privacy

concerns brought forward by the access of cloud vendors to the data of

users.

4.3 Better isolation

In [16], the authors discuss the potential of using microservices to develop

critical systems that require secure and correct execution within each mi-

croservice. This is supported by [6] that secure containers and compiler

extensions can help ensure the integrity, confidentiality, and proper func-

tioning of microservices. To implement these secure containers, Docker

containers were used with Intel Software Guard Extensions (SGX) en-

clave, which provides protection against attacks at the operating system,

hypervisor, and cloud provider levels.

4.4 Better observability

The authors present an API called FlowTap in [18], designed for cloud

environments to provide comprehensive monitoring of virtual networks.

FlowTap forms links between microservices and security monitoring sys-

tems, enabling the latter to enforce rules on network traffic. This allows

cloud service providers to offer security as a service to their clients.

4.5 Diversity through System Heterogeneity

The microservice architecture provides the opportunity that each individ-

ual component be developed in any programming language. This leads

to a diversity of components within the microservice architecture. Otter-

stad and Yarygina proposed in [16] that diversifying the microservices can

serve as a technique to mitigate low-level exploitations.

4.6 Fail Fast

Reliability is also an important part of security specially when it comes to

DoS attacks. To prevent cascading failures, the Circuit breaker pattern is

one of the most important patterns that can help [20].

5 Analysis and Discussion

Microservice architecture offers some benefits. One key advantage is iso-

lating vulnerabilities, as microservices are individually deployable compo-

nents that can be secured independently. This compartmentalization min-

imizes the risk of a security breach affecting the entire system. Addition-

ally, microservices allow for easier and more frequent security patches.

However, the distributed nature of microservices can also introduce new

security challenges. The increased number of communication points be-

tween services can create and increase the attack vectors, making it es-

sential to ensure that all endpoints are secure. Thus, while microservices

can enhance security through modularity and flexibility, they require ro-

bust security practices to mitigate the risks associated with a distributed

system. Securing communications with mutual authentication, encrypt-

ing all data at rest and architectural patterns that increase reliability

such as circuit breaker are some of the mentioned essential security prac-

tices that have been mentioned in this paper and that every microservice

user must follow. In addition to these practices, academia and industry

should invest in researching modern attack vectors. Secure implementa-

tion of service discovery and registry components and open-sourcing the

infrastructures and services of cloud providers are two important steps in

that direction.

6 Conclusion

This paper surveys the security of microservices, categorizing the asso-

ciated challenges and presenting solutions and best practices for adopt-

ing a microservice architecture. Some of the mentioned challenges are

previously known issues amplified in a microservice architecture due to

the increased attack surface. However, most of the challenges described

in this paper are new vulnerabilities unique to microservices, the cloud

and serverless environments. Microservice users and cloud providers can

both benefit from the provided solutions. With the increased usage of this

paradigm in critical applications, it is essential for researchers to provide

solutions and for the industry to implement and utilize them in their ap-

plications.

References

[1] Thomas Brewster. Massive intel vulnerabilities just landed – and every pc
user on the planet may need to update, Jan 2018.

[2] Gabrial Brown. Service-based architecture for 5g core networks. Huawei

White Paper, 1, 2017.

[3] Cilium. [online]. https://github.com/cilium/cilium. Accessed: 2023-04-07.

[4] Catherine de Weever and Marios Andreou. Zero trust network security
model in containerized environments. University of Amsterdam: Amster-
dam, The Netherlands, 2020.

[5] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Maz-
zara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices:
yesterday, today, and tomorrow. Present and ulterior software engineering,
pages 195–216, 2017.

[6] Christof Fetzer. Building critical applications using microservices. IEEE
Security & Privacy, 14(6):86–89, 2016.

[7] Martin Fowler. [online]. https://martinfowler.com/articles/microservices.html.
Accessed: 2023-04-07.

[8] Hubble. [online]. https://github.com/cilium/hubble. Accessed: 2023-04-07.

[9] Istio. [online]. https://github.com/istio/istio. Accessed: 2023-04-07.

[10] Pooyan Jamshidi, Claus Pahl, Nabor C Mendonça, James Lewis, and Stefan
Tilkov. Microservices: The journey so far and challenges ahead. IEEE
Software, 35(3):24–35, 2018.

[11] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
et al. Spectre attacks: Exploiting speculative execution. Communications
of the ACM, 63(7):93–101, 2020.

[12] Kubernetes. [online]. https://github.com/kubernetes/kubernetes. Accessed:
2023-04-07.

[13] Eduard Marin, Diego Perino, and Roberto Di Pietro. Serverless computing:
a security perspective. Journal of Cloud Computing, 11(1):1–12, 2022.

[14] Nuno Mateus-Coelho, Manuela Cruz-Cunha, and Luis Gonzaga Ferreira.
Security in microservices architectures. Procedia Computer Science, 181:1225–
1236, 2021.

[15] Vasilios Mavroudis, Andrea Cerulli, Petr Svenda, Dan Cvrcek, Dusan Klinec,
and George Danezis. A touch of evil: High-assurance cryptographic hard-
ware from untrusted components. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 1583–1600,
2017.

[16] Christian Otterstad and Tetiana Yarygina. Low-level exploitation miti-
gation by diverse microservices. In Service-Oriented and Cloud Comput-
ing: 6th IFIP WG 2.14 European Conference, ESOCC 2017, Oslo, Norway,
September 27-29, 2017, Proceedings 6, pages 49–56. Springer, 2017.

[17] Long Sun, Yan Li, and Raheel Ahmed Memon. An open iot framework
based on microservices architecture. China Communications, 14(2):154–
162, 2017.

[18] Yuqiong Sun, Susanta Nanda, and Trent Jaeger. Security-as-a-service for
microservices-based cloud applications. In 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom), pages
50–57. IEEE, 2015.

[19] Yuval Yarom and Katrina Falkner. Flush+ reload: A high resolution, low
noise, l3 cache side-channel attack. In 23rd {USENIX} Security Sympo-
sium ({USENIX} Security 14), pages 719–732, 2014.

[20] Tetiana Yarygina and Anya Helene Bagge. Overcoming security challenges
in microservice architectures. In 2018 IEEE Symposium on Service-Oriented
System Engineering (SOSE), pages 11–20. IEEE, 2018.

[21] Dongjin Yu, Yike Jin, Yuqun Zhang, and Xi Zheng. A survey on security
issues in services communication of microservices-enabled fog applications.
Concurrency and Computation: Practice and Experience, 31(22):e4436, 2019.

An Overview on Extended Reality for the
Internet of Senses

Patrik Mäki
patrik.maki@aalto.fi

Tutor: Nassim Sehad

Abstract

This paper presents an overview of the use of different senses like haptic,

scent, and taste in virtual and augmented reality, the main applications

for those, and the current state of the related standardization work.

KEYWORDS: Virtual reality, augmented reality, haptic, Internet of Senses,

Metaverse

1 Introduction

Real-world experience can be improved by the use of virtual technologies.

Virtual reality (VR) creates an artificial environment from the physical

one, whereas augmented reality (AR) improves physical reality by adding

artificial elements [20]. Audio-visual senses have been classically used in

virtual and augmented realities. Traditional use cases for these have been

in the industry, military, and entertainment. To improve the experience of

these extended virtualities, other senses like touch, temperature, motion,

smell, or taste could be used. The added senses enable new opportunities

for immersive experiences [5].

Critical challenges in extending virtual reality are the devices that would

allow users to receive and transmit feedback on this new information. The

other challenge is the network technologies with low latency so that data

can be quickly transmitted, for example, in the case of remote sensing,

where one can experience real-world physical objects using senses like

touch. Additionally, the synchronization of multiple sensorial experiences

needs to be solved [4].

The physical world events must be measured, digitized, and reproduced

or rendered to use different senses for virtual reality systems. The tra-

ditional audio-visual senses can be digitized using cameras and micro-

phones and reproduced using display and speaker systems. The haptic

senses, which refer to thermal-kinetic physical events, can be digitized

using thermal and electromechanical sensors and reproduced using elec-

trically controlled mechanical devices [17]. The scent senses measure-

ments, and digitization can be done using electrochemical sensors and

reproduced using electronically controlled chemical odor release systems

[24]. The taste senses can be measured using a combination of thermal,

chemical, and electrical sensors and reproduced with a similar combina-

tion of thermal, electric, and chemical release mechanisms [29].

Different combinations of the senses can also be used together. For ex-

ample, the haptic senses can enhance the audio-visual experience or all

together, as in a 1962 Sensorama system that combined 3D movie, physi-

cal vibrations, wind, and smell of odors [5].

In order to evaluate the practical possibilities for extended senses use in

virtual reality, this paper discusses the technologies and their availabil-

ity. Furthermore, the protocol and data formats standardization state is

also covered, as creating compatible data providers, servers, and clients

is vital.

This paper summarizes the current research and the emergence of tech-

nologies that will allow the realization of extended virtual reality for se-

lected senses. Section 2 of this paper presents the technologies needed

for extended virtual reality. Section 3 presents the emerging standards

available for the Internet of Senses. Section 4 describes a few of the most

revolutionary applications utilizing the virtual senses. Finally, section 5

summarizes and concludes this paper.

2 Senses and technologies

2.1 Haptic senses

In addition to audio-visual senses, touch sense and movement via a haptic

system could be the next most important virtual sense. The haptic sys-

tem means the use of sensory information from movement and thermal

receptors from the skin together with other biological movement recep-

tors from muscles and joints. This allows humans to get feedback from

physical stimuli like touch, movement, wind, and pressure [17, 3, 35, 1].

Some forms of haptic feedback systems have been used historically when

using remote-operated robotic or mechanical hands to process dangerous

chemicals or materials. In order to utilize proper haptic sensory two-way

transmission is needed. The user may introduce movement or pressure

and should be replied back with a sense of backpressure, friction, move-

ment, temperature, or vibration, as a few examples. All these senses

should be measured, transmitted, and reproduced. Perhaps the first typ-

ical example used in virtual reality is haptic gloves which allow the user

to transmit movement and relay back feedback.

Haptic data can be measured using physical sensors like piezo-electric

vibration, 3D motion, temperature, wind, and pressure sensors. Addition-

ally, data can be produced using automatic audio-visual data analysis. For

example, low-frequency sound can be used to produce vibration effects or

by manually producing the data based on the content [5]. The data can

then be reproduced for the user by using a combination of mechanical vi-

brators, motors, air blowers, and heat cells, which can be either wearable

interfaces like gloves, jackets, or even suits, platforms like chairs or floors,

or special devices like force-feedback joystick [10].

2.2 Scent

Sense of scent is another interesting but challenging topic to cover in vir-

tual reality. In theory, odor digitalization would require chemical gas chro-

matography and mass spectrometry analysis so that compositions of odors

could be classified to the original chemical compounds [22]. Then a device

that could produce the typical combinations of the chemical compounds

could be used to produce odors.

In practice, a digital analyzer, i.e., an electronic nose, is used to collect

and analyze sets of different odors. The electronic nose can have multi-

ple sensors capable of detecting different chemicals related to scents. The

production of scents is called a digital scent synthesizer. Early prototypes

of these were created in the 1960s, and since 1999 there were products

available that could produce odors by combing 128 basic odors. In ad-

dition, chemical scents and additional stimuli like electrical stimulation

with different frequencies have been researched to maximize the effects

of smell [24].

There have been a few companies attempting to produce commercial

Solutions, but some of the first ones have already closed their businesses.

Currently, there are some commercial products to produce a digital smell,

like Olorama Technology Inc products that produce about 200 different

scents [12]. Another product is available from OVR Technology, which

uses eight aromas to produce different kinds of odors that can be added to

the VR experience [13].

However, there are challenges in using artificial scents; the scent is a

very subjective sense, and different people have a different level of toler-

ance of scents [26]. Also, some people may be sensitive to certain odors,

and the use of these odors could become a health issue due to allergies.

2.3 Taste

The taste is also a possible but technically challenging feature to be added

to the Internet of Senses. The human taste sense is based on a combina-

tion of tongue and nose scent receptors. The taste receptors can detect

five main types of tastes: sweetness, sourness, saltiness, bitterness, and

savoriness [6]. Additionally, the food odor is part of the taste sensation.

Also, the human tongue can detect the surface and temperature of the

food. For a complete artificially produced taste experience, all of these

factors should be taken into account.

Like in scents, a digital analyzer, i.e., an electronic tongue and synthe-

sizer or virtual taste, is needed to measure and produce the components of

taste. One research prototype of a taste synthesizer has been developed at

Meiji University [19], which produces different tastes using five different

gels and can be controlled electrically. Another research prototype was de-

veloped at Zhejiang University called E-Taste, which uses a combination

of electrical and thermal simulation to trigger different basic tastes [29].

Commercial electronic tongue products are available, and they are used

as analytical instruments in the agricultural and pharmaceutical indus-

try like Astree Electronic Tongue from SA Alpha MOS France [28]. How-

ever, commercial products for virtual taste are still in the early stages.

3 Applications

3.1 Industrial

In industry, the already existing remote mechanical movement applica-

tions can be extended so that experts don’t need to necessarily move for

examing mechanics but can use remotely operated mechanical actuators

with virtual gloves.

3.2 Medical

In medical applications, there are already remote surgery applications

available used in training, simulation, and operational cases. These use

a combination of visual and haptic sensors to allow surgeons to remotely

operate robot hands or other medical instruments when performing surgi-

cal operations or other great accuracy-required operations. This currently,

however, requires that both doctor and patient must go to the specialist

hospital which has the equipment for this kind of operation. In the future,

perhaps we could see possibilities of wearing special haptic clothes, which

would allow doctors to examine patients remotely.

Safety and usability are very important for medical solutions, and in or-

der to measure those in virtual reality-based systems, a set of evaluation

metrics needs to be defined. These can be categorized into "haptic feed-

back fidelity, stability, real-time performance, and user-friendliness" [18].

In the case of technical performance metrics, these relate to latency, data

update frequency, and error to check the accuracy of medical operations

like the drilling of a tooth.

3.3 Entertainment

Entertainment applications have been one of the first use cases for re-

alizing the additional senses. There have been attempts to produce an

enhanced movie experience with a 4D movie, where vibrations and move-

ment have been added to the viewer’s seats. Also, there was an attempt to

create a personal viewer experience with movement, airflow, and selected

odors in 1962 with Sensorama products. This project was not a success as

it was a bulky large personal device, the movies lasted only 10 minutes,

and it did not get funding. Lately, the improvements and cost reduction

of haptic devices have allowed the use of remote sensing to be applied to

individual users [5].

3.4 Remote presence

Perhaps the largest scoped application for extended virtual reality is a

remote presence experience [14]. This allows a multitude of professional

and free time use cases like traveling to hazardous areas with the possi-

bility of controlling the feedback on remote sensing as well as simulation

of different locations or experiences. Another practical use case is to use

this to improve training and education to experience disabilities or the

impact of different ages on senses.

3.5 Metaverse

A concept called Metaverse utilizes virtual and augmented reality and en-

ables multisensory experience [21]. The Metaverse combines Internet and

Social connections and improves the experience with the use of Virtual

and Augmented reality technologies. The Metaverse has been advertised

by Facebook’s creator Meta Inc.

Metaverse attempts to create a new way of experiencing the Internet.

One use case is to improve traditional online 2D learning experiences

that suffer from a lack of real human interaction. Metaverse would pro-

vide virtual human interaction that rivals real human interaction. The

Metaverse could be implemented as a combination of massively multi-

player online games (MMO) and real-world AR. There are currently sev-

eral challenges to adopting the Metaverse, like the high cost of user equip-

ment which may be reduced in the future, physical risks due to focused

attention to the virtual world leading to accidents, information overload

causing psychological challenges, and moral, privacy, and security risks.

There are also health concerns with 3D and VR effects causing motion

sickness symptoms, head and neck pain due to the heavy weight of VR

headsets, and the risk of social isolation.

4 Standards

In order to create solutions with different products, the interoperability

between servers, clients, and devices should be standardized for formats

and protocols. The requirements for standards of VR and AR could be

considered being: low latency, high throughput, security, and configurable

reliability. Interoperability could also be considered a requirement in the

future, but so far, it seems to be so that solutions are developed by a single

company or organization, and interoperability has not been focused on.

To understand the current state of standardization, a literature study

can be done on several standardization bodies like ISO, IEEE, IETF, ITU,

and W3C organizations:

• ISO/IEC group has specified MPEG-V Media context and control ar-

chitecture standard as ISO/EIC 23005. This standard provides archi-

tecture and specifications for representing the data for interoperability

between virtual and real worlds using XML. [7].

• IEEE has a working group for Virtual and Augmented Reality, but the

standards are still in the early phase [25, 11]. IEEE has also published a

group of standards for interfacing the cyber and physical works in IEEE

2888, which define a set of sensor and actuator interfaces [36].

• ITU group has also published recommendations on AR, VR, and XR

related to Quality of experience in P.1320 [32], G.1036 [31] and Testing

in Q.4066 [30] documents.

• IETF has a few drafts on AR and VR transport and use case topics

[16, 9]. However, there are applicable standards for using AR and VR

data transfers like RTP and RTPS.

• W3C has incorporated work on VRTP and VRML from the end of the

1990s, but those have not had much attention lately [34]. Currently,

there is a working group on immerse web that covers AR and VR topics

[33].

• NIST has formed an Extended Reality Community of Interest to im-

prove the collaboration of researchers in different NIST laboratories

[23].

• Khronos group (the group behind OpenGL) has specified OpenXR de-

veloper API (not a protocol) for AR and VR systems [8].

4.1 Data transfer

Audiovisual data transfers are typically done using some form of stream

encoders like MPEG-4/H.264 or MPEG-H/H.265 and low latency transfer

protocols like RTP/RTSP or WebRTC family over UDP [2]. The informa-

tion for other senses can be compacted with smaller structural data that

could be presented in JSON or XML or binary variants of those. The in-

formation can then be transferred using some form of message protocol

like MQTT, which is also used in IoT applications [27] or included in the

video stream as additional metadata like is possible with MPEG-V [15]

using XML encoded data.

The MPEG-V with presentation timestamps could be used to solve the

problem of synchronizing multiple sensorial experiences, at least when

personal devices are used [4].

Example of the MPEG-V XML data looks like [5]:

<sedl:SEM>

<sed:Effect xsi="sev:RigidBodyMotionType" si:pts="1593000">

<sev:MoveToward distance="200" acceleration="30"/>

</sed:Effect>

<sedl:GroupOfEffects si:pts="1647000">

<sedl:Effect xsi:type="sev:VibrationType"

intensity-range="0 100" intensity-value="10"/>

<sedl:Effect xsi:type="sev:WindType"

intensity-range="0-100" intensity-value="5"/>

</sedl:GroupOfEffects>

</sedl:SEM>

Listing 1. An example of MPEG-V XML event

The example above describes timestamped (pts) effects which simulate

movement by triggering body motion, vibration, and wind. This kind of

event could be used together with a movie if a suitable VR/AR headset or

chair is used, which can produce these effects.

5 Conclusion

This paper covered a summary of the current research and the technolo-

gies useful for extending virtual reality from traditional audio-visual ex-

perience with additional senses like haptic, scent, and taste. Also, the

standardization efforts for using these additional senses in virtual reality

were covered. The additional senses most realized are the haptic senses.

The taste senses still lack commercially available products. Also, both

scent and taste are individual and subjective experiences, so it is chal-

lenging to normalize these to match personal preferences.

There are several use cases for extending virtual reality with additional

senses, including technology, the medical industry, and entertainment.

The haptic senses are in use in several applications to provide the capa-

bility of remote sensing. In the case of the medical industry, there are

also critical metrics that have to be measured and validated to ensure

safety. However, the limited progress in standardization, cost of products,

and subjective attitude have been limiting the use of the additional senses

beyond the haptic senses.

Based on the literature review, there have been several standardiza-

tion attempts to describe the virtual senses, which some have already

been obsoleted, like W3C VRML. However, the most prominent standard

for describing the presentation of the additional senses is MPEG-V. The

MPEG-V allows additional metadata to be included in XML format that

can be embedded into the audio-visual data stream.

In summary, the early stages of research, cost of devices, lack of realized

standards, and user acceptance are still preventing the wider use of new

senses like scent and taste for virtual reality.

References

[1] M. Azmandian, M. Hancock, H. Benko, E. Ofek, and A. Wilson. Haptic
retargeting: Dynamic repurposing of passive haptics for enhanced virtual
reality experiences. In Proceedings of the 2016 chi conference on human
factors in computing systems, pages 1968–1979, 2016.

[2] N. Blum, S. Lachapelle, and H. Alvestrand. Webrtc: Real-time communica-
tion for the open web platform. Commun. ACM, 64(8):50–54, jul 2021.

[3] S. Brewster and R. Murray-Smith. Haptic human-computer interaction:
First international workshop, glasgow, uk, august 31-september 1, 2000, pro-
ceedings, volume 2058. Springer, 2003.

[4] A. Covaci, L. Zou, I. Tal, G. Muntean, and G. Ghinea. Is multimedia mul-
tisensorial? - a review of mulsemedia systems. ACM Comput. Surv., 51(5),
sep 2018.

[5] F. Danieau, A. Lecuyer, P. Guillotel, J. Fleureau, N. Mollet, and M. Christie.
Enhancing audiovisual experience with haptic feedback: A survey on hav.
IEEE Transactions on Haptics, 6(2):193–205, 2013.

[6] Institute for Quality and Germany Efficiency in Health Care, Cologne, 2016.

[7] International Organization for Standardization. ISO/IEC 23005 media con-
text and control. Standard, 2020.

[8] Khronos Group. Openxr. https://www.khronos.org/api/index_2017/openxr.

[9] L. Han and K. Smith. Problem statement: Transport support for aug-
mented and virtual reality applications. Internet-Draft draft-han-iccrg-
arvr-transport-problem-01, IETF Secretariat, March 2017.

[10] Y. Huang, K. Yao, J. Li, D. Li, H. Jia, Y. Liu, C. Yiu, W. Park, and X. Yu.
Recent advances in multi-mode haptic feedback technologies towards wear-
able interfaces. Materials Today Physics, 22:100602, 2022.

[11] IEEE. IEEE 2048 VR/AR working group.

[12] Olorama Inc. Olorama web page. https://www.olorama.com/.

[13] OVR Technology Inc. Ovr technology web page. https://ovrtechnology.com/.

[14] K. Kilteni, R. Groten, and M. Slater. The sense of embodiment in virtual
reality. Presence: Teleoperators and Virtual Environments, 21(4):373–387,
2012.

[15] J. Kim, Y. Kim, and J. Ryu. MPEG-V standardization for haptically inter-
acting with virtual worlds. In 2013 World Haptics Conference, pages 55–60,
2013.

[16] R. Krishna and A. Rahman. Media operations use case for an extended
reality application on edge computing infrastructure. Internet-Draft draft-
ietf-mops-ar-use-case-09, IETF Secretariat, November 2022.

[17] S Lederman and R. Klatzky. Haptic perception: A tutorial. Attention,
perception, and psychophysics, 71:1439–59, 10 2009.

[18] A. Lungu, W. Swinkels, L. Claesen, P. Tu, J. Egger, and X. Chen. A review
on the applications of virtual reality, augmented reality and mixed reality
in surgical simulation: an extension to different kinds of surgery. Expert
Review of Medical Devices, 18(1):47–62, 2021. PMID: 33283563.

[19] H. Miyashita. Norimaki synthesizer: Taste display using ion electrophore-
sis in five gels. In Extended Abstracts of the 2020 CHI Conference on Human
Factors in Computing Systems, CHI EA ’20, page 1–6, New York, NY, USA,
2020. Association for Computing Machinery.

[20] L. Muñoz-Saavedra, L. Miró-Amarante, and M. Domínguez-Morales. Aug-
mented and virtual reality evolution and future tendency. Applied Sciences,
10(1), 2020.

[21] S. Mystakidis. Metaverse. Encyclopedia, 2(1):486–497, 2022.

[22] T. Nakamoto, M. Ohno, and Y. Nihei. Odor approximation using mass spec-
trometry. IEEE Sensors Journal, 12(11):3225–3231, 2012.

[23] National Institude of Standards and Technology. Extended reality at nist.
https://www.nist.gov/information-technology/extended-reality.

[24] D. Panagiotakopoulos, G. Marentakis, R. Metzitakos, I. Deliyannis, and
D. Dedes. Digital scent technology: Toward the internet of senses and the
metaverse. IT Professional, 24(3):52–59, 2022.

[25] C. Perey. Open and interoperable augmented reality and the ieee [stan-
dards]. IEEE Consumer Electronics Magazine, 4(4):133–135, 2015.

[26] A. Sabiniewicz, E. Schaefer, C. Guducu, C. Manesse, M. Bensafi, N. Krasteva,
G. Nelles, and T. Hummel. Smells influence perceived pleasantness but not
memorization of a visual virtual environment. i-Perception, 12(2), 2021.

[27] L. Suzuki, K. Brown, S. Pipes, and J. Ibbotson. Smart building manage-
ment through augmented reality. In 2014 IEEE International Conference
on Pervasive Computing and Communication Workshops (PERCOM WORK-
SHOPS), pages 105–110, 2014.

[28] Y. Tahara and K. Toko. Electronic tongues–a review. IEEE Sensors Journal,
13(8):3001–3011, 2013.

[29] A. Ullah, Y. Liu, Y. Wang, H. Gao, H. Wang, J. Zhang, and G. Li. E-taste:
Taste sensations and flavors based on tongue’s electrical and thermal stim-
ulation. Sensors, 22(13), 2022.

[30] International Telecommunication Union. ITU-T Q.4066 testing procedures
of augmented reality applications. Recommendation, 2020.

[31] International Telecommunication Union. ITU-T G.1036 quality of experi-
ence influencing factors for augmented reality services. Recommendation,
2022.

[32] International Telecommunication Union. ITU-T P.1320 quality of experi-
ence assessment of extended reality meetings. Recommendation, 2022.

[33] W3C. Immerse web working group. https://www.w3.org/immersive-web/.

[34] W3C. Vrml virtual reality modeling language. https://www.w3.org/MarkUp/VRML/.

[35] C. Wee, K. Yap, and W. Lim. Haptic interfaces for virtual reality: Challenges
and research directions. IEEE Access, 9:112145–112162, 2021.

[36] K. Yoon, S. Kim, S. Jeong, and J. Choi. Interfacing cyber and physical
worlds: Introduction to ieee 2888 standards. In 2021 IEEE International
Conference on Intelligent Reality (ICIR), pages 49–50, 2021.

Profiling stencil computations for GPUs
using Astaroth library

Pawel Strozanski
pawel.strozanski@aalto.fi

Tutor: Maarit Korpi-Lagg

Abstract

Computational science is a field more and more reliant on GPUs, primar-

ily due to physical limitations in the development of general-purpose CPUs.

Even though GPU programming comes with its own set of challenges, it

has brought significant performance improvements, with NVIDIA hard-

ware and software stacks dominating the landscape of high performance

computing. However, that dominance may not last long, as AMD has en-

tered the market with their set of data center oriented GPUs, which have

been warmly welcomed by supercomputers all around the world.

In this work, we compare the performance of NVIDIA and AMD GPUs in

a particular application – stencil computations. We outline the background

behind the CPU vs GPU matter in scientific computing, as well as explain

the idea of stencil computations and the underlying Astaroth library. Then,

we describe the methodology of the experiment. Finally, we provide and

comment on the experiment results.

KEYWORDS: stencil computations, Astaroth library, GPU performance

profiling, accelerator platforms

1 Introduction

In the past, the world of scientific computing has been primarily re-

volving around single-core, general-purpose CPUs. At the time, it was

believed that processor speeds would keep doubling every 18 months, pro-

viding consistent improvements in high-performance computing (HPC)

[1]. This stopped holding true as early as 2004, when CPU manufacturers

encountered a “power wall” – the amount of power needed to be dissipated

prevented the clock speeds from rising indefinitely [2, 3]. The universally

accepted solution to this problem was acknowledging the clock speed limit

and instead shifting towards a parallel, multi-core paradigm [4].

Because scientific computing processes, especially physics simulations,

are able to take advantage of the parallelism offered by multi-core pro-

cessors, a simple truth arises: the more cores, the better. State-of-the-art

CPUs can have up to 96 physical cores [5], providing a significant edge

in parallel operations. However, the quest for improving performance is

an unending one, and scientists have been looking outside the realm of

general-purpose processors, focusing on graphics processing units. Mod-

ern GPUs can have upwards of 15000 cores capable of executing arith-

metic instructions in parallel, memory throughputs vastly superior to

these of CPUs [6], and be noticeably more cost- and space-efficient than

equivalent general-purpose processor clusters [7].

Importantly, modern GPUs can be programmed using frameworks such

as CUDA Toolkit (for NVIDIA GPUs) or ROCm (for AMD GPUs) to run

the scientific computations on these highly parallel processors [8]. For the

most part, NVIDIA’s hardware and software stack has been the primary

choice for HPC due to its maturity and lack of similar well-developed al-

ternatives [9]. However, as AMD accelerators have recently started to

emerge into the market, their ecosystem could become a promising con-

testant for the long-standing NVIDIA dominance [9]. In fact, at the time

of writing, the first and third supercomputers (by performance, according

to the TOP500 list) are powered by AMD hardware [10]. Hence, it is desir-

able to conduct studies on how the ROCm framework compares to CUDA

in terms of performance, efficiency and ease-of-use.

In this paper, we compare the performance of both NVIDIA and AMD

accelerators in a scientific computing usage. Our objective is to verify

whether the hardware from both companies is on comparable performance

levels, and if not, how large is the gap between them.

This paper is structured as follows: in section 2, we introduce the neces-

sary background on scientific computing. Section 3 outlines the method-

ology and expectations of the experiment. In section 4, we present, inter-

pret, and discuss the results. Finally, in section 5, we provide concluding

remarks.

2 Stencil computation on a GPU

In the past, GPUs were strictly designed as expansion cards for per-

forming expensive graphics-related operations. With time, however, they

became hugely powerful devices with thousands of parallel cores and gi-

gabytes of high-speed memory. Software frameworks (e.g. CUDA Toolkit)

have been developed to enable the possibility of running arbitrary com-

putations on these coprocessors, and the scientific community has been

quick to take advantage of the new possibilities.

The high throughput provided by GPUs is utilised not only in graphics-

related fields, but also in common scientific applications, such as machine

learning, linear algebra or differential equation solving [11]. This, in

turn, accelerates various physics simulations, which are the foundations

of modern computational sciences, including molecular and fluid dynam-

ics, bioinformatics, and magnetohydrodynamics [11, 12, 13]. The possi-

bilities are endless; in this paper, however, we will focus on a specific

application – stencil computations.

A stencil is a particular type of recurring operation which accepts a

multidimensional array and updates each element by performing some

computation, taking variable amounts of neighbouring elements elements

into account [14]. Stencil functions are widely used in physical simula-

tions [13], and thanks to their structure stencils efficiently lend them-

selves to parallelisation on multi-core platforms. Here GPUs take the

podium – thousands of cores and memory throughput in the range of hun-

dreds of gigabytes per second make them ideal candidates for accelerating

stencils [14].

That is not to say, however, that GPU programming is without chal-

lenges.

2.1 Domain-specific languages

Up until this point we have essentially presented GPU accelerators as

highly parallel processors, however the reality is that achieving signifi-

cant performance improvements over CPUs is a difficult process which

requires expertise in several fields.

First, writing code for execution on a GPU necessitates the usage of

platform-specific language extensions (CUDA for NVIDIA, HIP for AMD).

Already at this point, the entry barrier is relatively high as these exten-

sions are designed to work with low-level programming languages such

as C or C++. Knowledge of these languages is therefore required.

Second, not all GPUs are made equal. Different models have varying

parameters (e.g. thread count per block or preferred memory access pat-

terns) and writing efficient, optimised code requires detailed knowledge

about the target hardware [13]. This also creates difficulties when the

code needs to be ported onto a different GPU – very often a reimplementa-

tion of the program is unavoidable in order to preserve high performance

on new hardware [15, 16].

While neither of these problems in isolation is an insurmountable one,

it is quite unreasonable to expect scientific researchers to not only design

the mathematical foundations of their simulations, but also familiarise

themselves with low-level programming and intricate details of the un-

derlying hardware. These hurdles can be alleviated by using a domain-

specific language (DSL) instead of GPU manufacturer’s native language

(e.g. CUDA). By focusing on a particular subset of GPU features and func-

tion types (e.g. stencils), a DSL enables writing simpler, more expressive

code while avoiding hardware-specific optimisation quirks and still pre-

serving most of the native-level performance [13, 17].

This paper focuses on one particular software library called Astaroth

[13], which focuses on stencil computations and features a high-level DSL

designed for writing stencil functions, as well as a compiler for the DSL

that delivers “near handtuned performance” [18]. While the initial itera-

tions of Astaroth targeted exclusively CUDA (that is, NVIDIA hardware),

recently focus has been shifted to also include support for HIP (AMD hard-

ware). This, combined with the fact that more and more supercomputers

are featuring AMD GPUs, warrants conducting practical experiments to

answer the question: right now, are AMD GPUs able to compare with

NVIDIA’s hardware in stencil computation?

3 The experiment

The experiment will be conducted using Astaroth. With the library

comes a set of benchmarking tools, one of which (benchmark-device) is

ideal for testing single-GPU performance in stencil computation. We will

run the benchmark on the Triton computing cluster, which features sev-

eral models of modern NVIDIA GPUs as well as an AMD Instinct MI100

[19], and compare the run times between different hardware.

The three GPUs selected for testing are NVIDIA Volta V100 (PCIe,

32 GB), NVIDIA Ampere A100 (SXM, 80 GB) and AMD Instinct MI100

(PCIe, 32 GB). At the time of writing, these models are the most modern

offerings of Aalto Triton, making them reasonable candidates for compar-

ison.

In the table below, we present the GPU specifications according to their

corresponding manufacturer’s datasheets [20, 21, 22]. It is, however, im-

portant to note that the claimed performance figures have been achieved

in synthetic benchmarks (based on tasks related to machine learning) and

thus may not represent the results obtained in Astaroth, which is largely

a different type of algorithm.

GPU model Cores FP64 performance FP32 performance

NVIDIA V100 5120 7 TFLOPS 14 TFLOPS

NVIDIA A100 7936 9.7 TFLOPS 19.5 TFLOPS

AMD MI100 7680 11.5 TFLOPS 23.1 TFLOPS

3.1 Methodology

When compiling Astaroth, there are certain parameters that can be fine-

tuned in order to attempt to achieve the best performance on a particu-

lar piece of hardware. Normally one would not adjust these parameters

manually, but as we are trying to compare two very different GPU archi-

tectures, the optimal values are likely to differ between each architecture.

The two parameters in question are:

• Maximum threads per block1. By default this value is set to 0, which

leaves certain parts of GPU code optimization to the compiler. We will

test the default as well as override it with custom values between 64

and 1536, in increments of 32 threads.

1This corresponds to Astaroth’s MAX_THREADS_PER_BLOCK compile-time macro.

• Caching strategy2. Astaroth allows us to choose either implicit (the

default) or explicit caching. We will test both.

Since adjusting the aforementioned parameters requires recompiling

Astaroth, we have prepared scripts to automate the testing process3. The

repository also contains all intermediate and post-processing results.

Finally, we should also mention that the benchmark-device tool accepts

the input mesh dimensions as command-line arguments. For this exper-

iment we have rather arbitrarily chosen a mesh size of 192 in all dimen-

sions – a value large enough to stress the GPUs, but not too large in order

for the tests to complete in a reasonable amount of time.

4 Results

The results of the experiment are presented in the figures below. For

each device, the best result has been recorded into the table along with

the corresponding value for the maximum threads per block.

GPU model Best run; implicit caching Best run; explicit caching

NVIDIA V100 7.3 ms (TPB = 0) 33.2 ms (TPB = 768)

NVIDIA A100 3.3 ms (TPB = 0) 17.6 ms (TPB = 928)

AMD MI100 10.4 ms (TPB = 512) 111.5 ms (TPB = 1440)

Looking at the table, two observations become obvious. First, the ex-

plicit caching variant performed significantly worse than implicit caching.

As the graphs below demonstrate, for some values of maximum threads

per block explicit caching was in fact faster, however it does not negate

the fact that the best results were always achieved with implicit caching.

Second, and more importantly, AMD MI100 did not perform as well as

NVIDIA devices in this test, despire theoretically being the fastest out of

the three tested GPUs. In fact, with the default TPB = 0 the AMD device

achieved even worse result of 20.5 ms; manual tuning of the parameter

halved that time, but it still did not come close to the competitors’ results.

For completeness, we also present charts showing the performance of

each device on all intermediate values of maximum threads per block.

2This corresponds to Astaroth’s IMPLEMENTATION compile-time macro.
3https://github.com/Taikelenn/astaroth-testing

128 256 384 512 640 768 896 1024 1152 1280 1408

2

5

10

20

50

100

Maximum threads per block

A
ve

ra
ge

ru
n

ti
m

e
[m

s]

NVIDIA V100, implicit caching
NVIDIA A100, implicit caching
AMD MI100, implicit caching

Figure 1. Average run time for various values of maximum threads per block. Caching
strategy is set to implicit caching. Lower values are better.

128 256 384 512 640 768 896 1024 1152 1280 1408

10

20

50

100

150

200

Maximum threads per block

A
ve

ra
ge

ru
n

ti
m

e
[m

s]

NVIDIA V100, explicit caching
NVIDIA A100, explicit caching
AMD MI100, explicit caching

Figure 2. Average run time for various values of maximum threads per block. Caching
strategy is set to explicit caching. Lower values are better.

5 Conclusion

This experiment has shown that while AMD GPUs certainly can be used

with Astaroth, their performance is less than ideal. The closest NVIDIA

competitor to AMD MI100 is the Ampere A100, which in this particular

setting has achieved three times faster run times.

It is imperative to remind, however, that this experiment does not demon-

strate overall superiority of NVIDIA GPUs over AMD. Such a conclusion

could only be reached by comparing algorithms implemented natively on

both platforms. Astaroth was initially designed for NVIDIA devices, and

as of today it generates CUDA code which is only then converted to HIP –

a bias towards NVIDIA hardware should not be surprising.

Astaroth is currently seeing active development in an attempt to im-

prove compatibility and performance on AMD hardware. Therefore, even

if NVIDIA is currently the go-to platform for stencil computations with

Astaroth, we should hope for AMD GPUs to become more and more viable

candidates in the near future.

References

[1] H. Sowizral, “Scene graphs in the new millennium,” IEEE Computer Graph-
ics and Applications, vol. 20, no. 1, pp. 56–57, 2000.

[2] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,
N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A
view of the parallel computing landscape,” Commun. ACM, vol. 52, p. 5667,
Oct 2009.

[3] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger,
“Power limitations and dark silicon challenge the future of multicore,” ACM
Trans. Comput. Syst., vol. 30, Aug 2012.

[4] P. F. Gorder, “Multicore processors for science and engineering,” Computing
in Science and Engineering, vol. 9, no. 2, pp. 3–7, 2007.

[5] Advanced Micro Devices, Inc. https://www.amd.com/en/products/cpu/am
d-epyc-9654, 2022. [Online; accessed 2023-01-30].

[6] NVIDIA Corporation. https://resources.nvidia.com/en-us-tensor-cor
e, 2022. [Online; accessed 2023-01-30].

[7] V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Showerman, G. W. Arnold, J. E.
Stone, J. C. Phillips, and W.-m. Hwu, “GPU clusters for high-performance
computing,” in 2009 IEEE International Conference on Cluster Computing
and Workshops, pp. 1–8, 2009.

[8] M. Papadrakakis, G. Stavroulakis, and A. Karatarakis, “A new era in scien-
tific computing: Domain decomposition methods in hybrid CPU-GPU ar-
chitectures,” Computer Methods in Applied Mechanics and Engineering,
vol. 200, no. 13, pp. 1490–1508, 2011.

[9] K. Shafie Khorassani, J. Hashmi, C.-H. Chu, C.-C. Chen, H. Subramoni,
and D. K. Panda, “Designing a ROCm-aware MPI library for AMD GPUs:
Early experiences,” in High Performance Computing, (Cham), pp. 118–136,
Springer International Publishing, 2021.

[10] TOP500 Supercomputer List. https://www.top500.org/lists/top500/20
22/11/, 2022. [Online; accessed 2023-02-01].

[11] G. Pratx and L. Xing, “GPU computing in medical physics: A review,” Med-
ical Physics, vol. 38, no. 5, pp. 2685–2697, 2011.

[12] M. C. Schatz, C. Trapnell, A. L. Delcher, and A. Varshney, “High-throughput
sequence alignment using graphics processing units,” BMC Bioinformatics,
vol. 8, p. 474, Dec 2007.

[13] J. Pekkilä, “Astaroth: A Library for Stencil Computations on Graphics Pro-
cessing Units,” Master’s thesis, Aalto University. School of Science, 2019.

[14] P. S. Rawat, M. Vaidya, A. Sukumaran-Rajam, A. Rountev, L.-N. Pouchet,
and P. Sadayappan, “On optimizing complex stencils on GPUs,” in 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pp. 641–652, 2019.

[15] M. Ravishankar, J. Holewinski, and V. Grover, “Forma: A DSL for im-
age processing applications to target GPUs and multi-core CPUs,” in Pro-
ceedings of the 8th Workshop on General Purpose Processing Using GPUs,
GPGPU-8, (New York, NY, USA), p. 109120, Association for Computing Ma-
chinery, 2015.

[16] N. Zhang, M. Driscoll, C. Markley, S. Williams, P. Basu, and A. Fox, “Snowflake:
A lightweight portable stencil DSL,” in 2017 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pp. 795–804,
2017.

[17] B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch, and C. Dubach, “High
performance stencil code generation with Lift,” in Proceedings of the 2018
International Symposium on Code Generation and Optimization, CGO 2018,
(New York, NY, USA), p. 100112, Association for Computing Machinery,
2018.

[18] Astaroth - A Scalable Multi-GPU Library for Stencil Computations. http
s://bitbucket.org/jpekkila/astaroth/src/master/, 2023. [Online;
accessed 2023-03-04].

[19] Triton - Cluster technical overview. https://scicomp.aalto.fi/triton/ov
erview/, 2022. [Online; accessed 2023-03-05].

[20] NVIDIA Corporation. https://images.nvidia.com/content/technologi
es/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf, 2020.
[Online; accessed 2023-04-07].

[21] NVIDIA Corporation. https://www.nvidia.com/content/dam/en-zz/Solu
tions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-21885

04-web.pdf, 2022. [Online; accessed 2023-04-07].

[22] Advanced Micro Devices, Inc. https://www.amd.com/en/products/server
-accelerators/instinct-mi100, 2020. [Online; accessed 2023-04-07].

Review of recent advances of leveraging
symbolic execution for fuzzing

Philipp Giersfeld
philipp.giersfeld@aalto.fi

Tutor: Lachlan Gunn

Abstract

Fuzzing has become the de-facto standard for vulnerability discovery. While

combining a fuzzer with concolic execution has been an interesting topic of

research, only recently have they started competing for the highest scores

on popular benchmarks. In this paper, we provide a comprehensive re-

view of recent advances in utilizing program analysis for automated test-

ing of software applications. Specifically, the focus is on symbolic execu-

tion techniques for hybrid fuzzing, and the paper compares approaches for

tracing, Intermediate Representation (IR), constraint collection, and con-

straint solving. The research highlights the key differences between differ-

ent approaches. Additionally, the paper suggests possible studies to further

explore the advantages and disadvantages of these techniques, including

more detailed evaluations of their effectiveness and applicability in real-

world testing scenarios.

KEYWORDS: Security, Symbolic Execution, Concolic Execution, Fuzzing,

Vulnerability Discovery

1 Introduction

With the digitalization of critical applications in recent years, their safety

consequently depends on the security of the underlying software, which

has become an attractive target for adversaries. Despite significant ad-

vances in platform security, which only restrict the impact of a bug once

the code is already deployed, vulnerabilities have continued to occur. Mem-

ory vulnerabilities have been the continuous culprit for computer security,

constituting 70% of all CVEs [16]. Consequently, to minimize the risk of

exploitation, there has been a growing demand for effective methods of

identifying implementation errors, as indicated by Darpa’s Cyber Grand

Challenge (CGC) in 2016. The results of which and Google’s OSS-Fuzz

projects demonstrate the effectiveness of automatic analysis tools, e.g.,

OSS-Fuzz was able to find 8800 vulnerabilities in 850 projects since its

introduction in 2016 [5].

These automatic analysis tools can be classified into static and dynamic

analysis methods. In the former category, symbolic execution is com-

monly leveraged for whitebox fuzzing to explore the programs [11]. Sym-

bolic execution formalizes code paths as first-order logic equations, which

can then be evaluated by powerful Satisfiability modulo theories (SMT)

solvers to find inputs triggering the execution of said code path. This ap-

proach excels at finding inputs for simple fine-grained conditions, such

as magic bytes; however, they suffer from performance limitations, e.g.,

due to path explosion or memory consumption. On the contrary, dynamic

analysis in the form of greybox/blackbox fuzzers overcomes these limi-

tations as fuzzers can be executed natively by applying an evolutionary

approach, mutating its input to explore increasingly more code. However,

fuzzing is incomplete, it cannot provide the same guarantees as white-

box fuzzing and frequently get stuck due to complex checks, such as the

aforementioned ones.

Hence, recent research proposes methods to combine the strengths of

both approaches. However, these methods generally suffer a through-

put penalty with the benefit of finding higher-quality inputs. Especially

recent works successfully focused on optimizing the symbolic execution-

bounded analysis to improve fuzzing performance.

In order to compare recent advances in utilizing program analysis for

fuzzing, this paper reviews the main contributions of a selection of ap-

proaches and compares their approaches for IR, constraint collection, and

constraint solving. Section 2 introduces fuzzing, symbolic execution, and

concolic execution. Section 3 defines a comparison space, followed by se-

lecting the approaches for the analysis and comparing them. In Section

4 we propose future research questions and in Section 5 we conclude our

work.

2 Software analysis

2.1 Fuzzing

Fuzzing, first coined as a term by Miller et al. in 1990 [15], is the method

of executing a program with random input and observing whether it crashes.

While initial fuzzers were relatively simple, modern state-of-the-art fuzzers,

such as AFL++ or Nyx, employ complex strategies in order to test more

code [9] [21]. For example, while Nyx improved the current state-of-the-

art by focusing on the execution throughput and enabling fuzzing of com-

plex targets, such as hypervisors, AFL++ consolidates novel approaches

in a customizable manner to quickly implement novel/custom approaches,

such as different sanitizers, to catch bugs that may not crash the applica-

tion, mutation strategies to increase the likelihood of exploring different

code regions, or coverage metrics to guide the fuzzer towards using inter-

esting inputs. These fuzzers are very powerful at quickly exploring code

regions that are conditionally reachable by simple conditions, such as x

> 0, as they mainly apply random mutations to existing test cases and

execute those natively. However, due to their probabilistic nature, this

also limits their explorative abilities as they struggle to satisfy specific

conditions (such as x == 0xdeadbeef). These conditions can be solved by

applying a concrete solving technique, such as symbolic execution.

2.2 Symbolic Execution

Symbolic execution explores a program by assigning symbolic variables

to input data and executing every possible execution path, essentially

forking at every branch, collecting branch conditions as constraints, and

finally, stating the code path as a first-order equation [12]. Then, powerful

SMT solvers, such as Z3, can be used to evaluate a code path and aim to

generate concrete inputs to trigger all execution paths [8].

Consider the example program from Listing 1. Here, the input given

1 #include <stdlib.h>
2 #include <stdio.h>
3

4 int main(int argc, char** argv) {
5 if (argc<2)
6 return -1;
7 int a = strtol(argv[1], NULL, 0);
8 int b = a ^ 0xbadc0de;
9 if (b == 0xdeadbeef)

10 abort();
11 }

Listing 1. Example Program under Analysis

via STDIN can be marked as a symbolic input λ. After executing line

8, the value of b is λ ⊕ 0xbadc0de. The symbolic execution forks on line

9. Now, there are two path constraints, λ ⊕ 0xbadc0de = 0xdeadbeef for

the erroneous path resulting in abort() on line 10 and the other path λ ⊕
0xbadc0de ̸= 0xdeadbeef. Continuing, a SMT solver can be consulted to

find solutions for both constraints, such as 0xd5007e31 and 1.

This approach can provide a certain guarantee about the absence of

bugs, although simplifications need to be made such that this approach

becomes practically feasible. Moreover, this approach suffers from signifi-

cant scalability issues [17], such as path explosion. Path explosion occurs

since the number of paths doubles at every branch, hence, growing ex-

ponentially. While existing methods attempt to minimize path explosions

[2], ultimately, these strategies only delay it and are not able to completely

mitigate it [24].

2.3 Concolic Execution

Concolic execution reduces the overhead of symbolic execution by aug-

menting symbolic execution with concrete values; hence the name concolic

(concrete + symbolic) [10]. This approach executes a program concretely

while simultaneously collecting symbolic constraints. Thus, it can reduce

the number of paths to one, the concretely executed path. Then, it can flip

one of the constraints to explore a different branch, commonly starting

from the last one. Concolic execution can treat complex functions, such

as hash functions, as concrete values, unlike symbolic execution. Still,

running an SMT solver requires significant processing time, and using

concrete values might restrict the solver so that it cannot find a concrete

solution for the collected path constraints.

3 Comparison

3.1 Comparison space

In order to compare different approaches state-of-the-art concolic execu-

tors are employing, we selected four design choices we believe are most

impactful on the resulting performance, namely:

Target type: What targets can be analyzed?

Constraint Collection: How are path constraints collected?

Constraint Solving: How are the resulting constraints solved?

Interaction with external environment: How does the engine inter-

act with external dependencies, e.g., libraries?

We note that most works implement further strategies that fall outside

these categories.

3.2 Approaches under analysis

Fuzzer (by avg. score) Avg. Score

fuzzolic-aflplusplus-z3 98.67

symqemu-aflplusplus 97.51

fuzzolic-aflplusplus-fuzzy 97.46

aflplusplus-cmplog-double 96.82

symcc-aflplusplus-single 96.75

eclipser-aflplusplus 96.27

aflplusplus-qemu-double 94.72

Table 1. Fuzzbench results of a variety of hybrid
fuzzers and AFL++.

In order to compare the re-

cent advances in symbolic

execution-based approaches,

we review the following im-

plementations as they com-

peted with other state-of-the-

art fuzzers on Fuzzbench1

(c.f. Figure 1): SymCC [18],

SymQemu [19], and Fuzzolic

[4]. Fuzzbench is a pop-

ular fuzzing benchmarking

service where each tool is

evaluated on a variety of open source software, wherein after each tool

is assigned a normalized score [14]. Furthermore, we decided to include

SymSan as it was not released at the time of this benchmark although it

outperformed the approaches in their own evaluation [6]. Finally, since

many design decisions of this selection are influenced by QSym we also

include it in our review [25].
1https anonysp2022.github.io/#experiment-summary

3.3 Target type

The approaches under analysis use a selection of different tools to in-

strument or trace the target program in order to gather symbolic con-

straints. These underlying tools pose the main limitations of targets for

the corresponding concolic execution. Our selection of approaches used

mainly three different techniques. First, QSym uses Intel PIN [13], a

dynamic binary instrumentation tool that can only target binaries run

on Intel processors. Secondly, SymCC and SymSan instrument the code

at compile-time, hence, requiring source code access. While these tools

are currently mainly implemented for C/C++ programs, as they leverage

the LLVM compiler framework, they should be easily expandable to any

LLVM-supported language. Finally, SymQemu and Fuzzolic instrument

theIR of QEMU,Tiny Code Generator (TCG). Thus, they are able to target

any executable supported by TCG, given negligible modifications [19].

3.4 Constraint Collection

Inspired by QSym, all approaches use a backend, which collects the con-

straints and then tries to solve them. Additionally, the backend can ap-

ply optimizations, such as deduplication, to improve performance and is

easily interchangeable, enabling flexible experimentation with different

backends. QSym sacrificed high implementation complexity to execute at

the instruction level symbolically. This design decision allows for finer-

grained optimizations and potentially less overhead since instructions

that contain no symbolic inputs can be executed natively. SymCC inte-

grated the creation of the expression into the instrumented binary as an

LLVM compiler pass, thus, removing the dependency of a relatively slow

interpreter. The compiler pass adds calls to a runtime library. These calls

pass symbolic expressions to the runtime, which then tries to solve them.

This design allows interchangeable usage of different backends, such as

QSym or Z3. SymSan expands upon this idea by improving performance.

Inspired by optimizations from Address sanitizer (ASAN) [22], SymSan

is able to achieve constant-time lookup of symbolic variables, which were

done in logarithmic time by SymCC. This, among other optimizations,

leads to a non-negligible performance increase over SymCC. Regarding

the concolic execution of binaries, SymQEMU and Fuzzolic follow the

same approach by instrumenting the IR of QEMU at runtime. Generally,

both follow the compile-time approach by instrumenting certain IR func-

tions with symbolic expression-building and calls to the solving runtime.

As noted by the authors of Fuzzolic, both tools have three main differ-

ences. First, Fuzzolic decouples the expression building component and

solving component into two different processes, which is a design choice

with no further reasons given and, as they point out, is challenging to

evaluate. Secondly, Fuzzolic instruments the IR on a basic block level,

potentially enabling further optimization by sacrificing implementation

complexity. Finally, Fuzzolic offers three different fuzzing-inspired modes,

which increased performance in their tests.

3.5 Constraint Solving

While much progress occurred focusing on constraint collection, recently,

new approaches for solving those constraints have been proposed in con-

junction with the release of our approaches under analysis. As shown by

Poeplau, much of the total execution time of concolic executors is spent

in the solving component [18]. Commonly, concolic execution used the Z3

solver to satisfy the collected constraints. However, QSym modified Z3 to

apply hybrid fuzzing-specific optimizations. Newer approaches can subse-

quently use this newly created backend, although this may lead to certain

incompatibilities, such as pointed out by the authors of SymSan. While

SymCC and SymQEMU rely on plain Z3 or QSym as their backend, the

Fuzzolic and SymSan authors presented novel solvers, namely, fuzzy-sat

and jigsaw [3, 7]. Fuzzy-Sat borrows techniques from the fuzzing domain

to trade accuracy for higher throughput. This is achieved by leveraging a

new search algorithm, offering different modes, and incrementally solving

the constraints. On the other hand, jigsaw uses a gradient descent-based

search algorithm as suggested by angr [23] and increases efficiency by

following a JIT-based approach to evaluate expressions. As their bench-

marks have shown, this leads to a throughput improvement by multiple

orders of magnitude.

3.6 Interaction with external environment

QSym treats the external environment as black boxes and concretizes all

interactions. Altogether, this means that QSym executes everything sym-

bolically until the system call level. This prevents it from using erroneous

or incomplete models of external functions. However, this may pose a vio-

lation of process boundaries. SymCC concretizes all uninstrumented code

to avoid tricky situations, such as binary-only libraries. However, SymCC

pays implementation complexity and increased error-proneness by provid-

ing standard wrappers around certain functions of the C standard. The

authors point out that it is possible to compile an instrumented version

of the LLVM standard library libc++ for convenience reasons. Analogous,

SymSan provides wrappers for common standard operations. SymQEMU

symbolically executes all instructions up until the system call level, as

only user mode is emulated. Finally, Fuzzolic follows this approach and

additionally implements models of common routines, such as memcpy, to

track the effects.

4 Discussion

Previously, traditional "dumb" fuzzers have been dominating bug discov-

ery benchmarks. This trend has been overthrown by our approaches un-

der analysis as suggested by recent Fuzzbench evaluations. We enumer-

ated the different approaches; however, pointing out the strengths and

weaknesses is difficult as most techniques improving precision introduce

a performance hit and vice versa, and the evaluations, such as those per-

formed on Fuzzbench, merely signal which fuzzer performs best on av-

erage. Hence, a rigorous study is necessary to compare the different ap-

proaches and extract their respective strengths and weaknesses. This

study could allow for the distillation of the techniques inducing the ac-

tual performance benefit, e.g., the authors of SymQEMU reused the back-

end of SymCC to compare only the effects of using dynamic instrumenta-

tion, while Fuzzolic made changes to the frontend as well as the backend,

hence, it is unclear which techniques resulted in the performance benefit.

Furthermore, it is unclear which concrete scenarios each tool is excelling

at. Perhaps, a specific tool performs exceptionally well on cryptographic

checks while another tool performs better on parsing steps. Concluding,

we propose two future research ideas. First, a systematic comparison of

our comparison space, similar to Poeplau and Francillon [17], where each

technique is tested in isolation, and each combination is evaluated since a

particular technique may perform better in a general scenario, although

a certain combination of two techniques may perform even better in syn-

ergy. This way, combinations, such as SymSan constraint collection, can

be used with the fuzzy-sat solver. Second, a study to investigate where the

respective strengths of each approach are. This could possibly be done by

triaging all bugs found or missed, classifying those bugs, and observing

which classes are easily found by which tool. Furthermore, such a survey

could also compare inherently different approaches, such as taint-based

approaches [20] or inference-based approaches [1]. Such research could

also hint towards future research into what code paths are currently dif-

ficult to cover for current state-of-the-art approaches.

While Poeplau and Francillon remarked that using a compilation-based

instrumentation leads to simpler constraints [17], it is unclear whether

this only occurs for their approach SymCC or it is generally the case and

also occurs when using a different compilation-based approach, such as

SymSan. Hence, we propose to redo the study with current state-of-the-

art tools.

5 Conclusion

This paper has reviewed recent concolic executors for hybrid fuzzing and

identified their core differences across four design criteria. We suggested

possible studies to distill the advantages and disadvantages of the pro-

posed techniques and possibly compare hybrid fuzzing with concolic exe-

cution with fuzzing methods leveraging other analysis techniques.

References

[1] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. Redqueen: Fuzzing with input-to-state correspondence. In
Symposium on Network and Distributed System Security (NDSS), 2019.

[2] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley.
Enhancing symbolic execution with veritesting. In Proceedings of the 36th
International Conference on Software Engineering, pages 1083–1094, 2014.

[3] Luca Borzacchiello, Emilio Coppa, and Camil Demetrescu. Fuzzing Sym-
bolic Expressions. In Proceedings of the 43rd International Conference on
Software Engineering, ICSE ’21, 2021.

[4] Luca Borzacchiello, Emilio Coppa, and Camil Demetrescu. Fuzzolic: mixing
fuzzing and concolic execution. Computers & Security, 108:102368, 2021.

[5] Oliver Chang. Taking the next step: Oss-fuzz in 2023, Feb 2023.

[6] Ju Chen, WookHyun Han, Mingjun Yin, Haochen Zeng, Chengyu Song, By-
oungyoung Lee, Heng Yin, and Insik Shin. SYMSAN: Time and space ef-
ficient concolic execution via dynamic data-flow analysis. In 31st USENIX
Security Symposium (USENIX Security 22), pages 2531–2548, Boston, MA,
August 2022. USENIX Association.

[7] Ju Chen, Jinghan Wang, Chengyu Song, and Heng Yin. Jigsaw: Efficient
and scalable path constraints fuzzing. In 2022 IEEE Symposium on Secu-
rity and Privacy (SP), pages 18–35. IEEE, 2022.

[8] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[9] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. Afl++
combining incremental steps of fuzzing research. In Proceedings of the 14th
USENIX Conference on Offensive Technologies, pages 10–10, 2020.

[10] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed auto-
mated random testing. In Proceedings of the 2005 ACM SIGPLAN confer-
ence on Programming language design and implementation, pages 213–223,
2005.

[11] Patrice Godefroid, Michael Y Levin, and David Molnar. Sage: whitebox
fuzzing for security testing. Communications of the ACM, 55(3):40–44,
2012.

[12] James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, jul 1976.

[13] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.
Pin: Building customized program analysis tools with dynamic instrumen-
tation. In Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’05, page 190–200, New
York, NY, USA, 2005. Association for Computing Machinery.

[14] Jonathan Metzman, László Szekeres, Laurent Simon, Read Sprabery, and
Abhishek Arya. Fuzzbench: An open fuzzer benchmarking platform and
service. In Proceedings of the 29th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE 2021, page 1393–1403, 2021.

[15] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the
reliability of unix utilities. Commun. ACM, 33(12):32–44, dec 1990.

[16] Matt Miller. A proactive approach to more secure code. BlueHat IL, 2019.

[17] Sebastian Poeplau and Aurélien Francillon. Systematic comparison of sym-
bolic execution systems: Intermediate representation and its generation.
In Proceedings of the 35th Annual Computer Security Applications Confer-
ence, ACSAC ’19, page 163–176, New York, NY, USA, 2019. Association for
Computing Machinery.

[18] Sebastian Poeplau and Aurélien Francillon. Symbolic execution with symcc:
Don’t interpret, compile! In Proceedings of the 29th USENIX Conference on
Security Symposium, pages 181–198, 2020.

[19] Sebastian Poeplau and Aurélien Francillon. Symqemu: Compilation-based
symbolic execution for binaries. In NDSS, 2021.

[20] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuf-
frida, and Herbert Bos. Vuzzer: Application-aware evolutionary fuzzing. In
NDSS, volume 17, pages 1–14, 2017.

[21] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wör-ner, and
Thorsten Holz. Nyx: Greybox hypervisor fuzzing using fast snapshots and
affine types. In 30th USENIX Security Symposium (USENIX Security 21),
2021.

[22] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. Addresssanitizer: A fast address sanity checker. In USENIX ATC
2012, 2012.

[23] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christo-
pher Kruegel, and Giovanni Vigna. SoK: (State of) The Art of War: Offen-
sive Techniques in Binary Analysis. In IEEE Symposium on Security and
Privacy, 2016.

[24] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Gio-
vanni Vigna. Driller: Augmenting fuzzing through selective symbolic exe-
cution. In NDSS, volume 16, pages 1–16, 2016.

[25] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. QSYM:
A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In
Proceedings of the 27th USENIX Security Symposium (Security), Baltimore,
MD, August 2018.

Kubernetes for greener environment

Phong Tran
phong.tran@aalto.fi

Tutor: Antti Ylä-Jääski

Abstract

Energy consumption in cloud computing is increasing, and the amount of

energy used in cloud computing is estimated to increase 15 times by 2030

[6]. Therefore, this paper discusses and analyzes different approaches us-

ing Kubernetes to address the rise in energy consumption in cloud comput-

ing. The most common issue that cause the energy usage to rise in cloud

computing is the inefficient allocation of resources, and the approaches dis-

cussed aim to solve this common issue. The approaches discussed in this

paper consist of workload scheduling, server consolidation, and mobility

awareness. Although all these approaches are efficient in solving the issue

of resource allocation in cloud computing, workload scheduling is the best

approach since the other approaches contain many disadvantages regard-

ing setting up and operating. As the main goal is to improve the energy

efficiency in cloud computing, the tools that do not provide environmental

benefits should be deprecated, and more projects to address the environ-

ment should be funded by multiple entities.

KEYWORDS: Kubernetes, energy efficiency, resource allocation, workload

scheduling, server consolidation, mobility awareness

1 Introduction

Before cloud computing was introduced, software and services were de-

ployed in physical data centers. Since 2006, cloud computing has become

popular and many software and services were deployed using cloud com-

puting [6]. Cloud computing has provided various business models, in-

cluding Infrastructure as a Service (IaaS), Platform as a Service (PaaS),

and Software as a Service (SaaS). Moreover, cloud computing leverages

universal access to data center facilities.

Although cloud computing has provided significant benefits, it has many

environmental problems. It is reported that the energy consumption of

data centers is at 200 TWh in 2016, and that number is expected to rise to

2967 TWh in 2030 [6]. Based on the survey conducted by Stücke [11], the

alarming amount of energy consumption is due to the complexity of cloud

computing makes it difficult to estimate the number of resources needed.

Moreover, the survey points out that it is a common pattern to unneces-

sarily allocate more resources to ensure that software and services are

performing well. To address the energy consumption issue, a tool such as

Kubernetes (K8s) is introduced to better allocate resources, thus prevent-

ing over allocating unnecessary resources of different services.

In order to evaluate the energy saving capabilities of K8s, this paper

discusses how K8s is used to enhance the energy efficiency. In addition,

this paper summarizes, discusses, and analyzes approaches conducted by

multiple studies to help promote energy efficiency and carbon emissions

reduction using K8s technologies.

This paper is organized as follows. Section 2 provides some background

information about K8s and its benefits. Section 3 discusses how K8s is

used to schedule and consolidate servers to provide better energies effi-

ciency based on different researches. Section 4 analyzes and discusses

about the different approaches presented in Section 3. Section 5 provides

concluding remarks of this paper.

2 Kubernetes

This section introduces K8s as a tool and related concepts of K8s, such as

clusters, nodes, and pods.

Cluster

Node 1 Node 2

Pod Pod Pod Pod

Container

Container Container

Container Container

Container

Container

Container

Figure 1. Cluster, nodes, and pods relationship

2.1 K8s as a tool

K8s is an open-source container orchestration platform that allows the

automation of deploying, managing, and scaling of containerized appli-

cations [9]. K8s was found and developed by engineers at Google. K8s

allows DevOps engineers to deploy and manage application better than

many other platform since K8s provides certain functionalities that ab-

stract many manual processes. For example, K8s can orchestrate contain-

ers across multiple hosts, and most importantly, K8s can scale container-

ized apps and resources on the fly. The ability to scale resources on the

fly is important because during peak time, the application has enough re-

sources to operate with the least chance of operation failure. In contrast,

during idle time, it is also important to deallocate unnecessary resources

to reduce as much cost as possible for companies. K8s is built on the con-

cept of clusters, nodes, and pods [12].

2.2 Clusters, nodes, and pods

Clusters are the main building blocks of the K8s architectures, and nodes

are part of clusters. Each cluster has one master node, which contains

multiple worker nodes that deploy, run, and manage container applica-

tions. A cluster contains one or many pods, and a pod is a group of con-

tainers that share the same computing resources and network. Should a

pod receive more traffic than it can handle, the cluster will create another

pod in other nodes within the cluster. The last concept of K8s is Deploy-

ment, which specifies the number replicas of pods should be created and

run on the cluster. The relationship between the cluster, nodes, and pods

is illustrated by figure 1.

3 Energy Efficiency of K8s

K8s is a tool that provides significant benefits to DevOps engineers, and

it is also a major cost saving opportunity to many companies since it

is inexpensive to deploy different services using K8s. Moreover, K8s is

used to enable energy efficiency when deploying and managing services

in the cloud. According to Mustafa [8], Amazon Web Service (AWS) has

increased the CPU utilization from 8% to 70% after switching from vir-

tual machines to K8s. This enables Nordstrom to scale down their in-

frastructure with only 1/10 of the computing power they used before AWS

switched to K8s.

Energy consumption in cloud computing can be caused by multiple is-

sues; therefore, it is important to address the correct issue. The most

common issue is the inefficient allocation of resources in cloud computing.

When the allocation of resources is inefficient, this allows multiple un-

used resources to be active; when the number of active unused resources

increases, a substantial amount of energy is consumed. To address this is-

sue, several studies has been conducted to improve the energy efficiency in

cloud computing using K8s based approaches, such as workload schedul-

ing, server consolidation, and mobility awareness [1, 5, 8, 2, 4]. All of

these approaches attempt to improve the allocation of resources in cloud

computing, specifically inside a K8s cluster.

3.1 Workload scheduling

Workload scheduling in K8s is the concept of assigning pods to specific

nodes while balancing utilization resources among them. Sobol [10] men-

tions that the simplest workload scheduling configuration that can be

given to K8s is nodeName, which is the name of the node. However,

this configuration approach can lead to having non-functional pods, such

as an unexisting node name. Another powerful configuration can be given

to K8s is nodeSelector, which defines the specification of a node, includ-

ing disk type and node affinity. Node affinity is a setting that can specify

the rules and stages of a node that a pod should be assigned to.

Green region workload scheduling

Using workload scheduling, James and Schien [5] built a conceptual sched-

uler that helps reduce carbon emissions to the environment. The idea of

the concept is to extend the default behavior of K8s scheduler to consider

the carbon emissions based on a different numbers of factor, such as the

carbon intensity of certain regions in world, the air temperature, and the

solar irradiance.

In order to implement this concept, James and Schien [5] developed an

algorithm that determines the greenest region based on the carbon inten-

sity from a known list of regions. If there exists multiple regions with the

same carbon intensity, then air temperature is another parameter this al-

gorithm considers when selecting the greenest region. After the greenest

region has been determined using this algorithm, the program sends the

data to the cloud K8s or Infrastructure as a Service (Iaas) management

API to provision a Resource Group at a dedicated cloud provider from that

region, then the program verifies the successful state of the request. Af-

ter the provisioning request has been confirmed successful, it commonly

takes 10 minutes for a new cluster to be provisioned and for all credentials

to be agreed upon. In addition, it takes one or two minutes for all compo-

nents in K8s to be in Ready status. To address the time it takes for the

provisioning of new cluster, the scheduler polls the status of the compo-

nent of the new cluster at a regular interval, and once the Ready status

has been confirmed, the necessary Deployments are executed. Once all

the Deployments are executed, the scheduler deletes all Resource Group

from the previous provisioned cluster.

Workload scheduling for HPC environment

Another approach of utilizing K8s workload scheduling is to create a sched-

uler that is suitable for Higher Performance Computing (HPC) workloads.

Dakic et al. [1] state that HPC environments has been used extensively

in many virtual machines in different cloud environments because of the

need of computation power, agility, and manageability. However, virtual

machines consume a substantial amount of resources because in order

to operate a virtual machine, a minimum constant amount of memory

in a computer must be allocated to operate a virtual machine, although

the amount of memory needed is significantly lower than the minimum

amount of memory. In order to address this issue, Dakic et al. [1] de-

veloped a K8s scheduler that can automatically allocate the workload to

the nodes which contain higher computing power resources based on the

amount of workload.

Heterogeneous HPC environments are based on all technologies, such

as x86, ARM, RISC-V, and GPU. Therefore, setting up multiple K8s nodes

is the solution to running workload in HPC environments, and each node

has specifications related to their respective technologies. Dakic et al. [1]

setup four K8s nodes based on x86 and ARM technologies, and a sched-

uler that ensures that a node has enough computing power capabilities to

operate the workloads. If a node fails, it allocates immediately to other

nodes, and most importantly, it takes the pricing per kWh, carbon foot-

print, and energy consumption as a variable when deciding which nodes

to use. As a result, the Advance RISC machines (ARM) architecture per-

forms exceptionally well regarding performance per Watt, although ARM

platform is an inexpensive platform. The x86 CPU based architecture

does not perform as well as the ARM architecture, it is still a mature

platform and should not be discarded. The scheduler can also be scaled

up further with more nodes, and it can also be coupled with other CPU

architectures, such as RISC-V. Dakic et al. are confident about their work

and they believe that their solution is going to be both energy efficient and

high performance.

3.2 Server Consolidation

Server consolidation is a concept of cloud computing which refers to the

process of combining multiple servers into a single, more powerful cluster

of servers [7]. This method has been used by multiple enterprises to get

the benefits of reduced space, power, and administrative requirements

to reduce cost, workloads, and power consumption [2]. Although server

consolidation reduces the resources used, it increases the complexity of

data configuration, along with additional overhead when making requests

to multiple servers.

In order to address the issue mentioned above, Dewi et al. [2] use K8s

to automate the process of server consolidation. K8s already has its own

mechanism to horizontally scale pods based on the amount of concurrent

users. This mechanism is known as K8s Horizontal Pods Auto-Scaling

(KHPA). The mechanism can also be configured by giving a certain num-

ber of parameters to determine the maximum and the minimum numbers

of pods, the CPU utilization, and the permission to allocate/deallocate re-

sources to avoid the effects of instability. Dewi et al. [2] setup a microser-

vice application with 8000 users to perform multiple concurrent HTTP

requests to the services in the application. The services in the microser-

vice are also created with single server setting and multiple servers with

scalability setting. The result shows that the CPU Usage Pods of multiple

servers setting are drastically better than the single server setting, which

translates to less energy consumed when running the test in multiple

servers setting. Although the response time of the single server setting is

better than the multiple servers setting, the latency is not significant [2].

The reason for the latency is due to the overhead of scaling containers in

multiple servers setting.

3.3 Mobility awareness

Proximity tracking and assigning pods to the nodes closest to the loca-

tion of a user are also issues when implementing K8s to manage software

deployments in the cloud. Ghafouri et al. [4] address these issues in mo-

bile edge computing when making K8s compatible with cloud decentralize

platforms. The mobility constantly changes the proximity of the users to

the services, which leads to having active nodes in the K8s cluster that do

not use their full capacity. Ghafouri et al. developed a framework named

Mobile-kube, which reduces the latency of mobile edge computing devices

while maintaining the energy consumption at a reasonable level. The

framework is backed by a reinforcement machine learning method known

as Importance Weighted Actor-Learner Architecture (IMPALA). Accord-

ing to Ghafouri et al. [3], IMPALA is not only efficient for training data

in a single machine, it is also efficient for training data in thousands of

machines without sacrificing data efficiency and training stability. Using

IMPALA along with another neural network, such as critic, can help re-

duce variance when calculating the reward [4]. From the reward, the state

of the environments can be updated. Ultimately the goal of Mobile-kube

is to determine where is the best location to host a service based on the

the location of the user, and that decision has to be made automatically.

In order to implement and test the framework, Ghafouri et al. [4] de-

signed a system where a device is connected to a service at a certain loca-

tion. The system consists of a K8s cluster that contains nodes and pods,

a mobility simulator which is a Python script assigning the users to the

nodes, and a controller which wraps the information received from the

K8s cluster and the mobility simulator into an environment referred to

as OpenAI gym environment. The gym environment calculate the reward

based on the information it is given, then the reward is passed to the rein-

forcement learning agent, which then decides the next placement of pods

in the nodes. After that, using K8s Python API, the placement is passed

back to K8s cluster and the pods will be placed into the new nodes.

As a result, with the same energy consumption, the Mini-kube frame-

work is able to reduce 43% of user latency. The test is also conducted

using two other reinforcement learning methods: Policy Gradient (PG)

and Proximal Policy Optimization (PPO). When comparing the results,

the IMPALA methods achieve the best energy performance with differ-

ent number of users, and it is indicated by the number of empty servers

between the different number of users. From this result, Ghafouri et al.

are confident that the Mobile-kube framework will enable the most opti-

mal performance to mobile edge computing while maintaining the energy

consumption at the most sufficient level.

4 Analysis and Discussion

Different methods and approaches can enable better energy efficiency

when deploying and maintaining software services in the cloud using K8s.

The approaches mentioned in the previous section solve a common issue

in cloud computing, which is the efficiency of resource allocation in cloud

computing.

4.1 Workload scheduler

The workload scheduler approach is the best approach when maximiz-

ing the energy usage while maintaining the performance of the services.

During idle time, the cluster can assign pods to the nodes with the lower

specification to reduce the energy usage as much as possible, and only as-

sign the pods to higher performance nodes during peak time. The number

of nodes and pods can also be configured in workload scheduling to max-

imize performance if it is needed. This is the most flexible approach, as

workload scheduling is also efficient when using it in heterogeneous HPC

environment.

4.2 Server Consolidation

Server consolidation is also an efficient approach when maximizing en-

ergy efficiency when deploying and maintaining services in the cloud.

The CPU Usage Pods is significantly lower when handling user requests

in multiple servers environment. However, with the amount of latency

when scaling containers in multiple servers setting, server consolidation

may not be beneficial when the performance of the application is rely on

the response time to the users. To address this issue, workload schedul-

ing is the better approach when the latency of the application when using

workload scheduling is tolerable.

4.3 Mobility awareness

Mobility awareness approach is an efficient approach when handling the

proximity of user location in mobile edge computing. It certainly reduces

the latency of the user when determining the nodes with the closest loca-

tion to the user while maintaining the energy efficiency. However, since it

is using machine based approach, the algorithm requires training by feed-

ing data into the algorithm; it is challenging to use real world user data

to train the algorithm. The algorithm needs a large number of test sub-

jects to train, and the mobility awareness approach can be costly to setup

initially. Another problem with machine learning based approach is that

the test data is not as diverse or varied as the real world data. Therefore,

the lack of diversity in test data can lead to many cases of false positive or

false negative when predicting the results, which can cause the mobility

awareness approach to allocate the pods into the wrong nodes or into the

nodes that are not the closest to the current location of the user. Although

mobility awareness is an innovative approach to improve the energy effi-

ciency with the use of machine learning, it is prone to error and not the

most cost efficiency approach.

5 Conclusion

This paper has reviewed three approaches using K8s to maximize the en-

ergy efficiency in cloud computing. The main goal of the approaches is to

improve resource allocation mechanism in cloud computing. Although the

approaches previously mentioned are not fully optimized for all use cases

of many enterprises, they are still efficient and the enterprises should

consider implementing them into their deployment infrastructures. Re-

gardless of which approach is taken into implementation, the enterprises

will reduce the carbon emission and improve the energy efficiency when

more services and software are deployed into the cloud. In the future,

with the constant improvement of technology, researchers will be able to

conduct more approaches using K8s to further maximize the energy effi-

ciency; the legacy tools that do not provide environmental benefits will be

deprecated. Furthermore, since the environment is an issue that concerns

the world, governments should fund projects aimed at improving the en-

ergy efficiency in cloud computing to ensure the best possible outcome.

References

[1] Vedran Dakic, Mario Kovac, and Jasmin Redzepagic. Optimizing kuber-
netes performance, efficiency, and energy footprint in heterogenous hpc en-
vironments. DAAM, 2021.

[2] Lily Puspa Dewi, Agustinus Noertjahyana, Henry Novianus Palit, and Kezia
Yedutun. Server scalability using kubernetes. In 2019 4th Technology
Innovation Management and Engineering Science International Conference
(TIMES-iCON), pages 1–4, 2019.

[3] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymyr
Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning,
Shane Legg, and Koray Kavukcuoglu. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. Jun 2018.

[4] Saeid Ghafouri, Alireza Karami, Danial Bidekani Bakhtiarvand, Aliakbar Saleh
Bigdeli, Sukhpal Singh Gill, and Joseph Doyle. Mobile-Kube: Mobility-
aware and Energy-efficient Service Orchestration on Kubernetes Edge Servers.
7 2022.

[5] Aled James and Daniel Schien. A low carbon kubernetes scheduler - ceur-
ws.org. https://ceur-ws.org/Vol-2382/ICT4S2019paper28.pdf, 2019.

[6] Avita Katal, Susheela Dahiya, and Tanupriya Choudhury. Energy effi-
ciency in cloud computing data centers: A survey on software technologies.
https://link.springer.com/article/10.1007/s10586-022-03713-0, Aug 2022.

[7] Anja Libo. Server consolidation in cloud computing. https://www.geeksforgeeks.org/server-
consolidation-in-cloud-computing/, Jan 2023.

[8] Akhterul Mustafa. Reducing carbon emissions through kubernetes - labs.sogeti.com.
https://labs.sogeti.com/reducing-carbon-emissions-through-kubernetes/, Sep
2022.

[9] Red Hat IT Professionals. What is kubernetes? https://www.redhat.com/en/topics/containers/what-
is-kubernetes, Mar 2020.

[10] Ron Sobol. A deep dive into kubernetes scheduling. https://granulate.io/blog/a-
deep-dive-into-kubernetes-scheduling/, Mar 2022.

[11] Jan Stücke. Kubernetes as a sustainability tool. https://www.stormforge.io/blog/kubernetes-
sustainability-tool/, Jul 2022.

[12] Sai Vennam. Kubernetes architecture. https://www.ibm.com/topics/kubernetes,
2023.

Security and Privacy in the Metaverse

Praewpiraya Wiwatphonthana
praewpiraya.wiwatphonthana@aalto.fi

Tutor: Mario Di Francesco

Abstract

The Metaverse is an emerging concept that promises to integrate virtual

reality experiences with our daily lives, creating new opportunities for so-

cial interaction and development. As the Metaverse becomes more popular

and widely adopted, the need for addressing security and privacy concerns

becomes even more critical. The key technology that enables access to the

Metaverse is visualization technology, and thus it is the primary focus of

our review. This paper analyzes the vulnerabilities that Metaverse systems

inherit from existing technologies, including data breaches, identity theft,

social engineering, and unauthorized access, and explores how these risks

can be amplified in a virtual environment. Additionally, this paper high-

lights the need for novel authentication and authorization mechanisms.

Overall, this study aims to provide insights into the current state of secu-

rity and privacy in the Metaverse and to suggest ways to ensure secure and

implement effective security solutions in this emerging technology land-

scape.

KEYWORDS: security, privacy, metaverse, visualization technology

1 Introduction

The word “Metaverse” is a combination of prefix “meta” with the mean-

ing of transcending and suffix “verse” which implies the universe. There

are different descriptions of this beyond-universe technology concept de-

pending on its context. In short, the concept of the Metaverse refers

to a virtual world that is immersive, interactive, and co-created by its

users [5,13,22]. The Metaverse is not just a single, centralized virtual en-

vironment but rather a decentralized network of virtual spaces that are

connected and interoperable [20, 22]. Lee et al. [13] divide metaverse de-

velopment into three phases: (I) digital twins, (II) digital natives, and the

last phase (III) co-existence as shown in Figure 1.

Figure 1. Metaverse Development Phases

The first phase called digital twins, mirrors the physical reality and

duplicates its property, such as the motion and function of users or ob-

jects, into virtual environments. The second phase, known as the digi-

tal natives, focuses on the creation of native content within the virtual

world. The content can be native only to the virtual world or linked to its

physical counterpart, influencing innovation in both worlds and creating

an intersection between them. This process connects the ecosystems of

both worlds, enabling the development of new forms of culture, economy,

and regulation that support the creation of physical goods and intangi-

ble contents. In the final phase, co-existence, both worlds co-exist and

inter-operate with the physical world. The virtual world turns into a self-

sustaining and persistent one. With the seamless integration of the two

worlds, the objects and entities that do not exist in the real world now

exist in virtual reality space, making the scope of the virtual world larger

than the physical world. The space is built by combining various tech-

nologies, such as extended reality (XR), artificial intelligence (AI), and

blockchain. The development of the Metaverse has presented vast oppor-

tunities and potential applications across multiple industries, including

entertainment, socialization, and education. However, with the Meta-

verse gaining more popularity and being increasingly integrated into our

lives, there is a growing concern regarding security and privacy. These

concerns arise from managing vast amounts of data, pervasive user profil-

ing, and technologies that are inherently vulnerable [22]. Existing threats

can be amplified in the virtual world, opening up new avenues for crimes.

Examples of such incidents include identity theft [7,12] and the hijacking

of wearable devices [6].

Given these challenges faced by the Metaverse, it is crucial to review

existing research exploring these security and privacy issues. This paper

aims to provide an overview of recent publications on the challenges and

solutions for security and privacy in the Metaverse. The review covers the

Metaverse concept, related technologies, and potential threats, as well as

existing solutions and future research directions. Specifically, the review

focuses on interactive visualization technology, a key component of the

Metaverse.

The paper is organized as follows. Section 1 provides an overview of

the Metaverse concept and its challenges. Section 2 covers key technolo-

gies used in the Metaverse, while Section 3 focuses on visualization and

interactive technologies. Section 4 reviews current security threats. Sec-

tion 5 reviews potential solutions to address these issues. Finally, Section

6 summarizes the main findings and discusses potential future research

directions.

2 Key technologies in Metaverse

The key technologies that drive the development of the Metaverse are

Interactive technology, Cloud Service, AI technology, and Blockchain tech-

nology [5].

Visualization and Interactive technologies: In the Metaverse, visu-

alization and interactive devices play a key role in offering users more im-

mersive and interactive experiences in virtual environments, not only as

an access point but also linking the user interaction to the virtual world.

The movement of the user and interaction are captured by motion track-

ing and then projected into the virtual world. This technology allows users

to navigate and interact with virtual environments in a more intuitive and

realistic way [5,19].

Cloud services: Cloud services enable the Metaverse to store, process,

and distribute large amounts of data and computational resources, allow-

ing it to scale and meet user demand. However, when Metaverse physics

emulation and graphical rendering are implemented using a centralized

cloud-based approach, the design suffers from several drawbacks caused

by the high network latency, which results in low-quality visualization of

the graphic. To address this problem [9], the concept of distributed com-

putation is introduced to the Metaverse. The bottleneck computational

process is pushed toward end-users instead.

AI technology: AI plays a major role in the processing of motion capture,

system speech recognition, computer vision, and sentiment analysis in

the Metaverse. This technology makes the Metaverse more dynamic and

responsive, allowing for a more personalized and interactive experience

for users. Moreover, AI facilitates the system infrastructure tasks, such as

automatic resource allocation, traffic off-loading, and fault detection. The

tasks improve the infrastructure reliability and system performance [10].

Blockchain technology: Blockchain technology enables a decentralized

database to the Metaverse. In addition, Blockchain provides a secure and

decentralized economic framework [15] for the exchange of digital assets

and currencies within the Metaverse. While the regulation of the eco-

nomic system creates a link between virtual space and reality, trust and

transparency in virtual transactions are also established in order to en-

sure a secure and reliable experience for the users.

3 Visualization and Interactive technologies

In visualization and interactive technology, namely Extended Reality

(XR) and Head-Mounted Displays (HMDs) give the user a visual represen-

tation of virtual content in the Metaverse. XR technology has emerged as

a revolutionary innovation that integrates the physical and digital worlds,

providing a seamless and immersive user experience. By combining the

concepts of Virtual Reality (VR), Augmented Reality (AR), and Mixed Re-

ality (MR), XR technology provides an access point and an underlying

infrastructure for the development of the Metaverse.

Virtual Reality (VR): Virtual Reality is an immersive technology that

creates a simulated environment where users can interact with computer-

generated objects or scenarios. VR headsets are commonly used to fully

immerse users in the virtual world, providing a sense of presence and

realism [19,23].

Augmented Reality (AR): Augmented Reality is an interactive technol-

ogy that combines virtual reality with reality by superimposing computer-

generated images onto a real-world environment [4, 19]. AR technology

enhances the real-world experience by overlaying digital content, such as

images, videos, or 3D models, onto the physical environment.

Mixed Reality (MR): Mixed Reality is a technology that combines ele-

ments of both VR and AR to create an interactive experience that merges

the physical and virtual worlds. MR technology enables users to inter-

act with digital objects in the real world, creating a seamless integration

between virtual and physical environments [8,19].

4 XR technology threats

The Metaverse, as a convergence of various technologies, poses several

security threats. In the realm of Extended Reality, potential security

threats share commonalities in their methods and goals. This section

presents a selection of such threats, classified based on their shared char-

acteristics.

4.1 Authentication-related threat

To access Metaverse platforms, users must authenticate their identity

to ensure that they are legitimate and to avoid identity theft as well as

impersonation attacks; hence the security of this process is crucial.

Keystroke logging attacks: A username and password combination is

frequently used in conventional authentication methods. In the Meta-

verse, the user is often presented with a virtual keyboard to enter a user-

name and password. The keyboard allows them to either air-tap using

hand gestures or use a controller to point and click on virtual key. Me-

teriz et al. [14] demonstrated that hand gesture patterns could be ex-

ploited to infer keystrokes. The attack takes advantage of the fact that

hands tend to follow specific patterns when individuals type in the air.

Specifically, the attacker captures the traces of the hand movements of

the victim and subsequently employs keystroke detection and key identi-

fication, then generates a set of input inferences. In addition, Al et al. [3]

implemented VR-Spy, a technique for recognizing virtual keystrokes that

makes use of WiFi channel state information (CSI). The main concept

behind the methods is side-channel information of fine-grained hand mo-

tions, which has a unique gesture pattern in the CSI waveforms.

4.2 Unauthorized access

A type of attack in which an attacker gains access to a system without

permission, which can lead to concerns such as data and identity theft in

the Metaverse.

Impersonation attacks: In the Metaverse, the usage of digital avatars

can make it simple for attackers to impersonate legitimate users by steal-

ing their authentication credentials. This can lead to identity theft and

impersonation attacks where the attacker fools a victim into believing

that they are interacting with a legitimate user. Attackers can also use

recordings of users’ gestures and voice commands captured by XR appli-

cations and devices to impersonate users [7].

Man-In-The-Room (MitR) attacks: Vondrek et al. [21] developed a new

attack, the Man-In-The-Room (MitR). The attack can target any public or

private room in the infected virtual environment and take control. The

study shows that the MitR attack, along with the VR worm, had suc-

cessfully accessed the target room, hid their presence, and modified the

environment without the permission of users.

4.3 Data breaches

The Metaverse involves the creation and sharing of a large amount of

data, including personal information, behavioral data, and virtual assets.

These types of data are valuable and attractive to attackers.

Eavesdropping attacks: This attack is a potential consequence of unau-

thorized access. For example, in MitR attack [21], while the attacker

is within the compromised environment, the attacker initiates an eaves-

dropping attack, and eavesdrop on the screen and microphone of the vic-

tims. Moreover, Shi et al. [18] designed an eavesdropping attack named

Face-Mic, which exploits motion sensors in AR or VR headsets to capture

facial dynamics during speech. This technique can infer sensitive infor-

mation, such as speaker gender, identity, and speech content, from live

speech by capturing facial muscle movements and bone-borne vibrations.

4.4 Social engineering

In the Metaverse, social engineering attacks are becoming increasingly

prevalent due to the growing number of digital interactions between users.

Attackers leverage psychological manipulation techniques to trick people

into giving sensitive information or performing actions that may compro-

mise their security.

VR Phishing: Fraudulent activities in the Metaverse take on many dif-

ferent forms, such as imposter websites, fake social media accounts, de-

ceptive emails, and bot-controlled messaging. While Metaverse environ-

ments are primarily designed for real-time speech communication, they

also support text-based chat and instant message functions. Scammers

utilize these tactics to mislead victims into clicking on malicious links,

attachments, or web forms. Moreover, scammers have also adopted “3D

social engineering”, using 3D avatars that closely resemble familiar do-

mains to impersonate co-workers, friends, or other contacts and gain ac-

cess to sensitive information [1,17].

5 Potential solutions

This section discusses existing work on defenses and countermeasures

against the aforementioned selected threats in the Metaverse XR technol-

ogy.

To mitigate the risks posed by XR technology, various measures can be

implemented. Table 1 provides an overview of the selected attacks and

their potential countermeasures that can be applied to improve the secu-

rity of the Metaverse environments. Countermeasures of each attack will

be discussed further in the following section.

5.1 Authentication-related threat

Randomize virtual keyboard: A study conducted by Meteriz et al. [14]

suggests a straightforward but highly efficient approach to enhance secu-

rity, which is to randomize the keys at each keyboard usage or after every

Category Attacks Countermeasures

Authentication-related Keystroke logging •Randomize virtual keyboard

•Biometric authentication

•Multi-model authentication

Unauthorized access Impersonation •Multi-factor authentication

MitR •Regularly updating software

Data breaches Eavesdropping •Sensory noise to obfuscate

•Ductile materials

Social engineering VR Phishing •User training

for fraud awareness

•Multi-factor authentication

•Contents moderation

Table 1. An overview of potential XR attacks and their countermeasures

user keystroke. Dynamic keyboard mapping significantly increases the

difficulty of tracing user keystrokes and hands motion, thereby reducing

the risk of unauthorized access.

Biometric authentication: Biometric data can be used for authentica-

tion and verification in the Metaverse. The most typical uses of data

are Electroencephalography (EEG), body movements, and Electrooculog-

raphy (EOG). With the uniqueness of the data, there is no possibility of

imitating authentication data. However, it is important to note that the

use of biometric data raises privacy concerns, and it is essential to imple-

ment appropriate security measures to protect this sensitive information

from misuse or unauthorized access [11].

Multi-model authentication: This authentication mechanism provides

an additional layer of security in the Metaverse by requiring users to

present two or more pieces of evidence during the authentication pro-

cess. The use of multiple authentication factors makes it more difficult

for attackers to gain unauthorized access to systems or sensitive data,

as they would need to successfully bypass multiple security measures in-

stead of just one. Kürtünlüoğlu et al. [11] suggest implementing Gaze-

based authentication for password entry in virtual reality (VR) headsets.

Gaze-based authentication tracks the unique movements of the user’s

eyes combined with extraocular muscle activations to identify the user.

This method offers an increased security by eliminating the possibility

of imitation since it is difficult for an attacker to replicate the unique

movements of the eyes of an individual or track the movements from the

outside.

5.2 Unauthorized access

In order to infect the environment, attackers need to gain initial ac-

cess to the environment. Multi-factor authentication [16] can also be im-

plemented as a potential defense to reduce the risk of stolen credentials

being used to gain unauthorized access. In addition, regularly updating

and patching software and operating systems can prevent attackers from

exploiting known vulnerabilities to gain access to the system.

5.3 Data breaches

Shi et al. [18] suggested a potential defense against the privacy risks

posed by Face-Mic attacks , which involves adding sensory noise to obfus-

cate the reconstruction of facial movements and bone-borne vibrations.

Another option is to include ductile materials in the foam replacement

cover and headband of VR headsets, which can weaken facial vibrations

detected by the built-in accelerometer/gyroscope.

5.4 Social engineering

There are various potential solutions that could be implemented to mit-

igate the risks of social engineering attacks in the Metaverse. One effec-

tive solution is to keep up to date on emerging scams and educate users

on the risks associated with social engineering and how to identify and

avoid these types of attacks. This can be achieved through awareness or

training programs that teach users how to identify phishing emails, fake

websites, and other deceptive tactics used by attackers. In addition to

user education, implementing controls such as two-factor or multi-factor

authentication and impartial content moderation or governance functions

within community management platforms can help to identify and flag

malicious messages or remove abusive users from the environment [1,2].

6 Conclusion and Future work

Extended Reality technology has revolutionized the way people interact

with digital content, and the use of visualization technology in the Meta-

verses is a prime example of its potential. Despite providing users with an

immersive experience, these virtual worlds also present serious security

vulnerabilities.

In conclusion, this paper has reviewed and highlighted the risks posed

by XR technology, including the possibility of unauthorized access, data

breaches, identity theft, social engineering attacks, and other malicious

activities. This review has revealed that while there are security concerns

associated with XR technology, there are also several measures that can

be implemented to mitigate these risks. These measures include strong

encryption, multi-factor authentication, and secure data storage systems.

Multi-factor authentication, in particular, plays a crucial role in mitigat-

ing identity threats related to unauthorized access and phishing attacks.

Furthermore, this paper has highlighted the need for collaboration be-

tween developers, users, and policymakers to ensure that security and

privacy are prioritized in the design and development of the Metaverse.

However, there are limitations to this review. Due to space restrictions,

we could not address all potential security risks. Additionally, given the

novelty of the Metaverse concept, resources for research in this area re-

main limited.

In terms of future work, more research is needed in order to develop

effective security measures to mitigate the risks posed by the Metaverse.

While this paper has focused on the security concerns related to XR tech-

nology, there are other emerging technologies that could also have secu-

rity implications for the Metaverse, such as blockchain and AI. There-

fore, future work in this area should focus on identifying and address-

ing emerging security concerns and exploring new technological solutions

to ensure user safety in the Metaverse. This could include developing

stronger encryption and multi-factor authentication methods as well as

exploring new approaches to secure data storage and communication. Fur-

thermore, the public is in need of a comprehensive education and training

programs to raise awareness of the risks associated with social engineer-

ing attacks and other malicious activities in the Metaverse. Such pro-

grams could help to promote a culture of cybersecurity and contribute to

development of a secure Metaverse.

References

[1] Metaverse security: Emerging scams and phishing risks. https://www.pwc.com/
us/en/tech-effect/cybersecurity/emerging-scams-and-phishing-risks-

in-the-metaverse.html.

[2] Hussain Aldawood and Geoff Skinner. Educating and raising awareness on
cyber security social engineering: A literature review. In 2018 IEEE Inter-
national Conference on Teaching, Assessment, and Learning for Engineering
(TALE), 12 2018.

[3] Abdullah Al Arafat, Zhishan Guo, and Amro Awad. VR-Spy: A side-channel
attack on virtual key-logging in vr headsets. 2021 IEEE Virtual Reality and
3D User Interfaces (VR), 2021.

[4] Yunqiang Chen, Qing Wang, Hong Chen, Xiaoyu Song, Hui Tang, and Mengx-
iao Tian. An overview of augmented reality technology. Journal of Physics:
Conference Series, 1237:022082, 06 2019.

[5] Zefeng Chen, Jiayang Wu, Wensheng Gan, and Zhenlian Qi. Metaverse
security and privacy: An overview. In 2022 IEEE International Conference
on Big Data (Big Data), pages 2950–2959, December 2022.

[6] Ke Ching and Manmeet (Mandy) Mahinderjit Singh. Wearable technology
devices security and privacy vulnerability analysis. International Journal
of Network Security & Its Applications, 8:19–30, 05 2016.

[7] Yang-Wai Chow, Willy Susilo, Yannan Li, Nan Li, and Chau Nguyen. Visu-
alization and cybersecurity in the metaverse: A survey. Journal of Imaging,
9(1), 2023.

[8] Enrico Constanza, Andreas Kunz, and Morten Fjeld. Mixed reality: A
survey. Lecture notes in computer science, 5440:47, 01 2009.

[9] Sahraoui Dhelim, Tahar Kechadi, Liming Chen, Nyothiri Aung, Huansheng
Ning, and Luigi Atzori. Edge-enabled metaverse: The convergence of meta-
verse and mobile edge computing, 2022. arXiv: 2205.02764.

[10] Thien Huynh-The, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen,
Zhu Han, and Dong-Seong Kim. Artificial intelligence for the metaverse:
A survey. Engineering Applications of Artificial Intelligence,Volume 117,
2022.

[11] Pınar Kürtünlüoğlu, Beste Akdik, and Enis Karaarslan. Security of virtual
reality authentication methods in metaverse: An overview, 2022. arXiv:
2209.06447.

[12] Jesse Lake. Hey, you stole my avatar!: Virtual reality and its risks to
identity protection. Emory Law Journal, 69:833, 2020.

[13] Lik-Hang Lee, Tristan Braud, Pengyuan Zhou, Lin Wang, Dianlei Xu, Zijun
Lin, Abhishek Kumar, Carlos Bermejo, and Pan Hui. All one needs to know
about metaverse: A complete survey on technological singularity, virtual
ecosystem, and research agenda, 2021. arXiv: 2110.05352.

[14] Ülkü Meteriz-Yıldıran, Necip Fazıl Yıldıran, Amro Awad, and David Mo-
haisen. A keylogging inference attack on air-tapping keyboards in virtual
environments. In 2022 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), pages 765–774, 2022.

[15] Shilpi Mishra, Himanshu Arora, Garvit Parakh, and Jayesh Khandelwal.
Contribution of blockchain in development of metaverse. In 2022 7th Inter-
national Conference on Communication and Electronics Systems (ICCES),
pages 845–850, 2022.

[16] Aleksandr Ometov, Sergey Bezzateev, Niko Mäkitalo, Sergey Andreev, Tommi
Mikkonen, and Yevgeni Koucheryavy. Multi-factor authentication: A sur-
vey. Cryptography, 2, 01 2018.

[17] Sara Qamar, Zahid Anwar, and Mehreen Afzal. A systematic threat analy-
sis and defense strategies for the metaverse and extended reality systems.
Computers & Security, 128:103127, 2023.

[18] Cong Shi, Xiangyu Xu, Tianfang Zhang, Payton Walker, Yi Wu, Jian Liu,
Nitesh Saxena, Yingying Chen, and Jiadi Yu. Face-mic: Inferring live
speech and speaker identity via subtle facial dynamics captured by ar/vr
motion sensors. In Proceedings of the 27th Annual International Confer-
ence on Mobile Computing and Networking, MobiCom ’21, page 478–490,
New York, NY, USA, 2021. Association for Computing Machinery.

[19] Maximilian Speicher, Brian D. Hall, and Michael Nebeling. What is mixed
reality? In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, CHI ’19, page 1–15, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery.

[20] Jean-Philippe Vergne. The future of trust will be dystopian or decentral-
ized: Escaping the metaverse. SSRN Electronic Journal, 01 2021.

[21] Martin Vondráček, Ibrahim Baggili, Peter Casey, and Mehdi Mekni. Rise
of the metaverse’s immersive virtual reality malware and the man-in-the-
room attack & defenses. Computers & Security, 09 2022.

[22] Yuntao Wang, Zhou Su, Ning Zhang, Rui Xing, Dongxiao Liu, Tom H. Luan,
and Xuemin Shen. A survey on metaverse: Fundamentals, security, and
privacy. IEEE Communications Surveys & Tutorials, pages 1–1, 2022.

[23] J.M. Zheng, K.W. Chan, and I. Gibson. Virtual reality. IEEE Potentials,
17(2):20–23, 1998.

Zero trust network security model in
cloud networks

Rasmus Blässar
rasmus.blassar@aalto.fi

Tutor: Tuomas Aura

Abstract

This paper explores the zero trust network security model and its appli-

cability in cloud networks. With the increasing adoption of cloud services

and microservice architecture, the need for effective security measures has

become more critical. The traditional perimeter-based security model is no

longer sufficient to protect against modern cyber threats. The zero trust

model offers a new approach to securing cloud networks that assumes no

user or service is trusted by default. The paper presents three established

techniques for a successful implementation of zero trust architecture: iden-

tity governance, micro segmentation, and software-defined networks. It

then shares experimentation results of micro segmentation implementation

in a Kubernetes environment. The results of this study can help organiza-

tions secure their cloud networks by better understanding the benefits and

challenges of implementing zero trust architecture.

KEYWORDS: Zero Trust, Kubernetes, Access Control

1 Introduction

The widespread adoption of cloud services and shift to distributed applica-

tion architectures has created new network security challenges. Network

controls must adapt to the dynamic nature of cloud services and support

automated and rapid provisioning of computing resources. In addition,

the controls must cover an increasing number of network endpoints in

multiple cloud locations. A traditional perimeter-based security model,

which focus on firewalls and gateways at the edge of the trusted network,

is no longer sufficient to defend the increased attack surface of cloud net-

works. The perimeter-based model lacks flexibility and leaves a large part

of cloud network traffic unprotected, particularly the internal service-to-

service traffic [5]. As a result, a new security model called zero trust

architecture has emerged as an alternative approach to securing dynamic

cloud networks.

Zero trust architecture (ZTA) is an information security model that aims

to improve network security by bringing the security perimeter closer to

critical applications and data [8]. ZTA assumes that every access re-

quest is risky regardless of the network location of the endpoints. ZTA

uses a variety of techniques to bring the perimeter closer to the appli-

cations and data, including identity governance, micro-segmentation and

software-defined perimeter. These techniques will help organizations pre-

vent unauthorized access and lateral movement inside internal networks

and provide secure remote access for users outside the perimeter.

Despite the benefits of the zero trust model, many organizations still

rely on traditional perimeter-based protections [2, 9]. Many organiza-

tions are not aware of the limitations of the perimeter-based model and

ZTA benefits. Available literature has focused mainly on the zero trust

concepts and technical aspects but lacks concrete examples that explain

the implementation of ZTA. In addition, it is difficult to find the right solu-

tion because there are different techniques and tools that achieve the ZTA

objectives. Organizations must adopt different techniques to meet their

specific security requirements and find the tools that work with their ex-

isting technologies.

This paper aims to clarify how the zero trust architecture can be imple-

mented in cloud networks. The paper reviews established techniques that

can be used to overcome the limitations of traditional perimeter-based

solutions. The paper goes into more detail on micro segmentation and

shares experimentation results of its implementation in a Kubernetes en-

vironment.

This paper is organized as follows. Section 2 explains the limitations

of the traditional perimeter security architecture. Section 3 discusses

the benefits and different implementation techniques of ZTA. Section 4

shares the experimentation results of micro segmentation implementa-

tion in a Kubernetes environment. Section 5 discusses the key findings

and advantages and disadvantages of each technique. Finally, Section 6

concludes the paper.

2 Limitations of perimeter-based security architecture

Perimeter-based network architecture is a traditional approach to net-

work security that relies on the creation of a secure boundary around the

network to prevent unauthorized access from Internet [6]. The network

perimeter is typically guarded by firewalls and other security devices,

which are responsible for filtering and blocking incoming traffic based on

predefined rules and policies.

In traditional cloud architectures, the network is divided to the trusted

cloud network and the untrusted Internet. Between these, there may be a

perimeter network, which has historically been called demilitarized zone

(DMZ). The perimeter network includes an API gateway or web traffic

load balancer that routes client web requests to trusted applications as

shown in Fig. 1. The API gateway might be equipped with additional

security features such as web application firewall (WAF) and request rate

limiting. In addition, the perimeter network includes a VPN gateway

that accepts connections that operate over non-HTTP protocols (e.g., SSH

and RDP). The usage of VPN has decreased with the proliferation of API

interfaces. However, it is still commonly used by administrators to gain

remote access to applications servers and databases. However, it is still

commonly used by administrators to gain remote access to applications

servers and databases.

While the firewalls and gateways have been effective in protecting tra-

ditional networks from external threats, they have several limitations in

modern cloud networks:

• Limited protection against insider threats [2, 6, 3, 9]: Perimeter-based

security architectures are designed to prevent external threats from ac-

cessing the network, but they provide limited protection against threat

actors that have already gained access to the trusted network (e.g., through

a phishing attack or exploited application vulnerability). A threat that

is already inside the trust network can often move laterally and remain

Figure 1. Traditional perimeter based security model in cloud networks

undetected by the perimeter security devices.

• Lack of flexibility in host placement [6]: Placement of cloud hosts (e.g.,

virtual machines, container instances) is limited by the security policies

enforced at the perimeter. For example, virtual machine replication to

another cloud region or scaling up container instances may be blocked

by the perimeter policy.

• Single point of failure [2, 6]: In a perimeter-based network architecture,

firewalls and security gateways become a single point of failure that

will compromise the entire network if breached. The overall network

security is determined by weakest device or application on the network.

To overcome these limitations, organizations have begun to adopt a cloud-

native security approach such as zero trust architecture.

3 Zero trust architecture (ZTA)

The zero trust architecture (ZTA) is a security model that uses a set of

modern cybersecurity principles to secure a broad range of infrastructure

and workflows [8]. In the context of cloud networks, it provides guidance

on how to secure both service-to-service and user-to-service communica-

tion. National Institute of Standards and Technology (NIST) has defined

seven tenets that a ZTA should use for optimal security:

• All data sources and computing services are considered resources.

• All communication is secured regardless of network location.

• Access to individual resources is granted on a per-session basis.

• Access to resources is determined by a dynamic policy, meaning the

access is determined by various factors, including the user’s previously

observed behavior, device posture and time of the day.

• The security state of all devices and applications is continuously moni-

tored. The access may be denied if the device is observed vulnerable or

unmanaged.

• Resource authentication and authorization is constantly evaluated con-

sidering the dynamic policy.

• All available logs about the current state of the resources, network in-

frastructure and communications are collected and used to improve ac-

cess decisions.

Overall, the zero trust tenets are highly relevant to cloud networks be-

cause they provide a framework to secure complex networks with dis-

tributed applications and data in multiple locations. By implementing the

zero trust architecture, organizations can overcome the limitations set by

the traditional perimeter security architecture and take full advantage of

cloud services.

However, the implementation of a ZTA is challenging because there is

not a single standard approach that can be used. This paper reviews three

established techniques, including identity governance, micro segmenta-

tion and software-defined perimeter (SDP) that can be used to implement

ZTA in different use cases [8, 2].

3.1 Identity governance

Identity governance is an identity-driven approach to implementing ZTA

[10]. The approach uses authentication and access controls at the appli-

cation layer to validate and grant access to users and applications. The

access requests are processed by a centralized ZTA policy engine that uses

input from multiple external sources, such as IAM and SIEM systems [8].

The policy engine considers the validity of user and workload (e.g., virtual

machine or container) identities, contextual information and data sensi-

tivity when making an access control decision. For example, if a client

attempts to access a sensitive resource from an unfamiliar location, the

policy engine may require additional authentication steps, for example

require admin approval, before granting access.

A ZTA based on solely identity governance approach can be deployed in

an open network model, without the use of traditional network firewalls or

micro segmentation [8]. This means that network endpoints are directly

exposed to the internet and services can communicate without network

boundaries. This provides flexibility in cloud service deployments. How-

ever, granting open network access exposes the services to malicious at-

tacks on the network layer, including reconnaissance or denial-of-service

attacks.

According to NIST, the Identity governance approach is well suited for

cloud services delivered by the software as a service (SaaS) model [8].

The network infrastructure in the SaaS model is managed by the service

provider, which may not allow the use of security devices maintained by

the organization. In the SaaS model, the client identity can be used to

form and enforce the zero trust policy. However, ZTA requires that the

service supports connecting to the centralized policy engine. In addition,

the use of SaaS services requires trust that the service provider has se-

cured its own infrastructure.

3.2 Micro segmentation

Micro segmentation is a technique in ZTA implementation that brings

network controls closer to the workload being protected [8, 10]. The ap-

proach involves dividing the trusted network into smaller segments con-

taining individual or a small group of workloads. The network segments

are typically divided by virtual firewalls as seen in Fig X. Alternatively,

micro segmentation can be implemented using host-based firewalls.

The micro segmentation technique requires setting a strict network pol-

icy for every user and workload in the network. According to NIST’s

ZTA tenets, all communication must be monitored and expressly per-

mitted in the policy, including internal service to service communication.

This makes managing network rules challenging, especially in distributed

cloud networks, because all interactions between users and workloads

must be considered [10].

The micro segmentation network policy is defined more efficiently using

workload identities instead of IP addresses. In cloud networks the work-

loads are becoming more dynamic and IP addresses change frequently

because workloads are often moved between hosts and cloud regions. In

contrast, the workload identities can be used to define network controls

that works in any network location. In addition, the identities can be

grouped logically (e.g., multiple containers can share the same identity).

The workload identity can be derived from the fingerprint of an applica-

tion executable (e.g., JAR) or attached workload properties (e.g., Kuber-

netes labels) [11]. Once the identity has been derived, it can be attached

to a network packet header (e.g., TCP option field) and further evaluated

by the packet receiver. Different methods for deriving workloads identi-

ties are discussed in [11] and implementation using Kubernetes labels is

examined in section 4.

The benefits of micro segmentation include increased protection against

lateral movement, as attackers are prevented from moving laterally across

the network once they have gained access to one segment. Addition-

ally, micro segmentation provides better visibility into network traffic

and allows the service provider to detect and respond to threats more

quickly. Furthermore, the identity-based micro segmentation approach is

network-independent, meaning workloads can be moved flexibly between

network locations. However, implementing identity-based segmentation

may not be possible in existing networks because it requires special hard-

ware and software components that support deriving workload identity

information and tagging network packets. In the end, the network-level

access restrictions might not prevent malicious activities at the applica-

tion layer after the connection has been established. Therefore, it does

not replace the need for application-level access control.

3.3 Software-defined perimeter (SDP)

Software-defined perimeter (SDP) is an emerging network architecture

developed by Cloud Security Alliance (CSA) to help organizations achieve

zero trust objectives [5]. SDP uses an overlay network to dynamically

create secure network connections between clients and resources over the

internet. In contrast to traditional perimeter networks, SDP is designed

to provide secure access to individual resources rather than entire net-

works. This means that clients are only granted access to the resources

they need, rather than having access to all resources on the network. In

addition, SDP eliminates the need for complex firewall rules and intru-

sion prevention systems by hiding open ports and services exposed to the

internet.

The SDP architecture is defined in detail in a specification document

published by CSA. According to the specification, the architecture con-

sists of three main types of components including a controller, initiating

hosts and accepting hosts [5]. The controller is a central SDP component

responsible of validating and orchestrating communication between initi-

ating and accepting hosts on the network. The initiating host is a software

component in the client system, which is used to connect to other SDP

protected applications. The accepting host is a dynamic firewall in front

of the target application either on the same server or on a gateway. Both

the initiating and the accepting hosts must be on-boarded to the network

by configuring the controller’s connection details, including IP addresses

and TLS certificates.

The SDP components interact over separated control and data planes

as shown in Fig. 2 [5]. At the beginning of a new network connection, the

initiating host sends an authorization request to the controller over the

control plane. The controller validates the request and, if it is allowed, in-

structs the accepting host to allow the connection from the initiating host.

Thereafter, the initiating and accepting hosts may proceed to establish

an encrypted data channel using mutual authentication protocols, such

as mTLS or Internet Key Exchange (IKE). Notably, all connections to the

controller and accepting host components must be initiated by a single

packet authorization (SPA) packet. The SPA packet is a computationally

lightweight UDP-based packet that allows the listening SDP components

to quickly reject unauthorized connection attempts. This allows the SDP

components to effectively drop all unauthorized requests, which makes

the endpoints undiscoverable by attackers on the network.

Overall, the SDP architecture provides an effective technique to protect

cloud network endpoints. The SDP controller evaluates access on a per-

session basis and can enforce access based on a dynamic access policy. In

addition, SPA packets provide protection against denial-of-service attacks

(e.g., TCP SYN flood) by effectively dropping all unauthorized packets [5].

However, SDP comes with implementation challenges because it differs

significantly from traditional networking practices [10]. The SDP con-

troller must be added to the network infrastructure and both the client

and server applications must be refactored to work with SDP compo-

nents. In addition, the control plane message between the SDP controller

Figure 2. Software-defined perimeter defined by CSA [5]

and hosts delays connection establishment [7]. This makes SDP a poorly

suited solution for latency-critical services.

4 Implementing micro segmentation in a Kubernetes environment

This section demonstrates the micro segmentation implementation in a

Kubernetes environment. The micro segmentation is implemented using

Cilium identity-based network policies.

Cilium is an open-source software that provides network connectivity

and access control between containerized applications [1]. In a Kuber-

netes cluster a Cilium software agent is installed on each cluster node.

The agent uses eBPF (extended Berkeley Packet Filter) technology to tag

workload (e.g., pod) identity information in network packets at the Linux

kernel level. The workload identity is derived from Kubernetes labels

which are attached to the workload during deployment.

The test environment includes three pods named client1, client2, and

server. The client1 and client2 pods have curl command-line tool installed,

while the server pod is running a NGINX web server. A Cilium identity-

based network policy is created and applied to the cluster. The Cilium

policy restricts incoming traffic to the server pod and allows only requests

from the client1 pod. All other traffic to the server pod is denied.

The test results show that the Cilium network policy successfully re-

stricted incoming network connections to the server. After the policy was

applied network connection attempts from client2 times out when trying

to reach the server as shown in Fig. 3. Connections from client1 are still

allowed because the pod label is was whitelisted in the policy.

Former research [4] has demonstrated how ZTA can be implemented

in a Kubernetes environments using identity governance technique. The

Figure 3. HTTP HEAD request from client pods to server pod after Cilium newtork policy
has been applied

Cilium network policy complements the former implementation by adding

network layer controls which would prevent lateral movement inside the

network if a user or application identity is compromised.

The experiment demonstrated that Cilium network policies provide an

easily achievable security improvement in Kubernetes environments. With

Cilium, network policies can be defined using Kubernetes labels, making

them easy to create and maintain. This allows for a more intuitive and

flexible approach to network security, where policies can be defined based

on application-level requirements instead of IP addresses and ports.

5 Discussion

The ZTA advises organizations to transition from a traditional network-

centric perimeter security model to a more identity-centric model. In ZTA,

identity is the primary factor in determining access to resources. Every

client is authenticated and authorized before it is granted access to any

resource, regardless of whether they are inside or outside the network

perimeter.

Despite this, network firewalls and security devices still have a critical

role in securing cloud networks. However, their role is different from the

traditional perimeter security model, where they are responsible of pro-

tecting the network perimeter. In ZTA, network firewalls and security

devices are still used to protect network segments and limit access to re-

sources based on identity and contextual factors. However, they are no

longer the only line of defense, and their role is to complement other se-

curity measures, such as identity and access management (IAM) systems

and endpoint security solutions.

This paper reviewed three established techniques associated with the

ZTA implementation, including identity governance, micro segmentation,

and software-defined perimeter. The covered techniques are not mutually

exclusive, and they can be used together to achieve optimal security. Iden-

tity governance ensures that only authorized clients are granted access to

resources. Micro segmentation reduces the attack surface and prevents

lateral movement within the network. Software-defined perimeter pro-

vides a secure and flexible way for users to access resources from any lo-

cation. Together, these techniques create a security model that is flexible,

scalable, and effective in protecting an organization’s resources against

the most common threats.

However, implementing the ZTA in cloud networks may be challenging.

Access policies must be constantly updated to reflect changes in the net-

work and to ensure that clients are granted the appropriate levels of ac-

cess, which requires a greater level of management oversight than in tra-

ditional security models. To address this challenge, organizations should

leverage automation tools to help manage their access policies and con-

sider adopting a phased approach to the implementation.

6 Conclusion

The zero trust network security model provides an effective approach

to securing cloud networks. An effective zero trust architecture imple-

mentation requires combing techniques presented in this paper, including

identity governance, micro-segmentation, and software-defined networks.

While challenges exist, careful planning and investing in the right tech-

nologies, such as Kubernetes Cilium integration, can help organizations

achieve the benefits of this approach. Overall, the zero trust model repre-

sents a significant shift in network security that is necessary to address

modern cyber threats in cloud environments.

References

[1] Cilium documentation, 2023.

[2] Christoph Buck, Christian Olenberger, André Schweizer, Fabiane Völter,
and Torsten Eymann. Never trust, always verify: A multivocal literature
review on current knowledge and research gaps of zero-trust. Computers &
Security, 110:102436, 2021.

[3] Ramaswamy Chandramouli. Guide to a secure enterprise network land-
scape. Technical report, National Institute of Standards and Technology,
2022.

[4] Daniel D’Silva and Dayanand D. Ambawade. Building a zero trust archi-
tecture using Kubernetes. In 2021 6th International Conference for Conver-
gence in Technology (I2CT), pages 1–8, 2021.

[5] Jason Garbis and Juanita Koilpillai. Software-defined perimeter (SDP)
specification v2.0. Technical report, Cloud Security Alliance, 2022.

[6] Evan Gilman and Doug Barth. Zero trust networks. O’Reilly Media, Incor-
porated, 2017.

[7] Abdallah Moubayed, Ahmed Refaey, and Abdallah Shami. Software-defined
perimeter (SDP): State of the art secure solution for modern networks. IEEE
Network, 33(5):226–233, 2019.

[8] Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Connelly. Zero trust
architecture. Technical report, National Institute of Standards and Tech-
nology, 2020.

[9] Sirshak Sarkar, Gaurav Choudhary, Shishir Kumar Shandilya, Azath Hus-
sain, and Hwankuk Kim. Security of zero trust networks in cloud comput-
ing: A comparative review. Sustainability, 14(18), 2022.

[10] Naeem Firdous Syed, Syed W. Shah, Arash Shaghaghi, Adnan Anwar, Zubair
Baig, and Robin Doss. Zero trust architecture (ZTA): A comprehensive sur-
vey. IEEE Access, 10:57143–57179, 2022.

[11] Zirak Zaheer, Hyunseok Chang, Sarit Mukherjee, and Jacobus Van der
Merwe. EZTrust: Network-independent zero-trust perimeterization for mi-
croservices. In Proceedings of the 2019 ACM Symposium on SDN Research,
SOSR ’19, page 49–61, New York, NY, USA, 2019. Association for Comput-
ing Machinery.

Uncertainty estimation in model-based

reinforcement learning with ensembles

Roope Kajoluoto

roope.kajoluoto@aalto.fi

Tutor: Shibei Zhu

Abstract

Model-based reinforcement learning (MBRL) algorithms have emerged as a

promising approach to reinforcement learning that also provide excellent sam-

ple efficiency. MBRL algorithms approximate the environment dynamics based

on prior experience to perform planning without the need for environment

interaction. However, state transitions in complex environments generally in-

clude stochasticity and the model is not always accurate. Therefore, many

practical variants of model-based algorithms rely on either quantifying the

amount of uncertainty in the dynamics model or otherwise mitigating the

effects of potentially unreliable plans. One technique to achieve uncertainty-

aware algorithms is presented by ensemble learning. Ensembles of dynamics

models can stabilize planning and have proven to be effective in deriving ex-

plicit uncertainty estimates. MBRL algorithms that utilize ensemble learn-

ing have reached state-of-the-art asymptotic performance and can outperform

model-free approaches in many environments. This paper reviews different

uncertainty estimation and mitigation approaches within model-based rein-

forcement learning that are based on ensembles.

KEYWORDS: Reinforcement learning, Model-based reinforcement learning,

Uncertainty estimation, Ensemble methods

1 Introduction

Reinforcement learning (RL) algorithms generally fall into one of two distinct

types: model-free and model-based algorithms [26]. Model-free algorithms

have shown promising results in many optimal control tasks, such as playing

videogames [17] and more recently with natural language processing [25, 20].

Model-free algorithms can perform well in a wide range of environments, but

typically require large amounts of data to converge [12]. Model-based rein-

forcement learning (MBRL) approaches differ in that they attempt to model

the environment in addition to learning a policy. Using this estimated dy-

namics model allows for predicting the outcomes of actions without having

to explicitly simulate them. This is also referred to as planning [26]. As a

result, model-based algorithms are generally much more sample-efficient when

compared to their model-free counterparts [18].

However, an imperfect model of the environment dynamics can direct the

training to fall into a local minima or to fail completely due to misled ex-

ploration. Additionally, some approaches use the model’s plans directly as

candidate action sequences when acting in the environment [4, 19]. Therefore,

a central problem in MBRL is building algorithms that take this uncertainty

into account in their exploration and decision-making. One way to estimate

uncertainty is presented by ensemble methods. Algorithms that account for

the uncertainty in decision making are also referred to as uncertainty-aware

algorithms [4]. This paper reviews different ensemble-based approaches to

uncertainty estimation within MBRL.

This paper is organized as follows. Section 2 provides necessary notation

and background information. Section 3 provides a short motivation for the

use of environment dynamics models in RL. Section 4 reviews different ways

uncertainty can be estimated with ensembles. Section 5 presents different ways

estimations of uncertainty can be used in RL algorithms. Section 6 gives brief

conclusions.

2 Background

Reinforcement learning is applied in Markov decision processes (MDP), which

are defined as tuples (S,A, ρ, γ,D,R). S is a finite set of states (state space),

and A is a set of actions (action space). ρ is a state transition function, for

which it applies that st+1 = ρ(st, at),∀st, at. For probabilistic dynamics the

output of ρ is defined as a conditional probability distribution over possible

successor states, ρ(st, at) = Pr(·|st, at). γ ∈ [0, 1] is a discount factor, which is

used to emphasize immediate rewards over future ones. D is the distribution of

possible initial states from which the initial state s0 is drawn andR : S×A −→ R

is the reward function. The goal of RL is to find an optimal policy π∗ that

achieves a maximal reward Rπ∗ over trajectories:

Rπ∗ = argmax
π

E
τ∼π

[︃ N∑︂

t=0

γtR(st, at)

]︃
(1)

Here τ = {(sn, an)}Nn=1 stands for trajectories sampled using the policy π.

Additionally, MBRL methods aim to construct an approximation ρθ of ρ

given a set of trajectories τ from the environment. With this approximation, it

is possible to predict trajectories resulting from applying sequences of actions,

usually sampled from a policy π [4]. It is worth noting that depending on

the complexity of the transition model, the true environment dynamics model

can be either directly recovered (i.e., for environments such as Go or chess) or

approximated with certain error (i.e., complex multi-degree of freedom robots).

Ensemble learning encompasses algorithms that combine the predictive power

of multiple models. An ensemble of models are trained for the same task, and

their predictions are used jointly to achieve a greater performance than with

a single model [1]. In the context of MBRL, multiple environment dynamics

models ρθ = [ρθ1, ρθ2...ρθb], b ∈ N+ are trained for the task of predicting state

transitions. These ensembles are often deep ensembles (DE) as deep neural

networks are used. As pointed out by Abdar et al. [1], DEs are applied to

obtain better predictions on test data and to provide model uncertainty es-

timates when the learners are provided with OoD data. Ensemble methods

can also be applied to other parts of the MDP. For example, SUNRISE [12]

presents a framework for building model-free algorithms that employ an en-

semble of agents. However, this paper focuses on model-based approaches that

approximate uncertainty present in the environment dynamics model.

A key aspect of all MBRL is the class of models used to predict the envi-

ronment dynamics. This choice is crucial to how well the MBRL algorithm

performs. Historical work focused on simpler function approximators, namely

linear functions [2] and Gaussian processes [11, 6]. While these functions can

work well in low-data situations, they do not scale well to high-dimensional

or discontinuous state spaces [4, 18]. Recent work has transitioned to more

complex functions, mainly neural networks [21]. The use of ensemble methods

is not reliant on the type of model used, but the model’s stochasticity is often

a crucial part of the overall estimate of uncertainty.

2.1 General notion of uncertainty

Figure 1. A simple visualization of the two types of uncertainty regarding the successor state

st+1 when executing action a ∈ A in different states st ∈ S. The blue crosses are

samples and the red curve is the true, noiseless function.

Uncertainty within decision making can be broadly divided into two types:

aleatoric and epistemic [15]. They are also known as observation and process

uncertainty [4], or data and knowledge uncertainty [16]. In essence, uncertainty

that is deemed irreducible is aleatoric while reducible uncertainty is epistemic

[7].

Aleatoric uncertainty arises from stochasticity in the data generation process,

as the data can be noisy or imprecise. In addition, it is also impractical to fully

represent every detail about the environment in non-trivial problem settings.

Therefore, the policy is given input x instead of the ”true” input x∗ [15]. This

noise also applies to the dynamics model, as it is predicting transitions from

one uncertain state to another. Aleatoric uncertainty cannot be removed or

even reduced with any predictive model or amount of data, as it is always

present in the state transitions.

On the other hand, epistemic uncertainty stands for uncertainty that is

present in a specific model due to a lack of knowledge about the data gen-

eration process. This can be intuitively thought of as the ”confidence” in the

predictions of the model aligning with the real environment dynamics. An op-

timal model of the environment dynamics has no epistemic uncertainty, which

is noted as the red curve in Figure 1. This uncertainty can be characterized

as either parametric or structural [14]. The parametric epistemic uncertainty

defines the uncertainty regarding the parameters of the model. This can be

reduced by collecting more data. Structural epistemic uncertainty reflects

whether the chosen model family is expressive enough to represent the true

dynamics model ρ. For example, a linear model will always have structural

epistemic uncertainty when fit to the data shown in Figure 1, as the true

transition function is polynomial. This can be reduced by changing the model

family.

It is desirable to not only be able to quantify the amount of uncertainty,

but also to be able to differentiate between the two types of uncertainties.

This is especially true in the context of guiding exploration. In the interest of

removing uncertainty from the current dynamics models, the agent should be

guided towards state transitions that have high epistemic uncertainty. If the

two types of uncertainty are indistinguishable, the policy might favor transi-

tions with high aleatoric uncertainty instead, which will not improve the model

[4].

3 Motivation for MBRL

This section provides a short overview of the advantages and disadvantages of

model-based RL approaches. Firstly, the section discusses some of the benefits

of having access to an accurate dynamics model. In other words, why approx-

imating the environment dynamics is beneficial as part of the RL paradigm.

Secondly, the section discusses additional considerations and challenges that

need to be addressed when using the model.

3.1 Benefits

• Transferability: A sufficiently accurate model of the environment dynamics

can assist in training a policy. This ability is not specific to the reward

function used. In essence, once the environment model is learned it can be

used to train new policies that may maximize different reward functions.

This is referred to as transfer learning [31]. An example of this type of

transfer learning is presented by Sekar et al. [24], where the algorithm first

explores the environment without a reward function and then uses the model

built from this exploration to train a policy. Similarly, PILCO [6] first trains

a dynamics model and then trains a policy that maximizes the given reward

function using only state transitions sampled from the model. Therefore,

a dynamics model be used for training any number of possibly dissimilar

policies.

• Sample complexity: Sample complexity can be characterized as the amount

of samples required for an algorithm to reach the desired degree of accu-

racy in learning the target function [26]. In other words, the more useful

information that can be extracted from given data, the lower the sample

complexity and the higher the data efficiency. In contrast to model-free

methods, MBRL algorithms also use the collected trajectories to infer infor-

mation about the environment itself. Once an environment dynamics model

has been approximated, it can be used to create new data by sampling. This

data can be used identically to data sampled directly from the environment

to, for instance, learn a policy [9]. Therefore, MBRL algorithms require in-

herently less environment interaction than model-free RL algorithms, and

can be characterized as being more data-efficient [18].

• Safety: The ease and feasibility of collecting trajectories varies greatly be-

tween environments. RL algorithms generally require collecting trajectories

with a suboptimal policy. This is known as online learning [13]. This will

usually not pose safety concerns in a simulated environment, but could lead

to catastrophic failure in the real world. Due to its data efficiency, MBRL

algorithms are often able to converge with much less environment interac-

tion. In fact, given a highly accurate dynamics model they may not require

any trajectories to be sampled with the policy during training [6]. This ap-

proach, which is also referred to as offline learning [13], does not require any

environment interaction during policy optimization. This can be very ben-

eficial in safety-critical environments. In addition, some MBRL algorithms

provide safety guarantees on policy stability, given a safe initial policy [3].

• Generalizability: In contrast to online RL algorithms that sample from the

environment during training, offline RL algorithms learn a policy exclusively

from previously collected data [13]. This restricts the algorithm’s ability to

test whether the policy has improved, but may be unavoidable if sampling

from the environment is not possible. In the offline learning setting, existing

model-based reinforcement learning methods significantly outperform their

vanilla model-free counterparts [30]. This implies that MBRL methods are

able to generalize better to states outside the data, leading to improved

generalization. Additionally, this result also implies that MBRL methods

may not suffer from overfitting and overestimation to the extent of model-

free approaches.

• Explainability: The model can be used to understand the decisions made

by a policy. MBRL algorithms rely on planning with the dynamics model,

which means that this dynamics model can also be evaluated independently.

In this way, it is not only possible to see what the policy is trying to achieve,

but also how it intends to achieve it [18].

3.2 Challenges

• Performance: The asymptotic performances of MBRL methods have his-

torically lagged behind their model-free counterparts [4]. This means that

the benefits of converging more quickly have been overshadowed by con-

verging at a less optimal solution. This gap has narrowed in recent years

with new algorithms, such as probabilistic ensembles with trajectory sam-

pling (PETS) [4] and model-based policy optimization (MBPO) [9]. Both

algorithms matched the current benchmarks for model-free RL performance

achieved by PPO [23] and SAC [8] in the tested environments. Though

more modern model-free algorithms such as SUNRISE [12] have proven to

provide improved performance, model-free and model-based algorithms both

continue to have environments in which they are superior. Therefore, there

is often no clear answer as to which approach will provide the best perfor-

mance.

• Long trajectories: Long trajectories sampled from the dynamics model tend

to face compounding errors, which make them increasingly error-prone. An

efficient approach to countering this has been to employ ensemble methods,

which can mitigate the effects of single, inaccurate dynamics models [4, 5,

22]. Alternative approaches include training the model specifically to predict

further into the future instead of compounding single-state transitions [28],

avoiding uncertain state transitions [30] and training the model on its own

outputs [27].

4 Uncertainty estimation with ensembles in MDPs

This section discusses different ways ensembles can be used to estimate uncer-

tainty in MDPs. The section covers a few notable uncertainty estimates, and

the motivations for them. The ways in which these estimates can be used in

the MBRL algorithms are covered in the next section.

4.1 Training the models

Firstly, for the ensemble to be useful, the individual models need to be suf-

ficiently different. An ensemble of identical models provides no benefits to

predictive performance. Uniqueness of the models could be achieved by train-

ing the models with differing seeds, model architectures or with different sub-

sets of the training data [16]. Many different methods to define the data for

the models have been presented. For example, the data can be chosen with

or without replacement or such that any single trajectory can or cannot be

used in the training of multiple models. A generic way to train these models

is to utilize bootstrapping [4], where the data for each model is drawn ran-

domly and independently with replacement. These approaches can clearly be

combined in a multitude of ways. For instance, MOReL [10] initializes the

models with different weights but also trains them with different mini-batches

of trajectories.

4.2 Different estimates of uncertainty

Perhaps the simplest uncertainty estimate that utilizes the trained ensemble

is the ensemble discrepancy [10]:

disc(s, a) = max
i,j
∥ρθi(s, a)− ρθj (s, a)∥2 (2)

Here, the maximal disagreement between different models is interpreted as

the epistemic uncertainty. With a stochastic dynamics model, this can be

extended to state distribution expectations: disc(s, a) = maxi,j∥E[ρθi(s, a)]−
E[ρθj (s, a)]∥2. Many different approaches can be built simply from the differ-

ences of the state distributions. For example, the variance of the different mod-

els’ predictions: Var(ρθ̄(s, a)), where ρθ̄(s, a) = [ρθ1(s, a), ρθ2(s, a)...ρθb(s, a)].

Intuitively, the larger the variance of the predictions is, the more disagreement

there exists between the models. It is clear that if all the models in the en-

semble were identical to a single model (including the true dynamics model),

all these metrics would be equal to zero. Therefore, all these metrics can be

interpreted as the epistemic uncertainty that could be reduced by collecting

more data, especially in low-data regions.

On the other hand, the aleatoric uncertainty is usually approximated from

the stochasticity of the individual models’ predictions. In PETS [4], an envi-

ronment dynamics model is a probabilistic neural network that defines param-

eters for a multivariate Gaussian distribution. The variance of the resulting

state distribution can be interpreted as the aleatoric uncertainty, averaged

over the ensemble [4]. In this way, the ensemble is not used directly for un-

certainty estimation but as a method for averaging over models which may be

inaccurate on their own.

Some estimates attempt to capture both the aleatoric and epistemic uncer-

tainty. MOPO [30] uses an ensemble of models ρθ = [ρθ1, ρθ2...ρθb], each of

which are expressed as a multivariate Gaussian distribution with a diagonal

covariance matrix: ρθi(st+1|st, at) = N(µi(st, at),Σi(st, at)), 0 ≤ i ≤ b. The

level of uncertainty is defined as the maximal product of the standard devi-

ations of the individual state dimensions. This is equivalent to the maximal

Frobenius norm of the (diagonal) covariance matrices Σi in the ensemble:

U(s, a) = max
i
∥Σi(s, a)∥F (3)

The maximal product of standard deviations is used instead of the mean to

improve the robustness of the estimates.

4.3 Disadvantages

Although ensembles have been proven to be a viable way to estimate uncer-

tainty, they are not applicable in every situation. Training an ensemble of

models scales the computational complexity and time consumption approxi-

mately linearly with respect to the number of models [1]. Additionally, storing

multiple models increases the memory requirements of the algorithms. These

problems are not exclusive to reinforcement learning but encompass all uses

of ensemble methods. Some approaches have been proposed to mitigate these

problems, such as ensemble distillation [16]. Ensemble distillation techniques

attempt to distill the ensemble into a single model, with the promise of retain-

ing the uncertainty estimate but mitigating the computational cost.

In addition to scaling the required training resources, ensemble-based un-

certainty estimates may perform poorly in some environments. Yu et al. [29]

show empirical proof that uncertainty estimates will be inaccurate in certain

offline learning scenarios where generalization to unknown behaviors is diffi-

cult. This conclusion extends to uncertainty estimates that are derived from

ensembles. These samples of unknown behaviors are often referred to as Out

Of Distribution (OOD) samples, as they were not part of the data used to

train the models. The authors proposed Conservative Offline Model-Based

policy Optimization (COMBO), an algorithm that does not incorporate un-

certainty estimations. The authors also present experimental results, where

the algorithm outperforms previous uncertainty-aware MBRL methods such

as MOPO [30] and MOReL [10] in three environments where generalization is

critical.

5 Using the uncertainty in MBRL algorithms

This section presents different approaches to using the uncertainty in MBRL

algorithms. These approaches can be generally thought of as belonging into

one of two classes. Firstly, some algorithms use an explicit uncertainty es-

timate that is calculated and used directly in the algorithm. On the other

hand, some approaches don’t have an explicit uncertainty estimate but com-

bat uncertainty by incorporating the ensemble of dynamics models into the

algorithm. This is generally done to mitigate the effects of single inaccurate

models.

5.1 Stabilizing sampling

Using complex function approximators such as probabilistic neural networks

increases the risk of overfitting. Overfitting occurs especially at the start

of training when data is scarce [4]. When sampling trajectories from the

ensemble, algorithms such as PETS [4] and MBPO [9] sample state transitions

from the models uniformly. Consequently, if one model is unreliable or has

overfit due to a lack of data, its predictions are not always used. In MBPO,

this prevents the policy from exploiting an unreliable model especially in low-

data regions. This is because the policy is trained using samples from the

dynamics model ensemble. In PETS, this approach prevents single unreliable

models from repeatedly misdirecting the agent.

5.2 Partitioning the state-action space

In the MOReL algorithm [10], the ensemble discrepancy from Equation 2 is

used as part of an uncertainty function. The function determines whether

the level of disagreement between the models in the ensemble is acceptable

regarding the successor state of a specific state-action pair:

Uα(s, a) =

⎧
⎪⎨
⎪⎩
Known, if disc(s, a) ≤ α

Unknown, otherwise
(4)

Where α is a tunable hyperparameter that defines the level of acceptable dis-

crepancy. This has the effect of dividing the state-action space into ”known”

and ”unknown” transitions, the latter of which are undesirable. With this

definition, the authors define an (α, κ)-pessimistic MDP as a tuple: (S ∪

HALT, A, ρp, γ,D,Rp). Here, HALT defines a special absorbing state. The

state transition function ρp and reward function Rp are defined as follows:

ρp(st+1|s, a) =

⎧
⎪⎨
⎪⎩
HALT, if Uα(s, a) = Unknown or s = HALT

ρθi(st+1|s, a), otherwise

Rp(s, a) =

⎧
⎪⎨
⎪⎩
−κ, if s = HALT

R(s, a), otherwise

(5)

Here, ρθi is sampled uniformly from the ensemble. Otherwise, the defini-

tion (α, κ)-pessimistic MDP follows a normal MDP. In the (α, κ)-pessimistic

MDP, state transitions in which the model’s accuracy cannot be guaranteed

are directed to the HALT state. The HALT state induces a negative reward

and cannot be escaped. Intuitively, this forces the policy to follow trajectories

that have less uncertainty to them. The policy is expected to do this even in

situations where, in the absence of uncertainty, some other trajectory would

appear superior.

5.3 Penalizing unreliable transitions

As uncertainty makes the trajectories sampled less reliable, state transitions

with high uncertainty can be seen as less desirable. Therefore, one approach

is to use the uncertainty directly as a penalty term in the reward function. In

MOPO [30], the uncertainty-penalized reward function is defined as Rλ(s, a) =

R(s, a)−λU(s, a), where U(s, a) = maxi∥Σi∥F as discussed in Section 4. Here,

λ is a tunable hyperparameter. Intuitively, the more preferred transitions with

less uncertainty are, the higher λ should be. Additionally, λ should be higher

if the uncertainty function underestimates the true uncertainty and lower if

the opposite is true. This approach has the benefit that it only restricts the

implementation of the reward function. This means that any RL algorithm,

either model-based or model-free, can be used to maximize it and remain

uncertainty-aware.

6 Conclusion

This paper reviewed notable ensemble-based approaches to quantify envi-

ronment dynamics model uncertainty in model-based reinforcement learning.

MBRL is an approach to reinforcement learning that also approximates the

environment dynamics model. This dynamics model is then used to simulate

trajectories, otherwise known as planning. MBRL can have many benefits

over model-free methods, including sample efficiency and tranferability. If the

environment’s state transitions include stochasticity, a deterministic or fully

certain model of the environment dynamics will be inaccurate. Additionally,

a complex environment dynamics model will not be accurate until a sufficient

amount of data has been collected, often leading to unavoidable uncertainty

during training. Therefore, incorporating uncertainty into the model of the

environment dynamics is crucial to the performance of many MBRL algo-

rithms. This can be achieved by using ensembles of models to approximate

state transition uncertainty and to stabilize trajectory sampling. Ensemble-

based uncertainty estimates can face problems with computational complexity,

memory requirements and poor generalisability to certain types of OOD data.

However, uncertainty-aware MBRL algorithms that employ ensemble methods

can often perform exceptionally well when compared to model-free algorithms.

The use of ensembles in building uncertainty-aware MBRL algorithms contin-

ues to be an active field with many open questions. More research is required

into building different uncertainty estimates from ensembles and how the es-

timated uncertainty can be better incorporated into the learning process.

Bibliography

[1] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu,

Mohammad Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Ra-

jendra Acharya, et al. A review of uncertainty quantification in deep learning:

Techniques, applications and challenges. Information Fusion, 76:243–297, 2021.

[2] J Andrew Bagnell and Jeff G Schneider. Autonomous helicopter control using

reinforcement learning policy search methods. In Proceedings 2001 ICRA. IEEE

International Conference on Robotics and Automation (Cat. No. 01CH37164),

volume 2, pages 1615–1620. IEEE, 2001.

[3] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause.

Safe model-based reinforcement learning with stability guarantees. Advances in

neural information processing systems, 30, 2017.

[4] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep

reinforcement learning in a handful of trials using probabilistic dynamics models.

Advances in neural information processing systems, 31, 2018.

[5] Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim As-

four, and Pieter Abbeel. Model-based reinforcement learning via meta-policy

optimization. In Conference on Robot Learning, pages 617–629. PMLR, 2018.

[6] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient

approach to policy search. In Proceedings of the 28th International Conference

on machine learning (ICML-11), pages 465–472, 2011.

[7] Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it

matter? Structural safety, 31(2):105–112, 2009.

[8] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-

critic: Off-policy maximum entropy deep reinforcement learning with a stochas-

tic actor. In International conference on machine learning, pages 1861–1870.

PMLR, 2018.

[9] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust

your model: Model-based policy optimization. Advances in neural information

processing systems, 32, 2019.

[10] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims.

Morel: Model-based offline reinforcement learning. Advances in neural informa-

tion processing systems, 33:21810–21823, 2020.

[11] Malte Kuss and Carl Rasmussen. Gaussian processes in reinforcement learning.

Advances in neural information processing systems, 16, 2003.

[12] Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A

simple unified framework for ensemble learning in deep reinforcement learning.

In International Conference on Machine Learning, pages 6131–6141. PMLR,

2021.

[13] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforce-

ment learning: Tutorial, review, and perspectives on open problems. arXiv

preprint arXiv:2005.01643, 2020.

[14] Jeremiah Liu, John Paisley, Marianthi-Anna Kioumourtzoglou, and Brent Coull.

Accurate uncertainty estimation and decomposition in ensemble learning. Ad-

vances in neural information processing systems, 32, 2019.

[15] Antonio Loquercio, Mattia Segu, and Davide Scaramuzza. A general framework

for uncertainty estimation in deep learning. IEEE Robotics and Automation

Letters, 5(2):3153–3160, 2020.

[16] Andrey Malinin, Bruno Mlodozeniec, and Mark Gales. Ensemble distribution

distillation. arXiv preprint arXiv:1905.00076, 2019.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement

learning. arXiv preprint arXiv:1312.5602, 2013.

[18] Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al.

Model-based reinforcement learning: A survey. Foundations and Trends® in

Machine Learning, 16(1):1–118, 2023.

[19] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel,

Sergey Levine, and Chelsea Finn. Learning to adapt in dynamic, real-world envi-

ronments through meta-reinforcement learning. arXiv preprint arXiv:1803.11347,

2018.

[20] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al.

Training language models to follow instructions with human feedback, 2022.

URL https://arxiv. org/abs/2203.02155.

[21] Ali Punjani and Pieter Abbeel. Deep learning helicopter dynamics models. In

2015 IEEE International Conference on Robotics and Automation (ICRA), pages

3223–3230. IEEE, 2015.

[22] Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine.

Epopt: Learning robust neural network policies using model ensembles. arXiv

preprint arXiv:1610.01283, 2016.

[23] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347,

2017.

[24] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner,

and Deepak Pathak. Planning to explore via self-supervised world models. In

International Conference on Machine Learning, pages 8583–8592. PMLR, 2020.

[25] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea

Voss, Alec Radford, Dario Amodei, and Paul F Christiano. Learning to summa-

rize with human feedback. Advances in Neural Information Processing Systems,

33:3008–3021, 2020.

[26] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-

tion. MIT press, 2018.

[27] Erik Talvitie. Model regularization for stable sample rollouts. In UAI, pages

780–789, 2014.

[28] William Whitney and Rob Fergus. Understanding the asymptotic performance

of model-based rl methods. 2018.

[29] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine,

and Chelsea Finn. Combo: Conservative offline model-based policy optimization.

Advances in neural information processing systems, 34:28954–28967, 2021.

[30] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey

Levine, Chelsea Finn, and Tengyu Ma. Mopo: Model-based offline policy opti-

mization. Advances in Neural Information Processing Systems, 33:14129–14142,

2020.

[31] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep rein-

forcement learning: A survey. arXiv preprint arXiv:2009.07888, 2020.

Algorithmic voting power

Roope Karppinen
roope.karppinen@aalto.fi

Tutor: Antti Rinnasto

Abstract

KEYWORDS: information society, critical sociology, voting advice applica-

tion, algorithm, power

1 Introduction

Within an average household, the diversity and the quantity of algorith-

mic application, that reside inside a household, have drastically increased

in the last decade. With every passing day, society relies increasingly on

applications that use different types of algorithms to operate.

Most of these algorithms gather some form of data from the surround-

ing area, such as a sports watch that counts the wearer’s heartbeat, sleep

duration and daily exercise durations. While these new strategies of col-

lecting data have helped with everyday life, they have also established

a more robust information based society. Different companies, such as

Google and Facebook, have thrived in this new datadriven world with

their different types of algorithms.

Zuboff [15], defines this new age of data capitalization as "surveillance

capitalism". She more broadly defined it as "This new form of informa-

tion capitalism aims to predict and modify human behavior as a means

to produce revenue and market control". This type of algorithm usage

can be very detrimental in the long run, when looking at things such as

web search algorithms, like Google’s PageRank [12], or Facebook’s Edger-

ank [4], because they can take away human agency from decision making.

That is one possible power that algorithms can have, including voting ad-

vice applications (VAAs).

VAAs are a new way to improve electoral participation in different coun-

tries, which utilize the strengths of algorithms. This is mostly done through

simplified issue-based voting, which is a way of figuring out which politi-

cian aligns most closest with a voter based on different political issues.

However, because it is a simplified way, there can be some problems that

arise from using this type of metric to choose a candidate. Simplified issue

voting often relies on having stances on a linear scale, for example, does

a voter agree or disagree with supporting abortion? Abortion policies are

an incredibly complex and multileveled topic, and trying to simplify that

issue is practically impossible because there are often too many stances to

consider. Also, considering that voting is one of the most effective ways to

create social change, the importance of working VAAs becomes that much

more significant.

This paper reviews the critical sociology of voting advice applications,

i.e. to identify potential problems and dangers that can arise with VAAs,

as well as propose possible solutions to some of these problems.

The paper is structured as follows. Section 2 covers the basic concepts

and definitions, such as information society and power through the lens

of sociological theory. Section 3 inspects voting advice applications, their

history and basic functionalities. Section 4 goes over different studies

from a critical sociology viewpoint on VAAs and looks at recent changes

done to YLE’s VAA. Lastly, Section 5 covers the closing statements.

2 Core concepts

This section summarizes the important basic ideas behind algorithmic

power and builds a foundation before Section 3.

2.1 Algorithms

When someone uses the word algorithm, it can convey different ideas from

person to person. The question in itself can be quite deep depending from

what type of viewpoint it is answered from, such as Hill [9] did from a

ground level of computer science. For the sake of simplicity, this paper

views algorithms as a set of instructions that produce an optimal output

based on the given inputs. A good example of this type of algorithm is the

PageRank algorithm that is used in Google search engines.

As explained by Brin and Lawrence [3], the entire search engine of

Google started of from the PageRank algorithm that is still used today. It

uses a formula to determine the rank of each page within a web search

result link. The formula is constructed as follows:

A represents the page, which has T1...Tn number of citations to it, and

C gives the total number of outgoing links from the citation. d is the

dampening factor, which is chosen between 0 ≤ d ≤ 1.

PR(A) = (1− d) + d× (PR(T1)/C(T1) + ...+ PR(Tn)/C(Tn)) (1)

While the specific details within the PageRank equation are more com-

plex, e.g., the number chosen for d, the basics of PageRank follow the

definition given in Equation 1. The formula takes d and T1...Tn as its in-

puts, and outputs the optimal pagerank PR(A) of page A for the Google

search engine.

2.2 Power (Sociology theory)

Power can be seen everywhere in the world. It is a tool which can effect

lives in either positively or negatively depending on who uses it and how

it is used.

In sociological theory, power can be used to explain why different events

happen as they do. For example, what events lead to inequality or dis-

crimination and how they can occur. Algorithms are one way of inspecting

these types of power relation dimensions, due to the fact that they can be

seen as tools which might affect the decision making of different people.

In the past 10 years, there have been enormous amounts of studies on the

social power of algorithms [2, 11], as well as on specific algorithms, such

as Facebook’s EdgeRank algorithm [4]. These are important aspects to

study, in order to counter act the possible malicious effects that come with

algorithmic power.

One example of malicious use of algorithms is the Cambridge Analytica

scandal. In it 50 million Facebook profiles informations were harvested

to build an algorithm which was designed to target individual US vot-

ers with personalised political advertisements, in order to change election

outcomes [5]. Similarly, VAAs could quite easily be used in a malicious

way, namely favouring certain candidates over others.

2.3 Information society

The increasing use of algorithms in current daily life has caused society

to take a new form, one based on information. This new society has been

named by many different researchers as an information society.

Information society can be defined through six different definitions: tech-

nological, economic, occupational, spatial, cultural and theory [13]. The

most relevant definition in VAAs relates to the technological one, because

the growth in algorithmic usage can be correlated with the rise of VAAs

popularity, which will be shown in section 3.1.

According to the technological definition, the increase in creation of dif-

ferent new technologies, such as different information and communica-

tions technologies (ICTs), has been an indicator for a new information

based age [13]. By increasing the usage of these ICTs in different sectors,

society begins to revolve increasingly around information as a resource.

This definition fits perfectly with applications, including PageRank, be-

cause it requires information about links into and from a page to function,

which can be seen as a way to create profit through new methods of using

information. This growth can also be seen through VAAs history.

3 Voting advice application

This section will cover information about VAAs: their history, how they

function and different types of VAAs.

3.1 History

The origins of VAAs can be traced back to 1989, when a package called

StemWijzer was developed in the Netherlands. It was originally aimed

towards the education sector, where, at the time, it found most of its suc-

cess. A few years later, the original designers of StemWijzer developed an

internet-based model, which was utilized in the 1998 Dutch parliamen-

tary elections [6]. Around the same time in Finland, the Finnish Pub-

lic Broadcasting Company (YLE), had developed a VAA for public usage.

This was followed by Helsingin Sanomat, the largest daily newspaper in

the country, with their own VAA for the 1999 European Parliament elec-

tions, and by 2001, the number of different VAAs grew to as much as 11,

for the Finnish voter to freely use [6].

With time, and the widespread reach of the internet, VAAs started to

gain traction all over Europe and the world. During the 2002-2003 Dutch

elections, the StemWijzer gained over two million different users [6]. Due

to the success of VAAs in Finland and Netherland, other European coun-

tries started to develop their own VAAs. This rise in VAA’s popularity can

be correlated with the growth of information society, based on the tech-

nological definition as given in the previous section. This is because the

growth of ICTs created new opportunities for different sectors to utilize

them in new ways.

3.2 Functionality

The general functionality of every VAA model works the same. It takes

the voter’s preferences on different issues, i.e. abortion or taxes, as inputs,

and compares them with the answers of parties/politicians to determine

the closest matching candidate as output. Every issue within the VAA has

a choice ranging from agree to disagree, and the questionnaire comprises

around 25-30 different questions about general and current political is-

sues. Using the basic input/output idea given in Section 2.1, the input of

VAAs are the voters choices on different issues, and the output is the total

correlation of choices between a voter and a candidate.

While the main functions might be the same for all VAAs, they still

differ in some aspects from each other. Garcia and Diego [6] showed dif-

fering aspects of different VAAs in their book. Some of these differing

aspects include the weighting of different propositions, calculation meth-

ods and the answer pattern. As an example, VAAs might give an option

between ’agree’, ’disagree’ and ’undecided’, while others could have dif-

ferent number of ranging opinions between ’strongly agree’ to ’strongly

disagree’. There might also be differences, based on what type of elec-

tions the VAAs are used for. Most often, VAAs are used for party-based

elections, but these are not the only types of elections in the world. For

example, in Finnish elections, the VAAs compare the voter’s opinion to ev-

ery single politician, rather than a party. There also can be the question

of fact checking each politician’s opinion on every topic. Do the answers

of each candidate/party correspond to their real opinions, or do they differ

Figure 1. Four different types of VAAs [10]

drastically? While this is not a problem exclusive to VAAs, nevertheless,

it still affects possibility of taking advantage of VAAs algorithmic power.

Figure 1 shows one way of differentiating VAAs by their functions. The

VAAs are divided into four different types, with two different axes. One

axis compares if the VAA is used in a party or candidate context, and

the other separates them on how the opinions are fact checked. One type

of VAAs within Figure 1 are purely hypothetical, because getting expert

evaluations on thousands of different candidates would be incredibly task-

ing [10].

4 Analysis

The purpose of VAAs is to make voting for every individual easier and

more straightforward. A study by Gemenis and Rosema [8] into the 2006

Dutch parliamentary elections indicated this to be the case. In it, the

researchers used two waves of face-to-face interviews on a large random

sample of the Dutch electorate. The first wave was done before the elec-

tion, using questions that measured the voter turnout and VAA usage.

The second wave was done after the election, which asked the partic-

ipants if they knew any VAAs, had they used any and what were the

results from said VAA? The results of the study suggest that the most

increase in electoral participation was found in young voters, lower edu-

cation levels and limited political knowledge, which are the optimal target

groups for electoral participation increases. Overall, the VAAs resulted in

a 4.4% voting increase within the Dutch election. These results seem to

correlate with VAA’s impact in other European countries (Germany, Fin-

land, Switzerland, Netherlands), which ranged from a 0.7% increase in

Germany’s 2009 election to a 6.3% increase in the Netherlands 2012 elec-

tion’s [7]. However, while the effectiveness of VAAs seems to be positive

in electoral participation, there are still some design features that are still

in need of improvements.

Isotalo noted in his thesis [10] that one of the biggest faults in the

Finnish VAAs designs was a lack of transparency. This was due to the

algorithms not being open for the public, no information for voters on how

recommendations are constructed and the lack of sharing the datasets of

candidate responses. The fact that open transparency is still missing from

some VAAs is a large detriment to their trustworthiness to the general

public. Having an open-source VAA algorithm would facilitate detecting

algorithmic faults and assist in grasping how they work for those that are

interested in them. There are also no real disadvantages to this either,

due to the fact that VAAs are, by design, free to use and available for

everyone. It should be a core design feature in every VAA, in order to

avoid the negative affects of algorithmic power.

Another disadvantage tied to VAAs comes with using simplified issue-

based voting, concerning the ambiguity of each choice. For example, when

choosing from a scale between agree to disagree, the middle option is of-

ten used when the voter has no opinion or little knowledge on the topic.

However, a study by Baka et al. [1] found out that approximately 75%

of the studies participants did not choose the middle option due to lack

of knowledge or formulated opinion. Those 75% chose the middle option

either because of certain issues dilemmatic nature (45%) (eg, ’economy’ vs

’culture’) or how the questions were formulated (30%) in either ambiguous

or biased ways. This type of classification of differing choices is demerit

for simple issue voting, because it tries to simplify complex topics to sim-

ple groups of answers. And by combining differing opinions to the same

set, it raises questions about how accurate VAAs truly are in their results.

Before the 2023 parliamentary elections in Finland, YLE changed their

VAA in a few ways. According to YLE [14], the questions in the VAA

were made to be as simple and straightforward as possible, in order to re-

move ambiguity and bias. The revised VAA also comprises of two different

questionnaires instead of only one, as was done before. The first question-

naire scales the participants’ answers with different candidates, like most

Finnish VAAs do, and the second one scales the answers for different po-

litical parties. The party based version is more straightforward to use

than the candidate one, by changing the response to 3 possible answers

(’yes’, ’no’ or ’skip’) from 5 possible answers in the candidate questionnaire

(’agree’, ’somewhat agree’, ’somewhat disagree’, ’disagree’ or ’skip’). This

seems to be an attempt to distinguish which politicians’ parties, among

the top resulting candidates, the voter is closest to. While the changes

have tackled some of the issues covered in this section concerning VAAs,

ie. ambiguous questions, there are still needs for improvement in areas,

namely the transparency of the VAA.

5 Conclusion

This paper has conducted a review into the power of VAAs, from a soci-

ological theories perspective. It gives a basic idea of what VAAs are and

how they function, as well as showing the benefits and possible negative

affects that VAAs have concerning their algorithmic power. Algorithmic

power refers to the power which algorithms hold in affecting society from

a multitude of angles. VAA’s can quite easily bring positive change by, i.e.

increasing political participation, but it also can affect society in negative

ways.

VAAs are designed for people who do not have much political awareness.

These types of people are also the perfect demographic for algorithmic

power to get a hold of. Most of the polically unaware people do not ques-

tion the results of an algorithm, such as VAA, and are satisfied with the

minimal participation. Therefore, it is important to ensure that there are

no malicious affectors within the VAA’s algorithm.

One way of defending against the algorithmic power of VAAs relies on

the creators and researchers of VAAs. Always inspecting and analyzing

if an algorithm holds some sort of bias or unfair advantage within it, and

improving on those mistakes. By making every VAA open source would

be one of many possible ways in improving VAAs from the creator side,

because it would increase the detection of problematic elements within

VAAs.

Since VAAs use issue-based voting as a primary function, this causes

some problems with the accuracy of the results. Because simplified issue

voting puts people who might have different stances in the same group,

VAAs can almost never find the most optimal candidate for a voter. There-

fore, a VAA should not be the only way of determining a candidate to vote

for. Researching the top candidates from a VAA is an optimal way of

avoiding the possibility that an algorithm makes the vote for the voter.

References

[1] Aphrodite Baka, Lia Figgou, and Vasiliki Triga. ’neither agree, nor dis-
agree’: a critical analysis of the middle answer category in voting advice
applications. International Journal of Electronic Governance, 5(3-4):244–
263, 2012.

[2] David Beer. The social power of algorithms, 2017.

[3] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. Computer networks and ISDN systems, 30(1-7):107–117,
1998.

[4] Taina Bucher. Want to be on the top? algorithmic power and the threat of
invisibility on facebook. New media & society, 14(7):1164–1180, 2012.

[5] Carole Cadwalladr and Emma Graham-Harrison. Revealed: 50 million
facebook profiles harvested for cambridge analytica in major data breach.
The guardian, 17(1):22, 2018.

[6] Diego Garzia and Stefan Marschall. Voting advice applications. Oxford
University Press, 2019.

[7] Diego Garzia, Alexander H Trechsel, and Andrea De Angelis. Voting advice
applications and electoral participation: A multi-method study. Political
Communication, 34(3):424–443, 2017.

[8] Kostas Gemenis and Martin Rosema. Voting advice applications and elec-
toral turnout. Electoral studies, 36:281–289, 2014.

[9] Robin K Hill. What an algorithm is. Philosophy & Technology, 29:35–59,
2016.

[10] Veikko Isotalo. Designing voting advice applications: The finnish case,
2020. Master’s Thesis.

[11] Maximilian Kasy and Rediet Abebe. Fairness, equality, and power in al-
gorithmic decision-making. In Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, pages 576–586, 2021.

[12] Matteo Pasquinelli. Google’s pagerank algorithm: A diagram of cognitive
capitalism and the rentier of the common intellect. Deep search: The politics
of search beyond Google, pages 152–162, 2009.

[13] Frank Webster. Theories of the information society. Routledge, 2014.

[14] Yle. Yle’s election compass finds the parties and candidates that share your
views. https://yle.fi/a/74-20021433, 2023. Accessed: 2023-03-29.

[15] Shoshana Zuboff. Big other: surveillance capitalism and the prospects of
an information civilization. Journal of information technology, 30(1):75–89,
2015.

Supply chain security in the npm ecosystem
Roope Räsänen

roope.rasanen@aalto.fi

Tutor: Bufalino Jacopo

ABSTRACT

Node package manager (npm) is heavily used in modern JavaScript application

development, which also makes it attractive to attackers looking to inject malicious

code into software. As packages can depend on other packages, dependency trees

in projects can be very large making identifying vulnerabilities more difficult. Most

common attack methods are typosquatting and combosquatting, where a malicious

actor publishes a package with a name that is similar to a popular package hoping

that victims accidentally install the wrong one. Dependency confusion may also be

used to target companies with internal package managers by publishing a malicious

package with the same name as an internal package to a public repository, such as

the npm registry. Malicious packages can have different behaviors, including stealing

of information, leaving a backdoor, and sabotage. These goals are often attempted

via a post- or preinstall scripts in the package.json file. Almost all vulnerabilities can

be avoided by being careful about which packages developer installs and keeping

existing packages up to date. Using a third-party tool such as Snyk can make detecting

vulnerabilities easier and accidentally installing malicious packages harder.

Keywords: npm, Node package manager, supply chain security, typosquatting,

combosquatting, dependency confusion, Snyk

INTRODUCTION

Software supply chain security is an increasingly critical issue as software development

and distribution continue to become more complex and global [15]. Worries of malicious

actors tampering with supply chains are justified because if any link of the chain is

compromised, the consequences can be varied and vast, starting with theft of data

and including business disruption [15]. Such worries have escalated into nation-state-

level intervention in the operations of the global supply chain, such as several Western

nations banning the import and use of 5G networking equipment developed by Huawei

Technologies Co., Ltd [15].

Package managers have become a vital part of the modern software development

process [3]. These allow developers to reuse third-party code, share their own code,

minimize their codebase, and simplify the build process [3]. However, recent reports

showed that package managers have been abused by attackers to distribute malware,

posing significant security risks to developers and end-users [3].

The npm ecosystem, as the largest software registry in the world, is particularly

vulnerable to security risks due to its open and decentralized nature [20]. The npm

ecosystem is an important platform for developers and organizations, as it provides

access to a large repository of software components that can be easily integrated into their

applications [16]. However, this ease of access also creates significant security risks, as

malicious actors can exploit the npm ecosystem to distribute malware or to compromise

the integrity of software components [18]. For example, eslint-scope, a package with

millions of weekly downloads in npm, was compromised to steal credentials from

developers [3].

This research paper aims to examine the current state of software supply chain

security in the npm ecosystem, identifying the potential threats and vulnerabilities, as

well as exploring best practices and solutions for securing the software supply chain

in this context. I will start by providing some background on npm and supply chain

vulnerabilities. This paper will then examine what supply chain vulnerabilities have

been used in the npm ecosystem. I will also examine proposed solutions to reduce the

amount of these vulnerabilities. Finally, this paper presents a discussion on what areas

of npm supply chain security should be studied further.

BACKGROUND

Node package manager
Package managers, such as npm, serve collections of typically open source software

packages, distributed through some package registry [19]. In the case of npm, this

2/10

registry is called npm registry. Each of these packages has one or more releases. Releases

of a package are called package updates. Package releases are denoted by a unique

version number. Higher version number means that a package is newer. Version numbers

typically follow semantic versioning, which states that packages should follow a multi-

component version number scheme major.minor.patch[-tag]. Backwards incompatible

package updates increment the major component, important backwards compatible

changes increment the minor component, and backward compatible bug fixes increment

the patch component.

Node package manager (npm) serves as a frontend to a large repository of JavaScript

software packages, which are used both in browser-side and in server-side JavaScript

applications [16]. With over a million packages, it is the biggest package manager in the

world [9]. The rapid growth of npm can be attributed to its open and free nature, where

arbitrary users can share and reuse code by using a single command [20].

When a developer installs a package from npm, this package including its version is

defined in a package.json file [16]. Listing 1 shows a basic version of a package.json

file, which was obtained by generating a new Create React App [5] project. The in-

stalled packages are listed in the dependencies-block of the json file. There is also a

devDependencies-block, which represents packages that are only used for local develop-

ment, but are not installed when the application is deployed.

1 {

2 "name": "example",

3 "version": "0.1.0",

4 "private": true,

5 "dependencies": {

6 "@testing-library/jest-dom": "ˆ5.16.5",

7 "@testing-library/react": "ˆ13.4.0",

8 "@testing-library/user-event": "ˆ13.5.0",

9 "react": "ˆ18.2.0",

10 "react-dom": "ˆ18.2.0",

11 "react-scripts": "5.0.1",

12 "web-vitals": "ˆ2.1.4"

13 }

14 "devDependencies": {

15 "eslint": "ˆ8.34.0"

16 }

17 }

Listing 1. Example package.json file

In addition to a package.json file, npm uses a package-lock.json file, which is used

to lock versions of packages to a specific version [20]. This ensures that all developers

3/10

and users use the same versions of the package [20]. However, this approach can cause

issues. If a vulnerability is fixed for a given dependency package, projects using said

package will not update the dependency until a new lockfile is generated [20]. Users

may then be using an application with vulnerabilities.

Packages can depend on other packages, which can result in a huge tree of packages

being installed when user installs a single package [16]. For example, installing the

express package [4] also installs 31 other packages, which the express package depends

upon. These packages may then depend on other packages and so on. This reliance on

dependencies may cause problems.

Many npm packages are very small [8]. These so-called micro-packages often have

a single line of code. For example, a package called is-negative-zero exists and its only

purpose is to determine whether a given input is negative zero. This package has 637

dependents and over 26 million weekly downloads on npm [10].

Software supply chain

Supply chain traditionally refers to a process of transforming resources to finished

products, which are then used by the end-users [11]. Software supply chains share

similarities with these traditional supply chains. For example, software can be used as

part of another larger software and it will end up in the use of some user eventually.

Software supply chains can also suffer from same problems as traditional supply

chains [11]. There can be issues with late delivery, counterfeit problems, human errors,

and other risks. In addition, attackers may try to inject malicious code to some part of

the supply chain. Figure 1 illustrates the various points at which malicious code can

enter it.

NPM SUPPLY CHAIN VULNERABILITIES

Typosquatting and combosquatting

Typosquatting and combosquatting refer to techniques where a malicious actor publishes

a package with a name that is similar to a popular package and waits for users to

accidentally misspell the package name when installing and therefore download the

malicious package [3] [7].

Typosquatting attacks hope that a victim makes a typo, meaning they misplace a

single letter or mistype the word [7]. One example of this is the popular lodash package

incident, where a package called loadsh was published on the registry hoping that users

download it instead. Because load is an actual English word and loda is not, it is easy

for users to make this spelling mistake and therefore fall victim to this attack.

4/10

Figure 1. Software supply chain threats [12]

Combosquatting attacks, on the other hand, target users downloading packages with

multiple words in their name [7]. An example of this could be changing the order of the

words of a popular package, that is creating a package with a name of name-package

when a popular package called package-name exists. Remembering the order of the

words can be difficult and many can fall victim to this attack as well.

These attacks are dangerous because the malicious package affects not only the user

that installs it but all packages that depend on it [7]. For example, some developer could

create a package and publish it to npm all while being unaware that they were targeted

by a typosquatting attack. Then, this package that the developer created will share the

malicious code further. Other packages could then depend on this package and so on.

Big dependency trees

Reliance on dependencies may cause problems if users who host these packages decide

to change or remove them [2]. For example, in 2016, a package called left-pad was

removed from the npm registry [2]. This caused massive issues as largely used packages

such as React used this package as a dependency, and could thus no longer work because

this dependency was missing [2]. The package contains only 11 lines of code and this

left many developers questioning whether these type of packages should exist at all [2].

The issue was finally resolved by npm itself, restoring the code to the registry [2].

5/10

Dependency confusion
Dependency confusion is a software supply chain attack that substitutes malicious code

for a internal dependency [1]. This can be done, for example, through researching a

name for a private package that is used internally by some company and then publishing

a package with the same name to a public repository hoping that developers mistakenly

pull the malicious package from the public repository instead of the private one [1].

Snyk security research team wrote a blog post [14] about a targeted npm dependency

confusion attack, which serves as a good example of how malicious packages work. A

package called gxm-reference-web-auth-server was found by the research team they

found suspicious. The package contained a postinstall-script, which invoked a file that

contained obfuscated code. The package.json also contained two gibberish dependencies,

ldtzstxwzpntxqn and lznfjbhurpjsqmr. Listing 2 shows the package.json of this malicious

package and listing 3 shows the contents of the obfuscated file that the script evoked.

1 {

2 "name": "gxm-reference-web-auth-server",

3 "version": "1.33.8",

4 "description": "",

5 "main": "index.js",

6 "scripts": {

7 "postinstall": "node confsettingsaaa.js",

8 "test": "echo \"Error: no test specified\" && exit 1"

9 },

10 "keywords": [],

11 "dependencies": {

12 "axios": "0.26.0",

13 "targz": "1.0.1",

14 "ldtzstxwzpntxqn": "ˆ4.0.0",

15 "lznfjbhurpjsqmr": "ˆ0.5.57",

16 "semver": "7.3.5"

17 },

18 "author": "",

19 "license": "ISC"

20 }

Listing 2. Package.json file of gxm-reference-web-auth-server package

1 const a0_0x489fde=a0_0x5400;

2 (function(_0x552d48,_0x2cc03c){

3 const _0x462334=a0_0x5400,_0x2fedb3=_0x552d48();while(!![]){try{const

_0x5c5667=-parseInt(_0x462334(0x167))/0x1*(-parseInt(_0x462334(0

x10b))/0x2)+-parseInt(_0x462334(0x116)).......# trimmed

Listing 3. Contents of confsettingsaa.js

6/10

This malicious package is targeting a single, unknown, company that the attacker

knows has a package with this name in their private repository [14]. Snyk researchers

were able to deobfuscate the code and find out that the package was attempting to spawn

a shell on the machine of the victim.

Malicious behaviors
Packages can have many different malicious behaviors [3]. These include stealing of

information, leaving a backdoor, and sabotage. Malicious packages can be divided into

two categories, (1) packages that perform malicious actions, such as ex-filtrate sensitive

information, and (2) packages that manipulate behavior of other packages [17]. The

latter is also called dependency-based attack [17].

Malicious packages often utilize post/preinstall scripts in the package.json file [17].

These scripts can do virtually anything, because they are able to spawn a shell and run

any code they desire. A dependency based attack could download a malicious file from

existing packages in the user’s computer or from a non-local repository in the internet.

The package itself can also contain malicious code that the script runs, which would fall

into first category.

AVOIDING VULNERABILITIES

Snyk [13] lists 10 npm security best practices to avoid being targeted by a supply chain

attack.

Ignoring runscripts
Many malicious packages utilize post/preinstall scripts to run their malicious code [1].

These types of attacks can be completely avoided by ignoring run-scripts [13]. This

can be done by always installing packages with the flag –ignore-scripts or by adding

ignore-scripts to a project’s .npmrc file.

Updating outdated dependencies
Always updating packages to their latest releases is not necessarily a good practise if it is

done without reviewing release notes, code changes and testing [13]. In my experience,

it is also not a realistic goal because updates can fundamentally change how packages

work and can introduce breaking changes to production if not done carefully. However,

it is important to keep packages relatively up to date to avoid vulnerabilities [13]. Snyk

[13] recommends that one should often check how outdated packages are using the

npm outdated command. In addition, a command called npm doctor exists, which acts

as a health assesment tool to diagnose your environment [13]. This tool checks that

7/10

npm registry is reachable, git is available, reviews installed npm and node.js versions,

runs permission checks on local and global node modules folders and checks the npm

module cache for checksum correctness [13].

Auditing for vulnerabilities
Snyk hosts tools such as Snyk advisor and Snyk vulnerability database, which should be

used to crosscheck your packages for vulnerabilities [13]. However, it is recommended

that projects on GitHub add snyk to the project, which will then automatically scan any

added packages for vulnerabilities in pull requests [13]. Snyk also offers a command-line

tool if adding it to GitHub is not feasible [13].

DISCUSSION

Node package manager is a tool that has become standard when working with JavaScript.

Usage of libraries makes writing code much faster and easier. However, I find it

questionable whether really small packages containing less than 10 lines of code are

actually needed in the ecosystem. These micropackages add up quickly and bloat trees

of dependencies.

One aspect on software supply chain security that could warrant more research is

the developer aspect when reacting to warnings or errors when building dependencies.

For example, in 2021, there was a vulnerability warning reported about nth-check [6],

which comes with react-scripts, which is a React library that is often used to create new

React projects. The warning turned out to nothing, as it only introduced a vulnerability

when the package accessed the network, which it could not do.

I saw this warning myself in 2021 and thought nothing of it because I am used to

seeing warnings and errors in console. I would be interested to know whether this is the

case with other developers and whether this affects supply chain security. If warnings

are ignored, then perhaps the warnings should be shown in some other place than the

console. Additionally, if there are warnings shown that turn out to be nothing, as was

the case with nth-check [6], does this make developers pay less attention to warnings?

CONCLUSION

This paper has examined the current state of software supply chain security in the

npm ecosystem, identified potential threats and vulnerabilities, as well as explored best

practices and solutions for securing the software supply chain in this context.

There are many malicious packages in the npm registry. Most common attack vectors

are typosquatting and combosquatting, because these are impossible to patch in the npm

8/10

side. That is, npm will always allow creating packages with names similar to existing

ones. Having a big dependency tree makes being the victim of an attack more likely

because more packages results in a bigger attack surface. Any one of the packages that a

project uses could be hijacked by social engineering or credential theft and then updated

with malicious code.

Most common attack vectors, typosquatting and combosquatting, can be avoided by

being careful about packages that are installed. Using a third-party tool such as Snyk

adds a safety net if developers accidentally install malicious packages.

REFERENCES
[1] ActiveState (2022). Dependency Confusion.
[2] Collins, K. (2016). How one programmer broke the internet by deleting a tiny piece

of code.
[3] Duan, R., Alrawi, O., Kasturi, R. P., Elder, R., Saltaformaggio, B., and Lee, W.

(2020). Towards Measuring Supply Chain Attacks on Package Managers for Inter-

preted Languages. arXiv:2002.01139 [cs].
[4] Express (2022). express npm package.
[5] Facebook (2023). Create React App.
[6] GitHub (2021). nth-check vulnerability found in react-scripts@4.0.3 · Issue #11647

· facebook/create-react-app.
[7] Kaplan, B. and Qian, J. (2021). A Survey on Common Threats in npm and PyPi

Registries. In Wang, G., Ciptadi, A., and Ahmadzadeh, A., editors, Deployable Ma-

chine Learning for Security Defense, Communications in Computer and Information

Science, pages 132–156, Cham. Springer International Publishing.
[8] Kula, R. G., Ouni, A., German, D. M., and Inoue, K. (2017). On the Impact of Micro-

Packages: An Empirical Study of the npm JavaScript Ecosystem. arXiv:1709.04638

[cs].
[9] Nassri, A. (2020). npm Blog Archive: So long, and thanks for all the packages!
[10] npm (2021). is-negative-zero.
[11] Sabbagh, B. A. and Kowalski, S. (2015). A Socio-technical Framework for Threat

Modeling a Software Supply Chain. IEEE Security & Privacy, 13(4):30–39. Confer-

ence Name: IEEE Security & Privacy.
[12] SLSA (2023). Introduction to slsa.
[13] Snyk (2019). 10 npm Security Best Practices.
[14] snyk (2022). Targeted npm dependency confusion attack caught red-handed.
[15] Viega, J. and Michael, J. B. (2021). Struggling With Supply-Chain Security.

9/10

Computer, 54(7):98–104. Conference Name: Computer.
[16] Wittern, E., Suter, P., and Rajagopalan, S. (2016). A Look at the Dynamics of the

JavaScript Package Ecosystem. In 2016 IEEE/ACM 13th Working Conference on

Mining Software Repositories (MSR), pages 351–361.
[17] Yip, D. Y. K. (2022). Empirical study on exploitation of dependency-based attacks

in Node.js. PhD thesis, Iowa State University.
[18] Zahan, N., Zimmermann, T., Godefroid, P., Murphy, B., Maddila, C., and Williams,

L. (2022). What are weak links in the npm supply chain? In Proceedings of the 44th

International Conference on Software Engineering: Software Engineering in Practice,

ICSE-SEIP ’22, pages 331–340, New York, NY, USA. Association for Computing

Machinery.
[19] Zerouali, A., Mens, T., Decan, A., and De Roover, C. (2022). On the impact of

security vulnerabilities in the npm and RubyGems dependency networks. Empirical

Software Engineering, 27(5):107.
[20] Zimmermann, M., Staicu, C.-A., and Pradel, M. (2019). Small World with High

Risks: A Study of Security Threats in the npm Ecosystem.

10/10

Exploring the Threats of White-box
Targeted Adversarial Examples for
Automatic Speech Recognition

Rui Liao
rui.liao@aalto.fi

Tutor: Blerta Lindqvist

Abstract

Adversarial machine learning (AML) is an emerging field of interest.

Previous research showed that attackers could construct adversarial ex-

amples that lead to misclassification in deep learning models. Inspired

by studies in the computer vision domain, more recent attacks are seen on

automatic speech recognition (ASR) systems. It raises serious security con-

cerns with the increasing adoption of voice interfaces in various devices.

This paper aims to raise awareness of the topic, introduce the character-

istics of white-box targeted adversarial examples against ASR systems for

a wider audience and explore the threats they pose. It suggests that a

framework may be needed to quantify their full impact and the current

technologies may not yet pose a practical threat.

KEYWORDS: adversarial machine learning, evasion attack, ASR

1 Introduction

Artificial neural networks (ANN) are often utilised in pattern recogni-

tion and classification problems, where they process information in a fast

yet massively parallel manner [2]. Automatic speech recognition (ASR)

is an important application of ANNs. The models’ robustness is very

critical when the human voice is used for biometric authentication or

when speech is used as a primary interface. Adversarial machine learn-

ing (AML) addresses this general concern and connects machine learning

(ML) with cybersecurity principles [1].

In 2013, Szegedy et al. [22] discovered that deep neural networks (DNN)

are susceptible to adversarial examples for image classification, by demon-

strating how small crafted perturbations in inputs can successfully mis-

lead the networks’ classifiers to incorrect outputs. Attacks with the same

purpose, such as the Fast Gradient Sign Method (FGSM) [10], projected

gradient descent (PGD) [3] and many others have been published. How-

ever, their effectiveness has been evaluated primarily on the networks

inside the visual domain. Generating adversarial examples for audio is

considered more challenging [8], but it has been shown that white-box

targeted attacks regardless of the input audio sample and desired output

can be achieved, where the input can even contain no speech at all [6].

Some more recent studies have successfully made the targeted perturba-

tions inaudible to human ears [7].

This paper aims to raise awareness of the topic and discusses the viabil-

ity of white-box targeted adversarial attacks on ASR systems. It includes

an overview of the necessary background, a review of common challenges,

some specific approaches taken and a discussion on both the attack and

defence mechanisms. Section 2 maps out some important terms in the

literature. Section 3 extends the discussion on threats posed by white-box

targeted attacks and briefly touches on their defences. Section 4 delivers

some closing remarks.

2 Background

2.1 The Victim System

ASR systems can convert audio signals of human speech to text. Some

well-known ASR services include Cortana from Microsoft, Google Assis-

tant and Siri by Apple. As they are rapidly being integrated into devices

used daily, they have access to a lot of personal information. Protecting

them against maliciously crafted voice commands is important for their

security. Apart from these commercial products, there are open source

options that can be thoroughly studied such as Kaldi and Project Deep-

Figure 1. Typical ASR workflow [23] has 4 stages: Pre-processing, feature extraction,
model based prediction and post-processing.

Speech by Mozilla.

To make a conversion, an ASR puts an audio sample through several

processing stages, the typical steps [23] are summed up in Fig. 1.

The system first filters the input frequencies based on their energy lev-

els, then extracts acoustic features from the filtered signals. This pre-

processing stage removes the frequencies irrelevant to speech recognition,

only keeping signals above an energy threshold. The most used paramet-

ric representation for extracted features is the Mel-frequency cepstral co-

efficients (MFCC) [11] based on human hearing perceptions. It segments

the audio into short overlapping frames of uniform length and calculates

the feature vector for each frame, where the coefficients of the vector cap-

ture acoustic information within the frame. In short, the audio signal

is translated into a feature matrix with MFCC coefficients. The number

of frames is the theoretical maximum density [6] (or rate per second) of

characters an input audio can be transcribed to. This allows an adversar-

ial target string to be longer than the original phrase, though synthesising

new characters is harder than silencing existing ones selectively.

Next, the results are fed into a trained model for phonemes recogni-

tion before they are mapped to a string. Finally, some post-processing

is needed to improve the usability of the transcription; handling of the

grammar rules, formatting and spell checking, for instance.

For the prediction stage, different types of models are available. The fo-

cus here is on models that are neural networks. The networks for speech

recognition differ from a standard feedforward classification network [6],

because there are too many possible labels for the output phrase. It is

infeasible for any system to exhaustively enumerate them. Thus, possi-

bility distributions over individual characters are produced using recur-

rent neural networks (RNN) [12]. An RNN is difficult to train, but it has

many recurrent connections and can represent information within a con-

text window, hence allowing sequential and time-dependent data to be

processed.

When an ASR is at work [25], it looks for two types of inputs: An ac-

tivation followed by a command. Many state-of-the-art systems accept

specific wake words, like "Hey Siri" or "Hey Cortana". Then, the mi-

crophone records ambient sound until it captures a voice command to

be processed. The activation could be speaker-dependent and has to be

trained by a user, but the command processing phase will more likely use

a speaker-independent algorithm. Different attack scenarios will arise

from whether the attacker can obtain any voice recordings from the user

that the activation may depend on. It is possible [16] to create complete

machine synthesised speech or use voice morphing - altering an existing

voice - to easily clone a victim’s voice with mere minutes’ worth of their

recorded speech. However, it is different [25] from directly generating

wake words with features extracted from the legitimate speaker’s voice

recordings. Without any user voice samples, brute-force attempts can be

made using voices generated with text-to-speech(TTS) systems.

2.2 The Threat Model

For our threat model, white-box refers to having complete access to the

victim ASR systems including all parameters.

An evasion attack [3] in the context of AML refers to the scenario whereby

an attacker, armed with white-box knowledge of the victim model, is al-

lowed to modify either the input data directly, the feature vectors or spe-

cific features during test time. The extent of the attacker’s knowledge or

capability may vary, but the goal is to create a sample that the victim will

misclassify. Such a perturbed sample is called an "adversarial example"

[22]. It is considered a targeted adversarial example if it has a target class

to be misclassified as.

A targeted evasion attack for an ASR system [6] is illustrated in Fig. 2.

Perturbations are added to a sample waveform as noise, so the system

produces a different target string or nothing at all. For the latter, it is

possible to hide speech by adding adversarial noises to transcribe the au-

dio to a sequence of space characters; this is easier than targeting spe-

Figure 2. Targeted evasion attack on audio [6]: Adding a small perturbation to the origi-
nal input to change its transcription.

cific phrases. The attacker intends for the victim system to follow the

malicious commands in the adversarial examples. The commands could

ask a mobile device to turn on airplane mode to create a denial-of-service

scenario, interfere with voice-controlled car navigation systems or sim-

ply make the victim device visit attacker-controlled pages for a drive-by

download of malicious content.

Some perturbations developed for one model are also effective against

others. This perplexing phenomenon is known as transferability. It is

believed to be a property of neural networks [6] [18]. Not all perturbations

are transferable, but transferability led to the discovery that universal

perturbations exist for audio [17]. These perturbations can be combined

with arbitrary input audio samples to cause misclassification and transfer

across models.

There are two common ways to carry out a targeted evasion attack:

Feeding the adversarial sample directly into the victim model(end-to-end)

or playing the recorded sample near the victim system’s microphone(over-

the-air). In the second case, it is a natural goal to keep the perturbations

inaudible to avoid alerting the owner of the victim system. One avail-

able technique is psychoacoustic hiding [19][20]. It takes advantage of

human hearing thresholds and use frequency masking to conceal the per-

turbations. While over-the-air attacks are more realistic and practical, the

sample must be robust against unpredictable noises. Empirical evidence

suggests [7] that signal distortions come from the hardware(the playback

Figure 3. Over-the-air execution of audio adversarial examples [7] face distortions from
3 sources: the hardware, the acoustic channel and the environment.

speaker and receiving microphone), the acoustic channels(signal strength

reduction, multi-path propagation etc.) and the playback environment, as

shown in Fig. 3. These effects must be accounted for in the generation

process. If a sample robust to the above is centrally broadcasted, it could

simultaneously attack all active ASR systems within the signal coverage.

For samples not generally robust or adaptive enough to be transmitted

over-the-air, they require precise environmental conditions for a success-

ful execution. It is trivial to pre-code measured environmental effects at

specific locations, but that makes an assumption about attackers’ prior

access and cannot generalise well.

2.3 The Attack Methods

Constructing an adversarial example is commonly formulated as an op-

timisation problem [6][3], typically based on the loss function of the vic-

tim model. A loss function serves as a quantitative measure during the

model-based prediction stage to show how good the predictions are; the

greater the value, the worse the classifier. Well-crafted perturbations are

optimised to be minimal but still effective in maximising the loss, mean-

ing it will cause the victim model to produce the target label. The choice

of a suitable loss function greatly impacts the model’s sensitivity to the

type of errors that will produce meaningful feedback during its training

for improvement. It also influences the level of distortions needed for its

adversarial examples [6].

Below are some of the best-known methods used in creating adversarial

examples presented progressively.

FGSM

The Fast Gradient Sign Method shown as Eq. (1) [10][6] is the foundation

of many attacks. It is widely used in both the image and audio domains. It

combines the original input x with the product of a small parameter ϵ and

the sign of the gradients of the loss function l with respect to x, to create

a new adversarial example x’. The small parameter ϵ is used to limit the

magnitude of the perturbation; it constrains the step size. The parameter

y refers to the correct label for x. FGSM is fast and low-cost because it has

a single iteration.

x′ ← x− ϵ · sign(∇xl(x, y)). (1)

PGD

Projected gradient descent [13] is a powerful first-order attack. It is based

on FGSM but more resource-intensive: it generates multiple iterative per-

turbations with a smaller step size, projects the result onto a region of

interest and finds a point in which loss is maximised.

PGD plays an important role in adversarial training. In ML, adversar-

ial training refers to training models on datasets that contain adversar-

ial examples. The models trained using adversarial examples generated

with PGD appear more robust [14] to these multi-step attacks, and it is a

prevalent choice for defence. However, adversarial training requires care-

ful tuning of parameters that control the learning process and is not a

panacea.

Auto-PGD (APGD)

Auto-PGD [9] makes further progress on PGD. It eliminates the need to

choose a fixed step size and utilises an alternative loss function other than

the frequently used cross-entropy loss. "Auto" comes from the fact that

everything else apart from the number of iterations is automatically ad-

justed. It allows its step size across iterations to be aware of the optimi-

sation trend and iteration budget this attack has been given.

Similar to PGD, APGD is also helpful in providing a way to evaluate

a model’s robustness. Because the step size is now flexible, it comple-

ments some failure cases of PGD due to fixed step sizes. All test cases

provided by the authors of APGD report a lower robust accuracy of the

models involved, which indicates that APGD is a stronger advresarial at-

tack. Its adaptive behaviour and self-aware optimisation lead to better

results than PGD regardless of the step size chosen.

3 Discussion

3.1 Attacks: Threat Landscape, Feasibility and Future Work

This section discusses potential threats posed by white-box targeted eva-

sion attacks for ASR systems, analyses their implications and proposes

future research objectives. Here, threats are events that can inversely

affect the confidentiality, integrity or availability of the ASR systems and

their users. They could be categorised based on the attackers’ motivations,

including data theft, financial gain and general sabotage or disruption.

Expanding upon the few scenarios outlined in section 2.2, many more

threats exist for each category. For data theft, attackers may target voice-

mail systems or smart home devices with a camera to obtain audio and

video recordings. Sending files, credentials, phishing or spamming emails

and texts from victim devices’ voice assistants can also lead to further

harm. For financial gain, telephone banking services with a voice ID and

voice-controlled mobile payment applications could be top victims. The

threats posed in general disruption of ASR services can be indirect. The

denial-of-service by silencing legitimate voice commands can be immedi-

ate - even critical, for healthcare systems - but disrupting transportation

navigations and sabotaging smart door locks or other access control sys-

tems may indirectly create life-threatening situations for the users.

For the above, the victim systems’ capability is a central element to con-

sider. But successful attacks face two key challenges. Drawing a compari-

son between the image and audio domains can aid the feasibility analysis

hence the likelihood of the threats. Attacks on audio pose unique chal-

lenges in manipulating their perception and execution [19]. The modifi-

cations on pixels can be imperceptible for human eyes [22] and can stay

adversarial even when taken as a picture. In contrast, the modified audio

samples often suffer from obvious perturbation [23] - even when the target

transcription stayed inaudible [20] - and some could not stay adversarial

if played over-the-air [6]. For end-to-end attacks, it can be argued that if

the attacker already has direct access, placing malware in the victim de-

vice may be more effective in compromising the target systems. Despite

their generally high success rate, threats associated with this execution

method are limited.

Much progress has been made to address them and expand the attack

surface. For example, to hide suspicious audible commands, DolphinAt-

tack [25] leverages the ultrasound channel with a frequency higher than

20kHz, above the upper bound of human voices and hearing. But like [21],

these attacks need to carefully modulate the input and their success rates

are more dependent on the audio hardware than the ASR system. Despite

the novelty of some attacks, their computational expenses may be too high

to be considered practical. The other front, where transmission on air in

unpredictable environments nullifies the sample’s adversarial properties,

seems to remain a challenge even among the state-of-the-art.

Overall, it is currently hard to estimate the full capability of over-the-air

attacks because existing publications employ diverse methodologies and

seem to lack a standardised framework to represent the practical impact

for the wider audience. Adversarial attacks on audio may be a recent sub-

ject, but it is never too early to start building a baseline for quantitative

representations of threats. Among metrics seldom addressed when pub-

lications define their real-life simulated setups, the range of reasonable

attack distances and whether a clear line-of-sight is needed are critical

aspects that affect the feasibility of execution. A tentative conclusion, for

now, is that both execution methods of the attacks are not mature enough

to be deployed in practice, and the likelihood of realising said threats is

low. More primitive attacks seem more effective.

Apart from outlined above, examining the generation procedure reveals

possible problems. Again, one obvious drawback of the attacks is that

they all require great prior effort. With the activation requirement in

place, many targeted attacks must be tailored, hence relatively costly to

execute. Another observation is the repetitive use of existing datasets.

Many publications report their results based on the same training data;

this could limit the scope of their findings. In reality, attackers can hardly

gain white-box access with commercial systems. White-box attacks are

learning opportunities to develop attacks against unknown victim sys-

tems (black-box). This makes transferability a crucial factor to be eval-

uated with new attacks, which is sometimes not mentioned. Targeted

universal perturbations would pose the most significant threat across sys-

tems once they are found. In the future, it would be more than alarming if

robust, imperceptible and targeted universal perturbations could be gen-

erated as a pipeline process in a timely fashion. As briefly mentioned in

section 2.2, it could create opportunities for attacks on a massive scale.

3.2 Defence Strategies and Model Robustness

Addressing the threats of adversarial attacks through defence is a must.

The general countermeasures for adversarial examples in ML may not

work equally in the audio domain [20] because time dependencies are in-

volved. Common strategies are either transforming the audio input at

the pre-processing stage (2.1) to hopefully remove the adversarial prop-

erties or adversarial training (2.3). Although a guideline [5] exists, the

evaluation of new defences is not straightforward. This calls for a reliable

and autonomous protocol similar to the attack scene. Prior work [15] has

shown that PGD - while being one of the most effective [24] and the most

popular evaluation method - can be fooled into giving false estimations of

model robustness.

Because imperceptibility is a primary aim, staying vigilant as users will

have limited effect. ASR system developers should incorporate adversar-

ial defence practices in their implementation. It is necessary to include

detection, mitigation and response mechanisms to said attacks. However,

the question remains: What does it mean for an ASR system to be ro-

bust? Will there be a trade-off between robustness and usability? Keep

adding more parameters to the models may not be the solution in the long

term. Continued efforts such as [4] can keep the definition of robustness

up-to-date to better guide adversarial defence research. Since adversarial

examples seem inevitable for neural networks, a paradigm shift inspired

by a completely different architecture may be seen in the future.

4 Conclusion

This paper introduces the basics of ASR systems and the generation of

white-box targeted adversarial examples in the audio domain. It provides

an analysis exploring the threats they pose. It presents key challenges

of practical attacks utilising adversarial examples. It suggests that the

attack feasibility is low and emphasises the need for a framework for

impact analysis for the general audience. It points out potential future

research directions for stronger attacks and better defence. Future work

could involve looking into the adversarial defence aspects. In particular,

investigate how the theoretical defence strategies can translate to practi-

cal hardening techniques to be employed in ASR systems.

References

[1] AISec ’11: Proceedings of the 4th ACM Workshop on Security and Artificial
Intelligence, New York, NY, USA, 2011. Association for Computing Machin-
ery.

[2] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Vic-
toria Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. State-
of-the-art in artificial neural network applications: A survey. Heliyon,
4(11):e00938, 2018.

[3] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Š
rndić, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks
against machine learning at test time. In Advanced Information Systems
Engineering, pages 387–402. Springer Berlin Heidelberg, 2013.

[4] Sébastien Bubeck and Mark Sellke. A universal law of robustness via
isoperimetry, 2021.

[5] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas
Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey
Kurakin. On evaluating adversarial robustness. arXiv preprint arXiv:1902.06705,
2019.

[6] Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted
attacks on speech-to-text, 2018.

[7] Tao Chen, Longfei Shangguan, Zhenjiang Li, and Kyle Jamieson. Meta-
morph: Injecting inaudible commands into over-the-air voice controlled sys-
tems. Network and Distributed Systems Security (NDSS) Symposium.

[8] Moustapha Cisse, Yossi Adi, Natalia Neverova, and Joseph Keshet. Hou-
dini: Fooling deep structured prediction models, 2017.

[9] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free attacks, 2020.

[10] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples, 2014.

[11] Wei Han, Cheong-Fat Chan, Chiu-Sing Choy, and Kong-Pang Pun. An effi-
cient mfcc extraction method in speech recognition. In 2006 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pages 4 pp.–, 2006.

[12] Zachary C. Lipton, John Berkowitz, and Charles Elkan. A critical review of
recurrent neural networks for sequence learning, 2015.

[13] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards deep learning models resistant to adversarial
attacks, 2017.

[14] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards deep learning models resistant to adversarial
attacks, 2017.

[15] Marius Mosbach, Maksym Andriushchenko, Thomas Trost, Matthias Hein,
and Dietrich Klakow. Logit pairing methods can fool gradient-based at-
tacks, 2018.

[16] Dibya Mukhopadhyay, Maliheh Shirvanian, and Nitesh Saxena. All your
voices are belong to us: Stealing voices to fool humans and machines. In
Günther Pernul, Peter Y A Ryan, and Edgar Weippl, editors, Computer Se-
curity – ESORICS 2015, pages 599–621, Cham, 2015. Springer Interna-
tional Publishing.

[17] Paarth Neekhara, Shehzeen Hussain, Prakhar Pandey, Shlomo Dubnov, Ju-
lian McAuley, and Farinaz Koushanfar. Universal adversarial perturba-
tions for speech recognition systems, 2019.

[18] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in
machine learning: from phenomena to black-box attacks using adversarial
samples, 2016.

[19] Yao Qin, Nicholas Carlini, Ian Goodfellow, Garrison Cottrell, and Colin Raf-
fel. Imperceptible, robust, and targeted adversarial examples for automatic
speech recognition, 2019.

[20] Lea Schönherr, Katharina Kohls, Steffen Zeiler, Thorsten Holz, and Dorothea
Kolossa. Adversarial attacks against automatic speech recognition systems
via psychoacoustic hiding, 2018.

[21] Liwei Song and Prateek Mittal. Inaudible voice commands, 2017.

[22] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R.Fergus. Intriguing properties of neural networks, 2013.

[23] Tavish Vaidya, Yuankai Zhang, Micah Sherr, and Clay Shields. Cocaine
noodles: Exploiting the gap between human and machine speech recogni-
tion. In Proceedings of the 9th USENIX Conference on Offensive Technolo-
gies, WOOT’15, page 16, USA, 2015. USENIX Association.

[24] Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quan-
quan Gu. On the convergence and robustness of adversarial training, 2021.

[25] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and
Wenyuan Xu. DolphinAttack. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, oct 2017.

Effects of habituation on security
warnings and ways to minimize it

Salem Wollel
salemgetachew.wollel@aalto.fi

Tutor: Sanna Suoranta

Abstract

Security warnings are crucial in communicating security issues with the

user. Thus, they are vital in securing the information system. However,

users often ignore those warning messages mainly because of habituation,

which refers to the attention reduction due to multiple exposures. Although

habituation is generally considered as a beneficial phenomenon, it is often

mentioned as a reason for a poor security behavior. Habituation had been

difficult to measure. Fortunately, recent researchers use various NeuroIS

methods to directly measure habituation. These methods include eye track-

ing and functional magnetic resonance imaging (fMRI). Those experiments

are used to examine the difference in habituation between static and poly-

morphic warnings. According to the results, the polymorphic warnings

were successful in preventing habituation. The effectiveness of such warn-

ings could be further enhanced by the addition of dynamic content to the

dynamic dialogs. This paper assesses the results from both the experiments

and Implications for further studies based on personal observation.

KEYWORDS: Security warnings, Habituation, Eye tracking, fMRI, poly-

morphic warnings

1 Introduction

In an ideal scenario, users should not constantly engage with security-

related decisions [10]. Consequently, scientists are working on fully au-

tomated security solutions. However, in reality, only a few security prob-

lems are automatically solved, and the rest are processed according to the

input they receive from the user. The security problems are presented to

the user by using security indicators and warnings. Those alerting warn-

ings serve as the last line of defense against a potential threat [1]. Thus,

users should pay attention to the warnings to identify the best courses of

action. However, the warning dialogs are often ignored, which weakens

their significance. Even in critical situations, users tend to respond before

reading the message and dismiss the warnings right away.

The major factor that contributes to this kind of oblivious behavior is the

adaptation to the security warnings. Overexposure to the warning dialogs

creates habituation, which refers to the "decreased response to repeated

stimulation" [1]. As a result of habituation, warning dialogs that were

once catchy become unnoticeable and unremarkable, similar to a familiar

wallpaper in a room [5]. Researchers reported that habituation develops

after only a few exposures to a new security warning, or even after a single

exposure when the dialog resembles a known one [6].

Previously, researchers tried to study habituation by observing its ef-

fects on human behavior instead of directly measuring it [5]. It is mainly

because habituation is very challenging to measure as it occurs at the neu-

robiological level. In order to fill this gap, new studies have emerged that

use NeuroIS methods, which refer to the study of information systems-

related behaviors at the neurobiological level [3]. Eye tracking and func-

tional magnetic resonance imaging (fMRI) experiments are widely used to

measure visual activities as an index of cognitive processing and activated

brain regions in response to stimuli, respectively.

To slow down the process of habituation, Anderson et al. [3] proposed

polymorphic warnings that change their form and appearance in order to

prevent users from habituating to them [3]. Polymorphic warnings were

examined against static warnings using eye tracking and fMRI experi-

ments, and it was found that the former were more efficient at deterring

habituation.

This paper discusses the formation of habituation and the effectiveness

of polymorphic warnings over static warnings based on the outputs of the

eye tracking and fMRI experiments. In addition, it outlines potential en-

hancements that could be applied to the polymorphic warnings to boost

their effectiveness. The study also contains personal observations that

may be taken into account in subsequent research.

The paper is organized as follows: Section 2 establishes the theoretical

development. Section 3 discusses the eye tracking and fMRI experiments,

along with their results and discussions on the results from both exper-

iments. Section 4 explores potential improvements to the polymorphic

warnings. Section 5 provides implications for future studies. Finally, Sec-

tion 6 closes with a concluding statement.

2 Theoretical background

2.1 Habituation

When interacting with a stimulus for the first time, humans create a men-

tal model of it. Instead of re-analyzing the experience, we frequently rely

on the mental model that was previously constructed for future interac-

tions with the stimuli [1]. With the absence of a mental model, the at-

tention given to the stimulus increases, which is referred to as sensitiza-

tion. It is the opposite of habituation, which is the "reduced attentional

response to repeated exposure to a stimulus" [6].

Habituation is a form of non-associative learning [3] that helps organ-

isms filter irrelevant stimuli in favor of those that are essential to their

survival [1]. The development of habituation is accelerated by the in-

creased exposure to the stimuli. It even becomes considerably more se-

vere with the lack of a reward or consequence following the initial action

[6].

2.2 Habituation in security warnings

Computer system dialogs are composed of iconic and informational ele-

ments [6]. Iconic elements include icons, size, color and typography. The

informational elements refer to the textual elements that communicate a

message to the user. Those visual elements are often kept standardized

and uniform. Maintaining those aspects as simple, common and identi-

fiable plays a vital role in minimizing confusion and enhancing usability.

However, the comfort of the user with these dialogs could lead to a secu-

rity flaw. Users often dismiss system dialogs because they downplay their

importance and message.

Anderson et al. [3] found that participants tend to rely on the mental

model they created for a previous security warning to interact with other

warning dialogs, even if the content and the associated risk have changed.

This effect is evident in the decreased attention maintenance of the user

[11]. Attention maintenance is measured by tracking the amount of time

spent on a repetitive warning dialog. Results show that attention span

drops from 15 seconds to 2 seconds only after three exposures to a security

warning. This indicates the formation of a mental model, the main cause

of habituation.

Studies suggest that strategic user interface design can reduce habitu-

ation [3]. Therefore, researchers proposed security warning dialogs that

change their form to regain the attention of the user, which was lost due

to habituation. Those dynamic security indicator dialogs are termed as

polymorphic warnings.

2.3 Polymorphic warnings

Although habituation can occur with properly designed warnings, design

improvements can decelerate the habituation process [4]. In comparison

to static warnings, polymorphic warnings are more effective in resisting

and reducing habituation [1]. Unlike static warnings that are constantly

identical [1], polymorphic warnings repeatedly change their appearance

[4] by varying their size, color and other graphical elements [1]. Although

the graphical elements of those warnings vary, the textual information

remains unchanged. Consequently, users could still habituate to the text

content by creating a mental model of it.

Due to the difficulty in the measurement, these phenomena had only

been explored indirectly [5]. Thus, the effectiveness of the polymorphic

warnings in reducing habituation was not clearly understood in the do-

main. However, recent experimental studies have used NeuroIS tools,

such as eye tracking and fMRI, to directly and biologically measure habit-

uation.

2.4 Eye tracking

Eye tracking technologies are useful for identifying areas of interest by

measuring eye position and movement such as eye fixation, pupil dilation

and gaze length [3]. Eye tracking is effective in measuring habituation

at the neurobiological level. In addition, this tool provides highly accu-

rate and precise outputs [7]. It has been widely used in human-computer

interaction to compare the usability and effectiveness of user interfaces

[3].

Due to previous exposures to a stimulus, eye fixation and gaze duration

are shorter even though individuals are unable to recall that they have

seen the stimuli before [3]. This phenomenon is referred to as the eye

movement-based memory (EMM) effect, a neurobiological phenomenon

where individuals unconsciously assess the objects that they have seen

before [7]. Eye-tracking can accurately measure EMM in the case of se-

curity warnings and can be used in the analysis of their design [3]. The

effectiveness of this method is due to three reasons [7]. First, it is a Neu-

roIS method that is excellent in capturing hidden mental processes, which

are rather difficult to measure. Second, it helps to study the appearance

and content of security warnings in a detailed manner. Third, habituation

and the given response occur very quickly.

2.5 fMRI

fMRI is another method that excels in its ability to study the activation

of the brain in the decision-making process. It measures the changes in

the blood flow to different areas of the brain, which is known as the blood

oxygen level dependent (BOLD) effect [4]. The changes in the blood flow

indicate the activated part of the brain in association with specific mental

processes. Therefore, fMRI is widely used to study the brain processing in

the case of habituation.

Some experimental designs use fMRI together with eye tracking to bet-

ter understand habituation. In the case of the eye-tracking experiment,

the number of eye-gaze fixations and level of gaze durations are mea-

sured by presenting participants with multiple exposures of an image.

The results will then be examined in relation to the BOLD response level

obtained from the fMRI experiment, in order to acquire a thorough under-

standing of the habituation effect [7]. Thus, fMRI, with a higher spatial

resolution, and eye tracking, with a higher temporal resolution, collab-

orate by measuring both attention in behavior and the neural activity

driving it [9].

3 Experiments

3.1 Experiment 1: The eye tracking experiment

Anderson et al. [3] used Tobii 120, equipment used to track the eye move-

ments of participants for measuring the EMM effect. Participants were

directed to sit in front of a camera-equipped monitor that ran Tobii soft-

ware. The eye tracker was configured in such a way that it captures mil-

lions of eye movements by recording fixation at a rate of 60 hertz.

Polymorphic warnings were designed for the experiment [3]. They were

presented with nine variations. Participants were presented ten warn-

ings: five polymorphic and five static warnings [7]. Each warning was

repeated ten times. Participants saw nine variations and the original im-

age for the polymorphic warnings, and in the case of static warnings, the

same warning was repeated ten times. The images were selected at ran-

dom. To ensure that participants were fully engaged in the examination,

they were asked to analyze each warning message and determine whether

the dialog is new, similar to a previous image, or even identical [3].

As the static warnings were repeated, the warning repetition, which in-

dicates if it is the first, second, or nth repetition of a warning, declined and

became significantly negative [3]. A negative effect indicates a decrease

in eye fixation and gaze duration upon repetitive interactions. On the

other hand, the warning repetition of the polymorphic warnings was sig-

nificantly positive, indicating that the eye gaze duration decreases much

more slowly for the polymorphic warnings. Figure 1 shows the decrease in

the level of fixation for both warning types, static and polymorphic, across

the number of reputations.

Figure 1. Fixation variation along the repetition number for both warning types [3]

3.2 Experiment 2: fMRI experiment

fMRI uses the same equipment as clinical MRIs [4]. It measures the

neural activity in the whole brain on a grid. It identifies the activated

brain areas by tracking changes in metabolic demands. The experiment

requires participants to lie down on their backs on the fMRI scanner [8].

The image of the security warnings is viewed in the mirror attached to

the head coil. This is a reverse reflection from a large monitor outside the

scanner that displays the images.

Polymorphic warnings were designed for the experiment [4]. From a

pool of 40 warning images, 20 were selected at random for polymorphic

treatment, and the other 20 were given for static treatment. 13 polymor-

phic warnings were made visible one after the other, and the same static

warning was repeated 13 times. Each participant was presented with

560 images in five blocks of 6.5 minutes each with a 2 minute break in be-

tween, and each image was shown for 3 seconds with a 0.5 second interval

in between [8].

Participants were provided with an input device with buttons that en-

abled them to rate each warning message [8] as new, similar, or identical

to a previous image [4], to ensure that participants were engaged in the

task.

Four regions of the brain were found that are involved with warning

type and repetition number interaction [4]. Those regions reacted in a

different way when the warnings were repeated. The left and right supe-

rior parietal cortex, which are involved in attentional processing, showed

higher activation when polymorphic warnings were presented than static

warnings. The regions also showed attention consistency and reduced

repetition suppression for polymorphic warnings.

On the other hand, bilateral medial prefrontal cortex and the left retro-

splenial cortex, which are involved in the memory retrieval process and

default mode activation, show higher activation for static warnings than

polymorphic warnings [4]. Default mode network is the area of the brain

that tends to decrease while paying attention to a stimulus and rise when

the brain is not involved in a mental exercise. The activation in those

areas of the brain was consistently higher for static warnings due to the

increased memory processing in the default mode network, which is lower

for polymorphic warnings. Figure 2 shows the four areas of the brain with

their level of activation for the two warning types.

Figure 2. Activated brain regions for both types of warnings. the upper two, left superior
and right superior parietal lobe were more activated for polymorphic warnings
that the static ones, while medial prefrontal and left retrosplenial cortex shows
higher activation for static warnings than polymorphic [4].

3.3 Discussion and limitation

According to the results obtained from the eye tracking experiment, the

eye fixation and duration decrease with static warnings, which indicates

a reduction in the attention of participants with the repetitive exposures.

On the contrary, the slight reduction in eye fixation for polymorphic warn-

ings shows that attention is well maintained and the formation of habit-

uation is rather slow.

The fMRI result reveals that the brain regions that are responsible for

attention processing showed higher activation when participants were

presented with polymorphic warnings. This emphasizes the occurrence of

sensitization and the reduction of habituation. In contrast, brain regions

responsible for activities that are reliant on memory retrieval and require

less mental processing were activated when participants saw static warn-

ings. The same regions showed less activation when polymorphic warn-

ings were presented. These results indicate that users interact with static

warnings by relying on their memory and prior experience, while they

tend to examine and focus more on dynamic warnings.

The eye tracking and fMRI experiments empower a better understand-

ing of habituation. However, certain limitations could be mentioned that

apply to the study. The fMRI experiment requires participants to lie on

their backs and stay still throughout the experiment [2], with their heads

fixed, in order to avoid head movement [8]. In addition, the sound that is

generated from the fMRI scanner may cause possible distraction. There-

fore, the fMRI experiment could be regarded as artificial as it creates an

unfamiliar working environment for participants.

Furthermore, the experiment was conducted within a limited time frame.

Habituation could result in a different output over a long period of time

[3]. In order to fill this gap, researchers held a longitudinal five-day work

week [9] and a three-week field experiment [8]. The output of those exper-

iments supports the idea that polymorphic warnings are more resistant

to habituation.

4 Further improvements of polymorphic warnings

Users tend to habituate to dialogs that are static. Although the iconic ele-

ments of polymorphic warnings are dynamic, the informational elements

remain static [1]. Therefore, users could still create a mental model for

the text that leads to habituation to the wording in the polymorphic warn-

ings. Varying the text content could reduce the habituation process and

result in sensitization. For this reason, researchers introduced dynamic

text in addition to the dynamic design of polymorphic warnings. Con-

stantly differing both in the representation and the semantics of the text

content can result in increased sensitization.

In addition, the messages that the security warnings convey can be

improved. Often, security dialogs are ineffective in communicating the

actual problem, the level of risk associated with it and clear avoidance

mechanisms [6]. They frequently use vague language and jargon that an

average user would find difficult to comprehend. As a result, users choose

to disregard the warnings. Text variation that clearly communicates the

amount of risk can persuade the user to comply with the warnings.

5 Implication for further studies

One of the factors that contribute to habituation is the false alarm effect,

the reduction in the reliability of a system as a result of a warning that

does not result in the anticipated consequence [6]. This effect decreases

the reliance of the user on the system and the associated risk. Often,

security warnings are presented even when the activity has no security

issue. This greatly decreases the reliance on the warnings, and users

learn to disregard and ignore the warnings even in risky scenarios. As

a result, presenting security indicators when they are actually necessary

could help to reduce habituation by improving reliance. Further research

could be done on the methods that automatically and algorithmically solve

most of the security-related issues and only present a security warning

prompt when the decision of the user is absolutely crucial.

According to this reasoning, immediate consequences after acting on a

security warning may increase sensitivity and reduce habituation. For in-

stance, unable to comply with a browser update should result in a slower

browser right away. Such kind of immediate costs train the user to read

and analyze the warning dialogs before responding. When the user fails

to comply with the first security warning, presenting a confirmation di-

alog that briefly describes the actual consequence and requests the user

to reanalyze their decision gives them a second chance to think and adds

one more step to the habituation process. Those discussions are left open

for future research.

6 Conclusion

Habituation, as a phenomenon occurring at the neurobiological level, has

been difficult to measure. NeuroIS methods, such as eye tracking and

fMRI experiments, empower the habituation study by providing tangible

evidence. The results of the experiment showed that both eye fixation

and brain activity associated with attention increase when polymorphic

warnings are presented and decrease with static warnings. Thus, the

habituation process is much slower for polymorphic warnings than for

static warnings. To advance the resistance towards habituation, dynamic

text could be incorporated into the warnings. It was also advised that

warnings should only be presented when they are absolutely essential and

should be followed by swift consequences to resist habituation; however,

this requires further investigation.

References

[1] Pranith Abbaraju, Kevin Harmon, and Jaeki Song. Effect of dynamic text
on habituation to polymorphic warnings. 2019.

[2] Bonnie Anderson, Anthony Vance, Brock Kirwan, David Eargle, and Seth
Howard. Users aren’t (necessarily) lazy: Using neurois to explain habitua-
tion to security warnings. 2014.

[3] Bonnie Brinton Anderson, Jeffrey L Jenkins, Anthony Vance, C Brock Kir-
wan, and David Eargle. Your memory is working against you: How eye
tracking and memory explain habituation to security warnings. Decision
Support Systems, 92:3–13, 2016.

[4] Bonnie Brinton Anderson, C Brock Kirwan, Jeffrey L Jenkins, David Ear-
gle, Seth Howard, and Anthony Vance. How polymorphic warnings reduce
habituation in the brain: Insights from an fmri study. In Proceedings of the
33rd annual ACM conference on human factors in computing systems, pages
2883–2892, 2015.

[5] Bonnie Brinton Anderson, Anthony Vance, C Brock Kirwan, Jeffrey L Jenk-
ins, and David Eargle. From warning to wallpaper: Why the brain ha-
bituates to security warnings and what can be done about it. Journal of
Management Information Systems, 33(3):713–743, 2016.

[6] Cristian Bravo-Lillo. Improving computer security dialogs: an exploration
of attention and habituation. PhD thesis, Carnegie Mellon University, 2014.

[7] Bonnie Brinton Anderson, Anthony Vance, C Brock Kirwan, David Eargle,
and Jeffrey L Jenkins. How users perceive and respond to security mes-
sages: a neurois research agenda and empirical study. European Journal of
Information Systems, 25(4):364–390, 2016.

[8] Anthony Vance, Jeffrey L Jenkins, Bonnie Brinton Anderson, Daniel K Bjornn,
and C Brock Kirwan. Tuning out security warnings: A longitudinal exam-
ination of habituation through fmri, eye tracking, and field experiments.
2018.

[9] Anthony Vance, Brock Kirwan, Daniel Bjornn, Jeffrey Jenkins, and Bon-
nie Brinton Anderson. What do we really know about how habituation to
warnings occurs over time? a longitudinal fmri study of habituation and
polymorphic warnings. In Proceedings of the 2017 CHI Conference on Hu-
man Factors in Computing Systems, pages 2215–2227, 2017.

[10] Ricardo Mark Villamarín Salomón. Improving computer-system security
with polymorphic warning dialogs and security-conditioning applications.
PhD thesis, University of Pittsburgh, 2010.

[11] Zarul Fitri Zaaba, Christine Lim Xin Yi, Ammar Amran, and Mohd Adib
Omar. Harnessing the challenges and solutions to improve security warn-
ings: A review. Sensors, 21(21):7313, 2021.

Using Deep Reinforcement Learning to
solve the Service Placement Problem of
the Fog Computing system

Samath Lenaduwa Lokuge
samath.lenaduwalokuge@aalto.fi

Tutor: Jaakko Harjuhahto

Abstract

This research survey paper will focus on the Service Placement Problem

in the Fog Computing system due to growing demand of complicated appli-

cations used by "Internet of Things" devices. Our target is to focus on Deep

Reinforcement Learning methods that have been proposed by several re-

searches and how they solve the Service Placement Problem, the potential

to combine these methods together and concluded if Reinforcement Learn-

ing and Deep Neural Networks are viable tools to solve Fog Computing

problems.

KEYWORDS: Fog Computing, Deep Reinforcement Learning, Service Place-

ment Problem, Quality of Service, Internet of Things

1 Introduction

The rise of Internet of things (IoT) devices in our lives has prompted the

advancement of mobile networks. Devices like virtual reality, augmented

reality, multimedia delivery, and artificial intelligenc demand broad band-

width, low response latency, and high computational power [1]. IoT data

is mostly generated in a distributed way, sent to the cloud for process-

ing and then delivered to distributed user or IoT devices, often located

very near to the data sources. Hence processing IoT data in central tends

to high communication delays and affects the QoS(quality of service) per-

ceived by the users [2]. Fog Computing (FC) systems are designed to bring

the Cloud closer to the user by localizing smaller Cloud nodes called Fog

nodes. Due to FC being a more complex and distributed system, the Ser-

vice Placement Problem (SPP) has being defined as the main challenge

when forming an efficient and cost-effective system. This paper will dis-

cuss the Service Placement Problem and how Deep Reinforcement Learn-

ing (DRL) can be used to solve certain issues.

2 Background

2.1 Fog Computing

Fog Computing (FC) is a digitilized platform that aims to distribute the

Cloud resources into local areas as Fog Nodes [3]. These Nodes interact

with the end-users and collect localized data to analyze. Only the nec-

essary data is forwarded to the central Cloud, making this system faster

than an single Centralized Cloud network. The FC system can be visual-

ized as seen in Fig. 1:

FC system can be split into three layers, which are the End-, Fog-, and

Cloud Layers [3]. End layer is where most of the end-users and IoT de-

vices are located. Service requests from end-users are collected in this

layer and then forward to the upper layer of the FC paradigm. The Fog

layer is in between the other two layers. It contains devices called Fog

Nodes (FNs) that process, store, and handle requests. FNs consist of

routers, gateways, switches and specific Fog serves that are linked to the

highest layer. Cloud layer is the upper-most layer in the structure. The

Figure 1. Generic Fog computing architecture

Cloud servers and Data Centers reside here handling analyses and stor-

ing data. Most Machine Learning algorithms are performed in this layer.

FC system consists of several advantanges compared to the Cloud Server,

such as lower latency, bandwidth saving, scalability or mobility [3]. How-

ever, due to FC being newer and more complex, emerging issues need to

be dealt in the form of a Service Placement Problem.

2.2 Service Placement Problem

The Service Placement Problem (SPP), as defined by Apat et al [2], is the

process of allocating service request from multiple cllients to specific FNs,

while maintaining Service Level Agreement (SLA) and end-user Quality

of Service (QoS). SPP’s primary target is distribute services on FNs so that

it improves the QoS level experienced by end users and the maintains the

requirements of the FC system [4]. To do this we can divide the SPP in to

different objectives as shown in Fig. 2:

Each individual objective provides support for the main target of SPP

as stated above. For example, the services should have the closest prox-

imity to end users [4]. End users can be served by a FN that is in there

Figure 2. Service Placement Problem objectives

area. Every FN must know the status of data in its fog cluster [2]. This

can achieved by focusing on real-time adaption of the Fog Node topology.

Communication cost, energy, and service time can be optimized by allo-

cating resources so that it fulfills the QoS expectations of the end-users.

If a specific FN cluster is overloaded, traffic should be distributed among

neighboring FN clusters via load balancing. If this process of balancing

doesn’t meet the expected QoS, then the end-users will receive high la-

tency while using the services. Many methods are used to solve the SPP

and maximize QoS. This paper will focus on the DRL method that we will

go more in depth on.

2.3 Deep Reinforcement Learning

To understand Deep Reinforcement learning (DRL), Reinforcement learn-

ing (RL) has to be explained first. The foundation of RL can be seen in

Markov Decision Process (MDP); a mathematical framework often used

in decision making problems.[5] Using enviroments based on MDP mod-

els, RL can use previous mistakes to learn an optimal strategy. Unlike

Supervised and Unsupervised learning, which targets a direct short-term

goal, RL focuses on a long-term increamenting goal. A fundemental cha-

rasteristic of RL is that it learns from the consequences of its actions, by

interacting with the enviroment, and then alter its future actions based

on the reward it acheives [6]. Deep neural networks (DNN) automates

the composition of higher-level features using lower-level ones, such as

images and local combination of edges, using raw input data [7]. DNN

uses Distributed representation, where several features can represent a

input or vice versa.

DRL is RL with the guidance of DNN. This type of RL has being promi-

nent in modern machine learning methods, as deep learning helps RL to

perform end-to-end learning with a gradient descent, meaning that the

RL doesn’t depend on domain knowledge as much [7]. This means that

traditional RL methods can be automated, which saves time, simplifies

tasks and makes sure that they would be completed.

3 Literature

3.1 Actor-Learner framework

In order to handle larger datasets without sacrificing a lot of training

time, a distributed agent called "Importance Weighted Actor-Learner Ar-

chitecture" (IMPALA) was developed by Espeholt et al [8]. IMPALA uses

multi-task reinforcement learning and uses actors to interact with a cen-

tralized learner using experiences, such as status, actions and rewards.

It’s orginal function is to conduct accurate machine training without sig-

nificant losses in data efficiency or resource utilization. Goudarzi et al

[9] propose to use this framework to reduce costs of DRL agents, which

implement placement techniques for IoT devices in the Fog Computing

System. Here, several actors are also used to interact with various en-

viroments to form experiences, which are sent to the learner to train for

the optimal policy. The actors will then reset all there values during every

policy update. However, these actors can learn from their previous experi-

ences that results in a reinforcement method, which reduces exploration

costs drastically. The Actor-Learner framework (ALF) helps to identify

the shortest path between FNs using IMPALA. This can be example of

minimizing communication cost. As stated in the SPP background, com-

munication cost is resource that has be optimized in order to achieve a

expected QoS later on the Service Placement.

3.2 Mixed-integer linear programming

FC system requires to maintain a higher scalability and mobility com-

pared to a tradition cloud computing system. Service Function Chaining

(SFC) is a network softwarization that creates virtual chains of connected

Micro-Services [10]. Due to its dynamic behaviour, SFC allocation mech-

anism results in poor use of resource usage and scalability. Santos et al

[10] have proposed a DRL enviroment known as Mixed-Integer Linear

Programming (MILP), in which agents learn the SFC allocation in the FC

system without prior infomation. MILP can handle the dynamic behav-

ior of SFC allocation but at the expense of higher execution time. This

improves the scability of the network and connection between nodes and

edges by optimizing resource management.

3.3 Experience-based replay RL method

Multi-acess Edge Computer (MEC) paradigm is used to ensure lower exe-

cution time for edge computation on devices. MEC has challenge regard-

ing it’s computation offloading scheduling in a dynamic network. Li et al

[11] proposes Experience-based replay RL algorithm (EBRL) that can im-

prove convergence performance using collected transformation knowledge

from it’s experience pool. To solve the challenge, the offloading problem is

first converted to a MDP model and then EBRL method is used. The re-

sult shows that EBRL method effectively increases stablity and training

speed compared to other methods used in the MEC computation offload-

ing. This, like MILP, is an example of resource management.

3.4 Multi-Update Deep Reinforcement Learning method

Multi-update Deep Reinforcement Learning algorithm (MDRL) was origi-

nally proposed by Hao et al [12] when discussing the improving long-term

mean reduction of delay, which is formulated as a Markov decision pro-

cess. Generally, Traditional methods have large action spaces making

the problem harder to solve. Action space can be greatly reduced by this

algorithm, which uses a novel exploration strategy and update method.

MDRL is used in the End layer, where edge nodes have limited capabili-

ties when dealing with the number of requests they receive from IoT de-

vices. The application of MDRL allows optimum load balancing of storage

space and compute resoureces between FNs.

3.5 Parameterized Deep Q Network

The Parameterized Deep Q Network (PDQN) method was proposed by

Liu et al [13] that can be used to handle online service placement and

computation resource allocation issues of a FC system. The PDQN is a

extension of DQN that is computationally tractable with a continuous ac-

tion space by using two sections to make decisions; action generation and

network training. Action generation picks actions based on decisions that

networks compute. Then the Network Training is responsible of training

these networks with recorded experiences. The method was evaluated by

several simulations for its performance and PDQN performed better than

other approaches using proper parameters due to its significant lower to-

tal latencies. Hence, this is an example of minimizing latency.

4 Discussion

The SPP objectives serve to maximize QoS, which is a measure of satis-

faction the user has when using a application that is served by the FC

system. Therefore, the objectives can be reflected by how they would

maximize this measurement of satisfaction. The resources have to be op-

timized to have a service that maximizes QoS. The failure of resource

management can negatively affect the end-user in two ways. One way is

directly effecting the user experience by making services slow and unre-

sponsive. The other way is indirectly effecting the user by high resource

costs that results in users having to pay higher rates for their services.

The resources in FC system are dynamic and have to adapt to current

service requirements. Fortunately, the concept of DRL is to continuosly

adapt its MDP modeled strategy. RL learns from prior mistake so its ideal

to be used in optimization problems and DNN can help to model FC sys-

tem with large number of FNs and services. These are important in load

balancing as the FN clusters adapt to different quanities of traffic and

learn from their previous failures of data distribution between neigboring

clusters. The latency of services depends on all of the factors mentioned

and directly affects the satisfaction of the user experience. This too can

be minimized with the support of these specific methods.

The DRL methods described in the Literature section offer solutions

that maximize QoS by optimizing one of the objectives of Service Place-

ment Problem as stated in Fig. 2. These methods are versatile since they

solve different objectives of the SPP target. It’s possible to further maxi-

mize QoS by using multiple DRL methods at the same time. Some combi-

nations of methods would be more effective than others. It would be clear

to assume that having multiple methods working on the same goal like

MILP and EBRL would cause problems as they would try to solve resource

management idependently (though it is possible to create a new method

that makes these methods cooperate with each other). For focusing solely

on resource optimization, ALF and either MILP and EBRL would be ideal

as they can optimize the resources and maximize the QoS without com-

plicating the other objectives. Likewise, for focusing on the Fog Clusters

and the distribution of traffic among them, MDRL and PDQN work to-

gether in allocation the FNs, the former with balancing the storage space

and the latter with minimizing total latency. However, these are specula-

tions of possible combiantions of DRL methods and further research using

experiments have to be conducted to confirm these hypotheses.

5 Conclusion

The research has show that Deep Reinforcement Learning methods are

used in different areas of the Service Placement Problem and increase the

end-user satisfaction of the FC system. It can be speculated whether these

methods can cooperate with each other to make a multi-DRL method.

This theory can be further investigated and tested to see if it works. Ei-

ther way, Deep Reinforcement Learning will remain a prominent Machine

Learning method for the field of Fog Computing.

References

[1] Jianyu Wang, Jianli Pan, Flavio Esposito, Prasad Calyam, Zhicheng Yang,
and Prasant Mohapatra. Edge cloud offloading algorithms: Issues, meth-
ods, and perspectives, January 2020.

[2] Hemant Kumar Apat, Bibhudatta Sahoo, and Prasenjit Maiti. Service
placement in fog computing environment. 2018 International Conference
on Information Technology, December 2018.

[3] Farah Ait Salaht, Frederic Desprez, and Adrien Lebre. An overview of
service placement problem in fog and edge computing, June 2020.

[4] Hani Sami, Azzam Mourad, and Hadi Otrok. Demand-driven deep rein-
forcement learning for scalable fog and service placement, September 2022.

[5] Filippo Poltronieri, Mauro Tortonesi, Cesare Stefanelli, and Niranjan Suri.
Reinforcement learning for value-based placement of fog services. Univer-
sity of Ferrara, May 2021.

[6] Kai Arulkumaran, Marc Peter Desenroth, Miles Brundage, and Anil An-
thony Bharath. Deep reinforcement learning: A brief survey, September
2017.

[7] Yuxi Li. Deep reinforcement learning: An overview, January 2017.

[8] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir
Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning,
Shane Legg, and Koray Kavukcuoglu. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures, February 2018.

[9] Mohammad Goudarz, Marimuthu Palaniswami, and Rajkumar Buyya. A
distributed deep reinforcement learning technique for application place-
ment in edge and fog computing environments, October 2021.

[10] Jose Santos, Tim Wauters, Bruno Volckaert, and Filip De Turck. Resource
provisioning in fog computing through deep reinforcement learning, May
2021.

[11] Kexin Li, Xingwei Wang, and Bo Yi. Experience-based computation of-
floading by deep reinforcement learning for multi-access edge computing
network. ACM Digital Library, July 2022.

[12] Hao Hao, Changqiao Xu, Lujie Zhong, and Gabriel-Miro Muntean. A multi-
update deep reinforcement learning algorithm for edge computing service
offloading. ACM Digital Library, October 2020.

[13] Tong Liu, Shenggang Ni, Xiaoqiang Li, Yanmin Zhu, Linghe Kong, and
Yuanyuan Yang. Deep reinforcement learning based approach for online
service placement and computation resource allocation in edge computing,
February 2022.

Adversarial attacks and defenses on
neural networks

Samu Kähkönen
samu.kahkonen@aalto.fi

Tutor: Blerta Lindqvist

Abstract

Neural networks are one of the most prominent machine learning tech-

nologies, and they achieve state-of-the-art performance on many types of

tasks. However, they are vulnerable to attacks by an adversary. Adversar-

ial attacks consist of generating adversarial examples that cause the target

model to mislabel the input data, e.g misclassify images. Numerous stud-

ies have been conducted on adversarial attacks and on ways to defend from

them (adversarial defenses). This paper discusses the current state of ad-

versarial machine learning and provides an overview of many of the most

common types of adversarial attacks, and a brief discussion on adversarial

defenses.

KEYWORDS: Machine learning, Neural networks, Adversarial attacks,

Adversarial defenses,

1 Introduction

In recent years machine learning has been applied in various fields, es-

pecially with the advent of neural networks. Neural networks have en-

abled great progress in areas such as computer vision, paving the way for,

e.g. image classification. However, neural networks have some curious

counter-intuitive properties, that leave them vulnerable to attacks by ma-

licious third parties [13], [7]. Thus the robustness of neural networks has

been a highly studied topic of interest in recent years.

Various studies have been conducted on adversarial attacks that abuse

these weaknesses in many applications, such as self-driving cars [4] and

voice interfaces [1]. These vulnerabilities have been even seen as an in-

herent problem of neural networks, especially in safety critical contexts

[11].

This paper discusses the vulnerabilities in neural networks, methods to

abuse these vulnerabilities and ways to defend from such attacks. The

most common types of adversarial attacks can be divided into four cate-

gories: Evasion attacks [7] [11], [5], [2], [3], data poisoning attacks [10],

[15], [16], [8], [14], model extraction attacks [9] and inference attacks [6].

In this paper we focus on the first two. Evasion attacks target neural net-

works in the inference phase, after the model has been trained. Data poi-

soning attacks on the other hand target the training phase of the model,

or more accurately, the training data set.

This paper discusses the theory behind these adversarial attacks as well

as briefly discusses the ways to resist them. Chapter 2 will go over the

basic theory behind adversarial attacks. In chapter 3 and 4 we will dis-

cuss the most common types of adversarial attacks, evasion and poisoning

attacks respectively. Chapter 5 gives an overview of the theory of adver-

sarial defenses. Finally, chapter 6 provides a conclusion on the current

state of adversarial attacks.

2 Basic theory behind adversarial attacks

Let x denote a data input to a neural network model, with a correct label

of l1. The goal of an adversarial attack is to generate a data input x′ such

that it will be virtually indistinguishable from the original data x (by both

humans and the machine learning systems), but changed in minor ways

such that the model C will misclassify the input with some label l2 ̸= l1

[13]. Or as a formula

C(x) = l1

C(x′) = l2

Optimized over

min(D(x, x′)),Where D(x, x′) is some distance metric

If the attacker is not concerned what exactly this l2 label is, only that

it is incorrect, the attack is called an untargeted attack, and if the at-

tacker wants to achieve misclassification into a specific label, the attack

is targeted.

The goal of the attacker is to generate an adversarial example that will

misclassify the data sample with as small perturbations as possible. It is

not trivial to decide what kind of parameter is the best for measuring the

distance between the original and the modified example, that would be

as close to human perception as possible. regarding image classification,

there are three metrics that are used for estimating this distance that are

widely used in the literature [2], and those are different Lp norms. The L0

norm measures the amount of pixels that are changed, the L2 norm is the

Euclidean distance between the images, and the L∞ norm measures the

maximum change to any pixel between the images. Most existing studies

use some or all of these metrics.

One important property of adversarial attacks is transferability. This

means that adversarial examples that manage to fool some model will

often also cause misclassification in other models, even ones that are

trained differently with different parameters [2].

Various studies in recent times have discovered that generating adver-

sarial examples is in fact quite easily achieved [7]. Especially for neural

networks that do not employ any kind of defensive measures, it is almost

trivial to find adversarial examples. The potency of adversarial defenses

is discussed in more detail in a later chapter.

The next two chapters will go over different kinds of evasion and data

poisoning attacks respectively.

3 Evasion attacks

Evasion attack is a type of adversarial attack where the attacker does

not need to have the ability to modify the training data set of the model,

and instead creates small worst-case perturbations so that the model will

misclassify data with the wrong label and high confidence [7]. There are

a few different methods to achieve this misclassification. Some of the

important attacks are fast gradient sign method (FGSM) [7], projected

gradient descent (PGD) [11], Carlini-Wagner (CW) [2] and Zeroth order

optimization (ZOO) [3].

The attack methods usually are chosen depending on whether the at-

tacker is targeting a white-box system, where the attacker knows how

the model are trained and what parameters are used. For these kinds of

systems, FGS, PGD, and CW are widely used. Usually in real-world sce-

narios however, the configurations and parameters of neural networks are

not released to the public and it is not practical to assume the ability to

conduct white box attacks. This kind of closed system where the attacked

is unable to retrieve this information from the system, is called a black-

box system. The only information available for the attacker in this case

will be the input data and the output labels. ZOO is a powerful attack for

black-box systems.

The basic principle behind evasion attacks is to find the gradient of the

classification model and iteratively take steps toward the opposite direc-

tion, known as gradient descent.

3.1 Fast Gradient Sign Method

FGSM [7] is a technique used in adversarial machine learning to create

adversarial examples - modified versions of input data that are designed

to cause a machine learning model to make incorrect predictions or clas-

sifications.

FGSM works by calculating the gradient of the loss function of a neural

network with respect to its input data, and then modifying the input data

by a small amount in the direction of the sign of the gradient. The size

of the modification is determined by a hyperparameter called the epsilon

value, which controls the magnitude of the perturbation. By adjusting the

epsilon value, an attacker can control the severity of the attack and the

degree of similarity between the original and adversarial inputs.

The FGSM attack is designed to be a fast method of generating adver-

sarial attacks, and not necessary the optimal [2].

3.2 Projected Gradient Descent

The PGD attack [11] is a stronger and more effective attack than the

simpler FGSM, which only makes a single-step perturbation in the di-

rection of the gradient. In contrast, PGD iteratively perturbs the input,

taking multiple steps to make smaller perturbations, and projecting the

perturbed input back onto the constraint set after each step.

By iteratively adjusting the perturbation in this way, PGD can create ad-

versarial examples that are optimized to fool the target machine learning

model. PGD is particularly effective at generating adversarial examples

that are robust to various types of defenses, including those designed to

detect or mitigate adversarial attacks. [11]

PGD can be used with a wide range of machine learning models, includ-

ing deep neural networks, and can be applied to a variety of input data

types, including images, audio, and text. However, PGD attacks can be

computationally expensive, as they require multiple iterations of the op-

timization process, and they can also be more difficult to implement than

simpler attacks like FGSM. Nonetheless, PGD is a powerful and effective

tool for testing the robustness of machine learning models to adversarial

attacks.

Auto-PDG is a further improvement on PGD introduced by Croce et al.

[5]. The idea behind the improvements it to have a parameter-free vesion

of PGD, as improper tuning of parameters has been a problem in eval-

uating the robustness of neural networks. Auto-PGD takes into account

the available number of iterations, and divides them into an exploration

phase, intended to find good starting points for the algorithm, and an

exploitation phase, to then maximize the function locally. Unlike PGD,

Auto-PGD does not have a fixed size. Instead it starts with a larger step-

size in the exploration phase, and reduces it iteratively. The reduction is

also not scheduled in advance, and instead follows the trend of the opti-

mization.

3.3 Carlini-Wagner attack

The CW-attack [2] is an optimization based attack that will search for the

smallest possible distance between the original and modified data, that

will cause a misclassification by the target model. The attack is imple-

mented for the three Lp norms discussed before, L0, L2 and L∞.

The L2 attack is the simplest of the attacks, as the distance metric is

differentiable. The goal is to minimize the distance with regard to the

best objective function defined in the paper. The problem is then solved

with multiple starting-point gradient descent, to reduce the probability of

getting stuck in a bad local minimum. [2]

The L0 metric is non-differentiable, which means the problem cannot

be solved with gradient descent. Instead the L0 attack uses an iterative

algorithm that identifies pixels with little effect to the classifier output,

and fixes them such they will never be changed. The L2 attack is used

to identify which pixels will not be modified. As the set of fixed pixels

grow, eventually the algorithm will have identified a minimal subset of

modifiable pixels that can generate an adversarial example. [2]

The L∞ attack is also solved with an iterative algorithm that has a grad-

ually decreasing threshold, such that any term exceeding that value gets

penalized.

According to the tests conducted in the paper, the L2 performed the

best with nearly all adversarial examples being visually indistinguishable

from the originals on the MNIST-dataset. The L∞ attack was the second

best, having a few distinguishable adversarial examples, while most of

the examples generated by the L0 attacks were visually distinguishable.

3.4 Zeroth order optimization

The ZOO attack [3], unlike the previously mentioned attacks, is a black

box attack. In other words, it only requires access to the input and the

output. The attack takes inspiration from the previously discussed CW-

attack, however because of the black box constraint, back propagation

cannot be applied. Chen et al. [3] solved this problem by a few modifi-

cations to the CW attack. Firstly, they used a modified loss function that

only takes into account the output of the neural network and the target

label. Secondly, they showed that the gradient can be sufficiently esti-

mated by only using zeroth order methods (i.e. without derivatives) by

evaluating the objective function at very close points. The estimated gra-

dients are then used in coordinate descent to find the best perturbations

at the chosen points.

The remaining problem is that estimating the gradients is extremely

expensive in the black box scenario. ZOO solves this by using hierarchical

attack-space dimension reduction to balance optimization efficiency and

attack complexity. Importance sampling is also applied to find the most

important coordinates to use in the coordinate descent [3]

The paper states that ZOO achieves performance comparable to the CW

attack, and significantly outperforms existing black box attacks that are

based on model substitution.

4 Poisoning attacks

Data poisoning attacks differ from evasion attacks in that they attack the

model already during the training period. This naturally is more difficult

to achieve than evasion attacks, since it requires the attacker to have

access to the training data of the target model, as well as the ability to

modify that data. Some prominent data poisoning attacks that will be

discussed in this chapter are label flipping attacks, backdoor attacks and

clean label backdoor attacks and [10], [15].

4.1 Label flipping attack

Label flipping attacks are one of the more simple forms of data poisoning

attacks. Their goal is to taint a training data set by changing labels of

data points, so that a model trained on the set will be less accurate. Xiao

et al. [16] demonstrated this kind of attack that uses gradient ascent to

identify the labels that will cause the largest classification error on the

target model. The paper showed that this kind of attack can be highly

effective. However, the weakness of label flipping attacks is that the bad

performance of affected models can be detected by evaluating the model

on a test data set [14].

4.2 Backdoor attack

Backdoor attacks are a more insidious type of data poisoning attack, which

aim to plant a backdoor into models trained on the poisoned data set [8].

The backdoor is implemented with embedding a backdoor trigger to data

points of the original data set, which is some kind of pattern that the

model will be trained to classify with the label of the backdoor target. In

image classification, a simple backdoor trigger could for example be a ge-

ometric shape planted in the corner of an image. The backdoor is then

activated during the inference of the model, by modifying the input with

the backdoor trigger.

Backdoor attacks are also considerably harder to detect than label flip-

ping attacks, because the poisoned model can perform as well as a clean

model on clean samples. The poisoning only affects examples that include

the backdoor trigger. This type of attack relies on the assumption that the

adversary can make arbitrary poisoned inputs, even ones that are clearly

mislabeled [14]. This means that the attack can be detected by a filtering

process, or even by just human evaluation of the training data set.

4.3 Clean label backdoor attack

The clean label backdoor attack is an improvement over the previously

discussed backdoor attack introduced by Turner et al. [14]. The goal

of this attack is to plant a backdoor the target models similarly to the

backdoor attack. Unlike the backdoor attack, this version tries to keep

the poisoned input data and labels consistent, even to human inspection,

thus removing the main weakness of the backdoor attack. In their paper

they discovered that using a restricted version of the backdoor attack by

Gu et al. [8], where true labels are not changed and only the backdoor

trigger is added to the target class, is not effective.

According to their analysis, this is caused by the fact that the poisoned

samples can be correctly classified without relying on the backdoor trig-

ger. To solve this problem, they perturb the poisoned samples such that

learning the salient characteristics of the inputs becomes more difficult.

As many widely used datasets contain numerous low quality images, it

turned out to be possible to perturb the inputs in a way that the data-

label pairs remain plausible to humans in manual inspection.

5 Adversarial defenses

Studies on adversarial defenses have shown that it is possible to resist

at least certain types of adversarial attacks by using adversarial samples

in the training set of the model [7], [11]. This kind of defense is called

adversarial training, which is shown to be quite resistant to the type of

attack it is trained on, however it comes with a cost of accuracy on natural

benign samples. The major disadvantage of adversarial training is that

it requires adversarial samples during training, and it will not be able to

be robust against unknown attacks, as you will not be able to prepare for

them during the training phase.

One type of adversarial defense in defensive distillation [12]. Defen-

sive distillation is an approach to attempt to reduce a larger model to a

smaller distilled model. First, you train the model on the training data as

is usually done. This model will be called the teacher in defensive distil-

lation Then the teacher model is used to obtain soft labels on the training

data set. Finally, a new model is trained, but instead of using the training

data’s hard labels, we use the soft labels provided by the teacher model to

train this new distilled network. Initial reports showed that this method

was a promising defense to adversarial attacks, however Carlini et al. [2]

showed in their paper that defensive distillation has only a marginal ben-

efit against stronger, improved attacks.

Madry et al. [11] explore the robustness of neural networks through

robust optimization techniques. In the paper they seek to identify meth-

ods to specify a certain guarantee of security, that would be universal

against all kinds of attacks. They use the previously discussed PGD as

the strongest first-order adversary, and manage to train a robust neu-

ral network on the MNIST-dataset that achieves close to 90% accuracy

against the strongest PGD adversaries. However, their model on the more

complex CIFAR10-dataset did not achieve the same level of robustness,

misclassifying over half of the adversarial examples.

6 Conclusion

As a result of neural networks becoming the state-of-the-art in many ma-

chine learning tasks, it is increasingly important to achieve robustness

against adversarial attacks. It is especially important to have guaran-

tees of security in safety-critical use cases. Through studying the current

state of the research it is clear that there is still much to do in order to

achieve that, as there still is no conclusive proof of defending against the

strongest adversaries. However, there are studies that show promising

results indicating that defending against adversarial attacks is possible.

Undoubtedly more research is still needed before neural networks can be

used in their full potential.

References

[1] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah
Sherr, Clay Shields, David A Wagner, and Wenchao Zhou. Hidden voice
commands. In Usenix security symposium, pages 513–530, 2016.

[2] Nicholas Carlini and David Wagner. Towards evaluating the robustness
of neural networks. In 2017 ieee symposium on security and privacy (sp),
pages 39–57. Ieee, 2017.

[3] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh.
Zoo: Zeroth order optimization based black-box attacks to deep neural net-
works without training substitute models. In Proceedings of the 10th ACM

workshop on artificial intelligence and security, pages 15–26, 2017.

[4] Alesia Chernikova, Alina Oprea, Cristina Nita-Rotaru, and BaekGyu Kim.
Are self-driving cars secure? evasion attacks against deep neural networks
for steering angle prediction. In 2019 IEEE Security and Privacy Workshops
(SPW), pages 132–137. IEEE, 2019.

[5] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free attacks. In Interna-
tional conference on machine learning, pages 2206–2216. PMLR, 2020.

[6] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion
attacks that exploit confidence information and basic countermeasures. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’15, page 1322–1333, New York, NY, USA, 2015.
Association for Computing Machinery.

[7] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[8] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Iden-
tifying vulnerabilities in the machine learning model supply chain. arXiv
preprint arXiv:1708.06733, 2017.

[9] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and
Nicolas Papernot. High accuracy and high fidelity extraction of neural
networks. In Proceedings of the 29th USENIX Conference on Security Sym-
posium, pages 1345–1362, 2020.

[10] Jing Lin, Long Dang, Mohamed Rahouti, and Kaiqi Xiong. Ml attack
models: Adversarial attacks and data poisoning attacks. arXiv preprint
arXiv:2112.02797, 2021.

[11] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards deep learning models resistant to adversarial
attacks. arXiv preprint arXiv:1706.06083, 2017.

[12] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. Distillation as a defense to adversarial perturbations against deep
neural networks. In 2016 IEEE Symposium on Security and Privacy (SP),
pages 582–597, 2016.

[13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199, 2013.

[14] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Clean-label
backdoor attacks. 2018.

[15] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath,
Haitao Zheng, and Ben Y Zhao. Neural cleanse: Identifying and mitigating
backdoor attacks in neural networks. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 707–723. IEEE, 2019.

[16] Han Xiao, Huang Xiao, and Claudia Eckert. Adversarial label flips attack
on support vector machines. In ECAI 2012, pages 870–875. IOS Press,
2012.

A Survey on Participant Selection for
Mobile Crowdsensing

Sandeep Aryal
sandeep.aryal@aalto.fi

Tutor: Zhanabatyrova Aziza

Abstract

Mobile Crowdsensing is a cost-efficient way of collecting private and pub-

lic data. This has been possible due to the advancement and availability

of sensing devices. Similarly, the pool of sensing users have been rising

which has increased the challenges of selecting effective users. The ob-

jective of this paper is to understand the MCS challenges and solutions.

In addition, this paper summarizes three different participation selection

models. Recent research works were used for studying and summarising

the topic.

KEYWORDS: crowdsensing, mobile crowdsensing MCS, MCS types, MCS

challenges, MCS participation selection model, Willingness-based partici-

pation selection, User characteristics aware participation selection, quality

aiming participation selection

1 Introduction

Crowdsensing refers to collecting data from sensors on mobile devices, in-

cluding smartphones, wearables, and IoT devices, for analysis to extract

insights and improve system performance. Its increasing popularity is at-

tributed to the extensive utilization of mobile devices and low-cost sensing

technologies. The use of advanced sensing technologies, machine learning,

and blockchain can enhance the efficiency and security of data collection

and analysis. The increasing demand for more intelligent and responsive

systems is driving the development of crowdsensing applications in vari-

ous domains. [20] At the same time, it is costly to store and process all the

data collected from crowdsensing. Therefore, it is important to effectively

identify and select the well-suited participant from the large user pool.

[9, 1]

This document focuses mainly on mobile crowdsensing (MCS) types and

their challenges. It provides an overview of MSC challenges and summa-

rizes three different participation selection methods/models. In addition,

possible solutions to MSC challenges are defined and future research di-

rection is suggested. Recent research documents are used for the study

of the mentioned topic. This document is divided into seven sections and

the second section introduces the MCS and its types. The third section

highlights MCS challenges and solutions. Similarly, section four, five and

six describes the three different participation selection model. In the end,

a discussion and conclusion are provided.

2 Crowdsensing and Types

Crowdsensing is a good option for organisations, as it enables them to

gather valuable data with minimal investment. This is made possible

through tools like Mobile Campaign Designer which makes creating crowd-

sensing platforms simple. This tool enables organizations to set the speci-

fications for their crowdsensing campaigns, and it generates the appropri-

ate source code and executables required for a personalized crowdsensing

initiative. This indicates that even individuals without technical exper-

tise can establish a crowdsensing application in just five minutes. [4]

Five types of crowdsensing can be categorized based on two criteria: the

level of user involvement in the crowdsensing process and the type of phe-

nomenon being measured. The first criterion separates crowdsensing into

two categories: participatory and opportunistic. Participatory crowdsens-

ing necessitates users to actively transmit sensor data to a server. On

the other hand, opportunistic crowdsensing operates automatically and

entails minimal user engagement to transmit the collected information.

[4]

2.1 First Criterion

Participatory crowdsensing involves users voluntarily contributing infor-

mation or participating in exchange for rewards. There is thus a greater

variety of data available and this leads to more localized and precise

knowledge. For example, it has made it possible for a local administra-

tor to maintain a service like water drainage lines and road conditions.

In addition to taking pictures, users can also use their smartphone’s GPS

sensor to pinpoint the location of an issue, allowing MCS to better address

the issue. The Google Crowdsource application is another example, which

requires users to provide input so that Google’s service can be improved.

Users get rewarded for submitting information and in turn, Google gets

to collect correct data from users. [12]

Opportunistic crowdsensing depends on utilizing devices such as smart-

phones that come with different sensors to gather data from the environ-

ment in proximity. For example, a fitness tracker sends statistics such

as heart rate, body movements and sleep data to the company’s server

which analyses them amongst all users when connecting to your mobile

device. This allows users to compare their data with the community using

the same fitness band, improving health conditions, road traffic situations

and more. For example, the company will analyse the data collected con-

tinuously by the fitness band and provide the user with comparisons and

health advice. [12]

2.2 Second Criterion

The second criterion used to categorize crowdsensing is the type of phe-

nomenon being measured. This results in three categories: physical in-

frastructure, environmental and social crowdsensing. Infrastructure crowd-

sensing is used to measure public infrastructure, such as traffic conges-

tion and road conditions. Environmental crowdsensing is used to measure

aspects of the natural environment, such as the number of habitats af-

fected by wildfire, air pollution levels and water levels. Social crowdsens-

ing is used to gather data about people’s social lives, such as the movies

or super-market visited by an individual. [4]

3 Crowdsensing Challenges

Most Mobile Crowdsourcing (MCS) systems depend on people’s volun-

tary involvement and support. Engaging in a crowdsourcing initiative

through their smartphones can expose users to potential security and

privacy threats as they not only deplete their resources but also subject

themselves to risks such as sharing their data along with location mark-

ers. Additionally, MCS providers aim to get high-quality contributions

from the crowd, but they may not always be trustworthy, accurate, or

well-intentioned. In conclusion, there are four significant challenges in

MCS systems: incentive, task management and privacy protection and

security, and quality assurance. [16]

3.1 Incentive

An incentive is a form of impetus or inspiration that motivates an indi-

vidual to take action or exert more effort. This is especially significant in

situations where the available resources, such as storage and power ca-

pacity, are limited in devices like wearables and mobile phones, or when

the data collected is sensitive. To implement an MCS system on a large

scale, a substantial number of participants are needed. Unless the ben-

efits outweigh their expectations, participants may stop participating in

data collection. [3].

Research has investigated the factors that motivate users to participate

in crowdsourcing communities [14]. Positive feedback and a sense of com-

munity identity are influential in increasing contributions and retention.

Monetary compensation and flexible task schedules have been identified

as primary motivators for workers in platforms like TaskRabbit and Gig-

Walk [6]. Studies have shown that a small percentage of "power users"

complete the majority of tasks [13]. Incentives in MCS can be categorized

into three types: financial, entertainment, and social. Financial incen-

tives, such as real money, are the most straightforward motivator but can

raise concerns about quality control. Entertainment incentives can in-

clude enjoyment or game-based crowdsourcing, but may not be feasible

for all tasks. Social incentives involve gaining reputation or recognition,

while non-monetary intrinsic factors like mental satisfaction and personal

skill development can also motivate participation. Social psychological

incentives, like social facilitation and ranking of contributions, have been

utilized to increase contributions, but identity management and reputa-

tion measurement can be challenging in dynamic MCS systems. To ef-

fectively motivate individuals in MCS, a combination of above mention

incentives should be used. [8, 10]

3.2 Task Management

The task design in MCS includes a framework established by the crowd-

sourcer to describe its work, which is composed of several components.

Specific criteria to determine who can be engaged in the task and their

respective evaluation and compensation policies may be laid down by the

crowdsourcer. Three key factors for creating the task are its definition, UI

(user interface) and granularity. [2]

Task definition: It is a critical component of MCS as it determines the

goals, objectives, and data that will be collected in a crowdsensing cam-

paign. There are several challenges related to task definition in MCS, it

includes the complexity and heterogeneity of data sources, context aware-

ness, and the trade-off between data quality and cost. These challenges

can be overcome by participatory sensing techniques, user-centric task

design, and task decomposition and delegation. In addition, it is impor-

tant to engage the crowd in the process of task definition to ensure that

tasks are engaging, relevant, and aligned with participants’ interests and

capabilities. [17]

User Interface: Similarly, good UI is important in MCS because it can

impact worker productivity, task accuracy, and worker satisfaction. In

general, MCS UI lacks context and the cognitive load required to com-

plete tasks. Participants may have difficulty understanding the task re-

quirements or may become fatigued from completing tasks, leading to de-

creased accuracy and participant satisfaction. [11]

Effective UI can be made with context-driven design, reducing cognitive

load, providing real-time feedback and incorporating participants’ pref-

erences. Context-driven includes providing relevant information about

the task and its purpose, which can help them to better understand the

requirements and perform the task accurately. Reducing cognitive load

involves simplifying the task and its interface, such as breaking the task

into smaller subtasks or using a conversational interface. Similarly, pro-

viding real-time feedback can help participants correct errors and im-

prove their performance. [11]

Granularity: It allows more fine-grained approach allocation, which can

improve the efficiency and effectiveness of MCS. A fine-grained approach

to task allocation can ensure that tasks are assigned to the most suit-

able users based on their characteristics, such as location and historical

behaviour. This approach can also enable the more complex and heteroge-

neous tasks to be completed, which can lead to more accurate and reliable

data collection. However, if the task is too fine-grained, it can result in

increased computational complexity and communication overhead. Spa-

tiotemporal model, which predicts the probability of a mobile user com-

pleting a particular task based on their current location, movement pat-

terns, and historical behaviour can be used to estimate the granularity.

The model also considers the diversity and heterogeneity of the task and

mobile users. [15]

3.3 Privacy and Security

The security and privacy concerns of MCS are much more complex and

difficult compared with the past computing paradigms, because of several

factors. First, the fact that people are involved in crowdsourcing sensing

and intelligence means there could be sensitive information from mobile

devices and the personal data of participants present in sensed data. Sim-

ilarly, crowdsourcing raises security concerns, particularly when sensitive

information is involved. It is more challenging to protect private infor-

mation when the task gets distributed to a dynamic group of people, as

the size of the group cannot be predetermined. Another problem is the

constant change in the network topology of mobile users accepting crowd-

sourced tasks according to their location, interests or device conditions.

The development and implementation of effective security and privacy

solutions will become even more challenging as the topology changes with

time, due to people’s mobility and evolving user behaviour. [19]

4 Willingness-based Participant Selection

Article [7] proposes a participant selection strategy for crowdsensing that

takes into account users’ willingness to participate. The authors develop

a theoretical framework that models user willingness as a function of

various factors, such as task type, task reward, and user experience, and

use this framework to design an algorithm for selecting participants that

maximize the number of willing users and the quality of the collected

data. The paper also presents an implementation of the proposed strat-

egy in a real-world crowdsensing system and evaluates its effectiveness

through both simulation experiments and real-world experiments. The

results show that the proposed strategy can improve the efficiency and

effectiveness of crowdsensing, by increasing the number of willing par-

ticipants and improving the quality of the collected data. This model is

based on a greedy algorithm that selects users with the highest predicted

willingness score. The algorithm sorts the users in descending order of

their willingness scores, and then iteratively selects the top-ranked users.

In each iteration, the algorithm evaluates the marginal utility of adding

a new user based on the expected contribution of the user to the over-

all quality of the collected data. If the expected contribution is high, the

user is selected; otherwise, the algorithm moves on to the next user in the

ranked list. The model also includes a reinforcement learning component

that learns from the outcomes of past tasks and adjusts the willingness

scores of the users based on their actual participation and contribution

to the tasks. This helps to refine the predictions of user willingness over

time and improve the accuracy of the participant selection algorithm. [7]

The steps are listed below :

User-Specific Features: The willingness function takes as input a set of

user-specific features, which include demographic information, location,

and past participation history.

Feature Selection: The willingness function uses a correlation-based fea-

ture selection (CFS) algorithm to select the most relevant features for pre-

dicting user willingness. The CFS algorithm selects a subset of features

that are highly correlated with the target variable (user willingness) while

being minimally correlated with each other.

Logistic Regression Model: The willingness function uses a logistic re-

gression model to estimate the probability of a user’s willingness to par-

ticipate in a crowdsensing campaign. The logistic regression model is

trained on the selected features using a supervised learning approach,

where the model learns to predict the target variable (user willingness)

based on the input features.

Willingness Score Calculation: Once the model is trained, the willing-

ness function uses it to calculate a willingness score for each user. The

willingness score is calculated by applying the logistic regression model

to the user-specific features. The output of the model is a value between 0

and 1, which represents the user’s probability of participating in a crowd-

sensing campaign.

Participant Selection: The willingness score is used to select the top N

users with the highest scores for participation in the crowdsensing cam-

paign. Users with higher willingness scores are more likely to participate

in the campaign. [7]

5 User Characteristic Aware Participant Selection

MCS is a promising approach for collecting data from a large number

of mobile devices. However, selecting appropriate participants for MCS

is a challenging task, as the characteristics of potential participants can

vary widely and can affect the quality and efficiency of the data collec-

tion. In [18], the authors propose a participant selection method for MCS

that takes into account the user characteristics of potential participants,

such as their mobility patterns, location, and availability. The proposed

method aims to improve the quality of the data collected in MCS by select-

ing the most appropriate participants based on their characteristics. The

authors first review the existing participant selection methods for MCS

and highlight their limitations, such as the lack of consideration of user

characteristics or the use of simple heuristics that do not capture the com-

plexity of the MCS task. They then introduce the proposed method, which

uses a scoring system to evaluate the suitability of potential participants

for the MCS task. [18]

The scoring system takes into account three user characteristics, i.e.

mobility patterns, location, and availability, and three task requirements,

i.e. accuracy, timeliness, and cost. This uses a fuzzy inference system

to convert the user characteristics and task requirements into fuzzy sets

and then apply a set of fuzzy rules to calculate the score for each poten-

tial participant. The fuzzy rules are based on expert knowledge and are

designed to capture the relationship between the user characteristics and

task requirements and the suitability of a potential participant for the

MCS task. [18]

Similarly, it evaluates the proposed method using real-world datasets

and compares it to other participant selection methods. In terms of the

quality of the data collected and the effectiveness of the MCS task, the

evaluation results show that the proposed method is superior to the other

methods. The authors also conduct a sensitivity analysis to investigate

the effect of the weightings of the user characteristics and task require-

ments on the participant selection process. The results show that the

weightings can be adjusted to balance the trade-off between the quality of

the data and the cost and timeliness of the MCS task. [18]

The paper discusses the implications of the proposed method for future

research and practical applications. They suggest that the method can be

extended to include other user characteristics and task requirements and

that it can be integrated with other techniques, such as incentive mecha-

nisms and task allocation strategies. They also note that the method can

be applied in various domains, such as environmental monitoring, trans-

portation, and healthcare, where MCS can provide valuable insights and

services. [18]

6 Quality Aiming Participation Selection

Article [5] proposes a participant recruitment method for MCS that takes

into account the quality of data collected. The authors argue that tradi-

tional recruitment methods for mobile crowdsensing often prioritize the

number of participants over the quality of data, which can result in low-

quality data. The proposed method, on the other hand, uses a two-stage

recruitment process that involves pre-screening potential participants based

on their reliability and experience with mobile sensing and then selecting

the most suitable participants for the task at hand. [5]

The first stage of the recruitment process involves pre-screening poten-

tial participants based on their reliability and experience with mobile

sensing. The paper proposes a Reliability Index (RI) that can be used

to evaluate a participant’s reliability based on their past performance in

similar tasks. The RI is calculated based on three factors: completion rate,

accuracy rate, and response time. Participants who meet a minimum RI

score are then eligible to participate in the second stage of the recruitment

process. [5]

The second stage of the recruitment process involves selecting the most

suitable participants for the task at hand. The paper proposes a Suitabil-

ity Index (SI) that can be used to evaluate a participant’s suitability based

on their characteristics and experience. The SI is calculated based on four

factors: age, gender, education level, and previous experience with the spe-

cific task. Participants who meet a minimum SI score are then selected to

participate in the mobile crowdsensing task. [5]

The paper argues that this two-stage recruitment process can improve

the quality of data collected in mobile crowd sensing by selecting the most

reliable and suitable participants for the task at hand. They also note

that the proposed method can be used in a variety of applications, such

as environmental monitoring, traffic monitoring, and health monitoring.

In addition to the proposed method, the paper also discusses several chal-

lenges and limitations of mobile crowd sensing. One of the main chal-

lenges is ensuring the quality of data collected, as participants may not

always provide accurate or reliable data. The authors suggest that the

proposed method can help address this challenge by selecting more reli-

able and suitable participants. [5]

7 Discussion and Conclusion

This paper used recent research papers to summarise the MCS challenges

and focused on three different participation selection methods. It was

found that participation selection was one of the least researched topics

in MCS. As three different participation selection methods were summa-

rized, this helps to understand the overall participation selection model

and its recent trend. As this is a summarization, it might not provide

detailed insight into the model itself but it provides the platform to reach

there.

To conclude, All three participant selection model has the common goal

to improve the efficiency and effectiveness of MCS. It can be seen that

traditional participant selection methods, such as random sampling or

incentive-based approaches, may not always result in high-quality data

or reliable participants. In all three research papers, it was noticed that

they are combining multiple variables and algorithms to define the model.

With things in common, they differ in their specific approaches and method-

ologies, such as whether to consider user characteristics, willingness to

participate or the participant’s skills, experience and reputation.

References

[1] Tariq Ali, Umar Draz, Sana Yasin, Javeria Noureen, Ahmad Shaf, and
Munwar Zardari. An efficient participant’s selection algorithm for crowd-
sensing. International Journal of Advanced Computer Science and Applica-
tions, 9, 01 2018.

[2] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H. R. Motahari-Nezhad, E. Bertino,
and S. Dustdar. Quality control in crowdsourcing systems: Issues and di-
rections. IEEE Internet Computing, 17(2):76–81, Mar 2013.

[3] Shanila Azhar, Shan Chang, Ye Liu, Yuting Tao, and Guohua Liu. Privacy-
preserving and utility-aware participant selection for mobile crowd sensing.
Mobile Networks and Applications, 27(1):290–302, 2020.

[4] Daniel Dimov. Crowdsensing: State of the art and privacy aspects, Oct
2020.

[5] Weijin Jiang, Junpeng Chen, Xiaoliang Liu, Yuehua Liu, and Sijian Lv.
Participant recruitment method aiming at service quality in mobile crowd
sensing. Wireless Communications and Mobile Computing, 2021:1–14, Apr
2021.

[6] Yonghang Jiang, Bingyi Liu, Ze Wang, and Xiaoquan Yi. Start from scratch:
A crowdsourcing-based data fusion approach to support location-aware ap-
plications. Sensors, 19(20):4518, 2019.

[7] Wu Jiaying, Zhang Xiaoyu, Miao Xingxing, Chen Zhen, and Kang Wen-
shan. User willingness-based participant selection strategy of crowdsens-
ing. 2022 Asia Conference on Algorithms, Computing and Machine Learning
(CACML), page 809–816, Aug 2022.

[8] Robert E. Kraut, Paul Resnick, and Sara Kiesler. Building successful online
communities evidence-based Social Design. MIT Press, 2011.

[9] Hanshang Li, Ting Li, Weichao Wang, and Yu Wang. Dynamic participant
selection for large-scale mobile crowd sensing. IEEE Transactions on Mobile
Computing, 18(12):2842–2855, 2019.

[10] Yefeng Liu, Vili Lehdonvirta, Todorka Alexandrova, Ming Liu, and Tatsuo
Nakajima. Engaging social medias: Case mobile crowdsourcing, Jan 2011.

[11] Panagiotis Mavridis, Owen Huang, Sihang Qiu, Ujwal Gadiraju, and Alessan-
dro Bozzon. Chatterbox: Conversational interfaces for microtask crowd-
sourcing. Proceedings of the 27th ACM Conference on User Modeling, Adap-
tation and Personalization, Jun 2019.

[12] Umang Mehta, Parth Soni, and Jinan Fiaidhi. Mobile crowd sensing (mcs)
[preprint]. 2020.

[13] Mohamed Musthag and Deepak Ganesan. Labor dynamics in a mobile
micro-task market. Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, 2013.

[14] Jose Mauricio Nava Auza, Jose Roberto Boisson de Marca, and Glaucio
Lima Siqueira. Design of a local information incentive mechanism for mo-
bile crowdsensing. Sensors, 19(11):2532, 2019.

[15] Liang Wang, Zhiwen Yu, Daqing Zhang, Bin Guo, and Chi Harold Liu. Het-
erogeneous multi-task assignment in mobile crowdsensing using spatiotem-
poral correlation. IEEE Transactions on Mobile Computing, 18(1):84–97,
2019.

[16] Yufeng Wang, Xueyu Jia, Qun Jin, and Jianhua Ma. Mobile crowdsourc-
ing: Framework, challenges, and solutions. Concurrency and Computation:
Practice and Experience, 29(3), 2016.

[17] Zhibo Wang, Jiahui Hu, Qian Wang, Ruizhao Lv, Jian Wei, Honglong Chen,
and Xiaoguang Niu. Task-bundling-based incentive for location-dependent
mobile crowdsourcing. IEEE Communications Magazine, 57(2):54–59, Feb
2019.

[18] Dapeng Wu, Haopeng Li, and Ruyan Wang. User characteristic aware par-
ticipant selection for mobile crowdsensing. Recent Advances in Crowdsens-
ing and Its Security, Privacy and Trust Challenges, 18(11):3959, 2018.

[19] Kan Yang, Kuan Zhang, Ju Ren, and Xuemin Shen. Security and privacy
in mobile crowdsourcing networks: Challenges and opportunities. IEEE
Communications Magazine, 53(8):75–81, Aug 2015.

[20] Zhiwen Yu, Huadong Ma, Bin Guo, and Zheng Yang. Crowdsensing 2.0.
Communications of the ACM, 64(11):76–80, 2021.

Succinct Non-Interactive Arguments

Shuto Kuriyama
shuto.kuriyama@aalto.fi

Tutor: Russell W. F. Lai

Abstract

Ever since succinct non-interactive argument of knowledge (SNARK) was

introduced as a class of proof systems, its formalisation and many ap-

plications have been explored recently. SNARK is the extended version

of one type of proof systems known as succinct non-interactive argument

(SNARG). This paper explains several fundamental concepts required to

comprehend SNARK including a variety of proof systems forNP language

and shows a construction method of SNARG from another type of proof sys-

tem known as probabilistic checkable proof (PCP). Proof systems are listed

in historical order so that the relationship among them can be recognised

easily.

KEYWORDS: SNARK, SNARGs, PCP, IP

1 Introduction

With the widespread use of internet, cryptographic protocols have played

a fundamental role in securing communication between two parties or

even within multiple parties. Due to the growing concern about privacy

protection in the big data paradigm, proof systems (one of the classes of

cryptographic protocol) has recently got even more attention for their ap-

plications in privacy preserving systems [8, 20, 13].

1.1 Proof Systems

Proof systems are in general consist of a prover and a verifier that are

probabilistic Turing machines with common (shared) input and private

input [9]. Given a mathematical statement as common input and a proof

of the statement as private input, referred to as witness, the prover wants

to convince the verifier that they knows a proof of the veracity of the state-

ment. The verifier should be convinced with an overwhelming probability

if the statement is actually true while he should not be convinced with

more than a negligible probability if the statement is false. These proper-

ties are known as completeness and soundness respectively.

1.2 zk-SNARK

Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK)

is one kind of proof systems that are widely applied in privacy preserving

systems including decentralised money, smart contract, supply chain, and

self-sovereign identity [6, 17, 11, 18, 14, 19]. Self-sovereign identity en-

ables identification without revealing one’s identity [19]. For example, an

question "Are you over 20 years old" can be answered and verified without

disclosing one’s identity (one’s age).

An argument system is a restricted proof system whose soundness holds

only for a prover bounded by a polynomial time. An argument system is

succinct, if its proof size is small, namely, bounded poly-logarithmically

in the size of witness [12]. A non-interactive proof consists of a single

non-interactive message that can be verified by any verifier [5]. Argu-

ment systems comprising these above features are known as succinct non-

interactive arguments (SNARGs) [7, 16]. SNARK is SNARG with the ex-

tended soundness - knowledge soundness - that additionally guarantees

the prover knows the witness of a statement if the verifier is convinced

[4]. Lastly, a proof system (argument system) is zero-knowledge if the ver-

ifier does not learn any information except for the fact that the prover

knows a statement is true [9].

Both SNARG and SNARK can be constructed from probabilistic check-

able proof system (PCP) that is one type of proof systems. A verifier in

PCP is probabilistic and it can verify a statement just by looking at a

couple of bits of its proof without checking the entire proof.

1.3 The purpose of this paper

There are many articles regarding zk-SNARK and other relevant proof

systems, however they often do not comprehensively define them with a

consistent style and explain how each of the proof systems are related.

This complicates learning proof systems especially for a new learner.

The aim of this paper is to showcase the development of proof systems

in historical order starting from interactive proof systems to zk-SNARK

along with their theoretical concepts. A computer science student who

has no prior knowledge in proof systems should be able to gasp the main

concepts in the field before they starts reading recent articles.

1.4 Paper Structure

This paper first defines interactive proof systems and PCP in the chapter

3-4. Next it describes SNARG and SNARK in the chapter 5. In the chapter

6-7, a construction method of SNARG with two steps by Micali and Kilian

is explained.

2 Preliminary

A language class NP contains a collection of language L for which there

exists a Turing machine (TM) V that takes an instance x and a witness

w (a proof of the instance) as input and verifies the statement x ∈ L in a

polynomial time.

Definition 2.1 (Class NP). A language L is in the NP class if there ex-

ists a polynomial time TM V such that

L = {x | ∃w, |w| = poly(|x|) ∧ V (x,w) = 1}.

A collision-resistant hash function is a member of a function family for

which it is hard to find two inputs that are mapped to the same output.

Definition 2.2 (Collision-resistant Hash Function Family). A function

family H =
⋃

λHλ, where Hλ = {h : {0, 1}ℓin(λ) → {0, 1}ℓout(λ)} and λ is

a security parameter, is collision-resistant hash function (CRHF) family

if it satisfies the following

• Efficiency: The functions ℓin and ℓout are bounded by a polynomial in λ.

Given x ∈ {0, 1}ℓin(λ) and λ, h(x) can be computed in a polynomial time

root

H14

h12

h1

π1

h2

π2

h34

h3

π3

h4

π4

H58

h56

h5

π5

h6

π6

h78

h7

π7

h8

π8

Figure 1. A Merkle tree with 8 leaf nodes for data π = π1||π2|| · · · ||π8 (|πi| = |π|
8

) and a
CRHF h. hij = h(πi||πj), Hik = h(hij ||hj+1k), i, j, k ∈ [8].

in λ.

• Compression: For all security parameter λ, ℓin(λ) > ℓout(λ)

• Collision resistance: For all probabilistic polynomial time (PPT) algo-

rithm A, it holds that

Pr

 h(x) = h(x

′
)

x ̸= x
′

∣∣∣∣∣∣
h←$ H

(x, x
′
)← A(1λ, h)

 = negl(λ)

2.1 Merkle Tree

A Merkle tree is a binary tree whose leaf nodes are labelled with of a data

block and other nodes are labelled with the hash of their child nodes (See

Figure 1). The structure enables efficient and secure verification of large

amounts of data. By the nature of a hash function (compression), the size

of the root of a Merkle tree is smaler than the data blocks that is the

concatenation of the leaf nodes. Given a Merkle tree, verifying that a leaf

node (data block) is a part of the tree only requires computing a number

of hashes proportinal to the logarithm of the number of leaf nodes hash

values. The list of nodes is also known as the authentication path of the

leaf node. In the Figure 1, for example, the authentication path for the

data block π4 is the list of the hash with the bold outline l = [h3, h12, H58],

and |l| = log2 8 = 3. The root can be computed via the CRHF h, π4, and l.

It can be verified that π4 is in the given tree if the computed root matches

the original root of the given tree.

3 Interactive Proof System

An interactive proof system comprises two parties: a prover and a verifier.

Both of them have a instance x and a mathmatical statement consisting

of a tuple (x, L) as input, where L is a language. The statement is de-

scribed as "x ∈ L". The prover is additionally given the proof of the state-

ment, known as "witness" w. The verifier may or may not know about

the witness. In the setting, the prover tries to convince the verifier that

the prover knows whether the statement is true or false. More formally, a

language L is defined with regards to a relation R.

Definition 3.1 (Relation). A relation R is a collection of tuples (x,w) that

is the sepecification of the relationship between a instance x and a witness

w.

Definition 3.2 (Language). A language LR is a set of instances that ap-

pear in a relation R

LR := {x | ∃w, (x,w) ∈ R}.

An interactive proof system for a language L is a interactive protocol

(P, V), where a prover P is a probabilistic Turing machine (TM) with un-

bound computation time and a verifier V is a probablistic polynomial-time

(PPT) TM whose computation is bounded by a polynomial time in its in-

put [9]. Both of them have an internal random tape containing infinite

sequences of random bits and access to it. The operation of reading a

random bit is known as cointoss. Random bits read by P and V are kept

private inside each machine. Such protocol is so called a private coin pro-

tocol.

Definition 3.3 (Interactive Proof (IP)). An interactive proof system for a

language L ∈ {0, 1}∗ is an interactive protocol (P, V) (for communication

between a prover P and a verifier V) that satisfies the followings

• Completeness: If x ∈ L, then P should be able to convince V with

overwhelming probability (the probability is taken over the cointoss of

P and V).

∀ k > 0, ∃ N, ∀x ∈ L,

|x| > N → Pr[V accepts in ⟨P, V ⟩(x)] > 1− 1

|x|k

• Soundness: If x ̸∈ L, any prover P̃ can convince V with only negligible

probability (the probability is taken over the cointoss of P and V).

∀P̃ ∀ k > 0, ∃ N, ∀x ∈ L,

|x| > N → Pr[V accepts in ⟨P, V ⟩(x)] > 1

|x|k .

The class of language that have an interactive proof system is defined

as IP.

Definition 3.4 (Class IP).

IP := {L | L has an interactive proof}

Babai defined a similar language class AM (Arthur–Merlin) that has an

interactive proof system where random bits read by a verifier is public,

known as public coin protocol [3]. In other words, the cointoss of verifier

V is visible to a prover P . Any language that has interactive proofs with

private coin also has interactive proofs with public coins [10].

4 Probablistically Checkable Proof (PCP)

Probablisitically Checkable Proof (PCP) was introduced as another com-

plexity class that gives a novel representation of NP. A language in the

NP can be verified in a constant time with PCP by looking at a couple of

bits in the proof without checking the entire proof.[1, 2].s

Definition 4.1 (PCP). A PCP system for a language L is a PPT Turing

machine M that uses public coins (internal random strings) with input x

and the proof string Π (an array of bits), satisfying

• Completeness: If x ∈ L, ∃ Π such that Pr[MΠ(x) = 1] = 1

• Soundness: If x ̸∈ L, ∀ Π Pr[MΠ(x) = 1] < 1
2 .

M can be interpreted as a verifier, and it has random access to each

bit of proof string Π. A query is the operation of reading a bit of Π. The

operation that access to an internal random bit is referred to as coin toss.

A restricted version of PCP was considered for the sake of exploring the

trade-offs of among the running time of the verifier and the size of internal

random bits and query bits [1].

Definition 4.2 (PCP(r(·), q(·))). Let r : N→ N, q : N→ N. A PCP(r(·), q(·))
system for a language L is a PCP M defined above that additionally sat-

isfies

• Romdomness Complexity: On input x, M can make at most O(r(|x|))
coin tosses.

• Query Complexity: On input x, M can query at most O(q(|x|)) times.

5 SNARGs Definition

Kilian introduced a proof size efficient interactive argument system based

on PCP: that is succinct interactive argument systems [12]. The prover

in the argument system uses a Merkle tree that is a binary tree whose

nodes are labelled as the hash of their children. It enables the verifier

to have access to a virtual PCP [15]. Subsequently, Micali showed the

method to transform it to non-interactive arguments systems, known as

succinct non-interactive argument systems (SNARGs), by applying Fiat-

Shamir heuristic. [7, 16]. Fiat-Shamir heuristic transforms public coin

interactive argument systems into non-interactive argument system by

simulating the coin toss of the verifier by a random oracle.

A SNARG protocol consists of an argument system expressed as a triple

of TMs (G, P, V). G generates a common input crs and a private input of

the verifier vrs. They are referred to as common reference string (CRS)

and verification state respectively. P takes the crs, the instance x, and the

witness w as input and outputs the proof π. V takes the vrs, the statement

x, and the proof π and outputs 1 or 0 corresponding to accepts/rejects.

Definition 5.1 (SNARG). A SNARG is an argument systems Π = (G,P, V)

for a relation R, where

• (crs, vrs)← G(1λ) λ is a security parameter.

• π ← P(crs, x, w)

• b← V(crs, x, π) If b = 1, the verifier is convinced. b = 0 otherwise.

and satisfies the following properties

• Succinctness: Both cocommunication complexity between P and V de-

noted by |⟨P, V ⟩| and the running time of V are bound by poly(λ, o(|x|)).
In non-interactive setting, |⟨P, V ⟩| = |π| = o(poly(λ, |x|))

• Completeness: If x ∈ LR, then P should be able to convince V with

overwhelming probability

∀ λ ∈ N, ∀(x,w) ∈ R

Pr

V (crs, x, π) = 1

∣∣∣∣∣∣
crs← G(1λ)

π ← P (crs, x, w)

 = 1− negl(λ)

• Soundness: If x ̸∈ LR, any adversary A (including both honest provers

and malicious provers) can convince V with only negligible probability

∀ λ ∈ N, ∀x ̸∈ LR, ∀PPT A

Pr

V (crs, x, π

′
) = 1

∣∣∣∣∣∣
crs← G(1λ)

π
′ ← A(crs, x)

 = negl(λ).

Succinct non-interactive argument of knowledge (SNARK) is an argu-

ment system satisfying above with an additionally stronger soundness -

knowledge soundness - instead of soundness. Knowledge soundness guar-

antees that, if the verifier accepts a proof, the prover can compute the

witness w corresponding to the instance x for the proof.

Definition 5.2 (Knowledge Soundness). An argument system Π = (G,P, V, EA)
for a relation R is knowledge sound if there exists a public machine (ex-

tractor) that can compute the witness w for the instance x. Formally, let

A be an adversary and EA a PPT TM.

∀ λ ∈ N, ∀ PPT A ∃ PPT EA

Pr

 V (crs, x, π′

) = 1

∧ (x,w) ̸∈ R

∣∣∣∣∣∣
crs← G(1λ)

(π
′
;w)← A||EA(crs, x)

 = negl(λ)

Under the above definition, soundness obviously holds as x ̸∈ LR →
(x,w) ̸∈ R.

Definition 5.3 (SNARK). A SNARK is an argument system Π = (G,P, V, EA)
satisfies the aforementioned properties of SNARG as well as knowledge

soundness defined above.

6 Succinct Interactive Argument System from PCP (Kilian)

PCP (explained in the chapter 3) is verifieable with polylogarithmic time

in the size of the proof for a deterministic polynomial TM. Kilian ap-

plied PCP to construct interactive argument systems with succinctness

enabling the size of the proof to be polylogarithmic in that of NP proof.

In the construction, the prover uses a Merkle tree to shorten the proof

string of PCP and provide the access to the proof string (indirect access).

The prover is provided a collision resistant hash function (CRHF) and

compute the root of the Merkle tree setting its leaves as the split of the

proof string. The interactions between the prover P and the verifier V are

defined as following.

1. The verifier V sends a CRHF h to the prover

2. The prover P generates the proof string π of PCP given a witness and

instance. Afterwards, P compiles π into the root rt of a Merkle tree using

the CRHF h and sends it to V.

π ← P (x,w)

rt←Merkle(π)

3. V tosses coin a polynomial number of times and generate series of ran-

dom bits r1, r2, ..., rn and sends them to P. Both P and V internanlly com-

putes the PCP queries q1, q2, ..., qm depending on the instance x, rt, and

the series of random bits.

4. P sends the corresponding bits to those queries as well as their proofs:

that enable V to confirm the those answers are consistent with the root

rt. The proofs, known as authentication paths, are the values of the

minimum number of nodes enables V to re-compute the root of the tree

and confirm the result is the same as rt.

7 SNARG from Succinct Interactive Argument System (Micali)

Micali applied Fiat-Shamir heuristic to Kilian’s construction to make it

non-interactive. In Kilian’s construction, the verifier V sends a CRHF h

to the prover and generates a sequence of random bits r1, r2, ..., rn and

sent it to the prover P. By applying Fiat-Shamir heuristic, the prover has

access to the CRHF h and another hash function h′ simulated by random

oracles. The prover computes the root of Merkle tree rt using h and a

series of queries r1 = h′(rt), r2 = h′(rt, r1), ..., rn = h′(rt, r1, r2, ..., rn−1).

8 Conclusion

The paper explained theoretical concepts of various proof systems that

are underlying concepts of (zk-)SNARK including interactive proof, PCP,

SNARG. A construction method of SNARG from PCP was achieved by

applying Fiat-Shamir heuristic (random oracles) to succinct interactive

arguments constructed by Kilian’s method using a Merkle tree. The con-

struction method of (zk-)SNARK from PCP as well as its example could

be further described.

References

[1] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new
characterization of np. Journal of the ACM (JACM), 45(1):70–122, 1998.

[2] László Babai, Lance Fortnow, Leonid A Levin, and Mario Szegedy. Checking
computations in polylogarithmic time. In Proceedings of the twenty-third
annual ACM symposium on Theory of computing, pages 21–32, 1991.

[3] László Babai and Shlomo Moran. Arthur-merlin games: a randomized proof
system, and a hierarchy of complexity classes. Journal of Computer and
System Sciences, 36(2):254–276, 1988.

[4] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From ex-
tractable collision resistance to succinct non-interactive arguments of knowl-
edge, and back again. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pages 326–349, 2012.

[5] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications. In Providing Sound Foundations for Cryp-
tography: On the Work of Shafi Goldwasser and Silvio Micali, pages 329–
349. 2019.

[6] Vitalik Buterin et al. A next-generation smart contract and decentralized
application platform. white paper, 3(37):2–1, 2014.

[7] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Advances in Cryptology—CRYPTO’86:
Proceedings 6, pages 186–194. Springer, 1987.

[8] Uriel Fiege, Amos Fiat, and Adi Shamir. Zero knowledge proofs of iden-
tity. In Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pages 210–217, 1987.

[9] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM Journal on Computing, 18(1):186–
208, 1989.

[10] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in
interactive proof systems. In Proceedings of the eighteenth annual ACM
symposium on Theory of computing, pages 59–68, 1986.

[11] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash
protocol specification. GitHub: San Francisco, CA, USA, 4:220, 2016.

[12] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In
Proceedings of the twenty-fourth annual ACM symposium on Theory of com-
puting, pages 723–732, 1992.

[13] Wanxin Li, Hao Guo, Mark Nejad, and Chien-Chung Shen. Privacy-preserving
traffic management: A blockchain and zero-knowledge proof inspired ap-
proach. IEEE access, 8:181733–181743, 2020.

[14] Mediledger. Mediledger 2019 progress report. https://assets.chronicled.com,
2019. Accessed: 2023-04-12.

[15] Ralph Charles Merkle. Secrecy, authentication, and public key systems.
Stanford university, 1979.

[16] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253–1298, 2000.

[17] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In 2014 IEEE symposium on security and
privacy, pages 459–474. IEEE, 2014.

[18] Nick Szabo. Formalizing and securing relationships on public networks.
First monday, 1997.

[19] Andrew Tobin and Drummond Reed. The inevitable rise of self-sovereign
identity. The Sovrin Foundation, 29(2016):18, 2016.

[20] Jiannan Wei, Tran Viet Xuan Phuong, and Guomin Yang. An efficient
privacy preserving message authentication scheme for internet-of-things.
IEEE Transactions on Industrial Informatics, 17(1):617–626, 2020.

Migration from Monolithic Architecture
to Microservices: Challenges and
Opportunities

Shweta Jaiswal
shweta.jaiswal@aalto.fi

Tutor: Antti Ylä-Jääski

Abstract

The shift from monolithic to microservices architecture has become popular

among software development teams due to its potential to improve scalabil-

ity, flexibility, and maintainability. However, migrating from monolithic to

microservices architecture can present various challenges and opportuni-

ties for organizations. This paper investigates the challenges organizations

face during the migration process. We explore the technical, infrastruc-

tural, security, and organizational challenges of migrating to microser-

vices architecture and provide insights into the best practices and strate-

gies for overcoming these challenges. Additionally, we highlight the oppor-

tunities that microservices architecture can offer for increased agility, scal-

ability, and employability as compared to monolithic architecture. Over-

all, this paper provides valuable insights for organizations considering

migrating from monolithic to microservices architecture.

KEYWORDS: monolithic, microservices, migration challenges.

1 Introduction

In recent years, microservices as an architecture have advanced to a point

where every company wants to migrate towards it. The primary reason

for shifting to microservices from monolithic architecture is the benefits

provided by microservices, such as increased flexibility, scalability, and

resilience.

"Micro web services" was first introduced in 2005 by Dr. Peter Rogers

[12]. According to him, a micro web services architecture is a well-organized

platform that applies the principles of REST and web services, along with

Unix-like pipelines and scheduling. It is designed to simplify service-

oriented architectures and enhance flexibility. The term "microservices"

was first coined at a software architecture conference in 2011 to describe

a type of architecture that many attendees were testing at the time [9].

Among the early adopters of microservices were prominent tech compa-

nies such as Amazon and Netflix.

A monolithic architecture combines all business logic in a single comput-

ing network with a single source code. This application requires changing

the complete network and tech stack, which involves modifying the code

base and updating and deploying the service-side interface. As a result,

updates become complicated and exhausting [15].

Multinational companies face issues with massive legacy systems based

on the monolithic architecture that has grown over time. Such complex

systems become challenging to upgrade and maintain. The solution to this

problem is microservices, which divide complicated activities into smaller

processes that operate independently and can be upgraded individually

[15].

The microservices style of architecture creates sophisticated applica-

tions from small, standalone apps that communicate using APIs (Applica-

tion Programming Interface(s)), which are independent of language. The

approach of structuring an application as a group of services (standalone

apps) that can be deployed separately and have minimal interdependen-

cies is commonly known as microservices architecture. These services are

typically aligned with specific business functionalities and managed by a

dedicated team. Due to these features of microservices, the code is highly

maintainable and testable [16].

This paper examines the critical differences between the two architec-

tural styles and explores the challenges of migrating to microservices.

By evaluating the benefits of microservices and challenges in migration,

this paper aims to provide a compelling argument for why organizations

should consider using microservices over monolithic architecture for their

next project.

This paper is organized as follows. Section 2 presents the background

literature on monolithic and microservices architecture. Section 3 dis-

cusses the main differences between these two architectures. Section 4

reviews the challenges of migration to microservices from monolithic ar-

chitecture. Section 5 provides a consolidated discussion. Finally, Section

6 presents some concluding remarks.

2 Background

This section contextualizes microservices and monolithic architectures in

terms of existing literature and compares their performance.

Multiple studies have been conducted on these two architectures in dif-

ferent environments based on various parameters. Gos and Zabierowski

[6] compared a web application’s performance in Java, concluding that

microservices architecture is more efficient in handling a larger number

of requests than monolithic architecture. The code is of high quality, easy

to scale, more reliable, and convenient to maintain. Another experiment

[17] was done in the cloud using the Play web framework, which showed

that one of the major benefits of microservices is developing, scaling, de-

ploying, monitoring, and operating an application independently.

Al-Debagy and Martinek [1] give a detailed comparison between mi-

croservices and monolithic architecture. They compare these two archi-

tectures based on different parameters, such as concurrency testing, load

testing, and discovery testing. Their results exhibit that microservices

architecture performs better in concurrency testing and discovery testing

in terms of throughput, whereas the results did not present a significant

difference in load testing.

In another research [3], the performance and scalability of microservices

and monolithic architecture were compared with two different implemen-

tation technologies (Java vs. C#.NET). The experiments were performed

on different environments (local, Azure App Service, and Azure Spring

Cloud). The results showed that although monolithic architectures scale

better on a single machine, microservices outperform them in distributed

systems and are more cost-efficient.

Almost all of the existing literature implies that microservices are a bet-

ter architecture than monolithic ones. However, significant issues arise

when migrating from monolithic to microservices, especially in legacy sys-

tems. The cost, deployability, and team organization are a few factors that

can affect migration [2].

Although companies are migrating from monolithic in-house facilities

to cloud microservices, there is a lack of understanding and expertise in

adopting microservices and the tools and techniques to use for the mi-

gration. It has been shown that different techniques should be followed

for different aspects of migration: orchestration, storage, and deployment

settings [14].

At present, organizations need to scale in an adaptable way that impacts

their production and meets their business needs. This involves using con-

tainers with microservices. Research [15] shows that using microservices

with some orchestration can improve overall performance tremendously,

including response, development, and deployment time.

Many enterprises often demand tailored software products that meet

their particular requirements before deploying them on-premises. Adapt-

ing such products becomes more straightforward if the migration is to-

wards Cloud-native SaaS that employs microservices, thereby capitaliz-

ing on the Cloud and multi-tenancy’s economies of scale [7].

In conclusion, the existing literature suggests that microservices archi-

tecture is a better option than monolithic architecture for various reasons,

including better scalability, reliability, and ease of maintenance. However,

migrating from a monolithic system to a microservices architecture can

be challenging and costly, particularly for legacy systems. Organizations

looking to adopt microservices should carefully consider the various fac-

tors that can impact their migration, such as team organization, cost, de-

ployability, and the appropriate tools and techniques for different aspects

of the migration. Overall, microservices architecture, when properly im-

plemented, can provide several benefits to organizations, particularly in

terms of agility and scalability.

The upcoming section further explores the architectural differences be-

tween microservices and monoliths in the context of migration.

3 Architectural Differences between Monolithic and Microservices

When migrating from a monolithic architecture to microservices, it is es-

sential to consider the differences between these two architectures. Table

1 highlights the differences between monolithic and microservices archi-

tecture w.r.t. different parameters. Microservices architecture enables

independent development, easy scalability, higher consistency, and avail-

Figure 1. Monolithic Architecture (Source: Figure 1 from [6])

Figure 2. Microservices based Architecture (Source: Figure 2 from [6])

ability than monolithic architecture. Figure 1 presents the monolithic

architecture, and Figure 2 shows the microservices-based architecture.

Monolithic architecture is built as a single extensive system with one

code base, while microservices architecture is built as several small inde-

pendent modules that communicate with each other. The modular nature

of microservices makes them easily scalable, and each module can have

its own database. This architecture also significantly reduces the overall

build and development time compared to monolithic architecture.

4 Challenges in Migration: Monolithic to Microservices

The conventional monolithic architecture is inadequate for fulfilling the

rapidly increasing demands of modern organizations. Due to the achieve-

Parameters Monolithic Microservices

Programming Language Completely devel-

oped in a single

programming lan-

guage.

Each service can

be developed in-

dependently using

different program-

ming languages.

Codebase One codebase for the

entire application

Each service has its

separate codebase.

Understandability It is complicated to

understand and con-

fusing.

It has high under-

standability and is

very easy to main-

tain.

Application Scaling It is complicated as it

requires scaling the

entire application.

Scaling is easier as

each service can be

scaled independently

without scaling the

entire application.

Development and deployment Continuous devel-

opment and deploy-

ment are complex.

Continuous devel-

opment and deploy-

ment are smooth.

Service Startup It takes time to build

and start the service.

Building and start-

ing up service is

quick.

Data Model It has a centralized

data model.

It employs a fed-

erated data model,

enabling each ser-

vice to implement its

unique data model.

Consistency and Availability Consistency and

availability are rel-

atively low as any

update to the ap-

plication requires

developing the com-

plete application

from scratch.

Highly consistent

and readily avail-

able.

Table 1. Difference between Monolithic and Microservices Architecture

ments of some prominent enterprises in creating and implementing ser-

vices using a microservices architecture, other organizations have a sig-

nificant incentive to explore adopting this approach. Nevertheless, mi-

grating to this architecture is a complex undertaking. In numerous ex-

isting systems, the components are tightly interconnected, with multiple

dependencies that make it extremely challenging to separate them sensi-

bly [11].

One of the most significant challenges with monolithic architecture is its

tight coupling, which makes it extremely difficult to change the technology

or framework of the code [6]. Organizations can overcome the challenge

related to tight coupling and improve the flexibility of their system by

migrating to microservices architecture. However, the team should assess

the efforts and potential challenges before migrating and carefully plan

and execute the process to ensure a successful transition.

A stepwise process could be adopted, which can involve migrating from

a monolith to a modular intermediate state and then to microservices [4].

It is observed that significant effort is involved in migrating to a modu-

lar state. The modular state can be a transitional step in migrating to

a microservices architecture. This provides a more agile software devel-

opment paradigm while allowing for a stepwise approach to address the

challenges of a complete migration to a microservices-based architecture.

The amount of work required for the migration is determined by the

number of connections among the domain entities of the new modules, as

well as the number of interfaces that exist between the modules [4]. The

various challenges associated with migration to microservices predomi-

nantly occur because all enterprise-level applications start as monolithic

ones. The subsequent section presents a detailed discussion of these chal-

lenges.

4.1 Technical Challenges

This section discusses the technical challenges associated with the imple-

mentation of microservices. The challenges discussed include modulariza-

tion, integration testing, deployment, and transaction management.

Modularization: Refactoring the services from a monolithic architec-

ture to make them modular is an extensive process. It may take a long

time, especially if it is difficult to find a starting point from where the

modularization of the application can take place. This can result in ad-

ditional operational and infrastructural burdens, such as managing con-

figurations, deployment, integration, security, provisioning, and monitor-

ing [13]. One viable approach to mitigating modularization’s complexities

is containerization and provisioning [10]. This approach can effectively

manage and reduce challenges related to modularization.

Integration Testing: Integrating several microservices together presents

difficulty, primarily if the services are written in different languages. These

services are asynchronous, making them challenging to do integration

testing. Furthermore, the test engineer needs to understand all the ser-

vices in-depth to cover all the test scenarios [18]. To overcome testing

difficulties, it is recommended to utilize diverse testing techniques and

tools, such as automated continuous integration, and follow standard ag-

ile methodologies. If the automation test coverage is substantial, it helps

release and validate the microservices frequently [8].

Deployment: Deploying an application based on microservices can present

challenges. Unlike a monolithic application typically deployed on one

host/machine and scaled vertically, microservices-based applications of-

fer various deployment patterns, such as multiple service instances per

host, one service instance per host, or one service instance per host con-

tainer [10]. Running multiple services and managing versions can lead

to increased operational overhead. It is crucial to have an infrastructure

management strategy and regularly implement automated and proactive

infrastructure monitoring [18].

Transaction management: In a monolithic architecture, transaction

management is uncomplicated as it involves in-process calls. However, in

a microservices architecture, transaction management is more complex.

Each microservice might maintain its own private database, and since

microservices are stateless, several remote invocations may be necessary

to fulfill a request. One solution to this challenge is implementing event-

based programming, triggering events, and notifying relevant microser-

vices of state changes [13].

4.2 Infrastructure Challenges

One of the key challenges in transitioning to microservices-based architec-

ture is in understanding and handling the infrastructure for new services.

Performance: A microservices-based application may experience slower

execution due to increased resource usage from a large number of APIs.

This can be overcome by increasing the infrastructural resources, such as

additional servers, or increasing the capacity of the current servers [10].

Database Migration: A monolithic service usually has a single database,

whereas a microservice has multiple databases, usually one for each ser-

vice. Breaking down a monolithic data model into independent data mod-

els for each microservice can be challenging, mainly due to the require-

ment of preserving data and transactional consistency. Database Migra-

tion is one of the open challenges during migration to microservices archi-

tecture [13].

4.3 Security Challenges

The migration from a monolithic architecture to microservices presents

various security challenges that must be considered. With the use of sev-

eral modular services in microservices, the attack surface is potentially

more extensive than in monolithic architecture, increasing the likelihood

of potential attacks. Additionally, even if microservices reduce the surface

area for attack compared to monoliths, they increase the number of au-

thentication steps, increasing authentication latency and impacting user

experience. Furthermore, the increased traffic between services at a more

granular level can make it difficult to automatically enable application

observability for metrics, logs, and tracing, which is essential for both

operational health and security posture tracking [13]. In this context,

implementing the API Gateway pattern effectively enhances the security

of microservice access by creating an abstraction layer that shields the

underlying microservices from external clients. Other strategies, such as

SSL, OAuth, and containerization, can also be implemented to improve

the security of microservices-based applications.

Possible security challenges during migration from a monolithic archi-

tecture to microservices include the following:

Data breaches: With microservices, multiple entry points exist into

the system, making it easier for attackers to exploit vulnerabilities and

gain access to sensitive data [5].

Distributed denial of service (DDoS) attacks: Microservices can

make it easier for attackers to launch DDoS attacks by targeting specific

services and overwhelming them with traffic [5].

Authentication and authorization challenges: Microservices can

increase the number of authentication steps, leading to longer authenti-

cation latencies. This can be a particular challenge for organizations that

require real-time access to data [5].

Service discovery: In a microservices architecture, it is typical to

have many services communicating with one another. This can make it

challenging to track and manage service dependencies and vulnerabilities

[13].

Containerization security: Containerization is a common approach

to deploying microservices but introduces new security challenges. Con-

tainers can be compromised if they are not correctly configured or secured,

and containerized applications can be vulnerable to attacks that exploit

container-specific vulnerabilities [5].

Compliance and regulatory challenges: Microservices can make it

more difficult to comply with regulatory requirements, mainly if sensitive

data is being processed and stored across multiple services. Organiza-

tions may need to take additional steps to ensure they meet compliance

requirements.

Security testing challenges: With a large number of services in a

microservices architecture, testing can become more complex and time-

consuming. It can be challenging to test each service individually, and it

can be difficult to simulate real-world attack scenarios [13].

These are just a few examples of the security challenges that organi-

zations may face during migration from a monolithic architecture to mi-

croservices. Each organization will have its own unique set of challenges

and must develop its own strategies for addressing them.

4.4 Organizational Challenges

Migrating from a monolithic to a microservices architecture is accompa-

nied by several organizational challenges, including the lack of necessary

skills within the team. Another challenge is the impact on the team’s

culture, as successful implementation requires effective communication

among team members and stakeholders. According to Conway’s law, a

system’s structure reflects the communication structure within an orga-

nization. Consequently, organizations that lack effective communication

structures may develop systems with architectures that impede develop-

ment cycles due to the delays involved during project transfers [8].

5 Discussion

Before transitioning from a monolithic architecture to microservices, an

organization should carefully assess the costs and benefits of the tran-

sition. Although microservices can often facilitate faster application de-

velopment, continuous integration, and quicker releases, it is crucial to

consider that the challenges of transitioning may outweigh the potential

benefits for some organizations.

This paper has explored the challenges and opportunities of migrating

from a monolithic architecture to microservices. Through the literature

review, we have found that microservices offer many benefits, such as

scalability, flexibility, and agility, which can help organizations achieve

their business objectives. However, this migration process comes with

several challenges, including technical, infrastructural, security, and or-

ganizational challenges.

The technical challenges organizations might face during migration were

discussed in this study. These challenges include breaking down the mono-

lith into smaller, more manageable services, ensuring service compatibil-

ity and communication, and maintaining data consistency. One solution

to these challenges is the use of containerization, which can provide bet-

ter isolation and enable easier deployment and scaling. In the infrastruc-

tural challenges, we discuss the impact of resources on performance, while

database migration remains an open challenge.

Furthermore, the security challenges related to migration were high-

lighted. Microservices increase the surface area for attacks, making them

more prone to security threats. The implementation of SSL, OAuth, and

containerization can help mitigate these risks, along with using an API

Gateway pattern to secure access to the microservices.

One of the organizational challenges discussed is the unavailability of

certain skills in the team. Migrating from monolithic to microservices

also changes the culture of the team. For microservices architecture to be

successful, communication among stakeholders and developers is crucial.

This requires a shift in the organization’s culture, which can be daunting.

Overall, migrating from a monolithic architecture to microservices of-

fers several opportunities for organizations, including increased scalabil-

ity, flexibility, and agility. The use of containerization, API Gateway pat-

tern, and other security measures can help organizations maintain the

security of their microservices-based applications. However, this process

requires careful planning and execution to mitigate the challenges dis-

cussed. Organizations must ensure they have the necessary skills and

culture in place to transition to microservices architecture successfully.

6 Conclusion

In conclusion, transitioning from a monolithic architecture to a microser-

vices architecture can be challenging. However, it also presents several

opportunities for organizations to improve their software development

practices. While the benefits of microservices are numerous, the chal-

lenges of transitioning cannot be ignored, especially the technical, in-

frastructural, security, and organizational challenges. Therefore, through

careful planning and execution, organizations can overcome these chal-

lenges and reap the benefits of microservices architecture. The use of con-

tainerization, security measures, and cultural change management can

help organizations make a successful transition. As software development

practices continue to evolve, it is essential for organizations to consider

microservices architecture as a viable option for achieving their business

objectives.

References

[1] Omar Al-Debagy and Peter Martinek. A comparative review of microser-
vices and monolithic architectures. In 2018 IEEE 18th International Sym-
posium on Computational Intelligence and Informatics (CINTI), pages 000149–
000154. IEEE, 2018.

[2] Florian Auer, Valentina Lenarduzzi, Michael Felderer, and Davide Taibi.
From monolithic systems to microservices: An assessment framework. In-
formation and Software Technology, 137:106600, 2021.

[3] Grzegorz Blinowski, Anna Ojdowska, and Adam Przybyłek. Monolithic vs.
microservice architecture: A performance and scalability evaluation. IEEE
Access, 10:20357–20374, 2022.

[4] Diogo Faustino, Nuno Gonçalves, Manuel Portela, and António Rito Silva.
Stepwise migration of a monolith to a microservices architecture: Perfor-
mance and migration effort evaluation. arXiv preprint arXiv:2201.07226,
2022.

[5] Hemanth Gopal, Guanqun Song, and Ting Zhu. Security, privacy and chal-
lenges in microservices architecture and cloud computing-survey. arXiv
preprint arXiv:2212.14422, 2022.

[6] Konrad Gos and Wojciech Zabierowski. The comparison of microservice and
monolithic architecture. In 2020 IEEE XVIth International Conference on
the Perspective Technologies and Methods in MEMS Design (MEMSTECH),
pages 150–153. IEEE, 2020.

[7] Sindre Grønstøl Haugeland, Phu H Nguyen, Hui Song, and Franck Chau-
vel. Migrating monoliths to microservices-based customizable multi-tenant
cloud-native apps. In 2021 47th Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA), pages 170–177. IEEE, 2021.

[8] Miika Kalske, Niko Mäkitalo, and Tommi Mikkonen. Challenges when
moving from monolith to microservice architecture. In Current Trends in
Web Engineering: ICWE 2017 International Workshops, Liquid Multi-Device

Software and EnWoT, practi-O-web, NLPIT, SoWeMine, Rome, Italy, June 5-
8, 2017, Revised Selected Papers 17, pages 32–47. Springer, 2018.

[9] James Lewis and Martin Fowler. Microservices: a definition of this new
architectural term. MartinFowler. com, 25(14-26):12, 2014.

[10] Guozhi Liu, Bi Huang, Zhihong Liang, Minmin Qin, Hua Zhou, and Zhang
Li. Microservices: architecture, container, and challenges. In 2020 IEEE
20th international conference on software quality, reliability and security
companion (QRS-C), pages 629–635. IEEE, 2020.

[11] Francisco Ponce, Gastón Márquez, and Hernán Astudillo. Migrating from
monolithic architecture to microservices: A rapid review. In 2019 38th
International Conference of the Chilean Computer Science Society (SCCC),
pages 1–7. IEEE, 2019.

[12] Peter Rodgers. Service-oriented development on netkernel-patterns pro-
cesses & products to reduce system complexity web services edge 2005 east:
Cs-3”. CloudComputingExpo, 2005.

[13] Mehmet Söylemez, Bedir Tekinerdogan, and Ayça Kolukısa Tarhan. Chal-
lenges and solution directions of microservice architectures: A systematic
literature review. Applied Sciences, 12(11):5507, 2022.

[14] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Continuous architect-
ing with microservices and devops: A systematic mapping study. In Cloud
Computing and Services Science: 8th International Conference, CLOSER
2018, Funchal, Madeira, Portugal, March 19-21, 2018, Revised Selected Pa-
pers 8, pages 126–151. Springer, 2019.

[15] Freddy Tapia, Miguel Ángel Mora, Walter Fuertes, Hernán Aules, Edwin
Flores, and Theofilos Toulkeridis. From monolithic systems to microser-
vices: A comparative study of performance. Applied sciences, 10(17):5797,
2020.

[16] Markos Viggiato, Ricardo Terra, Henrique Rocha, Marco Tulio Valente, and
Eduardo Figueiredo. Microservices in practice: A survey study. arXiv
preprint arXiv:1808.04836, 2018.

[17] Mario Villamizar, Oscar Garcés, Harold Castro, Mauricio Verano, Lorena
Salamanca, Rubby Casallas, and Santiago Gil. Evaluating the monolithic
and the microservice architecture pattern to deploy web applications in the
cloud. In 2015 10th Computing Colombian Conference (10CCC), pages 583–
590. IEEE, 2015.

[18] Muhammad Waseem, Peng Liang, Mojtaba Shahin, Amleto Di Salle, and
Gastón Márquez. Design, monitoring, and testing of microservices sys-
tems: The practitioners’ perspective. Journal of Systems and Software,
182:111061, 2021.

Kubernetes Approach to Public Key
Infrastructure

Huong Pham Thi Song
songhuong.phamthi@aalto.fi

Tutor: Matti Siekkinen

Abstract

A Kubernetes cluster has control plane and worker nodes, each of which

has many components. In order to increase the availability of the cluster,

the control plane could span over multiple nodes, spreading its compo-

nents to different physical machines. Additionally, the api-server which

is core component of a Kubernetes cluster is also exposed to outside of the

cluster. In order to secure the communication between components inside

control plane and communication from worker nodes to api-server, Kuber-

netes requires internal Public Key Infrastructure PKI. This paper explores

the details of internal Kubernetes PKI.

KEYWORDS: Kubernetes, Cloud Computing, Public Key Infrastructure

1 Introduction

One of the reasons for Kubernetes success is its ability to be highly scal-

able. In order to achieve this, communication between components needs

a secure channel and api-server also needs to be exposed through Trans-

port Layer Security TLS for outside connection. The Kubernetes internal

PKI plays a big role in maintaining these channels, hence directly affect-

ing Kubernetes success.

This paper is organized as follows. Section 2 presents the overview of

Kubernetes, namely the design principles and description of core compo-

nents. Section 3 goes into the internal PKI, which operations require cer-

tificates, and which components have server and client certificates. Sec-

tion 4 provides concluding remarks.

2 Kubernetes overview

In the recent years, Kubernetes has become the standard for container or-

chestration. Many organizations have successfully leveraged Kubernetes

to gain better control over their containers. Before Kubernetes, contain-

ers are deployed directly on the environment which is hard to manage,

monitor and maintain. As the demand for running containers not only

for development purposes but also for production increases, so is the need

for a tool to manage these containers in large scale manner. Kubernetes

is designed to solve this problem and while there are several approaches

to this problem such as Docker Swarm, Kubernetes is a success because

of its design principles that allow easy integration (migrating to Kuber-

netes doesn’t require code rewrite) and customisation (users could write

operators for their own applications). [2]

2.1 Kubernetes design principles

1. Kubernetes API are declarative rather than imperative

In Docker, the deployment process is done by the developers gain-

ing remote access to server, starting the container and deploying

it by himself. Hence, the process has to be repeated by the devel-

oper when he wants to deploy the container again. This process

is called imperative. In Kubernetes, the developer only needs to

define the desired state and lets Kubernetes find out how to reach

that state. This style of configuration is called declarative and is

similar to the way infrastructure-as-code tools such as Ansible and

Terraform works. This not only saves developers a lot of time but

also better guarantees that the container is deployed correctly.

2. There are no internal hidden APIs in Kubernetes control plane.

We tend to think the control plane is the brain of the cluster, so it re-

quires a lot of complex logic in order to make all decisions. However,

giving the control plane too many responsibilities will introduce a cen-

tral point of failure as the cluster couldn’t function correctly if the mas-

ter node isn’t available. Instead, what they do in Kubernetes is to store

only the desired states of pods inside master node. Worker nodes con-

stantly watch the API server to see compare between their current state

and the desired state. If the desired state is different, the worker node

will work to reach that state. Additionally, all components monitor their

health and report to the master node.

This approach where system operates to reach a state is called level-

triggering. Compared to edge-triggering, where a system responds to

events so when the system doesn’t work correctly, developers are respon-

sible to send the events again, level-triggering has self-healing benefits.

If a component crashes, when coming back up, it can look at the API

server to restore the current state. Hence, there is no missing events

issues.

Especially in distributing system, where components are expected to

fail, system needs to be designed for reliability and tolerance. By us-

ing level-triggering methods, the responsibility for keeping the cluster

healthy is distributed among all components. Hence, there is no cen-

tral point of failure. Components continue to function independently in

the event of failure in other components. This independence is a reason

making Kubernetes composable and extensible. It’s possible to write

operators that support custom applications by making it interactable

with API endpoints. Some interesting information that kubernetes API

provide are:

• secrets: sensitive information such as passwords and certificates that

shouldn’t be inside containers need a way to be injected to the con-

tainer at run time. Secret API object is what Kubernetes provides to

accomplish that.

• configmaps: configuration information such as application startup pa-

rameters.

• downwardAPI: API that contains pod information, allowing contain-

ers to consume information about itself without consulting Kubernetes

API.

The same API is used by internal components, is exposed to the outside.

Hence, when writing application, developers could fetch secret object,

configmap information, or information about the pod that application is

running on from API server.

3. Meet the user where they are

Kubernetes creators understand that not every organization is open

to make modifications to their applications in order to accommo-

date new technologies. For example, for applications that are old

but critical to the organizations such as PKI, requiring modifica-

tions in order to integrate with Kubernetes API is a major hinder

to adoption because the cons of breaking the application are much

greater than the pros of successfully migrating it. Hence, in order

to encourage transition, it’s possible to consume objects such as se-

crets, configmaps, downward API as files or environment variables

within the containers. Information about dependent objects could

be specified under pod definition, which Kubernetes will make sure

to be mounted as a file or as an environment variable to the con-

tainers and hence the applications only need to be able to read from

files or from environment variables.

4. Workload portability

Kubernetes is comparable to an operating system OS in infrastruc-

ture level. In the old days, applications were written to work on

specific hardware. Then OS came along to remove the trouble of

considering hardware specification for developers by providing in-

terfaces. The similar case is happening in distributed system world,

where instead of deploying applications to fit certain cluster imple-

mentations, Kubernetes exposes its API so that applications could

be deployed against it, making Kubernetes an abstraction layer for

application deployment. This approach successfully separates ap-

plication development from cluster implementation.

2.2 Kubernetes components

Core components of a Kubernetes cluster:

Figure 1. simple view of core Kubernetes components

1. etcd: key-value store inside control plane to store the components’ states.

2. api-server: the most important component of the cluster because all

interactions from outside or from other components to the cluster go

through api-server.

3. scheduler: the scheduler monitors the kube api server looking for un-

scheduled pods. These are API objects of type pods that don’t have the

Node field filled in. So it starts to look for the best placement for that

object then update the API server accordingly.

4. controller-manager: there needs to be a component to continuously

watch the API server for the shared states in order to bring the current

state towards the desired ones. Controller manager is such component,

that operates as a non-terminating loop to regulate the state of the sys-

tem. [1]

5. kubelet: exists in every nodes to act like a communication point be-

tween node and the cluster. Kubelet is responsible to self-report node

health and current states to API server for monitoring.

6. kube-proxy: component that runs on each node for maintaining the

network rules. These rules allow communication to pods from inside or

outside network.

API server is the central component and is the only component that talks

to Etcd to store and retrieve cluster states. Other components such as

kube-proxy, scheduler, controller manager and kubelet are API server

clients. APIserver, scheduler, controller manager, and Etcd are control

plane components while kube-proxy and kubelet belong to worker. [5]

3 Secure communication inside Kubernetes

As control plane components could spread between multiple nodes, we

need a secure channel for the communication between the components

[3]. Hence, we need an internal CA to verify each parties in the commu-

nication. The CA will play the role of the trusted third party that both

client and server trust. When communicating, the client could ask the

server for its certificate to verify and vice versa, before responding to a

request, a server could also ask for its certificate.

3.1 PKI requirements for a Kubernetes cluster:

Kubernetes requires certificates for the following operations [1]:

Figure 2. Kubernetes PKI communication flow

• server certificate for api-server endpoints

• server certificate for kubelet endpoints

• server certificate for etcd

• client certificate for administrators to communicate with api-server

• client certificate for api-server to communicate with etcd

• client certificates for controller-manager, scheduler, kubelet to commu-

nicate with api-server

• client certificates for api-server to communicate with kubelets

• client and server certificates for front-proxy

As api-server and kubelet expose their own API, both have server certifi-

cates. Other components need to have client certificates in order to com-

municate with servers. Because most components (except for etc-d) need

to interact with api-server, they all have client certificates to api-server.

API-server has client certificates to talk to kubelets on nodes (this is the

case when api-server wants to retrieve logs and metrics information from

the containers [3] and etc-d in order to read and retrieve cluster states.

The diagram above shows the client-server relationship between compo-

nents.

As the diagram shows, api-server and kubelet have both server and client

certificates. While etc-d only has server certificate and only api-server

has client certificate to talk to etc-d, the remaining components such as

controller-manager, scheduler and kubelet are all api-server clients. Ad-

ministrator certificates are specified in the user section of configuration

files kubeconfig used by kubectl command line clients when connecting to

cluster.

From the server side of view, any requests that present the clients signed

by cluster CA are authenticated. Using the Common Name CN field and

Groups field from the certificate, different access levels could be granted

to different components, ensuring least privilege access to api resources.

3.2 Submitting certificate signing requests

When building a cluster, the operator needs to create cluster CA key and

certificate then distribute the certificate to all control plane nodes. For

worker nodes, the operator also needs to create key and certificates for

each kubelets then send CSR certificate signing requests to the api-server.

In order to simplify kubelet certificate signing process, the api-server pro-

vides a signing api where the kubelets could automatically submit their

CSR on starting up.

For approving the requests, the operator could either configure the con-

troller manager to automatically approve the CSR or wait for the CSR to

be manually approved by an administrator. After successfully retrieve the

signed certificate, the certificate is embedded inside the kubeconfig. The

kubelet continues to operate normally [4].

The same process applies to users if they want to get access to the api-

server. They create their own keys and certificates, sending CSR to api-

server and wait for a cluster admin or controller manager to approve

the requests. The process of sending CSR and receiving certificates of

kubelets and users could be visualized using the diagram:

Figure 3. CSR signing process

3.3 Kubelet certificate rotation

There are limitations when it comes to certificates as the kubelets might

fail to talk to api-server because of certificate expiration. To mitigate this,

the kubelet could either self-request certification extension once near ex-

piration date or rotate the serving certificate. Kubelet certification rota-

tion is enabled by default and is done by creating new CSR only the old

ones nearly expire.

3.4 TLS for service

Ingress has the ability to expose services through TLS. By defining ingress

with key and certificate as secret, the service endpoint could be securely

exposed with TLS. However, the CA in this case isn’t cluster CA but it

should be the an external CA so that the service could be trusted publicly

on the internet.

The process of signing this ingress certificate could be also automated

by cert-manager, which is certificate controller that allows certification

management for container workload inside a Kubernetes cluster. This

is where Kubernetes extensibility shows because cert-manager has the

same work principle with a controller manager. Just as the controller

manager that has specific controllers watching the api-server for specific

objects in order to instruct the scheduler to schedule their creation, the

cert-manager watches he api-server for ingress and certificate objects to

see if they need to request new certificates or extend the current ones.

The certificate object here is also an extended object from cert-manager

as it doesn’t belong to Kubernetes api.

4 Conclusion

The paper discusses the details of internal Kubernetes PKI, the creation

of kubelet and user CSR and sign process for these requested certificates.

The paper also takes the closer look of how Kubernetes is designed to

easier understand the way it operates. Last but not least, the paper goes

through how services could automatically obtain their certificates from

external CA using cert-manager.

References

[1] Kubernetes documentation.

[2] Saad Ali. Kubernetes design principles: Understand the why. 2019.

[3] Alexander Brand. Certifik8s: all you need to know about certificates. 2017.

[4] Loïc Miller, Pascal Mérindol, Antoine Gallais, and Cristel Pelsser. Towards
secure and leak-free workflows using microservice isolation, 12 2020.

[5] Piotr Tylenda Nassim Kebbani and Russ McKendrick. The Kubernetes Bible.
Packt Publishing, 2022.

Implementing a Virtual Network System
among Containers

Songlin Jiang
songlin.jiang@aalto.fi

Tutor: Tuomas Aura

Abstract

This paper investigates the method of implementing a virtual network

system among containers. We first implement a testbed environment for

Virtual Private Network (VPN) systems in IPv4 (site-to-site, host-to-host)

and IPv6 (site-to-site). Then we compare VirtualBox-based Vagrant with

Docker Compose in realizing the same networking features. The result

shows that migrating the test from the Virtual Machines (VM) to the Docker

containers can save nearly 90% of CPU time and 94% of memory for the

VPN system. At the same time, the host machine still has no security risk

increase.

KEYWORDS: Container, Network, Cloud, VPN

1 Introduction

In recent years, container technologies, such as Docker, have received

much attention from the industry and academia as applications are mov-

ing to the cloud. Containers are much more efficient and lightweight than

virtual machines because containers share the Linux kernel with the host.

In contrast, virtual machines employ hardware virtualization and have

their own kernel instance, which consumes more resources [16].

It is still a common practice [11] to build and test network systems con-

figurations using virtual machines, which allows the network engineer to

experiment in a virtual environment before setting up the physical sys-

tem. In addition, virtual networks are sometimes also needed for auto-

mated integration tests, as developers may want to test the usability and

performance of their software under some specific network topology.

However, creating a virtual computing environment can be slow and

troublesome. The problems can worsen when testing virtual network sys-

tems with a large number of nodes on one host machine, as each network

component and host needs a virtual machine instance. It can be memory-

consuming to simultaneously run many virtual machine instances on one

host machine to simulate the network environment, which significantly

troubles testers working on personal computers short of memory. More-

over, Mac M1 / M2 chips are based on the ARM64 architecture, and vir-

tual machine hypervisors currently have limited support for ARM64 hard-

ware virtualization. In contrast, ARM64 is well supported by container

runtimes [12]. Furthermore, Containers are easy to launch on demand

in the cloud, and the cost is low because they can run within one vir-

tual machine. Running with virtual machines can significantly increase

the cost of Continuous Integration / Continuous Delivery (CI/CD) imple-

mentations in the cloud, as using nested virtualization with limited re-

sources is hard. Most importantly, building, storing, and managing multi-

platform virtual machine images in the cloud is also challenging. In con-

trast, Docker supports building multi-platform images [8] and uploading

them to Docker Hub.

Due to little research on implementing network systems using contain-

ers, this paper investigates the possibilities of implementing virtual net-

work systems based on Docker containers to overcome the disadvantages

of virtual machines mentioned above. This paper also analyzes the func-

tional and security limitations when virtual networks are implemented

this way.

This paper is organized as follows. Section 2 reviews the current tech-

nologies used for container networking. Section 3 explains our case study

of implementing a VPN system using Docker containers, while Section 4

explains the details of our implementation. Section 5 compares the VPN

system performance when implemented with the virtual machines and

containers. Finally, Section 6 provides the concluding remarks.

2 Docker Networking System

This section discusses the choice of the Docker container network driver

for implementing the virtual network system. It also discusses how to

enable routing, firewalls and IPv6 inside a container.

2.1 Network Drivers

Docker employs a pluggable networking subsystem. Several drivers can

provide the Docker network functionality. The default drivers include the

bridge, host, overlay, IPVLAN, MACVLAN, and none. We can choose one

of them to implement the virtual network system.

The none, host, and overlay drivers do not cater for our needs. Firstly,

the none driver disables all networking. Secondly, the host driver is un-

necessary as it can have security implications due to its nature of sharing

the same network stack with the host machine. In addition, the overlay is

not an appropriate option as we are simulating the network system only

on one host machine.

As a result, the possible candidates are bridge, IPVLAN, and MACVLAN.

When examining the details, the bridge learns Media Access Control (MAC)

addresses by checking the frame headers sent by the communicating hosts.

On the other hand, the MACVLAN is a trivial bridge that does not need to

learn as it already knows every MAC address it can receive [4]. IPVLAN

is similar to MACVLAN, except IPVLAN assigns the same MAC address

to all containers attached to it. In contrast, MACVLAN assigns a different

MAC address to each attached Docker container [5].

MACVLAN is the best choice for our needs. As we only use the driver

to implement the internal network, there is no need to use advanced flood

control and forwarding database manipulation that are specific to the

bridge driver. MACVLAN bridge mode allows the testbed network to run

layer 2 (data link layer) protocols, such as the Address Resolution Pro-

tocol (ARP) and Link Layer Discovery Protocol (LLDP). MACVLAN also

supports address configuration and discovery protocols, as well as other

multicast protocols, such as Dynamic Host Configuration Protocol (DHCP)

[17] and Precision Time Protocol (PTP) [1]. Moreover, according to Docker

documentation related to networking [9], MACVLAN networks are the

best choice when migrating from a VM setup, as MACVLAN makes the

container appear as a physical device with its own MAC address. Fur-

thermore, Gundall et al. [10] conduct benchmarks for different virtualiza-

tion technologies for the networking overhead. The result shows that the

MACVLAN driver performs best in throughput while requiring the least

CPU resources compared to the other network drivers.

2.2 Routing and Firewall

By default, Docker do not allow manipulating container network devices

and setting routing tables or firewalls inside the containers. These fea-

tures can be enabled by assigning the net_admin capability to the con-

tainer.

According to the capabilities man page [13], assigning the net_admin

capability to containers allows the following network-related operations:

1. Making interface configuration;

2. Administrating IP firewall, masquerading, and accounting;

3. Modifying routing tables;

4. Binding to any address for transparent proxying;

5. Setting the type-of-service (TOS);

6. Clearing driver statistics;

7. Setting the promiscuous mode;

8. Enabling multicasting;

9. Using setsockopt(2) to set the following socket options: SO_DEBUG,

SO_MARK, SO_PRIORITY (for a priority outside the range 0 to 6),

SO_RCVBUFFORCE, and SO_SNDBUFFORCE.

As we use the MACVLAN to build the internal network, all the network

manipulations mentioned above only work for the network components

that belong to the corresponding network namespace. There are no secu-

rity implications to the host network if we give net_admin capability to

the container with its network namespace.

2.3 IPv6

Configuring IPv6 networking in Docker [7] is also possible. Docker dis-

ables the IPv6 support by default. We can add the following content to the

daemon configuration file (default location at: /etc/docker/daemon.json)

or corresponding settings in Docker Desktop:

{ "ipv6": true, "fixed-cidr-v6": "fd00::/80" }

Client-A1

Client-A2

Client-B1

Client-B2

Gateway-A

Gateway-B

Router Gateway-S Server-S1

Site A
10.1.0.0/16

Site B
10.1.0.0/16

Public Internet
eth0 Cloud S

10.1.0.0/16
10.1.0.2

10.1.0.3

10.1.0.2

10.1.0.3

10.1.0.2

eth0
10.1.0.1

10.1.0.1

10.1.0.1
eth0

172.16.16.1
eth1

eth2
172.18.18.1

172.30.30.1
eth3
eth1

172.30.30.30

eth1
172.16.16.16

172.18.18.18
eth1

10.1.0.99

10.1.0.99
eth0

container 1

container 2

port 30000

port 30001

8080

8080

Figure 1. Host to Host

3 Case Study: VPN

This paper simulates a scenario where the IoT devices (clients) in two

sites, A and B, would like to connect to the server in the cloud S. The

topology is based on the Aalto University CS-E4300 Network Security

2022-2023 instance Project 2 [3], where site A, B, and cloud S both use the

private IP addresses to improve the security and save the IPv4 addresses.

Gateways A, B, and S connect sites A, B, and S to the public Internet. The

router in the topology represents the Internet between the sites and the

cloud. The address space between the gateway and the router simulates

public, routable IPv4 addresses, although they are all private. Site A, B,

and cloud S use the router to access the Internet.

In order to make the clients in both site A and site B connect to the cloud

server safely, this paper attempts to implement a virtual network testbed

for this networking exercise based on Docker containers. We experiment

with two types of VPN: site-to-site and host-to-host, using strongSwan, a

VPN implementation based on Internet Protocol Security (IPsec).

3.1 Host to Host

A host-to-host VPN connects different gateways together. IP packets then

get routed to different clients within the corresponding site according to

the routing table of the gateway [14].

Figure 1 shows the topology and corresponding address spaces under

such circumstances.

Client-A1

Client-A2

Client-B1

Client-B2

Gateway-A

Gateway-B

Router Gateway-S Server-S1

Site A
fc00:4300:a::/64

Site B
fc00:4300:b::/64

Public Internet
eth0 Cloud S

fc00:4300:c::/64fc00:4300:a::3

fc00:4300:a::4

fc00:4300:b::3

fc00:4300:b::4

fc00:4300:c::3

eth0
fc00:4300:a::2

fc00:4300:b::2

fc00:4300:c::2
eth0

fc00:4300:aaea::2
eth1

eth2
fc00:4300:aaeb::2

fc00:4300:aaec::2
eth3
eth1

fc00:4300:aaec::aaec

eth1
fc00:4300:aaea::aaea

fc00:4300:aaeb::aaeb
eth1

fc00:4300:a::99

fc00:4300:b::99
eth0

port 8080

Figure 2. Site to Site in IPv6

3.2 Site to Site

A site-to-site VPN connects different network systems located at different

sites together directly [2]. In this case, the address spaces of sites A, B

and the cloud network S should not overlap [15].

Our site-to-site VPN topology is almost the same as figure 1, except that

the address space for site B is 10.2.0.0/16, and cloud S is 10.3.0.0/16.

3.3 Site to Site in IPv6

Site to Site in IPv6 is similar to Site to Site VPN in IPv4 but replaces all

the address space in IPv6.

Figure 2 shows the topology and corresponding address space under

such circumstances.

4 Implementation

To manage the Docker containers, we use Docker Compose for orches-

tration. Based on the figures above, we make each network component a

separate container, assign the net_admin capability to each container, and

implement the network with the MACVLAN driver. We only connect the

router to the Docker default bridge network to enable connections to the

public Internet. Finally, we set up the routing and firewall and configured

the strongSwan IPsec with certificates.

We use Network Address Translation (NAT) masquerade for the gate-

way interface to prevent leaking local IP addresses outside their subnets

for routing. We bind the preconfigured local server IP address 10.1.0.99 or

10.2.0.99 to the interface eth0 of corresponding gateway A and B accord-

ing to their subnets.

We use strict firewall rules on the clients, assuming there should be no

need for the clients (IoT devices) to visit the Internet. We use iptables to

set up gateway A and B firewall rules for input and output. We accept

Internet Key Exchange (IKE) and Encapsulating Security Payload (ESP)

traffic (port 500 and 4500 in UDP) from and to the cloud. Finally, we drop

everything else, including the connection from and to the Internet.

As explained in the following sections, there are also some differences

between the two kinds of VPN setups, and between IPv4 and IPv6.

4.1 Host to Host

About routing, for gateway A and B, we redirect the traffic from the orig-

inal local server address 10.1.0.99 of port 8080 to cloud gateway S of port

8080 with Destination NAT. For gateway S, we redirect the traffic from

the client gateway A and B of port 8080 to corresponding ports (30000

and 30001) on the server s1 address.

There are overlapping network address spaces for host-to-host VPN.

Suppose we specify the IP address and subnet directly through Docker

Compose. In that case, there will be errors notifying us that ’Pool over-

laps with another one on this address space’. Although technically this

should not be a problem, as we are creating a separate internal network

without direct routing, Docker still forbids us.

We have addressed the issue of overlapping address space through a

method that can be likened to IP address spoofing. When we do not specify

the IP address of the network in Docker Compose, it will assign a random

address from the Docker address pool to the network interface. Now we

can modify the IP address and subnet of the interface to our desired one,

and no error will be thrown now.

In addition, for server S1, we use the Docker-in-Docker image to run

Docker containers inside the server S1 container. Running that image

requires the container to be privileged according to the documentation [6].

As a result, in practice, we must ensure the software running in server S1

is benign and poses no risk to the host machine. It can be acceptable in a

testbed network but not in production. Otherwise, we recommend having

a separate VM for the servers.

4.2 Site to Site

Concerning routing, for gateways A and B, we redirect the traffic from the

local address (10.1.0.99 and 10.2.0.99) of port 8080 to cloud server S1 on

port 8080 with Destination NAT.

For the firewall on gateways A and B, we also have to accept the post-

routing traffic to the cloud server 10.3.0.3.

There is no overlapping network address space within the site-to-site

VPN. Thus, we can specify the IP address and subnet directly through

Docker Compose. Additionally, we avoid using the IP address ending in

".1", as Docker does not allow us to assign that address to any container.

These addresses are reserved for gateways or routers on a particular net-

work (although we are simulating the Gateway and Router).

4.3 Site to Site in IPv6

Site to Site in IPv6 is similar to Site to Site in IPv4. Just replacing all

the IPv4 addresses with IPv6 would complete the job. The only differ-

ence is that, in addition to the existing configurations, we also have to

allow ICMPv6 traffic at the gateways for firewall rules. In IPv6, Neighbor

Discovery is a necessary component, replacing Address Resolution Pro-

tocol (ARP) in IPv4. This way, IPv6 Neighbor Discovery can work, and

different containers can communicate within their subnet. We also need

ICMPv6 for Destination Unreachable messages.

5 Evaluation

This section summarizes the result of our experiment. It makes a compar-

ison between the virtual-machine-based testbed and our container-based

testbed.

5.1 Usability and Portability

We can use Docker Buildx [8] to create the testing environment images for

multiple platforms with only one machine, then upload them to Docker

Hub for reusing. Developers do not need to be aware of the different pro-

cessor architectures when starting the container-based testbed. In con-

trast, VM monitors, such as VirtualBox, usually do not have a centralized

image hub. The developer must choose the right image based on the ar-

Table 1. Performance Test Result in Average

Solution Boot Time1 Memory2

Docker Compose 75 s 278 MB

Vagrant + VirtualBox 689 s 4.5 GB

chitecture before running the VM testbed.

Most importantly, the Docker setup can run in M1/M2-based macOS

with Docker Desktop. In contrast, the VM ones cannot be run due to the

limited support of VirtualBox for ARM64.

The shell script commands for all the routing and firewall configurations

in Docker containers and VMs are identical. Hence migrating configura-

tions from the VMs to the Docker containers is easy. We can simultane-

ously start the site-to-site and host-to-host VPN setup in Docker without

interfering with each other.

5.2 Performance

We use Docker Engine 23.0.1 to run the containers and VirtualBox 7.0.6

to run the Virtual Machines. Table 1 reflects the average situation for

all the three implementations. Table 1 shows that our container solution

significantly reduces the fresh boot time1 for the whole VPN system by

nearly 90%. It dramatically reduces the memory consumption2 by nearly

94% as well.

5.3 Security

We can check the current virtual network devices with the command ls

/sys/devices/virtual/net -l. It shows different results when executing

from the host machine and inside the container, indicating that the net-

work stacks inside containers are entirely isolated from the host machine.

5.4 Limitations

There are also some limitations of the Docker networking model, which

cause several observable differences compared to VMs. However, these

limitations generally have workarounds to bypass and will not stop us

from adopting container solutions.

1Also include the running environment building time for the host platform
2Maximum value during the whole running process

1. We cannot have overlapped IP address ranges in different virtual net-

work interfaces assigned by Docker. The only way to do that is to config-

ure the IP addresses manually inside containers.

2. We are not allowed to assign the IP address ending in ".1" to a Docker

container, and we will only get a warning if we do that in a VM. Similar

to the previous limitation, a workaround is to assign the IP addresses

ending in ".1" manually inside containers.

In addition, if we want to test the scalability of the network software and

run Docker containers inside a Docker container, that container needs to

be privileged. Such requirements may cause some security risks, but this

is unnecessary for implementing virtual networks.

6 Conclusion

This paper investigates how to construct the testbed network environ-

ment through the case study of container-based and VM-based VPN con-

figurations. Containers are much more lightweight than virtual machines.

As a mature virtualization technology, containers can realize every func-

tionality we require, similar to virtual machines, while increasing no se-

curity risk to the host machine.

We hope this paper can inspire researchers and engineers to migrate

their testing environment related to network systems from VMs into con-

tainers.

Source code for this paper: https://github.com/HollowMan6/Implement-

VPN-System-with-Containers/tree/main/src

References

[1] Giuliano Albanese, Robert Birke, Georgia Giannopoulou, Sandro Schön-
born, and Thanikesavan Sivanthi. Evaluation of networking options for
containerized deployment of real-time applications. In 2021 26th IEEE In-
ternational Conference on Emerging Technologies and Factory Automation
(ETFA), 2021.

[2] Aung, Si Thu and Thein, Thandar. Comparative Analysis of Site-to-Site
Layer 2 Virtual Private Networks. In 2020 IEEE Conference on Computer
Applications(ICCA), 2020.

[3] Aura, Tuomas and Peltonen, Aleksi and Bui, Thanh. Tuomaura/CS-e4300_
testbed: TESTBED network setup for Student Projects, Dec 2022. GitHub
Repository.

[4] Cha, Jae-Geun and Kim, Sun Wook. Design and Evaluation of Container-
based Networking for Low-latency Edge Services. In 2021 International
Conference on Information and Communication Tech Convergence (ICTC),
pages 1287–1289, 2021. IEEE.

[5] Claassen, Joris and Koning, Ralph and Grosso, Paola. Linux containers
networking: Performance and scalability of kernel modules. In NOMS
2016 - 2016 IEEE/IFIP Network Operations and Management Symposium,
pages 713–717, 2016.

[6] Docker contributors. Docker-in-Docker image README, February 2023.
Docker Hub.

[7] Docker contributors. Enable ipv6 support, February 2023. Docker Docu-
mentation.

[8] Docker contributors. Multi-platform images, March 2023. Docker Docu-
mentation.

[9] Docker contributors. Networking overview, February 2023. Docker Docu-
mentation.

[10] Gundall, Michael and Reti, Daniel and Schotten, Hans D. Application of
Virtualization Technologies in Novel Industrial Automation: Catalyst or
Show-Stopper? In 2020 IEEE 18th International Conference on Industrial
Informatics (INDIN), volume 1, pages 283–290, 2020.

[11] Hauser, Frederik and Häberle, Marco and Schmidt, Mark and Menth, Mich.
P4-IPsec: Site-to-Site and Host-to-Site VPN With IPsec in P4-Based SDN.
IEEE Access, 8:139567–139586, 2020.

[12] Kaiser, Shahidullah and Haq, Md. Sadun and Tosun, Ali Saman and Kork-
maz, Turgay. Container Technologies for ARM Architecture: A Comprehen-
sive Survey of the State-of-the-Art. IEEE Access, 10:84853–84881, 2022.

[13] Linux contributors. Capabilities(7), February 2023. Linux Man Page.

[14] Du Meng. Implementation of a host-to-host vpn based on udp tunnel and
openvpn tap interface in java and its performance analysis. In 2013 8th
International Conference on Computer Science & Education, pages 940–943.
IEEE, 2013.

[15] Oğuzhan Akyıldız and İbrahim Kök and Feyza Yıldırım Okay and Suat
Özdemir. A P4-assisted task offloading scheme for Fog networks: An in-
telligent transportation system scenario. Internet of Things, 22:100695,
2023. Elsevier.

[16] Sharma, Prateek and Chaufournier, Lucas and Shenoy, Prashant and Tay,
Y. C. Containers and Virtual Machines at Scale: A Comparative Study. In
Proceedings of the 17th International Middleware Conference, Middleware
’16. ACM, 2016.

[17] Arne Wendt and Thorsten Schüppstuhl. Proxying ros communications —
enabling containerized ros deployments in distributed multi-host environ-
ments. In 2022 IEEE/SICE International Symposium on System Integra-
tion (SII), pages 265–270, 2022.

Virtual reality toward the internet of
senses

Tenho Korhonen
tenho.korhonen@aalto.fi

Tutor: Nassim Sehad

Abstract

Existing virtual reality (VR) and augmented reality (AR) applications com-

bined with next-generation networking technologies propose a wide range

of possible new applications. Leveraging these technologies, the Internet

of Senses denotes a concept which aims to enable immersive multisensory

interaction over a network with a remote real environment or a virtual

environment.

Implementing the IoS contains a variety of challenges regarding com-

munication networks, user experience and cybersecurity. This paper intro-

duces these chalenges and concepts related to the IoS, and examines two

challenges more closely: networking technologies and multisensory syn-

chronization. The most prevalent challenges in these domains include the

requirement for low latency, great bandwidth and high reliability, as well

as the lack of standardized methods for multisensory synchronization.

KEYWORDS: Internet of Senses, mulsemedia, latency, multisensory syn-

chronization

1 Introduction

Current virtual reality (VR) technology is able to effectively simulate the

real world in terms of vision and sound, thus enabling the user to expe-

rience high levels of immersion and embodiment. However, in the real

world, we observe our surroundings with more senses than only hearing

and vision. In particular, tactile sensation – the sense of touch – is an

essential way for humans to interact with their environment.

The fifth generation of networks has emerged, and building onto it, the

International Telecommunication Union (ITU) has introduced a concept

known as tactile internet: the Internet that combines "extremely low la-

tency" with "high availability, reliability and security" [1]. These technolo-

gies have opened a wide range of applications, and combined with existing

technologies, such as Extended Reality (XR), holoportation, and remotely

controlled machines, they have potential to revolutionize the future of fac-

tories, smart cities, and digital healthcare [1].

The Internet of Senses (IoS) aims at transforming the digital world into

a fully immersive one by delivering multisensory experiences over the net-

work; experiences that affect more senses than hearing and vision. Pro-

viding these experiences has two requirements. The first requirement is

multisensory user interfaces that can stimulate additional senses of the

user, such as haptic and smell. The second requirement is ultra-low la-

tency networks that support synchronization and delivery of multisensory

data. The data used by these systems is referred to as multiple sensorial

media (mulsemedia). Currently, the development of haptic interfaces is

still in its infancy, and additional advancement in networking technolo-

gies is also needed to enable mulsemedia.

The goal of this paper is to review literature on technologies that are

needed to enable effective multisensory interaction, and provide adequate

background information about Mulsemedia and the IoS. This paper, in

particular, examines two topics relating to this domain: networking tech-

nologies for multisensory interaction, and multisensory synchronization.

Another topic that is closely related to the IoS is multisensory interfaces,

but these are left outside the scope of this article.

This paper is structured in the following way. Section 2 presents the

general idea and concepts of IoS. Section 3 presents existing research

about the technologies of IoS, and Section 4 provides conclusions based

on the findings in the previous sections.

2 Background

2.1 Heuristics and concepts

Mulsemedia and the Internet of Senses are both parts of a central con-

cept known as the Metaverse. It is defined as "the post-reality universe, a

perpetual and persistent multiuser environment merging physical reality

with digital virtuality" [2]. In other words, the Metaverse is a network of

virtual environments, and it is especially focused on immersive social in-

teraction between users by leveraging virtual reality (VR) and augmented

reality (AR) technologies, and enabling users to dynamically interact over

the Internet with low latency [2]. This definition of the Metaverse sug-

gests that interaction in the Metaverse should resemble interaction in

the real world.

The Internet of Senses is a concept that addresses this demand for a

realistic interaction. The IoS is a fairly modern concept which aims to

provide a more realistic user experience by leveraging mulsemedia in ad-

dition to audio and visuals, enabling a more "real" interaction. While the

concept of Metaverse usually includes social aspect of interaction, the IoS

refers to any multisensory interaction in real-time, and it includes a va-

riety of other applications in addition to social interaction. For example,

the IoS could be leveraged in virtual tourism, enabling the user to feel as

if they were actually present in a distant location, or in healthcare, where

surgery could be performed without the surgeon being physically present

[3].

Existing research has been conducted about mulsemedia. Falk et al. [3]

argue that producing immersive experiences requires stimulating more

senses than hearing and vision. They also discuss the general heuristics

of the IoS in more detail and elaborate on some existing problems with the

IoS, such as the requirement for low latency. The authors focus mainly on

the human and environmental aspects of IoS.

A recent advance has been made in affective computing [3]. Affective

computing is defined as "the use of devices and algorithms to recognize,

interpret, process, and simulate different human affective states" [3]. Af-

fective computing aims to monitor the user’s mental state in real time [4],

which instantly allows producing a better quality of experience (QoE) for

the user. The mental state can be followed by observing the user exter-

nally, including the user’s facial expression, eye gaze, posture, body move-

ment, tone of speech, heart rate and skin perspiration [4]. Affective com-

puting plays a significant role in communication through the Metaverse,

since a large portion of real-life human interaction is based on non-verbal

communication [3], and an adequate Metaverse experience should also be

able to produce this sensation.

While affective computing can be practiced by externally monitoring the

user, an even deeper understanding of the user’s state and perception can

be achieved by measuring the neural activity in the user’s brain. The

tools for this task are referred to as brain-computer interfaces (BCI), and

they can be implemented using neuro-imaging tools, such as electroen-

cephalography (EEG) [5]. A BCI enables computer software to monitor

the user’s cerebral activity, thus enabling the computer to interpret in-

structions from the user’s thoughts [6]. BCI technologies are typically

complex, but recent advancements have been made in BCI technologies

both in laboratory and real-world settings that could bring BCI technolo-

gies closer to consumers [3, 7].

As seen this section, Mulsemedia can contain very sensitive private in-

formation. Therefore, privacy and cybersecurity should be vital factors

when handling such data. Possible solutions for these problems include

quantum computing and quantum cryptography, and existing research

also displays federated learning [8] and blockchain [9] as promising solu-

tions [3]. This cybersecurity aspect, however, will not be the focus of this

article.

2.2 Challenges of the IoS

Implementing the IoS proposes a variety of challenges, and this subsec-

tion summarizes the most prevalent challenges in the topic. We will com-

ply with existing categorization [3] by diving the challenges in two do-

mains: communication networks and AI, and user experience monitoring.

The final category, cybersecurity, is intentionally left outside the scope of

this article, and it remains as a topic for future articles to explore.

The first category, communication networks and AI focuses on the com-

munication between IoS users. The greatest technical challenges include

the low latency and high transmission rates required for IoS. This cat-

egory also contains the possible environmental problems caused by the

energy consumption of deep neural networks, since the other problems in

this category are addressed with the help of these networks. Additionally,

this category contains the practical difficulty of integrating various dif-

ferent technologies together and the various problems arising from this

integration process [3].

The problems with user experience monitoring are focused on affective

computing, mobile brain-computer interfaces, and multisensory QoE. Af-

fective computing requires context-aware methods, and the computing de-

vice must be durable and reliable. A possibility for a non-contact affective

computing method was also mentioned, which would not need cameras to

observe the user’s actions. Another problem in this category is investigat-

ing how faulty multisensory feedback, for example due to a network error,

affects the user experience [3].

3 Topics of research

This section reviews existing research on the technologies needed for im-

plementing the IoS, and introduces additional terminology of the field.

3.1 Minimising latency, maximising reliability

As stated in Section 2.2, the IoS requires very low latency to function –

something which is not attainable by traditional networking and cloud

computing conventions. Despite the demanding nature of the challenges,

a variety of technologies exist for solving these problems.

Mobile edge computing (MEC) is a vital aspect of minimising network

latency. Edge computing refers to on placing computation, storage and

network control of applications to the edges of the network in contrast

to cloud computing [10], where such activities are performed in cloud-

based clusters in a centralized manner. MEC is a subcategory of edge

computing, where computation occurs both on local devices and at the

edge of the network [11]. In MEC, the computation units close to the

user are referred to as base stations, and performing the computation in

these stations reduces the workload on the users’ end devices [12]. MEC

is a fairly modern concept and a key technology in 5G networks and IoT

applications, because it reduces latency for end users [12].

Artificial intelligence technologies (AI) have seen recent improvement

that has produced powerful tools applicable to implementing the Meta-

verse [3]. In combination with edge computing, AI has introduced a new

concept: edge intelligence [13]. Edge intelligence introduces new network

concepts such as edge offloading, edge caching, local machine learning and

model training, and edge resource optimization [13].

Powerful AI tools also have a drawback, namely, they consume a great

amount of energy, which poses an environmental problem. A possible so-

lution for this problem would be optical neural networks that consume sig-

nificantly less energy than conventionally implemented neural networks

[3].

Chaccour et al. [14] investigate the potential of terahertz Internet (re-

ferred to simply as THz) in wireless VR applications. Their results demon-

strate that terahertz-magnitude bandwidths have potential to support

high-performance VR needs, but in some conditions terahertz technology

also had difficulty in providing a reliable QoE.

Van Hyunh et al. [15] research digital twin (DT) supported Metaverse by

utilizing mobile edge computing and ultra-reliable and low latency com-

munications (URLLC), which are examined more closely in the following

subsection. DT is a design of producing a virtual replica of real-life objects

and rendering these objects in real time, thus producing a "digital twin"

of a real-life scene. In their mathematically-oriented article, the authors

"formulate a latency minimization problem under stringent constraints of

URLLC-based transmissions by optimizing edge caching strategies, task

offloading policies, as well as computation and communication resources",

and propose a solution to this minimization problem [15].

Joda et al. [16] investigate IoS-related edge intelligence. Edge intelli-

gence refers to leveraging AI and machine learning (ML) tools in conjunc-

tion with edge computing. The authors propose a solution for organizing

semantic communication between edge nodes.

Semantic communications denote a concept where increasing empha-

sis is placed on network reliability and the "meaning" of the transmit-

ted data [17], i.e., the semantics of the data. These semantics – the in-

tended purpose of the transmitted data – could then, for example, affect

network scheduling policies in order to provide a more reliable connec-

tion. Lan, et al. [17] argue that the sixth generation of networks (6G)

will require increasing attention to semantic communications, and men-

tion three types of these communications: human-to-human, human-to-

machine and machine-to-machine.

Lopez et al. [18] research channel state information (CSI) on the trans-

mitter side (CSIT) in a 6G network context. CSI refers to information

related with wireless network channels, which can be used to monitor the

surrounding wireless environment [19]. The authors argue that tradi-

tional CSIT might not be capable of meeting the stringent requirements

of 6G networks, and propose possible solutions and directions for future

research in this topic. The study reveals that aqcuiring instant CSI with

a high quality-of-service (QoS) demand is highly expensive. Based on this,

the authors discuss various approaches to this problem, ranging from "ef-

ficient allocations of the pilot sequences up to schemes relying on statisti-

cal CSIT or location-based ML/AI-enabled predicted CSIT" [18].

3.2 Multisensory synchronization

Handling Mulsemedia data involves handling multiple input streams of

data for different senses. These data streams must be synchronized in

order to provide the user with high QoE, which requires thorough under-

standing of the user interface [20]. Synchronizing the data streams is a

difficult and error-prone task [21], and no standard way of synchroniz-

ing these data exists yet, albeit some research has been conducted on the

subject. Thus, multisensory synchronization remains as a topic for future

research to explore. Yuan et al. [20] explore Mulsemedia synchronization

with two multisensory data streams, haptics and air flow, and present

guidelines for synchronization errors regarding these streams.

Bi et al. [22] present a solution for Mulsemedia streaming by adapting

the Dynamic Adaptive Streaming over HTTP (DASH) protocol, which is

commonly used for multimedia streaming, and expanding it to support

Mulsemedia (DASH-MS). As the name of the protocol states, it delivers

Mulsemedia content over a network with adaptive quality. The authors

also noticed that experimental results demonstrated multisensory stimuli

improving the satisfaction level of the user, even when out-of-sync multi-

sensory effects were used.

Abreu et al. [21] present a semi-automatic approach for synchronizing

mulsemedia streams using neural networks that detect information from

video scenes. This synchronization technique is used in the context of a

mulsemedia authoring tool to automatically create multisensory stimuli

from the played-back audiovisual content. The presented algorithm rec-

ognizes the starting times for different multisensory effects, but does not

consider the characteristics of the effects, such as intensity, type or posi-

tion.

4 Discussion

While it may currently seem very distant to imagine a network of virtual

realities and applications indistinguishable from the real world, it is clear

that IoS could massively impact a large portion of the society. For this to

happen in practice though, many issues would need to be solved perfectly:

for example, the multisensory devices and interfaces should be unnotice-

able for the user, the user’s physical and mental state should be monitored

extensively, and all this should happen in real time with minimal latency.

Therefore, while some competent mulsemedia applications already exist,

a flawless IoS experience may still lie in the distant future.

When minimising latency, one must keep in mind that the speed of light

sets a boundary for transmitting information between distant location

on the surface of the Earth. Therefore, the mulsemedia delivery system

will always have some latency, unless some form of hypothetical predic-

tion algorithm could be leveraged, which would pre-emptively detect both

the user’s actions and the remote environment’s responses slightly before

these events actually happen. This idea was not researched in the scope

of this article, and exploring it will be left for future articles.

When examining multisensory synchronization, finding related research

proved to be a rather difficult task. While limited information can be

found about multisensory synchronization in the context of playing back

multisensory content, even less information was found in the context of

the IoS where multisensory stimuli occur in real time. Synchronizing

mulsemedia streams remains extensively as a topic for future research.

Section 3.2 introduced a way of automatically detecting multisensory stim-

uli from audiovisual content. This could hypothetically be leveraged in

the context of IoS to obtain multisensory information from audiovisual

content without the need for additional remote receptors for multisensory

stimuli, such as smell. This idea is left for future articles to explore.

5 Conclusion

Recent development in networking technologies combined with existing

technologies, such as VR and AR, has potential to create a variety of

novel applications. One application domain is referred to as the Internet

of Senses, a Metaverse-based multisensory form of interacting over the

internet. Although concrete results have been obtained in the research

field and existing solutions for the challenges have emerged, a variety

of challenges remain to be tackled in the future. This article presented

an overview of current networking technologies needed for transmitting

mulsemedia, and summarized current research on multisensory synchro-

nization. Lastly, some discussion was provided based on the findings in

this article.

References

[1] G. Fettweis, H. Boche, T. Wiegand, E. Zielinski, H. Schotten, P. Merz, S. Hirche,
A. Festag, W. Häffner, M. Meyer, et al., “The tactile internet-itu-t technology
watch report,” Int. Telecom. Union (ITU), Geneva, 2014.

[2] S. Mystakidis, “Metaverse,” Encyclopedia, vol. 2, no. 1, pp. 486–497, 2022.

[3] T. H. Falk, L. B. Le, and R. Morandotti, “The internet of senses: A posi-
tion paper on the challenges and opportunities of multisensory immersive
experiences for the metaverse,” in 2022 IEEE International Conference on
Metrology for Extended Reality, Artificial Intelligence and Neural Engineer-
ing (MetroXRAINE), pp. 139–144, 2022.

[4] J. Tao and T. Tan, “Affective computing: A review,” in Affective Computing
and Intelligent Interaction (J. Tao, T. Tan, and R. W. Picard, eds.), (Berlin,
Heidelberg), pp. 981–995, Springer Berlin Heidelberg, 2005.

[5] Y. Wang, W. Song, W. Tao, A. Liotta, D. Yang, X. Li, S. Gao, Y. Sun, W. Ge,
W. Zhang, and W. Zhang, “A systematic review on affective computing: emo-
tion models, databases, and recent advances,” Information Fusion, vol. 83-
84, pp. 19–52, 2022.

[6] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer interfaces, a re-
view,” Sensors, vol. 12, no. 2, pp. 1211–1279, 2012.

[7] P. Aricò, G. Borghini, G. Di Flumeri, N. Sciaraffa, and F. Babiloni, “Passive
bci beyond the lab: current trends and future directions,” Physiol Meas,
vol. 39, 2018. Available at: http://dx.doi.org/10.1088/1361-6579/aad57e.

[8] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Chal-
lenges, methods, and future directions,” IEEE Signal Processing Magazine,
vol. 37, pp. 50–60, may 2020.

[9] T. R. Gadekallu, T. Huynh-The, W. Wang, G. Yenduri, P. Ranaweera, Q.-V.
Pham, D. B. da Costa, and M. Liyanage, “Blockchain for the metaverse: A
review,” 2022.

[10] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile
edge computing: The communication perspective,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[11] T. Bai, C. Pan, Y. Deng, M. Elkashlan, A. Nallanathan, and L. Hanzo, “La-
tency minimization for intelligent reflecting surface aided mobile edge com-
puting,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 11,
pp. 2666–2682, 2020.

[12] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, “Toward edge intelligence:
Multiaccess edge computing for 5g and internet of things,” IEEE Internet of
Things Journal, vol. 7, no. 8, pp. 6722–6747, 2020.

[13] W. Y. B. Lim, Z. Xiong, D. Niyato, X. Cao, C. Miao, S. Sun, and Q. Yang,
“Realizing the metaverse with edge intelligence: A match made in heaven,”
IEEE Wireless Communications, pp. 1–9, 2022.

[14] C. Chaccour, M. N. Soorki, W. Saad, M. Bennis, and P. Popovski, “Can ter-
ahertz provide high-rate reliable low-latency communications for wireless
vr?,” IEEE Internet of Things Journal, vol. 9, no. 12, pp. 9712–9729, 2022.

[15] D. Van Huynh, S. R. Khosravirad, A. Masaracchia, O. A. Dobre, and T. Q.
Duong, “Edge intelligence-based ultra-reliable and low-latency communica-
tions for digital twin-enabled metaverse,” IEEE Wireless Communications
Letters, vol. 11, no. 8, pp. 1733–1737, 2022.

[16] R. Joda, M. Elsayed, H. Abou-zeid, R. Atawia, A. B. Sediq, G. Boudreau,
M. Erol-Kantarci, and L. Hanzo, “The internet of senses: Building on se-
mantic communications and edge intelligence,” IEEE Network, pp. 1–9, 2022.

[17] Q. Lan, D. Wen, Z. Zhang, Q. Zeng, X. Chen, P. Popovski, and K. Huang,
“What is semantic communication? A view on conveying meaning in the
era of machine intelligence,” CoRR, vol. abs/2110.00196, 2021.

[18] O. L. A. Lopez, N. H. Mahmood, H. Alves, C. M. Lima, and M. Latva-
aho, “Ultra-low latency, low energy, and massiveness in the 6g era via effi-
cient csit-limited scheme,” IEEE Communications Magazine, vol. 58, no. 11,
pp. 56–61, 2020.

[19] Y. Ma, G. Zhou, and S. Wang, “Wifi sensing with channel state information:
A survey,” ACM Comput. Surv., vol. 52, jun 2019.

[20] Z. Yuan, T. Bi, G.-M. Muntean, and G. Ghinea, “Perceived synchronization
of mulsemedia services,” IEEE Transactions on Multimedia, vol. 17, no. 7,
pp. 957–966, 2015.

[21] R. Abreu, D. Mattos, J. A. F. d. Santos, and D. C. Muchaluat-Saade, “Semi-
automatic synchronization of sensory effects in mulsemedia authoring tools,”
in Proceedings of the 25th Brazillian Symposium on Multimedia and the
Web, WebMedia ’19, (New York, NY, USA), p. 201–208, Association for Com-
puting Machinery, 2019.

[22] T. Bi, A. Pichon, L. Zou, S. Chen, G. Ghinea, and G.-M. Muntean, “A dash-
based mulsemedia adaptive delivery solution,” in Proceedings of the 10th
International Workshop on Immersive Mixed and Virtual Environment Sys-
tems, MMVE ’18, (New York, NY, USA), p. 1–6, Association for Computing
Machinery, 2018.

Analysis of GPU Architecture for
High-Performance Stencil Computing

Tomi Molander
tomi.molander@aalto.fi

Tutor: Maarit Korpi-Lagg

Abstract

This study offers a comparative investigation of the parallel performance

of NVIDIA and AMD HPC GPUs. The analysis compares the relative per-

formance of NVIDIA and AMD GPUs for high-performance stencil com-

puting applications and assesses the effect of GPU architecture on perfor-

mance in the context of the CUDA-MPI library Astaroth. The architectures

of the NVIDIA Tesla A100 and AMD MI100 GPUs, both of which are in-

tended for use in data centers and high-performance computing applica-

tions, are examined in this study. The main hardware and execution model

variations between the GPUs are outlined. The study concludes that the

relative performance of Tesla A100 and AMD MI100 GPUs for stencil com-

putations depends on the specific hardware and software configurations

used.

KEYWORDS: NVIDIA, AMD, Graphics Processing Unit, GPU, Architec-

ture, CUDA-MPI, Astaroth, Performance

1 Introduction

The field of computer graphics and high-performance computing has ex-

perienced tremendous growth in recent years, largely driven by advance-

ments in graphics processing units (GPUs). NVIDIA and AMD are two of

the largest manufacturers of GPUs, and their products are widely used in

a variety of applications, from video gaming to scientific simulations. In

this context, it is important to understand the performance of these GPUs

and their potential to handle complex tasks efficiently. This paper aims

to estimate the effect GPU architecture has on multi-GPU performance

of NVIDIA and AMD GPUs in the context of the CUDA-MPI (Message

Passing Interface) library Astaroth.

CUDA [9] and its counterpart OpenCL [4], are parallel computing plat-

forms that allow for the development of high-performance applications

for GPUs. CUDA is a proprietary platform developed by NVIDIA and

is specific to NVIDIA GPUs. However, OpenCL is an open standard for

cross-platform, parallel programming that can run on GPUs from multi-

ple vendors, including NVIDIA, AMD, and Intel. AMD also has its own

open-source software platform known as ROCm that is designed for AMD

hardware. Lastly, Heterogeneous-Compute Interface for Portability (HIP)

is a software interface for developing portable parallel applications that

run on both AMD and NVIDIA GPUs [3].

Astaroth is a high-performance computing library designed to utilize the

parallel processing capabilities of GPUs [10]. It has a comprehensive set

of tools for developing and running GPU-accelerated applications by pro-

viding GPU Application Programming Interfaces (APIs), domain-specific

language (DSL) and a compiler for translating the DSL into CUDA/HIP

subroutines. More specifically, Astaroth is using the HIPIFY tool of HIP

for translating CUDA to HIP. This study evaluates the parallel perfor-

mance of NVIDIA and AMD GPUs by comparing their underlying archi-

tectures in the context of stencil calculation.

The GPUs compared in this paper are NVIDIA Tesla A100 and AMD

MI100. The paper aims to provide initial insights into the relative perfor-

mance of NVIDIA and AMD GPUs for high-performance stencil comput-

ing applications. In summary, stencil computing is a numerical technique

used to compute values at a point in a grid based on arbitrary number of

neighbouring points, in a repetitive manner.

This paper is structured as follows. Chapter 2 discusses the architec-

ture of GPUs. NVIDIA and AMD GPU architectures are examined in

more detail, and the key differences between these platforms are sum-

marized. Chapter 3 overviews the impact of GPU architecture on stencil

calculations. Finally, Chapter 4 provides a review and conclusion of the

paper.

2 Graphics Processing Unit Architecture

The NVIDIA Tesla A100 and AMD MI100 are both high-performance

GPUs designed for data center and high-performance computing appli-

cations. The Tesla A100 is based on NVIDIA’s Ampere architecture, while

the MI100 is based on AMD’s CDNA architecture. The A100 and MI100

were released on May 21 and November 16 on 2020, respectively, which

makes them prime candidates for comparison. As one might expect, the

architectures share many similarities between them.

2.1 Similarities in Architecture Design

Both GPUs are built on the 7 nm lithography process technology and

use modern high-bandwidth memory (HBM2) controllers, which allows

extremely high memory bandwidth of 1.555 (A100) [8] and 1.23 (MI100)

[2] terabytes per second. In addition, the Tesla A100 utilizes NVLink

technology, which provides a direct link between the multiple GPUs. This

connection is faster than a PCIe connection and effectively allows mul-

tiple GPUs to be used as a single processing unit [6]. The AMD CDNA

architecture provides a similar technology known as Infinity Fabric [2].

The main distinction between the two being that Infinity Fabric is im-

plemented using a chiplet design, which allows for simple scalability and

modularity, while NVLink is implemented using a dedicated physical con-

nector that is integrated into the GPU package. AMDs Infinity Fabric is

also utilized in CPUs and accelerators. Thus, NVLink that was designed

specifically for linking multiple GPUs, provides a higher total link band-

width when comparing the A100s 600GB/s [8] to the MI100s 276GB/s [2]

theoretical maximum peer-to-peer bandwidth. However, the single link

transport rate bandwidth is higher on the MI100. A single MI100 con-

tains three links, each with 92 GB/s bandwidth. In contrast, the A100 has

12 links, each yielding 50GB/s bandwidth.

Tesla A100 and MI100 GPUs incorporate specialized hardware compo-

nents and instructions to accelerate complex data processing and compute-

intensive workloads. For example, the NVIDIA Ampere architecture fea-

tures third-generation Tensor Cores [8], which accelerate matrix multipli-

cation operations commonly used in deep learning workloads, while the

AMD CDNA architecture incorporates Matrix Core technology for matrix

operations [2]. In addition, the architectures support a range of program-

ming models and software tools for high-performance computing, such as

CUDA for NVIDIA and HIP for AMD. They also support popular machine

learning and deep learning frameworks, such as TensorFlow, PyTorch and

MXNet.

Figure 1. GA100 Full GPU with 128 SMs [8]

Figure 1 shows the full GA100 GPU design overview. A single unit con-

sists of multiple Graphics Processing Clusters (GPC) that include multi-

ple Streaming Multiprocessors (SM), Level 2 Caches, Memory Controllers

and HBM2 memory. The unit also has NVLink as mentioned previously.

The AMD MI100 has broadly speaking a similar structure, with different

technologies, such as Infinity Fabric instead of NVLink. However, there

are notable differences, such as Asynchronous Compute Engines (ACE),

Hardware Scheduler (HWS) and Direct Memory Access (DMA) compo-

nents, but discussion about these components is out of the scope of this

paper.

2.2 NVIDIA Ampere Architecture

One notable difference between NVIDIA and AMD GPU architectures is

how the processing cores are designed. The Ampere architecture has a

multi-level cache hierarchy that includes L1, L2, and L3 caches, as well as

a HBM module. NVIDIA has combined L1 data cache and shared memory

into one. This was introduced with the Volta architecture in 2017 [7].

Shared memory is memory that can be accessed by multiple processing

units simultaneously, such as threads within a GPU. Processing core and

memory layout for the A100 is illustrated in Figure 1.

Figure 2. GA100 Streaming Multiprocessor (SM) [8]

In NVIDIA GPUs, a warp consists of 32 threads, which execute in lock-

step. This means that all 32 threads execute the same instruction at the

same time, which allows for efficient execution of parallel code as long as

all threads within a warp follow the same path. In addition, Volta ar-

chitecture introduced independently schedulable threads. This is because

the A100’s streaming multiprocessors (SMs) use a "single-instruction, multiple-

thread" (SIMT) execution model. Under the SIMT model every single

thread has its own program counter and stack, allowing the program ex-

ecution to diverge and become task parallel.

2.3 AMD CDNA Architecture

On the compute unit level, the architectures begin to differ more distinc-

tively. Unlike in Ampere architecture, each wavefront in AMD CDNA

architecture has its own program counter, but individual threads within

a wavefront do not have their own program counter. A wavefront is a

group of threads that are executed together on a single compute unit

(CU) [1]. A wavefront consists of 64 threads that execute in groups of 16

threads called a wavefront quad. Within a wavefront, all threads execute

the same instruction in lockstep, thus they all follow the same program

counter. The program counter is a register that keeps track of the address

of the next instruction to be executed, and it is updated as the wavefront

progresses through the program.

Figure 3. Shared Memory Hierarchy of AMD MI100 [1]

Figure 2 shows the shared memory hierarchy of the AMD MI100. Each

compute unit has 64 kB of local data share (LDS) memory. Unlike, with

Ampere architecture, the L1 Cache and shared memory are separate mem-

ory units.

3 The Impact of GPU Architecture on Stencil Calculations

Multinode GPU computing is a computing process that involves connect-

ing multiple GPUs across different nodes to work together in parallel,

with the aim of achieving higher performance gains than by single-node

GPU computing. Stencil computations are ideal candidates for porting to

the formidable GPU architecture because of the simple data structures

and frequent memory access [5]. However, one important factor that can

greatly impact the performance of multinode GPU computing is the com-

munication time delay between the GPUs. The authors of [11] discuss

the use of multinode computing for high-order stencil computations us-

ing CUDA-aware MPI. The article explores the use of MPI to improve

the scalability of stencil computations, which are widely used in scientific

and engineering applications. The authors use CUDA-aware MPI to en-

able efficient communication between GPUs hosts, which allows for high-

performance computing across multiple nodes. By using this approach,

the authors demonstrate that they can achieve excellent scalability and

performance for high-order stencil computations.

3.1 CUDA-MPI Astaroth

The CUDA-MPI library discussed in the previous paragraph is called As-

taroth. The authors used Astaroth to enhance the performance of sten-

cil computations [11]. Astaroth is an open-source library that is specif-

ically designed for high-order stencil computations with a focus on the

demands of multiphysics applications on modern high-performance com-

puting (HPC) systems [12]. It offers both multi-GPU and single-GPU

APIs, as well as a domain-specific language that enables stencil codes

to be expressed in a high-level syntax. In addition, Astaroth includes an

optimizing compiler that translates DSL sources into CUDA/HIP subrou-

tines that exhibit performance that is similar to what would be achieved

with hand-tuning. The authors of [11] state that their implementation

achieved 20-60 times speedup and 9-12 times improved energy efficiency

in compute-bound benchmarks on 16 nodes, when compared to a multi-

core GPU solver.

3.2 GPU Memory

The performance of stencil calculations can be significantly impacted by

the underlying GPU architecture. The memory hierarchy of the GPU is

one key aspect. GPUs with greater on-chip memory and effective mem-

ory controllers can perform better by freeing up more memory bandwidth.

The processing power of the GPU should also be taken into account. While

stencil calculations can be parallelized across many GPU cores, where the

memory bandwidth poses the largest bottleneck, GPUs with more cores

or more powerful core architectures will perform better. Additionally, per-

formance of stencil calculations can be further enhanced by GPUs with

specialized compute units for particular operations, such as tensor cores

for matrix operations.

High performance on GPUs may be achieved in part through modify-

ing thread granularity and utilizing data locality in on-chip storage [13],

since stencil calculations require accessing neighboring data points. Stor-

ing data in a contiguous block of memory can achieve data locality. This

allows for efficient access to neighboring data points without constantly

fetching data from off-chip memory. This means memory bandwidth re-

quirements can be significantly reduced, which improves performance.

Data locality can also reduce the amount of data that is transferred be-

tween memory levels by minimizing cache misses and by maximizing data

reuse.

4 Conclusion

From the previously discussed sections it can be concluded that both the

Tesla A100 and AMD MI100 share many desirable characteristics for par-

allel stencil calculations. When examining just a singular GPU both of the

models seem tied on the front of performance. However, since communi-

cation speed plays a crucial role in scaled stencil calculations, it could be

argued that as the utilized number of GPUs increases the A100 would

have a smaller drop in performance due to the good scalability of NVLink.

On the contrary, the MI100 might perform better with lower number of

GPUs due to the higher bandwidth on a singular link.

A important aspect to also consider is the price of the GPUs. The MSRP

of the A100 was higher than that of the MI100 and it is still on average

more expensive than the MI100. It shall be seen if the price difference

persists as the price of GPUs in general has been quite volatile over the

recent years. In addition, the AMD MI100 also comes cheaper in terms of

the electricity bill as the typical power consumption is rated lower.

This paper has provided an overview of the architectures of NVIDIA

Tesla A100 and AMD MI100, and evaluated their relative performance

and role in high-performance stencil computing. Since both GPUs provide

good performance on paper, more research and testing into the topic is

needed in order to decide which GPU is more suited for this context.

References

[1] AMD. "AMD Instinct MI100" Instruction Set Architecture Reference Guide,
2020. Visited 20.2.2023. URL: https://developer.amd.com/wp-content/
resources/CDNA1_Shader_ISA_14December2020.pdf.

[2] Advanced Micro Devices. AMD CDNA Architecture White Paper, 2020.
Visited 2.2.2023. URL: https://www.amd.com/system/files/documents/
amd-cdna-whitepaper.pdf.

[3] Advanced Micro Devices. ROCm Languages, HIP: Heterogeneous-Computing
Interface for Portability, 2022. Visited 2.2.2023. URL: https://rocmdocs.
amd.com/en/latest/Programming_Guides/LanguageInto.html.

[4] Khronos OpenCL Working Group. The OpenCL Specification, Version v3.0.12,
2022. Visited 2.2.2023. URL: https://registry.khronos.org/OpenCL/
specs/3.0-unified/pdf/OpenCL_API.pdf.

[5] John Nickolls and William J. Dally. The gpu computing era. IEEE Mi-
cro, 30(2):56–69, 2010. URL: https://ieeexplore.ieee.org/document/
5446251.

[6] NVIDIA. GP100 Pascal Whitepaper, 2016. Visited 16.2.2023. URL: https:
//images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.

pdf.

[7] NVIDIA. NVIDIA TESLA V100 GPU ARCHITECTURE, 2017. Visited
17.2.2023. URL: https://images.nvidia.com/content/volta-architecture/
pdf/volta-architecture-whitepaper.pdf.

[8] NVIDIA. NVIDIA A100 Tensor Core GPU Architecture, 2020. Visited
16.2.2023. URL: https://images.nvidia.com/aem-dam/en-zz/Solutions/
data-center/nvidia-ampere-architecture-whitepaper.pdf.

[9] NVIDIA. CUDA C++ Programming Guide, Release 12.0, 2023. Visited
2.2.2023. URL: https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_
Guide.pdf.

[10] Johannes Pekkilä. Astaroth: A Library for Stencil Computations on Graph-
ics Processing Units. Master’s thesis, Aalto University. School of Science,
2019. URL: http://urn.fi/URN:NBN:fi:aalto-201906233993.

[11] Johannes Pekkilä, Miikka S. Väisälä, Maarit J. Käpylä, Matthias Rhein-
hardt, and Oskar Lappi. Scalable communication for high-order stencil
computations using cuda-aware mpi. Parallel Computing, 111:102904,
2022. URL: https://www.sciencedirect.com/science/article/pii/S0167819122000102.

[12] Finland ReSoLVE Centre of Excellence, Espoo. Astaroth Repository, 2023.
Visited 15.3.2023. URL: https://bitbucket.org/jpekkila/astaroth/src/
master/.

[13] Huayou Su, Xing Cai, Mei Wen, and Chun-yuan Zhang. An analytical gpu
performance model for 3d stencil computations from the angle of data traf-
fic. The Journal of Supercomputing, 71:2433–2453, 02 2015. URL: https://
www.researchgate.net/publication/276831218_An_analytical_GPU_performance_

model_for_3D_stencil_computations_from_the_angle_of_data_traffic.

Dynamics of social interactions in social
Mixed Reality

Touko Nurminen
touko.nurminen@aalto.fi

Tutor: Robin Welsch

Abstract

Mixed Reality (MR) technology has emerged as a promising tool for study-

ing social interactions, offering a controlled and immersive environment

for simulating various social situations. This paper provides a compre-

hensive review of the latest research on social interaction behavior within

mixed reality environments. We discuss the development of MR technology

in the context of social interaction research, the role of non-verbal behavior

such as gaze and expression in social interaction research with MR, and

the challenges associated with traditional social interaction research meth-

ods. Additionally, we explore the current limitations and future directions

of MR technology in the context of social interaction research. Despite exist-

ing challenges, advancements in MR technology hold great promise for the

field of social interaction research, offering valuable insights into human

communication and interaction in the digital era.

KEYWORDS: Mixed Reality, Virtual Reality, Augmented Reality, Social

Psychology, Social Interaction, Non-verbal Behavior

1 Introduction

In psychological science, social interaction has been studied with various

methods to gain insight into topics such as communication, relationships,

and cultural differences [18]. Questionnaires and self-reports, though fre-

quently used, are not the most ecologically valid research methods for

examining social interaction, since they rely on the participants’ ability

to accurately recall and report their behavior [8]. One of the dominant

research methods for studying social interaction is behavioral observa-

tion, which allows for the direct observation of individuals within a social

context [13]. However, this method presents its own set of challenges, in-

cluding identifying suitable experimental settings, the inability to repli-

cate test scenarios, and accounting for variability of traits among human

subjects [10].

To combat this, researchers have begun simulating social interactions

using Mixed Reality (MR) technology. A controlled, low-cost environment

is achieved by embedding digital content, such as 3D objects and virtual

agents into a virtual environment [16]. A real human participant can

then interact with the virtual agent within the virtual environment and

the interaction and its dynamics can be observed to gain insight into social

interaction behavior.

This paper reviews the latest research on studying social interaction us-

ing MR technology, and discusses using MR to solve the issues regarding

social interaction research. Additionally, the paper discusses the roles of

various aspects of non-verbal behavior, and simulating those to enhance

social interaction research. The goal of this paper is to review the state

of MR technology in social interaction research and its potential for sim-

ulating non-verbal behavior, along with discussing the limitations and

challenges faced in this field.

The paper is organized as follows. Section 2 describes the development

of MR technology in the context of social interaction research. Section 3

presents the use of MR technology in social interaction research, includ-

ing discussing the role of simulating non-verbal behavior such as gaze and

expression, and additionally explores the challenges of MR technology in

social interaction research. Section 4 discusses the future of MR technol-

ogy in social interaction research. Finally, Section 5 provides concluding

remarks by reviewing the results of the paper.

2 Background

MR technology has been used in a variety of fields, including entertain-

ment, education, and healthcare [15, 17]. In recent years, it has also

gained attention as a tool for studying social interaction and non-verbal

behavior [11]. One of the main advantages of MR technology in this con-

text is its ability to create a low-cost environment that allows for the ma-

nipulation of various social factors, such as gaze and facial expressions

[6, 9]. This creates a controlled research environment in which repeat-

able social scenarios can be simulated, yielding reliable and consistent

test results.

Another challenge that MR technology can solve is the lack of replica-

tion, meaning that it is difficult to exactly replicate the same social situ-

ation across multiple test instances with human subjects [10]. With MR

technology, a social situations can be simulated multiple times while al-

lowing an immersive and interactive experience, thus providing repeat-

able and reliable test results [9].

As a result, MR technology has gained popularity as a tool for researchers

studying social interaction. Next, this section discusses the specifics of

non-verbal behavior and MR technology, along with the development of

MR technology in the context of social interaction behavior research.

2.1 Non-verbal behavior: An Overview

Non-verbal behavior refers to all forms of communication that do not use

words to convey meaning [4]. It includes cues such as body language,

facial expressions, eye contact, gestures, and posture [20]. These cues can

complement language to convey a wide range of information, such as a

person’s emotions, intentions, and personality traits. They significantly

impact social interactions, which is why non-verbal behavior is a crucial

part of communication. [14]

Non-verbal communication is a complex phenomenon, influenced by var-

ious factors such as culture and context. For instance, the meaning of a

gesture may differ across cultures, and the same gesture can have differ-

ent meanings depending on the situation. According to Matsumoto [21],

people use different levels of interpersonal space in the same situation

depending on the culture that they belong in. For example, Arab people

often sit closer to each other than Americans.

This paper focuses on two aspects of non-verbal behavior: gaze and ex-

pression. Gaze refers to eye contact and the direction of where the eyes

are looking, and their role in communication [5]. Expression refers to the

facial expressions and cues that people use to convey emotion [21].

Studying non-verbal behavior using traditional research methods can

be challenging, since the variability of human subjects can result in in-

accurate data. For instance, some people might smile more when they

interact with a particular person [18]. These inconsistencies between test

subjects’ behaviors might lead to inaccurate results. This is where tech-

nologies such as MR can provide valuable insights. MR allows researchers

to regulate these parameters, and thus observe non-verbal behavior in

a controlled environment, providing an accurate and reliable means of

studying non-verbal behavior [9].

2.2 Mixed Reality: Definition and Advancements

Mixed reality is a technology that blends physical and digital environ-

ments together in real time. It is often used as an umbrella term that in-

cludes multiple immersive technologies, such as Augmented Reality (AR)

and Virtual Reality (VR). [26] In Azuma et al.’s (1997) survey, AR is de-

fined as a technology that allows the user to see the real world with vir-

tual content overlaid onto it. Additionally, VR is defined as a technology

that completely immerses the user in a virtual environment. In Figure 1,

the relationships of MR, AR and VR are illustrated in a Reality-Virtuality

continuum, as proposed by Milgram and Kishino [23].

Figure 1. Reality-Virtuality continuum [23]

The advancements in MR technology have been rapid in recent years.

One big advancement in connecting the digital world and the real world

is the development of spatial computing. Spatial computing enables a

computer to perceive and interact with the real world and 3D elements by

using technologies such as sensors [7].

Another advancement in MR technology is the development of track-

ing and sensing technologies. These include motion interactive wearable

devices, such as ultrathin skin-like sensors, and proximity and pressure

sensing on-skin devices [19]. The sensors allow for tracking of the move-

ments of users in real time to create realistic and interactive MR experi-

ences, while keeping the experience as naturalistic as possible by limiting

the amount of bulky equipment the user must wear.

2.3 Evolution of MR Technology in Social Interaction Research

The evolution of MR technology in social interaction research has been

fast in the past decades. In 2002, Blascovich et al. [10] discussed the

use of virtual environments in social psychology studies. They concluded

that virtual environments could be used to solve the typical problems in

traditional research methods.

One area of research that has particularly benefited from MR technology

is the study of social anxiety. Researchers have used MR to simulate social

environments where participants can gradually become more comfortable

in social situations. For example, Anderson et al. [1] studied the effects

of virtual reality exposure therapy for social anxiety disorder, and found

that the therapy produces long-lasting benefits for the condition.

More recently, researchers have begun to explore the use of MR technol-

ogy for studying group interaction. Shared virtual environments can be

created where multiple participants can interact with each other in real

time. Moustafa et al. [24] studied small group interaction in social virtual

reality. Participants were required to regularly engage with each other in

social VR applications. They were connected to the virtual environment

via smartphones and head-mounted displays. The researchers found that

users engaged in VR can experience stimuli similar to real life, and that

social interaction in VR was directly comparable to that in real life, and

that it evokes genuine affective responses.

3 Simulating non-verbal behavior with MR

As established thus far, the use of MR technology offers a novel approach

for studying social interaction. Researchers have leveraged MR technol-

ogy to create immersive, interactive environments where the non-verbal

behavior of the virtual agents can be standardized [11]. The non-verbal

behavior includes the social cues gaze and expression, which can be sim-

ulated with various methods.

3.1 Gaze and Eye Contact in Virtual Environments

Gaze is an important aspect of non-verbal communication, as it plays a

crucial role in conveying information about a person’s attention, interest,

and emotions [14]. Gaze is used in both directions in social interaction:

indicating one’s attention and sensing the attention of others [2]. In tra-

ditional research methods, measuring gaze can be difficult, as it requires

precise tracking of eye movements. With MR technology, the gaze behav-

ior of the virtual agents can be regulated, and variables such as matching

the eye heights of the participants can be controlled [6]. This enables

researchers to study gaze behavior in a controlled setting to conduct re-

search with regulated parameters and should thus provide more accurate

results. Additionally, simulating gaze of the virtual agents in virtual en-

vironments is important to achieve a more immersive virtual experience.

This allows the participants to feel as if they are interacting with a real

human, and thus creating a better environment for social interaction re-

search.

For example, in a recent study by Narang et al. [25], a novel interac-

tive approach called PedVR was proposed for simulating gaze and gestu-

ral behaviors of virtual agents in virtual environments. PedVR combines

2D navigation with full-body motion synthesis and gaze computation to

provide users with the ability to interact with a virtual crowd. The vir-

tual agents were able to compute collision-free trajectories to avoid the

user and other virtual agents. In addition, the believability of the virtual

experience was greatly increased due to the virtual agents’ capability to

exhibit gaze and gestural behaviors. The study showed a fourfold increase

in user preference for the approach with the introduction of gaze, which

demonstrates the importance of simulating gaze of the virtual agents in

virtual environments.

However, there are also challenges that need to be addressed. For ex-

ample, participants might not respond to virtual gaze and eye contact

as they would in real life scenarios, which could limit the validity of the

research. Moreover, if participants are aware that the eye contact they

are experiencing is virtual, this could reduce their sense of presence and

engagement in the environment, which would further undermine the va-

lidity of the research.

3.2 Expression in MR Environments

Expression holds significant importance in social interactions, as it al-

lows individuals to convey their feelings and intentions to others. Facial

expressions, body posture, and gestures are among the primary means

through which people express emotion non-verbally [3]. Thus, simulating

realistic emotional expressions in virtual agents is essential when creat-

ing MR environments for social interaction research.

Researchers have employed various techniques to simulate emotional

expressions. One approach is to use the Facial Action Coding System

(FACS) when creating facial expressions for virtual agents. FACS cate-

gorizes facial movements based on the action of individual facial muscles

to 58 action units. The action units can be mapped onto a virtual agent’s

face, and through animation, they can be employed to characterize any

facial expression. [12]

In a recent study by Tisserand et al. [27], an interactive tool was de-

veloped to simulate virtual humans’ emotional facial expressions in real-

time, considering both musculoskeletal and Autonomic Nervous System

(ANS) features to increase expressive realism. The tool allows users to

control ANS parameters and thirty action units for expression control,

making it possible to create a wide range of facial expressions. This ap-

proach can help enhance the believability and realism of virtual agents’

emotional expressions, leading to more realistic social interactions in MR

environments.

A challenge in simulating expression in MR environments is the accu-

rate recognition of emotions in virtual agents. In real-world social inter-

actions, people rely on a combination of verbal and non-verbal cues to

recognize and interpret others’ emotions [4]. However, this can be more

difficult in MR environments, where virtual agents may not exhibit the

full range of emotional expressions or may display emotions that are less

recognizable to users.

3.3 Limitations and Challenges of MR in Social Interaction
Research

Despite the numerous benefits of using MR technology in social inter-

action research, there are several limitations and challenges to be ad-

dressed. These include:

Lack of sense of presence: One of the main challenges faced when us-

ing MR technology in social interaction research is the lack of a sense of

presence experienced by the participants. Sense of presence refers to the

extent to which a person feels that they are actually present in a social

situation in the virtual environment. It can be difficult to create virtual

agents that closely resemble real humans, which can negatively affect the

virtual experience. [9] Since social interaction research is about gaining

insight into human behaviour [4], it is important to create believable vir-

tual environments and virtual agents when using MR technology for the

research.

Uncanny valley phenomenon: Another challenge faced in social inter-

action research with MR is the uncanny valley phenomenon. The phe-

nomenon occurs when virtual agents appear almost, but not quite human.

This can lead to a sense of unease or discomfort for participants interact-

ing with the virtual agents. [22] As a result, since the goal is to study

human behaviour, the uncanny valley phenomenon can negatively impact

the ecological validity of the study and thus make the findings less valid.

4 Discussion and Future Directions

In this paper, we have highlighted the potential of MR technology for sim-

ulating social interactions and non-verbal behavior. In the future, there

are several possible research avenues and technological advancements

that can further enhance the effectiveness of MR in the context of social

interaction research.

Integration of AI and machine learning: By incorporating state-of-the-

art AI techniques, virtual agents can iteratively learning human behaviour,

resulting in them being more human-like. This will improve the believ-

ability of the virtual agents, and thus will help to create better research

environments.

Improved sensory feedback: To enhance the immersion in MR environ-

ments, future developments could focus on providing users with more re-

alistic sensory feedback, such as haptic cues. This will allow the partici-

pants to feel more present in the virtual environment, since the sensory

feedback will feel more like that of real life. Additionally, the participants’

reactions to the sensory feedback could be monitored to further gain in-

sight into the interactions.

Exploration of cross-cultural differences: As MR technology becomes

prevalent in social interaction research, researchers can utilize it to study

cross-cultural differences in social interactions. With the ability to simu-

late social scenarios with cultural variations, researchers can gain valu-

able insights into how culture affects our ways of understanding and in-

terpreting non-verbal cues.

Ethical considerations: As virtual environments created with MR tech-

nology become more believable and realistic, it is essential to address eth-

ical concerns related to privacy, consent, and potential psychological ef-

fects on the participants. Guidelines should be established to ensure that

the use of MR technology in social interaction research is responsible and

ethical.

5 Conclusion

This paper has provided a comprehensive review of the use of MR technol-

ogy in social interaction research and simulating non-verbal behavior. We

have discussed the advantages of MR technology in creating controlled

research environments, where repeatable social scenarios can be simu-

lated. Additionally, we have discussed the potential of MR for simulating

various aspects of non-verbal behavior, such as gaze and expression. Fur-

thermore, we have examined the limitations and challenges faced when

using MR technology in social interaction research, including the lack of

a sense of presence and the uncanny valley phenomenon.

As the field of MR technology continues to advance rapidly, it holds great

promise as a tool for improving our understanding of social interaction

and non-verbal communication. The future of MR technology in social in-

teraction research will likely involve exploring ways to overcome current

limitations and enhance the realism of virtual agents and environments.

By addressing these challenges and leveraging the unique capabilities of

MR technology, researchers will be better equipped to gain valuable in-

sights into human communication and interaction.

References

[1] Page L Anderson, Shannan M Edwards, and Jessica R Goodnight. Virtual
reality and exposure group therapy for social anxiety disorder: Results from
a 4–6 year follow-up. Cognitive Therapy and Research, 41:230–236, 2017.

[2] Sean Andrist, Michael Gleicher, and Bilge Mutlu. Looking coordinated:
Bidirectional gaze mechanisms for collaborative interaction with virtual
characters. In Proceedings of the 2017 CHI conference on human factors
in computing systems, pages 2571–2582, 2017.

[3] Michael Argyle. Non-verbal communication in human social interaction.
Non-verbal communication, 2, 1972.

[4] Michael Argyle. Social interaction. Routledge, 2017.

[5] Michael Argyle and Janet Dean. Eye-contact, distance and affiliation. So-
ciometry, pages 289–304, 1965.

[6] Jeremy N Bailenson, Jim Blascovich, Andrew C Beall, and Jack M Loomis.
Equilibrium theory revisited: Mutual gaze and personal space in virtual
environments. Presence: Teleoperators & Virtual Environments, 10(6):583–
598, 2001.

[7] S Balakrishnan, M Syed Shahul Hameed, K Venkatesan, and G Aswin. In-
teraction of spatial computing in augmented reality. In 2021 7th Inter-
national Conference on Advanced Computing and Communication Systems
(ICACCS), volume 1, pages 1900–1904. IEEE, 2021.

[8] Roy F. Baumeister, Kathleen D. Vohs, and David C. Funder. Psychology
as the science of self-reports and finger movements: Whatever happened to
actual behavior? Perspectives on Psychological Science, 2(4):396–403, 2007.
PMID: 26151975.

[9] Elisabetta Bevacqua, Romain Richard, and Pierre De Loor. Believability
and co-presence in human-virtual character interaction. IEEE computer
graphics and applications, 37(4):17–29, 2017.

[10] Jim Blascovich, Jack Loomis, Andrew C Beall, Kimberly R Swinth, Crys-
tal L Hoyt, and Jeremy N Bailenson. Immersive virtual environment tech-
nology as a methodological tool for social psychology. Psychological inquiry,
13(2):103–124, 2002.

[11] Dario Bombari, Marianne Schmid Mast, Elena Canadas, and Manuel Bach-
mann. Studying social interactions through immersive virtual environment
technology: virtues, pitfalls, and future challenges. Frontiers in psychology,
6:869, 2015.

[12] Marc Fabri, David Moore, and Dave Hobbs. Mediating the expression of
emotion in educational collaborative virtual environments: an experimental
study. Virtual reality, 7:66–81, 2004.

[13] R Michael Furr and David C Funder. Behavioral observation. Handbook of
research methods in personality psychology, pages 273–274, 2007.

[14] Randall P Harrison. Nonverbal communication. Human Communication
As a Field of Study: Selected Contemporary Views, 113:16, 1989.

[15] Hong-zhi Hu, Xiao-bo Feng, Zeng-wu Shao, Mao Xie, Song Xu, Xing-huo
Wu, and Zhe-wei Ye. Application and prospect of mixed reality technology
in medical field. Current medical science, 39:1–6, 2019.

[16] Ann Huang, Pascal Knierim, Francesco Chiossi, Lewis L Chuang, and Robin
Welsch. Proxemics for human-agent interaction in augmented reality. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems, pages 1–13, 2022.

[17] Charles E Hughes, Christopher B Stapleton, Darin E Hughes, and Eileen M
Smith. Mixed reality in education, entertainment, and training. IEEE
computer graphics and applications, 25(6):24–30, 2005.

[18] David A Kenny. The design and analysis of social-interaction research.
Annual Review of Psychology, 47(1):59–86, 1996.

[19] Hojoong Kim, Young-Tae Kwon, Hyo-Ryoung Lim, Jong-Hoon Kim, Yun-
Soung Kim, and Woon-Hong Yeo. Recent advances in wearable sensors
and integrated functional devices for virtual and augmented reality appli-
cations. Advanced Functional Materials, 31(39):2005692, 2021.

[20] Mark L Knapp, Judith A Hall, and Terrence G Horgan. Nonverbal commu-
nication in human interaction. Cengage Learning, 2013.

[21] David Matsumoto. Culture and nonverbal behavior. The SAGE handbook
of nonverbal communication, pages 219–235, 2006.

[22] Ryan P McMahan, Chengyuan Lai, and Swaroop K Pal. Interaction fidelity:
the uncanny valley of virtual reality interactions. In Virtual, Augmented
and Mixed Reality: 8th International Conference, VAMR 2016, Held as Part
of HCI International 2016, Toronto, Canada, July 17-22, 2016. Proceedings
8, pages 59–70. Springer, 2016.

[23] Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio Kishino. Aug-
mented reality: A class of displays on the reality-virtuality continuum. In
Telemanipulator and telepresence technologies, volume 2351, pages 282–
292. Spie, 1995.

[24] Fares Moustafa and Anthony Steed. A longitudinal study of small group
interaction in social virtual reality. In Proceedings of the 24th ACM Sympo-
sium on Virtual Reality Software and Technology, pages 1–10, 2018.

[25] Sahil Narang, Andrew Best, Tanmay Randhavane, Ari Shapiro, and Dinesh
Manocha. Pedvr: Simulating gaze-based interactions between a real user
and virtual crowds. In Proceedings of the 22nd ACM conference on virtual
reality software and technology, pages 91–100, 2016.

[26] Maximilian Speicher, Brian D Hall, and Michael Nebeling. What is mixed
reality? In Proceedings of the 2019 CHI conference on human factors in
computing systems, pages 1–15, 2019.

[27] Yvain Tisserand, Ruth Aylett, Marcello Mortillaro, and David Rudrauf. Real-
time simulation of virtual humans’ emotional facial expressions, harnessing
autonomic physiological and musculoskeletal control. In Proceedings of the
20th ACM International Conference on Intelligent Virtual Agents, pages 1–8,
2020.

Using formal verification with instant
messaging protocols

Uuna Saarela
uuna.saarela@aalto.fi

Tutor: Lachlan Gunn

Abstract

Instant messaging is a popular way to keep in touch with family, friends,

and colleagues. In some cases, instant messaging apps are also used to

communicate information to large audiences. This means they can be sites

of public life in addition to private life. They are typically also used to com-

municate sensitive or personal information, making them lucrative targets

for attackers.

Formal verification can provide security assurances regarding instant

messaging protocols. Interestingly, instant messaging protocols also pro-

vide useful material for formal verification tools to be developed against.

This paper provides an overview of the use of formal verification and re-

lated tools to support protocol design for instant messaging.

KEYWORDS: instant messaging, formal verification, MTProto 2.0, Signal,

WhatsApp, Facebook Messenger

1 Introduction

Instant messaging is a type of communication technology which facilitates

synchronous, low-latency transmission of various media such as text or

images over a network, typically the Internet. Instant messaging is in-

tegrated into many social media and e-commerce platforms, as well as

being available in dedicated applications on both desktop and mobile de-

vices. Various instant messaging applications, or chat applications, are

estimated to be used by over three billion people worldwide, with instant

messaging applications being among the most used smartphone applica-

tions. These applications are used in in personal, public, and professional

contexts alike.

Because instant messaging is such a ubiquitous part of modern life,

there is rising concern about its security as a communication channel.

Instant messaging applications are often used to communicate sensitive

and personal information, making them lucrative targets for attackers or

state surveillance. End-to-end encryption has emerged as a central stan-

dard for secure instant messaging. End-to-end encryption refers to the

content of an instant message being encrypted via the entire transit from

one client device to another. In particular, messages cannot be decrypted

by a local or cloud server storing or routing messages belonging to the ser-

vice provider. The Electronic Frontier Foundation (EFF), a non-profit or-

ganisation that promotes digital privacy, featured end-to-end encryption

as an important measure in their original Secure Messaging Scorecard.[1]

Pressure from users to has lead to the rapid deployment of new end-to-

end encryption features, leading to a mixed landscape of actual security

for the end user. End-to-end encryption has been adopted by most pop-

ular instant messaging applications, with the net result being that most

instant messaging applications are now end-to-end encrypted. However,

"[m]any products mislead users by advertising with grandiose claims of

“military grade encryption” or by promising impossible features such as

self-destructing messages" and "many purportedly “secure” tools do not

even attempt end-to-end encryption".[22] Even when cryptographic pro-

tocols are implemented in good faith, they can be difficult to construct

correctly. "[E]even well-studied protocols, such as Transport Layer Secu-

rity (TLS), have been shown to contain serious protocol flaws found years

after their deployment."[15] How then can we gain confidence regarding

encrypted instant messaging as an industry standard?

Formal verification may be a useful tool for this purpose. It is a frame-

work which provides the possibility to obtain proofs of correctness of pro-

tocols, algorithms, and software. Cryptographic protocols may be tested

against a formal specification of intended security properties or function-

ality. Formal models can help to identify design flaws in protocols or pro-

vide a concrete proof of security for a complex stack.

Formal methods have been deployed for the purposes of security assur-

ances by many popular instant messaging providers, including Signal[9]

and Telegram[17]. This paper provides an overview of the use of formal

verification to provide confidence on the security of instant messaging.

The paper is organised as follows; in Section 2 we will provide back-

ground information on the instant messaging protocol stack, popular cryp-

tographic protocols, and formal verification tools. In Section 3, we will

explore the research on formally verifying security properties provided by

the cryptographic layer of instant messaging protocols. In Section 4, we

will analyse the usefulness of this approach in terms of security for the

end user. In section 5, we provide some concluding remarks.

2 Protocols and Tools

2.1 The Instant Messaging Protocol Stack

The instant messaging protocol stack is built on top of standard Internet

messaging protocols. Features such as asynchronous messaging are im-

plemented by the message layer. This specialised type of communication

is then secured by cryptographic protocols at the message security layer.

Instant messaging clients utilise a combination of protocols in the stack.

WhatsApp, for example, uses a proprietary variant of the Signal Protocol

with XMPP and Noise over HTTP.[3]

Figure 1. The instant messaging protocol stack.

The Transport Layer

Instant messengers typically utilise TCP/IP at the transport layer. An

alternative transport protocol is SMS , which transmits messages over a

cellular network. The limitations of the SMS framework include being

limited to 140 characters, needing both parties to be online simultane-

ously to establish a secure session, and costs for end users.[14] Although

unencrypted communication via SMS is still supported by some instant

messaging applications, such as Signal, the majority of messengers work

over TCP/IP.

The Cryptographic Layer

Often, instant messaging clients use cryptographic protocols like TLS or

Noise to secure communication over the network.[3][13] However, these

protocols alone do not provide security features for asynchronous mes-

saging protocols. For example, TLS requires an interactive handshake

to initiate communication. In an instant messaging context, we cannot

count on both parties being online at the same time, but should still be

able to deliver encrypted messages.

The Application Layer

At the application layer, instant messaging clients may use a variety of

protocols to transmit messages. These include HTTP(S) and WebSocket[13].

This layer need not be used; some protocols at the message layer can work

directly over SMS or TCP.

The Message Layer

At the message layer, instant messaging protocols specify how messages

are packaged and communicated. One such messaging protocol is XMPP

(eXtensible Message and Presence Protocol), an open-source XML-based

messaging protocol introduced in 1999 and made an IETF standard in

2004.[12] XMPP is used by WhatsApp, Kik Messenger, Zoom, and a num-

ber of smaller open-source clients such as Conversations. [25] Another

open messaging standard is Matrix.org or [matrix] which uses JSON rather

than XML.[16] The Matrix.org protocol is not a messaging protocol per se.

Rather, it provides a database of JSON objects to facilitate interoperation

between different instant messaging clients.

The Message Security Layer

Cryptographic protocols at the message security layer manage keys and

encryption of messages. One of the most popular protocols for this purpose

is the Signal Protocol, which refers both to a specific suite of protocols

developed by Open Whisper Systems and a more abstract description of a

cryptographic message protocol with certain components.

The Signal Protocol was originally conceived as an implementation of an

XMPP extension called the OTR (Off-the-record) protocol over SMS.[12]

The OTR protocol implemented perfect forward secrecy using ephemeral

key exchange, which can be described as a public key ratchet. Another in-

spiration for the Signal Protocol was the symmetric key ratchet in SCIMP

(Silent Circle Instant Message Protocol).[24] These two "ratchets" from

the OTR and SCIMP protocols were combined in Signal to form the Dou-

ble Ratchet protocol. More generally, the Diffie-Hellman key agreement

protocol, the Double Ratchet for key management, and a protocol for mes-

sage encryption and decryption can be together be referred to as the Sig-

nal Protocol. Notable implementations of the Signal Protocol include Olm

by Matrix.org[23], an XMPP extension called OMEMO[19], Signal’s own

protocol suite, as well as proprietary variants developed for WhatsApp[3]

and Viber[2].

The Signal Protocol has been widely adopted and can be considered

an unofficial industry standard among clients that offer encrypted com-

munication. A notable exception to this is Telegram, which uses MT-

Proto 2.0, a custom cryptographic protocol. Telegram is a popular instant

messenger which advertises speed, seamless synchronisation across de-

vices, and security. MTProto is Telegram’s custom cryptographic protocol

which is designed to facilitate high-speed delivery and reliability on weak

connections.[21] MTProto 1.0 was widely criticised and shown to have nu-

merous security issues, such as lack of forward secrecy and vulnerabilities

to replay attacks.[17] MTProto 2.0 represents the current redesigned pro-

tocol with several security patches. There are two distinct protocols for

standard client-server / server-client encryption and end-to-end encryp-

tion between users. The developers claim the standard protocol is IND-

CCA and INT-CTXT secure and that secrets chats ensure perfect forward

secrecy.[17] End-to-end encryption is a feature which can be enabled for

chats between at most two parties.[21]

2.2 Formal Verification Tools

Formal verification refers to the process of modelling protocols and ver-

ifying that they meet given security properties. Formal verification can

be performed in either a symbolic or computational model. The symbolic

model is based on perfect black-box cryptograhic primitives, such as hash

functions that never collide. In the computational model, cryptographic

primitives are functions over bitstrings and the security of a given func-

tion is given as a probability.[15] In general, symbolic models are useful

for finding attacks on logical flaws in the protocol, while computational

models provide a concrete cryptographic proof of security.

Although formal verification can be performed manually, there is a di-

verse set of formal verification tools available. These tools are useful be-

cause they standardise the modelling approach and automate the verifi-

cation process. In the literature on instant messaging protocols, the pri-

mary tools used are ProVerif, CryptoVerif, and Tamarin. ProVerif[7] and

CryptoVerif[6] are open-source tools developed by Bruno Blanchet for the

purposes of formally verifying cryptographic protocols. ProVerif is a sym-

bolic verifier and CryptoVerif is a computational verifier. Tamarin[20] is

another tool for verification in the symbolic model.

3 Formally verifying security properties

In this section, we will examine how formal verification tools have been

deployed to prove desirable security properties such as integrity, confi-

dentiality, authenticity, perfect forward secrecy, and reliability. We will

include a review of the literature formally modelling and verifying the

Signal Protocol, MTProto 2.0, and group messaging protocols.

3.1 The Signal Protocol

Cohn et al.[9] model the Signal Protocol in the computational model man-

ually. They find that the Signal Protocol satisfies several standard secu-

rity properties, such as secrecy and authentication of message keys.

Kobeissi et al. [15] model a variant of the Signal Protocol using ProVerif.

They also include an analysis with CryptoVerif of a now-defunct imple-

mentation of the Signal Protocol called Cryptocat. This investigation un-

covered "several weaknesses, including previously unreported replay and

key compromise impersonation attacks"[15] which the authors fix and re-

verify.

Alwen et al. [5] present a modularization of the Signal Protocol. They

posit that a generalized Signal Protocol has three components: a continu-

ous key agreement (CKA), forward-secure authenticated encryption with

associated data (FS-AEAD), and two-input hash function that is a pseu-

dorandom function (PRF-PRNG). They show that these components to-

gether provide post-compromise security, which means that once a key is

compromised, secure encrypted communication can resume soon after.

The Signal client relies on the Sesame protocol for session management.

The protocol was modelled and formally verified in [11] using Tamarin.

The authors found that although Signal guarantees post-compromise se-

curity as the session level, design choices in Sesame result in a violation of

PCS at the conversation level. They propose that the verification tools be

developed to facilitate better modelling of such protocols. As models move

from abstract to concrete, security assurances also become more practical.

3.2 MTProto 2.0

Miculan and Vitacolonna [17] model Telegram’s suite of cryptographic

protocols in ProVerif. They show that security properties such as authen-

tication, integrity, confidentiality and perfect forward secrecy are guaran-

teed by MTProto 2.0. They model the protocol in the classic Dolev-Yao

setting, assuming the possibility of malicious servers in particular. The

formalization accounts for user behavior, indicating that if users do not

check the fingerprints of their shared keys, a MitM attack is possible.

The authors conclude that MTProto 2.0 does not have any logical flaw

but that vulnerabilities could arise from implementation flaws, side-channels

exfiltration, or incorrect user behavior. In their symbolic model the en-

cryption primitive of MTProto 2.0 is assumed to be a perfect authenticated

encryption scheme providing IND-CCA and INT-CTXT security. They sug-

gest that computational models like CryptoVerif or EasyCrypt be deployed

to prove that this underlying encryption scheme is sound.

Albrecht et al. [4] examine the cryptographic primitives in MTProto 2.0

in the computational model. They focus on the security features offered

by the standard cloud chats instead of the end-to-end encrypted "secret

chats" The security model developed in the paper considers various secure

channel styles, including the situation where the channel operates over

an unreliable transport protocol. The formal model of MTProto developed

in the paper considers the cryptographic primitives used in MTProto and

studies whether they satisfy the necessary security notions to achieve the

desired security of the protocol. The authors prove that their variant of

MTProto 2.0 achieves channel confidentiality and integrity in their model

under certain assumptions on the components used in its construction.

Vulnerabilities were found and Telegram has implemented the proposed

alterations, providing some assurance about the security of the currently

deployed MTProto 2.0.

3.3 Group Messaging

Secure group messaging represents a compromise between security and

efficiency. Implementing the Signal Protocol between each two mem-

bers of a group is possible, but computationally expensive. Approaches

vary from simply accepting the cryptographic overhead or creating a ded-

icated group messaging protocol. OMEMO, for example, simply accepts

the cost of securing group communication with one-to-one protocols.[19]

Matrix.org has implemented a separate library called Megolm to facili-

tate group messaging.[23] Telegram avoids the problem entirely by only

offering end-to-end encrypted communication for at most two parties.

In [18], the authors investigate the landscape of secure group messag-

ing and find several security issues. As the group messaging protocol

is not specified by the Signal Protocol itself, how group messaging is con-

ducted is left to the implementation. Three implementations of the Signal

Protocol for group messaging are analysed. They conclude that standard

security properties as well as strong security properties such as perfect

forward secrecy do not hold for group messaging.

Recent research has emerged to solve this issue. [10] presents a new

design called Asynchronous Ratcheting Trees (ART) that combines syn-

chronous group messaging techniques with strong security guarantees

from asynchronous messaging. ART achieves post-compromise security

for group messaging and offers the same security level for groups as for

pairwise communications. The design has gained industry interest and

has been adopted as a starting point by the IETF Message Layer Security

(MLS) working group.

4 Discussion

Unger et al. [22] and Cohn-Gordon and Cremers [8] identify the following

key challenges in addition to the correctness of cryptographic protocols in

the field of secure messaging.

Trust Establishment

Trust establishment refers to "the process of users verifying that they are

actually communicating with the parties they intend."[22] Both the Sig-

nal Protocol and MTProto 2.0 are designed to be used in a non-federated

context, where a server stores users’ prekey bundles under some universal

identifier. A malicious server could easily initiate communication with the

wrong party or intercept communication with malicious keys. Users of the

Signal Protocol clients are advised to compare their public keys in person

to achieve authenticated encryption. Other protocols designed for use in a

federated context, such as Matrix.org, also assume public key comparison

to happen via a separate secure channel. However, users rarely perform

these checks. Public key distribution represents a major challenge in the

field of secure messaging, and it is the object of recent research by Google

and others.[8]

Transport Privacy

Transport privacy refers to "how messages are exchanged, with the goal of

hiding message metadata such as the sender, receiver, and conversation

to which the message belongs."[22] As the Signal Protocol and MTProto

2.0 are both designed to work with a client / server architecture, they do

not meaningfully address transport privacy. Federated message protocols,

such as Tor, may provide a model for how to address transport privacy. In

recent years, a number of experimental open-source projects providing

network-level anonymity have been created. These include Bitmessage,

Briar, Ricochet, and Tox.[12] Protecting communication metadata may be-

come an industry standard in the future.

Other Real-World Challenges

According to Cohn-Gordon and Cremers [8], instant messaging service

providers often need to support more features than are usually specified

in the formal verified protocol models. For example, users often want to

have access to backups of their message history. They may also value re-

liability over security and want the protocol to automatically retry failed

messages. Integration with external services enabling GIF search or URL

previews also introduce complexity to security concerns. These features

are important to users and introduce many variables into the attack sur-

face of protocols, but are rarely accounted for in the existing research.

5 Conclusion

The process of formal verification contributes to the empirical robustness

of popular protocols. Several papers have discovered bugs, attacks, or

shortcomings in these protocols using formal verification.[17][11] Formal

verification tools help to standardize and automate the process of formal

verification.

The landscape of instant messaging protocols is diverse and shifting.

According to Kobeissi [15], "modern web applications often embed custom

cryptographic protocols that evolve with each release." Formal verification

in the symbolic model can thus provide an agile framework for cryptog-

raphy researchers working in this context. Using tools such as ProVerif,

they can modularize and model a suite of protocols and automate the ver-

ification process. When one or more of the protocols are updated, the

existing model can be updated to obtain a new verification of the whole

suite.

Formal verification may also benefit from the existence of instant mes-

saging protocols. Over the course of researching for this paper, it became

clear that several of the researchers formally verifying instant messaging

protocols are also involved in the development of the formal verification

tool being used. The landscape of instant messaging protocols presents a

diversity of implementations of various open standards and protocols. As

such, it presents a fruitful object of study to develop formal verification

tools against.

Many proprietary instant messaging service providers claim to imple-

ment the Signal Protocol, but this claim cannot be verified. Other popular

messengers, such as Line and WeChat, do not implement end-to-end en-

cryption at all. Even when software and protocols are open, the end user

may be stuck with an opaque binary from a closed source vendor.[8] The

user may also not care or know how to verify the authenticity of the per-

son they are communicating with. Future research and development that

addresses these problems, as well as protecting communication metadata,

will contribute to private and free communication for all.

References

[1] Secure messaging scorecard.

[2] Viber Encryption Overview. Technical report.

[3] WhatsApp Encryption Overview. Technical report, 01 2023.

[4] Martin R. Albrecht, Lenka Mareková, Kenneth G. Paterson, and Igors Stepanovs.
Four Attacks and a Proof for Telegram. In 2022 IEEE Symposium on Secu-
rity and Privacy (SP), pages 87–106, 2022.

[5] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The Double Ratchet: Se-
curity notions, proofs, and modularization for the Signal Protocol. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 11476 LNCS:129 – 158,
2019. Cited by: 39.

[6] Bruno Blanchet. CryptoVerif: Cryptographic protocol verifier in the com-
putational model. https://bblanche.gitlabpages.inria.fr/CryptoVerif/. [Ac-
cessed 12-Apr-2023].

[7] Bruno Blanchet. ProVerif: Cryptographic protocol verifier in the formal
model. https://bblanche.gitlabpages.inria.fr/proverif/. [Accessed 11-Apr-
2023].

[8] Katriel Cohn-Gordon and Cas Cremers. Mind the Gap: Where Provable
Security and Real-World Messaging Don’t Quite Meet. Cryptology ePrint
Archive, Paper 2017/982, 2017. https://eprint.iacr.org/2017/982.

[9] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and
Douglas Stebila. A Formal Security Analysis of the Signal Messaging Pro-
tocol. Journal of Cryptology, 33(4):1914 – 1983, 2020. Cited by: 26.

[10] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin
Milner. On Ends-to-Ends Encryption: Asynchronous Group Messaging with
Strong Security Guarantees. Cryptology ePrint Archive, Paper 2017/666,
2017. https://eprint.iacr.org/2017/666.

[11] Cas Cremers, Charlie Jacomme, and Aurora Naska. Formal Analysis of
Session-Handling in Secure Messaging: Lifting Security from Sessions to
Conversations. Cryptology ePrint Archive, Paper 2022/1710, 2022.

[12] Ksenia Ermoshina, Francesca Musiani, and Harry Halpin. End-to-End
Encrypted Messaging Protocols: An Overview. In Franco Bagnoli, Anna
Satsiou, Ioannis Stavrakakis, Paolo Nesi, Giovanna Pacini, Yanina Welp,
Thanassis Tiropanis, and Dominic DiFranzo, editors, Internet Science, pages
244–254, Cham, 2016. Springer International Publishing.

[13] The Signal Foundation. Technical information. https://signal.org/docs/.
[Accessed 12-Apr-2023].

[14] Nadim Kobeissi. Formal verification for real-world cryptographic protocols
and implementations. Theses, Université Paris sciences et lettres, Decem-
ber 2018.

[15] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated
Verification for Secure Messaging Protocols and Their Implementations: A
Symbolic and Computational Approach. In 2017 IEEE European Sympo-
sium on Security and Privacy (EuroSP), pages 435–450, 2017.

[16] Matrix.org. Matrix specification. https://spec.matrix.org/latest/. [Accessed
12-Apr-2023].

[17] Marino Miculan and Nicola Vitacolonna. Automated verification of Tele-
gram’s MTProto 2.0 in the symbolic model. Computers and Security, 126,
2023. Cited by: 0.

[18] Paul Rösler, Christian Mainka, and Jörg Schwenk. More is Less: On the
End-to-End Security of Group Chats in Signal, WhatsApp, and Threema. In
2018 IEEE European Symposium on Security and Privacy (EuroSP), pages
415–429, 2018.

[19] Andreas Straub, Daniel Gultsch, Tim Henkes, Klaus Herberth, Paul Schaub,
and Marvin Wißfeld. XEP-0384: OMEMO Encryption, Jan 2022.

[20] The Tamarin Team. Tamarin-Prover Manual. Technical report, 02 2023.

[21] Telegram. Mtproto mobile protocol. https://core.telegram.org/mtproto. [Ac-
cessed 12-Apr-2023].

[22] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl,
Ian Goldberg, and Matthew Smith. SoK: Secure Messaging. In 2015 IEEE
Symposium on Security and Privacy, pages 232–249, 2015.

[23] Richard van der Hoff. docs/olm.md · master · matrix-org / Olm · GitLab.
https://gitlab.matrix.org/matrix-org/olm/blob/master/docs/olm.md, 2020. [Ac-
cessed 11-Apr-2023].

[24] Sebastian R. Verschoor and Tanja Lange. (In-)Secure messaging with the
Silent Circle instant messaging protocol. Cryptology ePrint Archive, Paper
2016/703, 2016. https://eprint.iacr.org/2016/703.

[25] xmpp.org. Instant messaging. https://xmpp.org/uses/instant-messaging/.
[Accessed 12-Apr-2023].

Comparative Analysis of Static Analysis
Kubernetes Security Tools

Ville Vastamäki
ville.vastamaki@aalto.fi

Tutor: Jose Luis Martin Navarro

Abstract

KEYWORDS: Cloud Computing, Kubernetes, Security tools, Static analy-

sis

1 Introduction

Cloud computing has become a popular choice for deploying software, and

Kubernetes is a popular option for deploying software in a cloud environ-

ment. Kubernetes offers many benefits for deploying software, such as

automatic scaling, roll-backing, load-balancing and updating of applica-

tions [19]. These benefits can reduce costs of running software compared

to physical and virtual machines. Kubernetes can also improve service

reliability, since it is easy to have many instances of the software run-

ning on different machines and physical locations either with public cloud

providers or in private data centers.

As Kubernetes has become more popular in running software, the secu-

rity aspects are also evaluated by the developers that use Kubernetes to

run the software. One of the biggest concerns of users is the security of

Kubernetes [1]. A vulnerability in the platform or software that runs on

the platform can compromise the entire cluster, which can run many dif-

ferent applications. For example, hackers were able to compromise Tesla’s

AWS credentials to mine cryptocurrency [2]. Kubernetes offers many dif-

ferent features that can help make clusters more secure. These features

might not be used correctly, and vulnerabilities in manifests could be ex-

ploited by attackers [17]. Because of this, there are also several security

tools for improving the security of Kubernetes clusters that can help de-

velopers notice possible vulnerabilities.

This paper compares available static Kubernetes security tools, their

benefits and their weaknesses. The tools analyzed include Kubernetes’

own features that improve security, and third-party tools that analyze

Kubernetes objects and components and highlight weaknesses in them.

This paper is divided into sections. Section 2 presents the built-in Ku-

bernetes security features. Section 3 presents the static security tools

analyzed. Section 4 discusses the strengths and weaknesses of the tools

analyzed, and suggests a ways to run these tools in a developers workflow.

Finally, Section 5 concludes this paper.

2 Kubernetes built-in security features

Kubernetes has several features built-in that can improve a Kubernetes

cluster’s security, such as Role-Based Access Control (RBAC), memory and

CPU limits, pod security standards, network policies and namespace sep-

aration [21]. This section list some of the features and how they can be

used to improve the security of the platform. The features and their secu-

rity benefits are presented in Table 1.

Kubernetes Feature Security Benefit

CPU and Memory limits Reduces effectivity of DDoS attacks

Role-Based Access Control Increases difficulty of priviledge escalation

Pod Security Standards Limits access to Kubernetes processes

Network Policies Reducing lateral movement of attacker

Table 1. Table showing Kubernetes built-in security features and the security benefit of
using them

2.1 CPU and Memory limits

Kubernetes allows setting cpu and memory limits, that restrain the amount

of memory and CPU that a pod can use. If a limit is surpassed, the plat-

form can wait before continuing execution or the pod can be evicted [14].

This can mitigate a denial of service attack, as the pod will be evicted be-

fore it uses all of the computing power available in the node [21]. Because

of this, CPU and memory limits should be used in all production environ-

ments. These limits can also help spot bugs in the application, as if a pod

regularly needs more memory than expected, it will keep crashing.

2.2 Role-Based Access Control

Role-Based Access Control (RBAC) can be used to limit access to computer

or network resources [15]. Configuring RBAC correctly can mitigate priv-

ilege escalation, because all users cannot modify all of the resources. In

general configuring users with minimal access is the best practice, be-

cause it limits the attack surface as the attacker cannot modify resources

as freely to compromise the entire cluster.

2.3 Pod Security Standards

Pod security standards can be used to limit access to Kubernetes pro-

cesses. Pod security standards has three different levels of policies. The

privileged policy is unrestricted, the baseline policy aims to limit known

privilege escalations and the restricted policy enforces current best prac-

tices for pod hardening [13]. Configuring these policies allows the devel-

opers of the cluster to either know the weaknesses of the software they

develop or make their cluster more secure. The way these policies are

applied in the cluster are controlled with pod security admission. Pod se-

curity admission can either trigger an audit annotation, warn the user of

the policy violation or completely reject the pod [12]. Enforcing the policy

applied is a good practice to limit privilege escalations in the cluster, as

software requiring privileged rights is not run in the first place. This re-

duces the attack surface of the cluster, and is in general an easy way to

improve the security of the cluster.

2.4 Network Policies

Network policies can be used to to control traffic flow at OSI layers 3 and 4

[11]. With network policies traffic to a pod can be either allowed or blocked

from different sources, such as other pods, namespaces and IP addresses.

Network policies are controlled seperately for ingress and egress traffic.

Network policies protect attacks between pod IP addresses, reducing the

lateral movement for an attacker [18]. This is beneficial, as an attacker

might not be able to move inside the cluster to gain more control of its

resources.

3 Static Analysis Security Tools for Kubernetes

Even though Kubernetes has security features built in, they do not guar-

antee that the platform and software running on it are secure. The built in

features and software deployments are often misconfigured by developers

[20]. Kubernetes also releases minor versions three times a year, and each

minor version has one year of patch support [7]. The minor releases add,

change or remove some of Kubernetes’ API’s, making changes inevitable.

Because of this, there exists many tools for verifying the deployment man-

ifests and Kubernetes components. These tools can help developers con-

figure their Kubernetes clusters and deployments for newer versions, and

keep up with new best practices. The tools analyzed in this section, the

Kubernetes Components and Objects they can check, and what Kuber-

netes built-in feature areas they affect are described in Table 2.

Security Tool Kubernetes Components

and Objects

Kubernetes built-in

feature areas

Kubesec Pods, Deployments,

StatefulSets and

DaemonSets

CPU and Memory limits,

Network policies

Kubelinter Pods, Deployments,

StatefulSets, DaemonSets

and Helm Charts

CPU and Memory limits,

Network policies, RBAC

Kube-bench Master, Controlplane, Node,

etcd and Policies

Pod Security Standards,

RBAC

Table 2. Table showing the security tools analyzed, how they can be run and what issues
they can spot

3.1 Kubesec

Kubesec is an open source tool for scanning Kubernetes deployment files.

It can be used from the command line, as a Docker container, as a HTTP

server or as a service hosted by Kubesec [10]. The ability to run Kubesec

from the command line makes it possible to integrate into a CI/CD pipeline

as well. Kubesec uses a ruleset to analyze the deployment manifests [9].

These rules contain checks for memory and cpu limits, priviledges of the

container that is run, bad network configurations and apparmor config-

urations. The rules contain both positive and negative checks, either

adding or reducing points for the manifest analyzed. The result contains

the total score and scoring details, highlighting issues to fix in the deploy-

ment manifest. The checks match the CPU and Memory limits, Network

policies of the Kubernetes built-in features described in section 2. How-

ever, as the rules are based purely on string matching sections of the man-

ifest file, it is difficult to analyze how reliably Kubesec can identify secure

deployment manifests. For some checks in Kubesec, there is no written

documentation available, and it is up to the user to figure out what they

check. Kubesec also only analyzes Pods, Deployments, StatefulSets and

DaemonSets, so RBAC and Pod Security Standards are not taken into

account.

3.2 KubeLinter

KubeLinter is another open source tool for analyzing the deployment files

[5]. It can be used locally from the commandline, allowing it to be in-

tegrated into a CI/CD pipeline. KubeLinter supports Kubernetes YAML

files and Helm charts. This differentiates it from Kubesec, as Kubesec

only supports Kubernetes YAML files natively. It also has more checks

than Kubesec, with some of them turned off by default [6]. These checks

include CPU and Memory requests and limits, if the specified group has

access to secrets and rights to create pods, if the deployment is run as non-

root, if the ports specified are invalid or priviledged and if the pod is not

selected by any network policy. Of the built-in Kubernetes features dis-

cussed in section 2, these checks match CPU and Memory limits, Network

polices and also somewhat RBAC.

The amount of checks increases the coverity of KubeLinter compared

to Kubesec. All of the checks are also properly documented, compared to

Kubesec that does not have explanations for all of the checks it runs. With

the addition of Helm charts supported, KubeLinter seems to be a better

tool than Kubesec for static analysis of Kubernetes YAML files.

3.3 Kube-bench

Kube-bench is an open source tool that uses CIS Benchmarks as the base

for checking if Kubernetes is deployed securely [3]. Kube-bench can be

run as a container and within a cluster. Unlike Kubesec, Kube-bench

checks master, controlplane, node, etcd and policies. This makes Kube-

bench a tool for the overall security of the cluster, which does not take

deployments into account. Kube-bench is a suitable tool for checking that

the cluster-level is configured properly, as it can find missconfigurations

in Pod Security Standards and RBAC. Another tool should be used for

checking deployments.

CIS Benchmarks are a good reference for hardening Kubernetes Clus-

ters [16]. There are also host-specific CIS Benchmarks for Amazon EKS,

Microsoft AKS and Google GKE [4]. These can help in setting up a secure

cluster for a new public cloud. The CIS Benchmarks also have some is-

sues, most notably the newest Kubernetes version that has a CIS bench-

mark is 1.24.0. Kubernetes 1.24 End of Life day is little more than 3

months away [8], and the three newer Kubernetes minor versions do not

have a released CIS Benchmark. This affects Kube-bench as a tool, be-

cause its support for Kubernetes versions is tied with released CIS bench-

marks. When a newer version of Kubernetes is released, updating to it is

recommended [21].

4 Discussion

Kubernetes is a complex platform to run software on, but it offers obvious

benefits for doing so. The security features of Kubernetes and third-party

open source tools discussed in this paper are only a surface level look into

the world of Kubernetes and cloud security.

To improve the security of Kubernetes clusters and deployments is not

an easy task, and as with security in general it will never be complete. To

improve security, the developer should know at least the basics of Kuber-

netes security and its features. The features and third-party tools offer a

starting point for improving security, alongside manual reviews of config-

uration files.

Of the tools analyzed, Kube-bench offers a clear benefit for creating and

securing a cluster running on different public clouds, as the CIS bench-

marks have specific checks for all of the major public cloud available.

However, the lack of support for newer versions of Kubernetes is a ma-

jor flaw in Kube-bench, and there might be a better alternative that is

able to keep up with the release schedule of Kubernetes.

KubeLinter has great documentation of the checks it has, and how to

configure it further to fit the needs of the developer. KubeLinter can

improve the security of Kubernetes YAML files and Helm charts, and it

seems to be updated frequently. Overall, KubeLinter seems to be the best

tool analyzed in this paper, but it is built for a different purpose than

Kube-bench. Kubesec does not seem to have any upside for it compared

to KubeLinter.

The amount of available tools for Kubernetes security is huge, so finding

a tool might require time. Tools should be used to aid in keeping up with

the changes and to have at least some kind of confirmation that basic

security rules are in place. Tools should be used in a way that fits the

developer, either inside the cluster, after changing the configuration files

from the command line, or ran as a part of a CI/CD pipeline. Adding a

tool to a CI/CD pipeline should not take too much time, and updating that

tool when a new release is available could be a good way to have an easy

sanity check for the developer.

5 Conclusion

As Kubernetes has gained a lot of popularity as a platform to run software,

the security aspects naturally interest and concern users. Kubernetes is

a complex system with many services, deployments and cluster-wide set-

tings such as namespaces and policies to configure. Configuring a cluster

to run software requires many different files. These files are bound to

have issues, just like application code itself.

The complexity of configuring Kubernetes clusters is not eased by fre-

quent releases and new, changed or deprecated API’s between Kubernetes

versions. Each new release of Kubernetes can break the deployment of an

application, so updating Kubernetes versions also take time.

The area of Kubernetes security is complex, as there is so many things

that affect the security of the software running on Kubernetes. Image

scanning, static scanning of configuration files, dynamic scanning and

penetration testing all have a place in improving the security of software

running on Kubernetes. These areas are not that well researched, and

would benefit from further research. As of right now, the area of Ku-

bernetes security mainly comes from an open-source or corporate back-

ground, as Kubernetes is adopted in different organizations.

References

[1] Cncf 2022 annual survey. https://www.cncf.io/reports/cncf-annual-survey-
2022/ [Online]. Accessed: 17.4.2023.

[2] Hackers exploit Tesla’s aws servers to mine cryptocurrency. https://securitybrief.com.au/story/hackers-
exploit-teslas-aws-servers-mine-cryptocurrency [Online]. Accessed: 2.2.2023.

[3] Kube-bench. https://github.com/aquasecurity/kube-bench [Online]. Ac-
cessed: 2.2.2023.

[4] Kube-bench platforms. https://github.com/aquasecurity/kube-bench/blob/main/docs/platforms.mdcis-
kubernetes-benchmark-support [Online]. Accessed: 2.2.2023.

[5] Kubelinter. https://docs.kubelinter.io// [Online]. Accessed: 2.2.2023.

[6] Kubelinter checks. https://docs.kubelinter.io//generated/checks [Online].
Accessed: 2.2.2023.

[7] Kubernetes release cycle. https://kubernetes.io/releases/release/ [Online].
Accessed: 2.2.2023.

[8] Kubernetes release history. https://kubernetes.io/releases [Online]. Ac-
cessed: 2.2.2023.

[9] Kubesec ruleset. https://github.com/controlplaneio/kubesec/blob/b39fb3e915d162745b045b5ace7615b130a434ec/pkg/ruler/ruleset.go
[Online]. Accessed: 2.2.2023.

[10] kubesec.io. https://kubesec.io/ [Online]. Accessed: 2.2.2023.

[11] Network policies. https://kubernetes.io/docs/concepts/services-networking/network-
policies/ [Online]. Accessed: 2.2.2023.

[12] Pod security admission. https://kubernetes.io/docs/concepts/security/pod-
security-admission/ [Online]. Accessed: 2.2.2023.

[13] Pod security standards. https://kubernetes.io/docs/concepts/security/pod-
security-standards/ [Online]. Accessed: 2.2.2023.

[14] Resource management for pods and containers. https://kubernetes.io/docs/concepts/configuration/manage-
resources-containers/ [Online]. Accessed: 2.2.2023.

[15] Role based access control good practices. https://kubernetes.io/docs/concepts/security/rbac-
good-practices/ [Online]. Accessed: 2.2.2023.

[16] Kubernetes Security and Observability. O’Reilly Media, Inc., 2021.

[17] Dibyendu Brinto Bose, Akond Rahman, and Shazibul Islam Shamim. ‘under-
reported’ security defects in kubernetes manifests. In 2021 IEEE/ACM
2nd International Workshop on Engineering and Cybersecurity of Critical
Systems (EnCyCriS), pages 9–12, 2021.

[18] Francesco Minna, Agathe Blaise, Filippo Rebecchi, Balakrishnan Chan-
drasekaran, and Fabio Massacci. Understanding the security implications
of kubernetes networking. IEEE Security Privacy, 19(5):46–56, 2021.

[19] Subrota Mondal, Rui Pan, H M Dipu Kabir, Tan Tian, and Hong-Ning Dai.
Kubernetes in it administration and serverless computing: An empirical
study and research challenges. The Journal of Supercomputing, 78, 02
2022.

[20] Akond Rahman, Shazibul Islam Shamim, Dibyendu Brinto Bose, and Rahul
Pandita. Security misconfigurations in open source kubernetes manifests:
An empirical study. ACM Trans. Softw. Eng. Methodol., jan 2023. Just
Accepted.

[21] Md Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and Akond Rah-
man. Xi commandments of kubernetes security: A systematization of
knowledge related to kubernetes security practices. pages 58–64, 09 2020.

Managing Secrets in Cloud Applications

Vipul Kumar
vipul.kumar@aalto.fi

Tutor: Jose Luis Martin Navarro

Abstract

Cloud computing has become a popular platform for deploying modern ap-

plications. However, managing secrets, such as passwords and API keys,

in a secure and efficient manner remains a challenging task for cloud ap-

plication developers and administrators. This paper provides a compar-

ative analysis of the secret management solutions offered by four major

cloud providers, including AWS Secrets Manager, Azure Key Vault, Google

Cloud Secret Manager, and Alibaba Cloud Secret Manager. The solutions

are evaluated based on key features such as security, integration, rotation,

auditing, secret versioning, and customization. This analysis shows that

each solution has its strengths and weaknesses, and selecting the right one

depends on specific application requirements and workflows.

KEYWORDS: secret management, cloud providers, secrets, access control

1 Introduction

As cloud applications continue to gain popularity and become more dis-

tributed, ensuring the protection of both the cloud infrastructure and the

data it stores from malicious attacks is increasingly imperative [4]. The

use of multi-cloud systems has become increasingly popular, not only for

their benefits in terms of decentralization and scalability but also for their

potential to better secure data and services [10]. Storing and rotating se-

crets in a plain-text documents or over emails and messaging apps is com-

mon yet one of the most vulnerable ways to manage secrets. Despite the

files or repositories being private, even one compromised user or miscon-

figuration can leak out sensitive information.

Efficiently protecting sensitive data from unauthorized access is crucial

for these applications, and requires an appropriate security framework.

The way to achieve this is to encrypt the data and access credentials.

While encryption provides protection for resources, secret management

would provide access control for the protected resources [6].

The cloud infrastructure entails the establishment of diverse secrets,

including keys, tokens, passwords, and certificates, among others. These

secrets can be vulnerable to different types of attacks, depending on their

storage mechanisms. For example, credentials may be leaked in version

control repository systems such as Git, making them susceptible to unau-

thorized access. In 2021, the source code of Nissan was leaked online due

to a git server being exposed online with a default credentials combina-

tion of admin/admin [2]. In addition to this, secrets can be vulnerable to

physical or memory-based attacks, such as buffer overflow and improper

bounds check. hard-coded credentials, in particular, are among the most

dangerous software weaknesses listed in the CWE Top 25 list [4].

The conventional approaches for managing secrets, such as sharing cus-

tomer keys with service providers, fail to comply with regulatory require-

ments and pose scalability and cost challenges. Managing secrets securely

can be a complex and costly process, particularly when using customer-

owned infrastructure.

This paper provides a review of four major cloud-based secret manage-

ment services: AWS Secrets Manager, Azure Key Vault, Google Cloud

Secret Manager, and Alibaba Cloud Secret Manager. The study compares

and contrasts these services across six important dimensions: security,

external integration methods, rotation, auditing, secret versioning, and

customization/extensibility. The analysis finds that while each service

has its own unique strengths and limitations, they all provide a range

of features and capabilities that can help developers and administrators

to manage secrets effectively in a multi-cloud environment. The paper

concludes by outlining some limitations and future research directions,

as well as providing practical recommendations for cloud application de-

velopers and administrators.

2 Secret Management

This section will emphasize on the different phases of secret in Sec. 2.1

and features of cloud secret management providers in Sec. 2.2 and Sec. 2.3.

2.1 Phases of life-cycle of a secret

The journey of a secret can be divided into four distinct phases, as illus-

trated in Figure 1.

Figure 1. Phases of life-cycle of a secret

Creation refers to the phase when new secrets are generated. For ex-

ample, the creation of a new password or certificate.

Storage phase comprises of storage mechanism of the secrets. Secrets

can be stored in various formats. For example, they can be encrypted

and then stored as a file, or they can be stored by some external secret

management service.

Distribution refers to the secure and efficient distribution of secrets

across different components of the cloud infrastructure. By centralizing

secret management, these services can offer greater control and visibility

over secrets, including access control, versioning, and auditing.

Rotation phase refers to changing or updating the secrets either on

demand or on a fixed schedule. Rotating secrets improves security and

decreases the risk from older secrets being exposed.

Revocation refers to destroying a secret, or removing the access per-

missions from it. The secret is in this phase when it is no longer required

or has been updated by a new version.

2.2 Cloud Secret Management Models

Cloud solutions can store and manage secrets including credentials and

API keys. These secrets can be fetched by the application through an API

call on demand. They also provide the option to manage access to the

secrets through permission policies. These solutions also manage secret

rotation without causing any interruption in active applications. Users or

admins can also monitor the usage of the secrets and get notified about

any unfavourable event as soon as it occurs [1]. This has been described in

Figure 2, where the admin configures the resource and secret manager in

steps 1 and 2, and then the application interacts with the secret manager

to retrieve the credentials in steps 3 and 4, to access the resource in step

5.

Figure 2. Storing and using credentials for a database in Secrets Manager [1]

2.3 Cloud Secret Management Solutions

This paper aims to provide an analysis of the most commonly used cloud

secret management solutions. The focus of the discussion will be on the

integration and usability of each solution. The following solutions will be

examined:

• Google Cloud Platform (GCP) Secret Manager

• Amazon Web Services (AWS) Secret Manager

• Azure Key Vault

• Alibaba Cloud Secret manager

Each of these solutions provides unique features and benefits, and it is

essential to understand their strengths and weaknesses when deciding

which solution to use. The analysis will cover several factors, including

access control mechanisms, SDK availability, security features, and cost-

effectiveness. By examining each solution in detail, this paper aims to

provide valuable insights to organizations seeking to secure their sensi-

tive data stored in the cloud.

3 Architecture

The architecture of Secret Managers is designed to provide a secure and

scalable way to store and manage secrets in the cloud. It usually allows

to store and manage sensitive information like API keys, passwords, and

certificates.

API: An API is the front-end interface that allows users to interact with

the secret management service. It provides a set of RESTful endpoints

for creating, reading, updating, and deleting secrets. This API is often

accessed through a command-line tool, SDK, or web-based interface.

Secret Storage: The secret storage component is where the secrets are

stored. It is responsible for encrypting and securely storing secrets at

rest. The secret storage system can be based on cloud storage including

Amazon S3 or Google Cloud Storage, or a dedicated key vault such as

Azure Key Vault.

Encryption: Encryption is used to secure the secrets that are stored

in the secret storage. The encryption keys can be managed either by the

secret management service or by an external key management system

like AWS KMS or Google Cloud KMS.

Access Control: Access control is used to manage who can access the

secrets stored in the secret management service. Fine-grained access con-

trol is typically provided through role-based access control (RBAC), which

is managed through an identity and access management (IAM) system.

Access control ensures that only authorized users or applications can ac-

cess the secrets.

Auditing: Auditing is an important component of a secret management

service. It provides a way to track who has accessed the secrets and when.

Audit logs can be stored in a log management system like Amazon Cloud-

Watch or Google Cloud Logging.

Cloud Secret Management Services

Component AWS Secret

Manager

GCP Secret

Manager

Azure Key

Vault

Alibaba

Cloud Secret

Manager

API Yes Yes Yes Yes

Secret

Storage

Google Cloud

Storage

Amazon S3 Dedicated

key vaults

Dedicated

key vaults

Encryption Google Cloud

KMS

AWS KMS built-in

encryption

built-in KMS

Access

Control

IAM roles

and policies

IAM roles

and policies

Resource

Access

Management

Resource

Access

Management

Auditing Google Cloud

Logging

Amazon

CloudWatch

built-in

auditing

built-in

auditing

Integration GCP AWS Azure Alibaba

Cloud

Table 1. Comparison of different architecture components

4 Analysis

In this section, we will examine various factors that may influence the

decision to choose a particular cloud secret management solution in a dis-

tributed multi-cloud environment. The selection of a cloud secret manager

is a crucial consideration for organizations that rely on cloud-based ser-

vices to store, access, and manage sensitive information. Several factors

may influence this decision, including the availability of Software Devel-

opment Kits (SDKs), ease of integration, access control mechanisms, ex-

tensibility, security features, and versioning. Therefore, it is essential

to explore these different aspects in detail to make an informed decision

when selecting a cloud secret management solution.

4.1 Access Control Mechanism

Variations in access control mechanisms among different cloud services

can significantly impact the selection of a cloud secret management so-

lution. For instance, when deciding which cloud secret manager to use,

it is essential to consider the level of ease of integration with a given

service. If a service has already integrated with AWS Secret Manager,

it would be easier to integrate it with GCP Secret Manager than with

Azure Key Vault since both GCP and AWS Secret Managers are based on

Identity and Access Management (IAM) policies [1][5]. Azure Key Vault

Resource Access Management (RAM) provides role-based access control

to Azure Key Vault resources, while AWS Secrets Manager IAM policies

provide a more general-purpose mechanism for controlling access to AWS

resources, including Secrets Manager. Alibaba Cloud also uses Resource

Access Management (RAM) to control access to secrets [3].

4.2 External Integration Methods

The selection of secret management solutions is influenced significantly

by factors such as the availability of Software Development Kits (SDKs)

for popular programming environments, as well as the level of commu-

nity and support. Typically, cloud providers offer access to API tools for

managing secrets and integrating them with user applications, although

certain situations may require additional support.

AWS Secrets Manager, Azure Key Vault, Google Cloud Secret Manager,

and Alibaba Cloud Secret Manager all offer integration with many ser-

vices from their own provider, as well as APIs and SDKs for integrating

with other cloud providers. Seamless integration can improve the effi-

ciency and security of secret management in a distributed multi-cloud en-

vironment. Therefore, evaluating the level and ease of integration is an

important consideration when selecting a secret management provider.

4.3 Rotation

AWS Secrets Manager automatically rotates secrets based on specific time

intervals or custom lambda functions. Azure Key Vault also provides au-

tomated key rotation, which can create a new key version at a specified

frequency [9]. Google Cloud Secret Manager supports both automatic and

manual rotation, as well as secret versioning. Alibaba Cloud Secret Man-

ager provides automatic rotation for secrets of specific types. as well as

custom scheduled rotation, which can be automated using Alibaba Cloud

Function Compute. [3].

All four services provide functionality for secret rotation and secret ver-

sioning. AWS and Google Cloud offer automatic rotation, while Azure and

Alibaba Cloud require manual rotation, which can be automated using

cloud functions.

4.4 Auditing

AWS Secrets Manager offers audit capabilities through API requests and

changes logging and supports granular access control using IAM policies.

Similarly, Azure Key Vault provides audit logs for secret-related opera-

tions and offers custom policies for access control [8]. Azure Key Vault in-

tegrates with Azure Active Directory to provide role-based access control

and multi-factor authentication. Google Cloud Secret Manager provides

audit logs for secret-related operations and supports custom IAM roles

and permissions. The Secret Manager supports VPC Service Controls

for network-level access control. Alibaba Cloud Secret Manager provides

auditing through its cloud audit system and custom roles and permis-

sions for access control. Secret Manager integrates with Alibaba Cloud

Resource Access Management for fine-grained permissions control.

Auditing and access control are important aspects when selecting a se-

cret management provider. It allows tracking and controlling access to

secrets to maintain sensitive data security and comply with regulatory

requirements.

4.5 Secret Versioning

AWS Secrets Manager automatically versions secrets and enables storing

and retrieving multiple versions through the AWS Command Line Inter-

face (CLI) or Software Development Kit (SDK). Azure Key Vault main-

tains a history of changes for auditing and allows users to create and

access secret versions via the Azure portal, CLI, or SDKs [7].

Google Cloud Secret Manager supports up to 10,000 versions per se-

cret, and users can list, get, or delete specific versions. Alibaba Cloud

Secret Manager allows for the creation and management of multiple se-

cret versions, with the option to specify version numbers during creation

or update.

Versioning secrets facilitates the tracking and management of changes

for auditing, and enables the retrieval of previous versions in case of acci-

dental modification or compromise.

4.6 Customization and extensibility

AWS Secrets Manager provides customization and extensibility through

custom Lambda functions and a flexible tagging system. Azure Key Vault

also offers similar customization and extensibility options through custom

policies and Azure Functions.

Google Cloud Secret Manager offers extensibility via Google Cloud Func-

tions and custom IAM roles and permissions. Alibaba Cloud Secret Man-

ager provides similar customization through Function Compute and a

flexible tagging system.

Overall, the level and flexibility of customization and extensibility is a

crucial considerations when evaluating secret management providers. It

determines the ability to adapt secret management to specific application

requirements and workflows.

5 Conclusion

In conclusion, secret management is a crucial aspect of cloud security, and

selecting a secret management provider requires careful consideration of

various factors. This review of four popular cloud secret management so-

lutions - AWS Secrets Manager, Azure Key Vault, Google Cloud Secret

Manager, and Alibaba Cloud Secret Manager - revealed that they all offer

similar core functionalities such as secure storage, access control, rota-

tion, auditing, and versioning.

The selection of a suitable secret management solution depends on var-

ious factors, including the cloud service utilized by the company or other

project components. However, certain infrastructure decisions related to

secrets management may also influence the choice of secret management

service. These decisions may include the type of application, the nature

of the secrets to be managed, and the level of access control required.

As such, it is crucial to carefully consider these factors when selecting a

secret management solution to ensure it aligns with the organization’s

needs and objectives.

However, there are significant differences in their features and capabil-

ities, such as the level of integration with different cloud services, ease of

customization, and automation of rotation. These differences should be

carefully evaluated based on the specific needs and requirements of the

cloud application being developed or managed.

Limitations and future directions for research include the need for more

comprehensive evaluations of other cloud secret management solutions

and the investigation of new technologies such as homomorphic encryp-

tion for securing secrets.

Practical implications and recommendations for cloud application de-

velopers and administrators include the importance of selecting a secret

management provider that integrates well with the cloud services used,

supports the required customization and automation, and provides robust

auditing and access control capabilities. It is also important to regularly

review and update secret management policies and practices to ensure

ongoing security and compliance.

References

[1] Amazon. Aws secrets manager. https://aws.amazon.com/secrets-manager/,
2023. Accessed: 2023-02-02.

[2] Catalin Cimpanu. Nissan source code leaked online after git repo misconfig-
uration. https://www.zdnet.com/article/nissan-source-code-leaked-online-
after-git-repo-misconfiguration/, 2021. Accessed: 2023-02-02.

[3] Alibaba Cloud. Secrets manager. https://www.alibabacloud.com/help/en/key-
management-service/latest/secrets-manager, 2023. Accessed: 2023-03-06.

[4] CWE. Cwe view: Weaknesses in the 2022 cwe top 25 most dangerous soft-
ware weaknesses. https://cwe.mitre.org/data/definitions/1387.html/, 2022.
Accessed: 2023-02-02.

[5] Google. Secrets manager overview. https://cloud.google.com/architecture/security-
foundations/keys-secret-managementsecret-manager, 2023. Accessed: 2023-
03-06.

[6] Xiaolong Huang. A survey of key management service in cloud. https://ieeexplore.ieee.org/document/8663805,
2018.

[7] Microsoft. Azure key vault keys, secrets and certificates overview. https://learn.microsoft.com/en-
us/azure/key-vault/general/about-keys-secrets-certificates, 2023. Accessed:
2023-04-11.

[8] Microsoft. Azure key vault logging. https://learn.microsoft.com/en-us/azure/key-
vault/general/logging, 2023. Accessed: 2023-04-11.

[9] Microsoft. Configure cryptographic key auto-rotation in azure key vault.
://learn.microsoft.com/en-us/azure/key-vault/keys/how-to-configure-key-rotation,
2023.

[10] Sumedh N. Pundkar and Narendra Shekokar. Cloud computing security in
multi-clouds using shamir’s secret sharing scheme. pages 392–395. Insti-
tute of Electrical and Electronics Engineers Inc., 11 2016.

Usability of MFA solutions

Walerius Kyllönen
walerius.kyllonen@aalto.fi

Tutor: Mario Di Francesco

Abstract

Textual passwords have been a major weakness in many systems. Multi-

factor authentication one possible solution to this problem. However, the

adoption of MFA can come with significant emotional and time costs. Re-

ducing the cost of MFA is critical for increasing adoption and attitude to-

wards MFA. These costs can be reduced via proper risk communication

and better usability. Additionally, risk-based authentication can allow

users to spend less time authenticating, and thus lessen the cost of au-

thentication.

KEYWORDS: Multi-Factor Authentication, Risk-Based Authentication, Us-

ability,

1 Introduction

Authentication is everywhere nowadays. Many services depend on strong

authentication. For example, when accessing online banking services, the

bank must ensure that only the owner of the account has access to it. Tra-

ditionally authentication on the Internet has been achieved using textual

passwords. The main issue with textual passwords is that user-selected

passwords are easily guessable, but random password are not easily mem-

orisable. Thus, passwords have been a major weakness in authentication

systems since 1979 [17]. Therefore, stronger authentication has become

necessary. Multi-factor authentication (MFA) is a popular solution to this

problem [3].

The term MFA is used to describe an authentication process where the

user authenticates using at least two different factors. These factors can

be divided in to the following categories:

• Knowledge (something you know such as password)

• Possession (something you have such as device)

• Inherent (something you are such as biometrics)

Using MFA makes authentication more secure when compared to single-

factor authentication (SFA), since a compromised secret does not neces-

sarily compromise the whole account. However, many perceive MFA neg-

atively, and thus are not willing to adopt MFA [7]. Users frustrated with

MFA may find ways of working around MFA thus reducing security.

In addition to human factors, there are many technical issues related to

MFA implementations. Few notable weaknesses include insecure deliv-

ery of one-time passwords (OTP), insecure account recovery methods, and

synchronization attacks, which exploit the intertwinement of mobile and

desktop compute [13].

This paper reviews the challenges related to the security and usability

of MFA. Specifically: Section 2 introduces popular MFA methods. Section

3 describes challenges with usability and security of MFA. Section 4 dis-

cusses potential to enchance the security of MFA through better usability.

Finally, section 5 concludes the paper.

2 MFA Methods

There exists multiple different methods for multi-factor authentication.

Most of the commonly used methods have two factors for authentication,

knowledge and possession. This section presents a few popular types of

MFA.

2.1 Single-Factor

Not all solutions utilize different factors. They enhance security usually

by asking the user to provide multiple secrets. Thus the compromise of

one of the secrets would not lead directly to the compromise of the account.

A representative example of this would be a scheme, where the user pro-

vides username and password, and then provides a one-time password

(OTP) sent to them via email. In such case, the user is authenticated

twice based on knowledge.

There exists many issues with this type of MFA. Some examples of these

include predictable secrets, and reuse of secrets on multiple accounts.

These are not widely used as MFA.

2.2 Knowledge and possession

Knowledge and possession is possibly the most common combination of

factors for MFA. Often achieved through time-based one-time passwords

(TOTP). A common workflow might proceed as follows: First the user au-

thenticates using a password, then the system asks for a code from TOTP-

producing device, which can be a mobile phone or a dedicated TOTP-

device.

Another variant is based on (non time-based) one-time passwords (OTP).

These are often delivered via SMS messages, which makes them less se-

cure in comparison to TOTP-based schemes.

A third common implementation involves physical tokens (such as Yu-

bikey) instead of OTPs. Yubikey implements the FIDO Universal 2nd

Factor -protocol (U2F). U2F devices are cryptographic modules, which are

used to store a master key and calculate the response to the received chal-

lenge [1].

Some mobile phone applications (e.g. Microsoft Authenticator) support

authentication via push notifications. The user authenticates with a user-

name and password, after which their mobile device will receive a push

notification where they can accept or reject the authentication attempt.

The application may presents some information about the authentication

attempt, such as location, time, or IP-address.

2.3 Knowledge, possession, and inherent

Combining all three different types of factors is not common. This mostly

happens in situations, where security is of utmost importance, such as

online banking. However, using more than two factors is not required

even at the highest security level [10]. Typical authentication workflow

may proceed as following: first the user provides their credentials (knowl-

edge), then verifies their authentication request on their mobile phone

(possession) using a fingerprint reader (inherent).

Since smartphones are often used as a second factor and they often are

equipped with a fingerprint scanner and multitude of other sensors, bio-

metrics could be integrated into the authentication process as a third fac-

tor. This may already happen in practice: if a user has to unlock their

phone with a fingerprint to use it as a second factor, they practically have

a third factor. However, some authentication methods, such as push noti-

fications, may circumvent this by allowing the user to authenticate from

their lockscreen.

3 Challenges

MFA has been rising in popularity, but there still exists many difficul-

ties, especially in the adoption and use of MFA. This section provides an

overview into these challenges faced by MFA.

Many of the issues with MFA can be traced to usability and user percep-

tion, and thus can not be solved by only technical means. Generally, MFA

applications are not considered usable [7]. One possible explanation for

the low usability may be the myth that security and usability are mutu-

ally exclusive [16]. A contributing factor may be that the usability of MFA

solutions has not been an important factor for researchers, as less than

10% of research focusing on MFA has included any usability studies [8].

Another complicating factor is that users do not understand why MFA

is necessary and thus react negatively when forced to use MFA [7]. One

important concern raised by users is disaster recovery. How complicated

is the process of recovery? Is recovery even possible? These are important

questions, and the answers might be unclear. The recovery mechanisms

may even be unsafe, such as email link, which may further raise concerns.

Users are more likely to seek workarounds for MFA if it seems unneces-

sary [6]. They may, for example, avoid MFA by using a mobile application

that does not require MFA, even when the desktop application requires it.

Additionally, if an application requires MFA every time it is used, users

may try to avoid using the application. Less frequent use may cause prob-

lems, for example if employees read their work email less often.

Another challenge for widespread adoption and user acceptance may

be established routines [9]. As passwords have been used as the main

authentication method in practically all IT systems, users will likely be

very familiar with passwords and thus may prefer using them instead of

more secure options, such as MFA. Even though MFA results in enhanced

security, interruptions caused by MFA, especially during time sensitive

tasks, are taxing for users.

Users’ risk perception is often flawed. Many are confident that they can

protect themselves against phishing attacks, even though phishing has

become more frequent [6]. There is a disconnect between how users per-

ceive security of an authentication system and how secure the system is

in reality [14]. For example, many users consider fingerprints to be highly

secure, when in reality the fingerprint readers used in smartphones are

susceptible to mimicking attacks. Authentication processes with more

steps are considered more secure than those with less steps, even though

there might not be any difference in security.

In certain situations, combining MFA and password managers can in-

crease risks. Some password managers, such as Google Password Man-

ager, do not require any authentication to autofill passwords. Combining

this type of password manager with an MFA application that does not

require authentication, such as Google Authenticator, on the same de-

vice negates some of the benefits of MFA. Since the secret is saved on the

same device that is used as a second factor, the user is authenticated twice

based on posession of the same device, thus weakening the security.

However, not every challenge poses a direct security risk. Excessive se-

curity policies may end up wearing out members of an organization [12].

This will inevitably lead to productivity losses. In addition, the excessive

security policies might even end up driving people away from the organi-

zation.

4 Possible solutions

This section presents some potential solutions for the challenges described

in Section 3. The main focus will be on enhancing security through better

usability, but some new technologies will also be presented as potential

solutions.

Proper risk communication is an effective strategy for increasing MFA

adoption and improving users’ security behavior [11]. The common factor

with many of the challenges is a mismatch between what level of secu-

rity the users think is necessary and what the authentication methods

provide. Risk communication may allow users to realise the risks of not

using MFA, and thus increasing the likelyhood of them adopting MFA.

Additionally, if users perceive MFA as a valuable tool that helps keep

them safe, they are less likely to experience negative emotions, such as

frustration, when using MFA [5].

Dividing user accounts into privileged and non-privileged accounts, and

mandating MFA only on the privileged account could make MFA feel more

justified [6]. The division would allow the users to use MFA only when

enhanced security is necessary, which would reduce the emotional cost of

mandatory MFA. Alternatively, the use of MFA could be made somewhat

less frequent by applying risk-based authentication (RBA).

RBA can improve the usability without compromising security [18]. In

RBA, a risk level will be calculated for each authentication attempt, and

the user will only need to authenticate in accordance to this risk level.

For example, when accessing company email on their on premises work-

station, providing single factor (e.g. password) would suffice, but when

accessing the same email on their personal laptop from airport, provid-

ing more factors would be necessary (e.g. password + TOTP). Since the

additional factors are required less often, RBA reduces both the time and

emotional cost of authentication without significantly compromising se-

curity. NIST recommends the use of RBA for services, where return visits

are common [10].

Addressing user concerns is a valuable tool both in enhancing the secu-

rity and usability of the system. Especially disaster recovery is important

for users. However, the recovery process must be secure, since otherwise

the improved security of MFA can be circumvented via the recovery pro-

cess.

Since having a secure backup of possession factor is difficult, users should

be allowed and encouraged to have multiple authenticators of the same

factor. For example, a TOTP-device for daily use and a U2F-token as a

backup.

Another effective option for improving the security of MFA would be to

improve the usability of MFA. At the moment many potential users of

many different MFA solutions perceive MFA as too difficult and inconve-

nient to use. The situation can probably be improved through better risk

communication, but the potential in improving usability should not be

overlooked. One of the most important steps in aiding adoption of MFA

would be better instructions during user enrolment. Unclear and out-

dated instructions during setup cause issues even for experienced users

[5]. Older adults are especially vulnerable, since they have less experi-

ence in use of information technology and thus have even more trouble

with unclear instructions [4].

Additionally, benefits of educating users about their MFA solution, es-

pecially concerning the potential weaknesses of the solution, should not

be overlooked. User education is especially important in cases, where a

single misclick from user may cause a security breach, as is the case with

so called "MFA fatigue"-attacks [2].

New authentication methods have been proposed to improve both us-

ability and security. One interesting option is Human-computable OTP

[15]. The method would allow users to compute their OTP on their own,

based on a visual pattern on a grid, thus eliminating the need for addi-

tional devices. However, even though an experienced user can authenti-

cate themselves in 15 seconds, the process is more complicated than pass-

word based authentication, and thus faces many of the same challenges

as MFA. Additionally, learning to use the protocol and memorize the se-

cret image takes 30-45 minutes of repeated practice, which is significantly

more than just inventing a new password or using password manager.

5 Conclusion

This paper has reviewed challenges related to the security and usabil-

ity of multi-factor authentication and presented potential solutions to the

challenges presented in this paper, with a focus on usability and user ed-

ucation.

Many of these challenges rise from poor usability. Thus, to enhance

security, usability must be taken into consideration.

However, possibly more effective option would be addressing users’ flawed

risk perception. Thus, the potential of proper risk communication should

not be underestimated. For example, proper risk communication can help

users understand why MFA is necessary, which in turn reduces the emo-

tional cost of using MFA.

An interesting topic for further research would be the effects of multi-

factor authentication policies in organizations. Since many organisations

enforce mandatory MFA, finding out what steps have been taken to re-

duce the cost of MFA. Another interesting topic might be the viability of

deploying human-computable OTP proposed by Matelski [15] on an or-

ganisational scale.

References

[1] Key generation. https://developers.yubico.com/U2F/Protocol_details/
Key_generation.html. Accessed: 28-03-2023.

[2] MFA Fatigue Attack. https://www.beyondtrust.com/resources/glossary/
mfa-fatigue-attack. Accessed: 23-01-2023.

[3] Chris Dale. SANS 2021 Password Management and Two-Factor Authen-
tication Methods Survey. Technical report, SANS Institute, May 2021.
https://resources.yubico.com/53ZDUYE6/at/f8jx2k2ks84ksc77gbk3q9tf/SANS_

2021_Password_Management_and_Two-Factor_Authentication_Methods_Survey.

pdf.

[4] Sanchari Das, Andrew Kim, Ben Jelen, Lesa Huber, and L. Jean Camp.
Non-inclusive online security: Older adults’ experience with two-factor au-
thentication. In Proceedings of the Annual Hawaii International Conference
on System Sciences, volume 2020-January, page 6472 – 6481, 2021.

[5] Sanchari Das, Andrew Kim, Shrirang Mare, Joshua Streiff, and L. Jean
Camp. Security mandates are pervasive: An inter-school study on analyz-
ing user authentication behavior. In 2019 IEEE 5th International Confer-
ence on Collaboration and Internet Computing (CIC), pages 306–313, 2019.

[6] Sanchari Das, Shrirang Mare, and L. Jean Camp. Smart storytelling:
Video and text risk communication to increase mfa acceptability. In 2020
IEEE 6th International Conference on Collaboration and Internet Comput-
ing (CIC), pages 153–160, 2020.

[7] Sanchari Das, Bingxing Wang, and L Jean Camp. Mfa is a waste of time!
understanding negative connotation towards mfa applications via user gen-
erated content. arXiv preprint arXiv:1908.05902, 2019.

[8] Sanchari Das, Bingxing Wang, Zachary Tingle, and L Jean Camp. Evalu-
ating user perception of multi-factor authentication: A systematic review.
arXiv preprint arXiv:1908.05901, 2019.

[9] Florian M Farke, Lennart Lorenz, Theodor Schnitzler, Philipp Markert, and
Markus Dürmuth. " you still use the password after all"—exploring fido2
security keys in a small company. In Proceedings of the Sixteenth USENIX
Conference on Usable Privacy and Security, pages 19–35, 2020.

[10] Paul Grassi, James Fenton, Elaine Newton, Ray Perlner, Andrew Regen-
scheid, William Burr, Justin Richer, Naomi Lefkovitz, Jamie Danker, Yee-
Yin Choong, Kristen Greene, and Mary Theofanos. Digital identity guide-
lines: Authentication and lifecycle management [includes updates as of 03-
02- 2020], 2020. https://doi.org/10.6028/NIST.SP.800-63b.

[11] Marian Harbach, Markus Hettig, Susanne Weber, and Matthew Smith. Us-
ing personal examples to improve risk communication for security & privacy
decisions. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’14, page 2647–2656, New York, NY, USA, 2014.
Association for Computing Machinery.

[12] Philip G. Inglesant and M. Angela Sasse. The true cost of unusable pass-
word policies: Password use in the wild. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’10, page 383–392,
New York, NY, USA, 2010. Association for Computing Machinery.

[13] Radhesh Krishnan Konoth, Victor van der Veen, and Herbert Bos. How
anywhere computing just killed your phone-based two-factor authentica-
tion. In Financial Cryptography and Data Security, volume 9603 LNCS
of Lecture Notes in Computer Science, pages 405–421, Berlin, Heidelberg,
2017. Springer/Verlag.

[14] Karola Marky, Kirill Ragozin, George Chernyshov, Andrii Matviienko, Mar-
tin Schmitz, Max Mühlhäuser, Chloe Eghtebas, and Kai Kunze. ”nah, it’s
just annoying!” a deep dive into user perceptions of two-factor authentica-
tion. ACM Transactions on Computer-Human Interaction, 29, 02 2022.

[15] Sławomir Matelski. Secure human identification protocol with human-
computable passwords. In Information Security Practice and Experience,
Lecture Notes in Computer Science, pages 452–467. Springer International
Publishing, Cham, 2022.

[16] M. Angela Sasse, Matthew Smith, Cormac Herley, Heather Lipford, and
Kami Vaniea. Debunking security-usability tradeoff myths. IEEE Security
& Privacy, 14(5):33–39, 2016.

[17] Viktor Taneski, Marjan Heričko, and Boštjan Brumen. Password security
— no change in 35 years? In 2014 37th International Convention on Infor-
mation and Communication Technology, Electronics and Microelectronics
(MIPRO), pages 1360–1365, 2014.

[18] Stephan Wiefling, Markus Dürmuth, and Luigi Lo Iacono. More than just
good passwords? a study on usability and security perceptions of risk-based
authentication. In Annual Computer Security Applications Conference, AC-
SAC ’20, page 203–218, New York, NY, USA, 2020. Association for Comput-
ing Machinery.

Gaze Interactions in Virtual Characters
and Their Impact on Player Experience

Wendy Yunuen Arevalo Espinal
wendyyunuen.arevaloespinal@aalto.fi

Tutor: Robin Welsch

Abstract

This paper provides an overview of the current state of gaze interactions

in virtual characters in Virtual Reality (VR) video games. Gaze behavior

is fundamental for human communication, and its integration in virtual

characters can create a sense of interaction and presence between the user

and the character. Despite this potential, the use of gaze interactions in

VR games is still limited. This paper examines different techniques pro-

posed by researchers and game developers for modeling gaze behavior and

explores how these interactions affect player experience. Additionally, it

highlights opportunities and challenges in this field, and discusses im-

mersive VR games using gaze in virtual characters in experimental and

commercial environments.

KEYWORDS: gaze, social interaction, virtual characters, non-player char-

acters, video games, virtual reality

1 Introduction

Gaze behavior is a fundamental aspect of human communication and in-

teraction, which allows them to interpret emotions and understand inten-

tions [1]. Although this behavior is not natural for virtual characters, it

can be modeled to create a sense of interaction and presence between the

user and the character. Despite this potential, the integration of gaze be-

havior in Virtual Reality (VR) games is still limited, resulting in a missed

opportunity to bring a higher level of realism and depth to player interac-

tions with Non-Player Characters (NPCs).

Researchers and game developers have proposed different techniques

for modeling gaze behavior [2, 3, 4], and have explored new game me-

chanics and interaction methods based on gaze [5, 6]. Although many

non-immersive games have effectively incorporated these gaze interac-

tions, they are yet to be widely adopted in commercial VR games.

This literature review provides an overview of the current state of gaze

interactions implemented in virtual characters in Virtual Reality (VR)

video games. The review also explores how these interactions affect player

experience and highlight opportunities and challenges in this field.

The paper is organized as follows. Section 2 presents the difference

between Avatars and NPCs as Virtual Characters, and how they inter-

act with the player. Section 3 describes current gaze interactions imple-

mented in virtual characters. Section 4 outlines the impact of virtual

characters gaze on player engagement and immersion in games. Section

5 shows immersive VR games using gaze in virtual characters in both ex-

perimental and commercial environments. Finally, Section 6 gives some

insights on the opportunities for game development.

2 Virtual characters in video games

Virtual characters are digital entities that share features with real living

beings, such as humans or animals [7]. However, they are not necessarily

represented as their living counterparts.

These characters are often found in various forms of entertainment,

such as animated movies or video games. In the context of video games,

these characters serve as both player avatars and interactive entities

within the game world (NPCs).

Avatars: According to Nowak [8], an avatar is a virtual representation of

the person using it. In the context of video games, avatars are often

customizable and can reflect the personality, preferences, or style of

the user. An avatar can also allow players to express themselves

through body language and other visual cues [9].

This paper does not explore gaze interactions between avatars be-

cause the player does not usually interact with them but through

them.

Non-Player Characters: A Non-Player Character (NPC) is a computer-

controlled character in a video game. NPCs serve as interactive en-

tities within the game world, they often help the player to reach cer-

tain goals, fight for them, and, sometimes, they are the main focus

of the story line [10].

In the following parts of this paper, the terms NPC and virtual char-

acter will be used interchangeably.

2.1 Interactions between Virtual Characters and Players

In recent years, Virtual Reality (VR) games have become increasingly

popular due to the introduction of more accessible VR headsets in the

end-user market [11]. These games offer immersive experiences that al-

low players to fully engage with virtual characters in a simulated envi-

ronment. Such interactions play a crucial role in enhancing the overall

experience of the game [12].

Examples of interactions between players and NPCs in games include

both verbal and non-verbal communication. Verbal interactions include

conversations using speech or text prompts, while non-verbal interactions

include body movements, gestures and facial expressions [13].

In the same way that eye expressions within these interactions support

human to human communication [13], gaze behavior is relevant for social

interaction between virtual characters and players to increase the feeling

of immersion and presence [12].

3 Gaze interactions implemented in VR games

Virtual reality games offer great potential for creating more immersive

and engaging experiences by incorporating realistic gaze interactions be-

tween players and NPCs. These interactions can include various behav-

iors, such as eye contact, gaze as cues, and gaze aversion. Although such

interactions are not yet fully implemented in VR games, the future looks

promising for their inclusion.

3.1 Eye contact

In video games, eye contact refers to the virtual eyes of a NPC meeting

and following the gaze of the player. This behavior creates a sense of

connection and engagement between the user and the virtual character,

as it mimics the way humans make eye contact during social interactions

[1].

Rooney et al. [14] conducted an experiment where users interacted with

two virtual characters, one that made eye contact with them and one that

did not engage with them. Results showed that users felt a stronger con-

nection with the NPC that maintained eye contact and could identify its

mental state more accurately. Similarly, other studies [15, 16] have shown

that eye contact between the user and NPCs improves communication and

creates a more natural social experience.

It has been shown that eye contact interactions between players and

NPCs can significantly increase trust in virtual characters, and NPCs

that cannot maintain eye contact with the player may be perceived as

less trustworthy or engaged [17]. However, prolonged eye contact can cre-

ate discomfort in social interactions. Similarly, in video games, excessive

staring by virtual characters may be viewed as invasive or disrespectful,

leading to a negative player experience [12].

3.2 Cues

Gaze can provide important non-verbal cues to others, such as an inviting

look or rolling one’s eyes, and plays a significant role in directing spatial

attention during social interactions [1, 13].

In NPCs, gaze can be animated to achieve a more engaging and inter-

active experience. For example, Dong et al. [3] conducted different ex-

periments where virtual characters showed stress and fear through eye

animation. Users identified the scared character more accurately when

the NPC displayed gaze, blinks, and pupil animations, while changes in

pupil size alone were less effective.

In another study, Martinez et al. [18] used virtual characters with ani-

mated head movements and gaze to point at targets on a screen. The re-

sults indicated that gaze cues helped users to identify the target pointed

by the NPC faster. Similarly, Kulms and Kopp [19] asked users to perform

tasks while NPCs helped them focus on the correct task using social cues,

such as facial expressions and gaze. All users indicated that gaze was the

only cue they monitored.

These findings suggest that gaze cues can enhance the user experience

and improve task performance in virtual environments.

3.3 Saccades

Saccades refer to the rapid eye movements that shift the gaze towards a

new target. They are important for face-to-face communication as they

enable individuals to focus their attention on different parts of the face,

such as the eyes, mouth, or gestures, to extract important social cues,

emotions, and intentions [1].

In the context of NPC interactions, researchers found that the direction

and frequency of saccades can indicate the level of trust and engagement

between the virtual character and the player. Players trusted more NPCs

with neutral to happy face expressions, while there was no significant

difference in trustworthiness when the NPCs had a neutral to grumpy

expression [17].

Other studies have shown the potential of saccades in creating expres-

sive virtual characters. Lance and Marsella [20] developed an algorithm

that combined head orientation and vestibulo-ocular reflexes to replicate

natural-looking saccades, enabling them to simulate gaze shifts of an ac-

tor displaying various emotions. Similarly, Queiroz et al. [21] aimed to

replicate human behaviors, such as concentration and discomfort, by cre-

ating a virtual character that included saccades with different frequen-

cies. The study revealed that users consistently identified animations

with distinct eye behaviors as the most expressive, highlighting the im-

portance of eye movements in conveying general expressiveness.

3.4 Gaze Aversion

Gaze aversion, the act of avoiding eye contact, can convey multiple mean-

ings in different contexts. It can indicate the processing of information,

considering a response, or even signs of aggression, disinterest, or dishon-

esty.

Studies have shown that in virtual conversations with NPCs, intermit-

tent gaze aversion can make users feel heard, engaged, and reflective,

leading to more positive and longer interactions [6, 22]. Gaze aversion can

also regulate the flow of conversation by signaling the end of a sentence

or a pause, which encourages users to wait for the NPC to finish speaking

[6]. Additionally, gaze aversion in NPCs can provide cues to players to

avoid interaction, which can be useful in distinguishing between charac-

ters that participate in the game and those that do not [23, 12]. Finally,

gaze aversion combined with the appearance of the virtual character can

also transmit feelings of submission, which has been used in some game

designs to appeal to a male audience [24].

Understanding the diverse interpretations of gaze aversion can influ-

ence its effective utilization in virtual conversations with NPCs and its

potential effect on the gaming experience.

4 Impact of virtual characters gaze on player experience

This section discusses a few ideas about the impact of virtual character

gaze on player experience in terms of engagement and immersion.

4.1 Engagement

One of the main benefits of virtual character gaze is that it can enhance

player engagement. By using gaze cues [3, 18, 19], NPCs can create a

sense of connection and interaction between the player and the character.

This can facilitate social presence and increase emotional attachment to

the character, making the player feel more immersed in the game world.

4.2 Immersion

Virtual character gaze can improve player immersion by providing a more

natural and realistic interaction [17, 20, 21]. Gaze behavior can help play-

ers understand the intentions and emotions of virtual characters, which

in turn enhances the sense of presence. Realistic eye movements and gaze

behaviors can also reduce the effect where virtual characters appear too

artificial or unsettling, thus improving the overall immersion of the game.

5 VR video games using gaze interactions

Gaze interactions can be useful in many types of games. However, genres

such as action, adventure, role-playing, and first-person shooter games

prioritize character development and storytelling, making gaze interac-

tions more relevant. These genres aim to create immersive worlds, and

gaze interactions can make virtual characters appear more alive, allow-

ing players to form deeper connections with them. Games that emphasize

player choice and interactions with NPCs are more likely to include gaze

interactions to facilitate natural interactions.

Currently, there are few VR games available in the market that focus

on gaze interactions, or if they do, players may not have noticed such ani-

mations. Furthermore, independent game developers who play VR games

have developed mods (according to Scacchi, ’mods are extensions to exist-

ing game software systems’ [25]) to change the way eyes were originally

animated, giving them richer color and definition, thus impacting on the

perception of gaze.

5.1 Experimental games

This paper examined several experimental games that explore the use of

gaze interactions in virtual environments.

One of the games studied was created by Carroll [26], who developed a

virtual world where gaze behavior was used to determine whether players

and NPCs would engage in a social interaction. While the project provides

detailed information to replicate such a world, it could be enhanced by

adding a story line.

Dobre et al. [10] collaborated with two game companies to develop an

immersive game environment that collected data for a machine learning

model. This model studied social interactions between players and non-

player characters exhibiting different emotions. The findings of this model

can be applied to create characters that realistically exhibit emotions, im-

proving the overall gaming experience.

Coffee without Words [14], another game studied in this paper, is a VR

experience that challenges players to interact with a NPC in a cafe us-

ing only their gaze. Players are given a short story and must identify the

emotions conveyed by the gaze of the virtual character at the end of the

interaction. This innovative use of gaze interactions enhances the immer-

sive experience and creates a more engaging game play.

Although not a game, it is essential to mention the experiment by Fox

and Bailenson [24] to consider the ethical use of gaze animation in games.

They developed an immersive environment where users interacted with

female virtual characters that had gaze animations and stereotypical ap-

pearances representing vamps and virgins. Among their findings, users

showed greater acceptance of rape myths when the characters looked

more provocatively and maintained eye contact.

Overall, these implementations demonstrate the potential of gaze in-

teractions to enhance social interactions and emotional experiences in

games, while also highlighting the need for ethical considerations in their

use.

5.2 Commercial games

After an informal consultation to players of VR games, it was discovered

that only few commercial games utilize gaze animation effectively.

Figure 1. Improved eyes Skyrim enables users to modify the aspect of the eyes of NPCs
in the game. The figure shows the difference in the animation of Dawnguards
when using the mod.

In The Elder Scrolls V: Skyrim VR, the use of mods such as Pandorable’s

NPC or Improved Eyes Skyrim (see Fig. 1) is a popular practice among

players to improve the appearance and eye animations of virtual charac-

ters, making social interactions more realistic and engaging. The eye con-

tact feature is particularly interesting, as it makes players feel heard and

acknowledged by the NPCs. Similarly, in Lone Echo, the implementation

of gaze behavior in the eyes of the captain, Olivia Rhodes, creates a nat-

ural and realistic look (see Fig. 2), allowing players to interpret emotions

and intentions more accurately. This feature augments the immersion

and engagement of the story and the game world according to the users.

Figure 2. Eyes of Captain Olivia Rhodes. Users mention that her eyes help to create a
stronger connection with her.

Hellblade: Senua’s Sacrifice VR, is a game that covers psychosis, the

gaze interactions with Senua feel realistic because the creators of the

game worked with neuroscientists and people who also experienced it.

This attention to detail amplifies the authenticity and empathy of the

narrative (see Fig. 3). In contrast, in Trover Saves The Universe, the non-

realistic animation of eyes in NPCs, such as blinks, eye contact, saccades,

and the absence of eyes, increases the humor and absurdity of the game

(see Fig. 4), showing that animation does not need to be accurate, but well

thought and implemented.

Overall, the use of gaze interactions in these games shows how this fea-

(a) Senua eye contact. (b) Senua gaze aversion.

Figure 3. Animations of the eyes of Senua. Users believe that they often express sadness
and fear.

(a) Trevor (left) and Glorkon (right). (b) Eyed-flowers to jump.

Figure 4. Animations found in Trevor Saves The Universe. In (b) Trevor can jump over
the flowers and they blink to show they are hurt by said action.

ture can enhance immersion, engagement, and storytelling in virtual en-

vironments. The attention to detail in the animation of eyes, and the use

of eye contact, saccades, and other gaze behaviors, can make virtual char-

acters more realistic and relatable to players. The examples provided in

these games demonstrate the potential of gaze interactions in creating

more compelling and meaningful virtual experiences.

6 Discussion for future game implementations

As previously discussed, incorporating gaze animation in NPCs is crucial

to creating immersive and captivating experiences in VR games. By im-

plementing realistic gaze interactions between players and virtual char-

acters, game developers can enhance game play and make it more con-

vincing and engaging. However, it is essential to balance eye contact and

gaze aversion to ensure NPC interactions are both realistic and engag-

ing, while avoiding any discomfort or unease for the player. By modeling

accurate gaze of NPC characters, game developers can create a sense of

engagement and presence, allowing players to perceive the characters as

real and responsive.

For example, gaze behavior can be used to convey non-verbal cues, such

as interest, attention, boredom, distraction, or disinterest, making it an

essential aspect of the game’s narrative and story line. NPCs with dis-

tinctive gaze behaviors may communicate certain emotions or traits that

align with their character arc or role in the story of the game, providing

clues or information to the player and leading to new game play opportu-

nities and discoveries.

Additionally, it is crucial to consider the ethical implications of creating

social presence in virtual characters, particularly as NPCs become more

human-like in behavior and expression. Players may develop emotional

attachments to NPCs, leading to ethical concerns regarding controversial

themes, such as violence, sexuality, and social interactions.

Finally, a well-executed gaze animation system can improve the sense

of immersion, making the game world feel more realistic and interac-

tive. Unfortunately, this important aspect is often overlooked in most

VR games available in the market. In fact, many NPCs in these games

wear sunglasses, masks or eye patches, which greatly reduces the poten-

tial for meaningful interaction between virtual characters and players.

Therefore, it is vital for developers to consider gaze animation as a funda-

mental aspect of creating immersive and engaging VR games, with careful

consideration and implementation.

7 Conclusion

Gaze interactions are a crucial component of creating immersive and en-

gaging VR experiences. However, there is a lack of implementation in

many games currently available in the market. Realistic gaze behavior in

virtual characters can significantly enhance the game play, narrative, and

story line, providing players with a sense of engagement and presence.

Non-verbal cues, such as interest, attention, boredom, or distraction, can

convey emotions and traits that align with the character arc or role in the

game, leading to new game play opportunities and discoveries.

By incorporating a well-executed gaze animation system, developers can

improve the sense of immersion, making the game world feel more real-

istic and interactive. However, ethical implications must be considered

when creating social presence in virtual characters to avoid discomfort or

unease for the player.

As the VR gaming industry continues to evolve, it is crucial for devel-

opers to prioritize gaze interactions as a fundamental aspect of creating

immersive and engaging experiences. By doing so, players can enjoy a

more captivating and enjoyable experience in the virtual world.

References

[1] K. Ruhland, S. Andrist, J. Badler, C. Peters, N. Badler, M. Gleicher, B. Mutlu,
R. Mcdonnell, K. Ruhland, S. Andrist, J. B. Badler, C. E. Peters, N. I. Badler,
M. Gleicher, B. Mutlu, and R. Mcdonnell, “Look me in the eyes: A survey of
eye and gaze animation for virtual agents and artificial systems,” pp. 69–91,
2014.

[2] T.-H. D. Nguyen, E. Carstensdottir, N. Ngo, M. S. El-Nasr, M. Gray, D. Isaa-
cowitz, and D. Desteno, Modeling Warmth and Competence in Virtual Char-
acters. 2015.

[3] Y. Dong, S. Jörg, and E. Jain, “Is the avatar scared? pupil as a perceptual
cue,” Computer Animation and Virtual Worlds, vol. 33, 3 2022.

[4] T. Baltrusaitis, A. Zadeh, Y. C. Lim, and L.-P. Morency, “Openface 2.0: Facial
behavior analysis toolkit,” pp. 59–66, IEEE, 5 2018.

[5] E. Velloso and M. Carter, “The emergence of eyeplay,” pp. 171–185, ACM,
10 2016.

[6] S. Andrist, B. Mutlu, and M. Gleicher, Conversational Gaze Aversion for
Virtual Agents. 2013.

[7] J. Huang and Y. Jung, “Perceived authenticity of virtual characters makes
the difference,” Frontiers in Virtual Reality, vol. 3, 11 2022.

[8] K. L. Nowak and J. Fox, “Avatars and computer-mediated communication: A
review of the definitions, uses, and effects of digital representations on com-
munication,” Review of Communication Research, vol. 6, pp. 30–53, 2018.

[9] F. Biocca, “The Cyborg’s Dilemma: Progressive Embodiment in Virtual En-
vironments [1],” Journal of Computer-Mediated Communication, vol. 3, 09
1997. JCMC324.

[10] G. C. Dobre, M. Gillies, D. C. Ranyard, R. Harding, and X. Pan, “More than
buttons on controllers,” pp. 1–8, ACM, 9 2022.

[11] J. C. F. Ho and R. Ng, “Perspective-taking of non-player characters in proso-
cial virtual reality games: Effects on closeness, empathy, and game immer-
sion,” Behaviour & Information Technology, vol. 41, pp. 1185–1198, 4 2022.

[12] M. Vidal, R. Bismuth, A. Bulling, and H. Gellersen, “The royal corgi,” vol. 2015-
April, pp. 115–124, ACM, 4 2015.

[13] R. S. Hessels, “How does gaze to faces support face-to-face interaction? a
review and perspective,” Psychonomic Bulletin & Review, vol. 27, pp. 856–
881, 10 2020.

[14] B. Rooney, C. Burke, K. Balint, T. O’Leary, T. Parsons, C. T. Lee, and C. Man-
tei, “Virtual reality, presence and social cognition: The effect of eye-gaze and
narrativity on character engagement,” pp. 1–6, IEEE, 10 2017.

[15] M. L. Yuan, G. G. Chua, F. Farbiz, and S. Rahardja, Eye contact with a
virtual character using a vision-based head tracker. 2011.

[16] N. Bee, J. Wagner, E. André, F. Charles, D. Pizzi, and M. Cavazza, “Interact-
ing with a gaze-aware virtual character,” vol. 28, pp. 71–77, ACM, 2 2010.

[17] A. Normoyle, J. B. Badler, T. Fan, N. I. Badler, V. J. Cassol, and S. R. Musse,
“Evaluating perceived trust from procedurally animated gaze,” pp. 141–148,
ACM, 11 2013.

[18] S. Martinez, R. J. S. Sloan, A. Szymkowiak, and K. Scott-Brown, Using
Virtual Agents to Cue Observer Attention Assessment of the impact of agent
animation. 2010.

[19] P. Kulms and S. Kopp, Using Virtual Agents to Guide Attention in Multi-task
Scenarios. 2013.

[20] B. J. Lance and S. C. Marsella, “The expressive gaze model: Using gaze
to express emotion,” IEEE Computer Graphics and Applications, vol. 30,
pp. 62–73, 7 2010.

[21] R. B. Queiroz, L. M. Barros, and S. R. Musse, “Providing expressive gaze
to virtual animated characters in interactive applications,” Computers in
Entertainment, vol. 6, pp. 1–23, 10 2008.

[22] S.-H. Kang, A. Feng, A. Leuski, D. Casas, and A. Shapiro, “Smart Mobile
Virtual Humans: “Chat with Me!”,” in Proceedings of the 15th Interna-
tional Conference on Intelligent Virtual Agents (IVA), (Delft, Netherlands),
pp. 475–478, Springer, Aug. 2015.

[23] M. Lankes, “Social gaze in minimalist games,” pp. 450–460, ACM, 11 2020.

[24] J. Fox and J. N. Bailenson, “Virtual virgins and vamps: The effects of expo-
sure to female characters’ sexualized appearance and gaze in an immersive
virtual environment,” Sex Roles, vol. 61, pp. 147–157, 8 2009.

[25] W. Scacchi, Modding as an Open Source Approach to Extending Computer
Game Systems. IGI Global, 2011.

[26] D. Carroll, “Attention and communication in virtual worlds: Interacting
with non-player characters in virtual reality,” Master’s thesis, 2022.

Review on the security of OpenID
Connect

Xu Feng
xu.feng@aalto.fi

Tutor: Aleksi Peltonen

Abstract

OpenID Connect is a widely adopted single-sign-on protocol. Researchers

have conducted many analyses on the security of the protocol. This pa-

per reviews related literature and summarizes critical security vulnerabil-

ities, mitigation approaches and diagnostic tools for OpenID Connect. The

findings indicate that most vulnerabilities arise from the unlinkability be-

tween multiple protocol phases and depend on several classical attacks.

Both roles involved in the protocol should take measures to mitigate se-

curity vulnerabilities. This review provides a high-level perspective of the

security of OpenID Connect and will help developers build secure applica-

tions.

KEYWORDS: OpenID Connect, security vulnerabilities, authentication,

authorization, session integrity

1 Introduction

In recent years, the use of modern web applications has become increas-

ingly popular. However, it is a challenging task for users to manage a

large number of application accounts. Therefore, researchers have pro-

posed Single Sign-On (SSO) protocol, where users delegate authentication

on the Relying Parties (RP) to other Identity Providers (IdP) [1]. OpenID

Connect, developed by Google, is one of the most widely-adopted SSO pro-

tocols. Its use cases include web, cloud, mobile devices and IoT [2, 3].

OpenID Connect is based on the OAuth 2.0 protocol [4, 5], which provides

a secure way for users to grant access to their resources to third-party

applications without sharing their credentials directly.

Although OpenID Connect helps users manage their application accounts,

it suffers from potential security and privacy vulnerabilities. Based on

the reviewed analyses, many relying parties suffer from at least one secu-

rity vulnerability in their OpenID Connect implementations. Therefore,

it is crucial to have an overview of the different types of security vulnera-

bilities of OpenID Connect, the recommended mitigation approaches and

diagnostic tools.

This paper reviews the latest security analyses of OpenID Connect, in-

cluding security vulnerabilities, mitigation approaches and diagnostic tools.

The rest of the paper is organized as follows. Section 2 explains OpenID

Connect fundamentals. Section 3 summarizes the security vulnerabili-

ties, related mitigation approaches and diagnostic tools for OpenID Con-

nect. Section 4 provides findings related to the reviewed security analyses

of OpenID Connect. Finally, Section 5 concludes this paper.

2 OpenID Connect

2.1 Overview

OpenID Connect enables users to log into the relying party by authenti-

cating themselves at the identity provider [5]. The overall processes can

be divided into three phases [6]. At the discovery phase, the RP connects

to the correct IdP and retrieves necessary information for authentication.

At the registration phase, the RP registers at the IdP and obtains its client

identifier. At the login phase, the user authenticates at the IdP. The IdP

then returns the ID token and access token to the RP. The ID token is

the proof of the user’s authentication at the IdP, with which the RP can

confirm the identity of the user [5]. The access token proves that the

user has authorized the RP to access the protected resources at the IdP

[5].

2.2 Protocol Flow

The protocol flow of OpenID Connect is the interaction between the end

user (browser), relying party and identity provider. The protocol specifies

three modes: authorization code mode, hybrid mode and implicit mode.

Most RPs adopted the authorization code mode. Next, we briefly summa-

rizes the basics of these three modes.

Authorization code mode. In this mode, after the user’s authentica-

tion, the RP will receive an authorization code from the IdP [5]. Then,

the RP redeems the id_token and access_token by presenting the received

code at the IdP. The following is a detailed step-by-step protocol flow of

OpenID Connect in authorization code mode [6]. The flow is also shown

in Figure 1.

1. The user enters the RP login page to initiate an SSO request by

submitting the email.

2. The RP requests the email domain server and determines the correct

IdP for later connection based on the WebFinger mechanism [7].

3. The RP receives the discovery endpoint of the IdP.

4. The RP retrieves all necessary OIDC configurations from the IdP.

5. The IdP responds with configurations including the issuer (the is-

suer identifier of the IdP), jwksURI (JSON Web Key Set URI [8]),

regEP (registration endpoint), authEP (authentication endpoint), to-

kenEP (token endpoint) and userinfoEP (user information endpoint).

6. The RP retrieves the public key from the IdP by accessing jwksURI

in case the RP does not have one.

7. The IdP responds with its public key, which is used later by the RP

to validate signatures from the IdP.

8. The RP provides its redirect URIs and registers itself at the IdP

through regEP.

9. The IdP responds with the client_id of the RP and possibly a client_secret.

10. The RP sends back to the browser the authEP, a randomly-generated

state value, redirect URI of the RP, client_id/client_secret and possi-

bly a nonce.

11. The browser is redirected to the authEP with all the parameters in

step 10.

12. The browser displays the login page of the IdP.

Figure 1. Protocol flow of OpenID connect (authorization code mode) [5, 6]

13. The user submits valid credentials to the IdP for authentication.

14. The IdP sends back the generated authorization code, the issuer

identifier and the state value, which the RP sends in step 11.

15. The RP received the authorization code, the issuer identifier and

the state value. If the state value and issuer identifier match the

previous steps, the received code is trustworthy.

16. The RP redeems tokens at the IdP by presenting the authorization

code and the client_id/client_secret to the tokenEP.

17. The IdP issues the id_token and access_token.

18. After the verification of tokens by using the public key, the RP of-

ficially confirms the user’s identity. The RP can later show the ac-

cess_token at userinfoEP to obtain the user’s protected resources at

the IdP.

Hybrid mode. The IdP issues the authorization code and either the

id_token and access_token. Then, the RP extracts them from the URL

fragment and uses the code to request the other token [5].

Implicit mode. The IdP directly issues the id_token and access_token.

These values are appended as the URL fragment, and the RP uses JavaScript

to extract them and then send them to the RP [5].

3 Security Analysis

Fett et al. [6] first formally analyze OpenID Connect and proves the secu-

rity properties of OpenID Connect, including authentication, authoriza-

tion and session integrity. However, OpenID Connect still suffers from a

large number of security vulnerabilities when it is deployed to real-world

production. This section illustrates some critical vulnerabilities in the

analysis, the related mitigation approaches and diagnostic tools. Fortu-

nately, all of those vulnerabilities are reported and fixed.

3.1 Threat Models

Security analyses of OpenID Connect implementations are based on threat

models, where attackers have different capabilities to perform malicious

actions. The web attacker model [9, 10] is mostly used in the analyses. In

this model, a web attacker is capable of sending arbitrary HTTP requests

to any public web applications and receiving responses. Furthermore, the

attack can post malicious links or contents on the public web application,

which trick victims into opening a malicious Uniform Resource Identifier

(URI) [10]. In some analyses, a passive network attacker is also consid-

ered, who is able to intercept unencrypted network data [9].

Dolev-Yao model [11] is a widely adopted formal model, which is used

to prove the properties of protocols. Based on the Dolev-Yao model, Fett

et al.’s [12] propose FKS web model, which defines a general communica-

tion model for web systems, to formally analyze the security of OpenID

Connect [6].

3.2 Malicious Endpoints Attacks

The malicious endpoints attacks take advantage of second-order vulner-

abilities in OpenID Connect [10], where the attacker places the attack

vectors in the discovery phase and executes the attack in later phases.

Based on the goals of the attacks, Mainka et al. classifies them into four

types [10]:

(1) IdP Mix-Up Attack. Fett et al.’s [6, 13] analysis first reports this

attack. The user is tricked to initial the SSO request to the attacker’s

malicious IdP (possibly by Client Side Request Forgery, CSRF). Then, the

attacker makes the regEP and tokenEP (token endpoint) point to the ma-

licious IdP but keeps the authEP pointing to the honest IdP (step 5). As

a result, the user authenticates at the honest IdP, but the RP redeems

tokens at the malicious IdP, leading to authorization code leakage.

(2) Server Side Request Forgery (SSRF). In this case, the attacker can

intentionally set some endpoints (step 5) to point to other service end-

points of the client. Later, the client may call those endpoints, leading to

unexpected consequences.

(3) Code Injection Attack. Like the IdP mix-up attack, when the user

redeems tokens at the malicious IdP, the attacker injects malicious code

into the messages, which may be stored in the application and cause per-

sistent XSS (Cross Site Scripting) attacks.

(4) Denial-of-Service (DoS) Attack. Similar to SSRF, some endpoints

are modified to point to large data files, which leads to the client wasting

network and memory resources.

An effective way to mitigate Idp mix-up attack is to add the IdP issuer

identifier to the response in step 15, which allows the RP to check whether

the code received in step 15 is from the expected IdP [6]. This binds the

discovery phase and authentication phase together [10]. Mainka et al.

proposed two other mitigation approaches, including the whitelist verifi-

cation of IdPs in the discovery phase, and the binding of the authEP and

tokenEP [10].

To mitigate the SSRF and Code injection attacks, the client should care-

fully check and escape the received endpoints and messages. To protect

against the DoS attack, Mainka et al. suggests that the client check the

Content-Length HTTP header before accessing any endpoints [10].

3.3 Session Swapping Attack

The session swapping attack [9, 6] is a type of CSRF attack that happens

because the RP developers forget to generate a state value in step 10 or

check the returned state value in step 15. To start the attack, the attacker

logs into the RP following the normal protocol flow until step 14. The

attacker intercepts the redirect link containing its own authorization code

and constructs a CSRF attack using that link. As a result, after a click the

link (step 15), the user logs into the RP using the attacker’s identity, which

may cause private data leakage. According to Li et al.’s assessment [9],

24 of the 33 surveyed RP clients are vulnerable to the session swapping

attack.

Li et al. [9] suggests that the RP should generate a state value in step

10 and check whether the returned state value in step 15 matches with

the one in step 10. Since many RP developers in the real world often ig-

nore the state parameter, they propose a new way to mitigate such CSRF

attacks. The RP needs to ensure the Referer Header of the response con-

tains the domain of either the IdP or RP before redeeming tokens [14, 15].

However, even if the state value is appropriately used, it can be stolen

by extracting the HTTP Referer Header in a CSRF or XSS attack [6, 13],

which still leads to the session swapping attack. Fett et al. [6] suggested

suppressing the Referer Header by applying referer policies and letting

the state value expire right after usage.

3.4 Naïve RP Session Integrity Attack

The naïve RP session integrity attack [6] happen because the specification

does not instruct developers to avoid using naïve user intention tracking,

where the tokenEP is directly appended to the redirect URI in step 10. In

that case, the attacker may make the tokenEP point to another IdP and

replace the authorization code with the attacker’s code issued from that

IdP. As a result, the user logs into the attacker’s account at the RP. The

RP should use explicit user intention tracking to avoid this attack, where

the tokenEP is stored within the session data on RP servers.

3.5 307 Redirect Attack

HTTP status codes 303 and 307 can both be used for temporary redirec-

tion after authentication. However, 303 always redirects using a GET

request, while 307 preserves the original HTTP request method. In the

latter case, the browser will resend the HTTP POST request containing

credentials from the previous request to the RP, which is vulnerable to

impersonation. Fett et al. [6, 13] advised developers to use a 303 status

code for redirection since the specification does not mention it.

3.6 Automatic Authorization Granting Attack

Google’s "automatic authorization granting" feature will automatically re-

spond with tokens to the RP if the user has already been authenticated to

Google and granted permission for the RP [9]. The malicious script may

send an authorization request to Google by an XSS attack. As a result,

the access_token is extracted and sent to the attacker’s server. Li et al.’s

[9] assessment shows that all the RPs investigated are vulnerable to such

attack.

3.7 Wrong Implementation

Some RP developers misunderstand the OpenID Connect specification [9].

For example, 6 of the 33 RPs are suspicious of authenticating users only

by Google ID instead of the redeemed id_token [9]. Thus, the attacker may

impersonate the user if the user’s Google ID is leaked. 15 out of the 19 RPs

authenticate users by access_token [9], which may lead to other RPs im-

personating users by submitting the same access_token. Some RP clients

even connect to the IdP without SSL protection. Li et al. [9] suggest that

all RP developers understand and strictly follow the specification before

implementation.

3.8 Security Diagnostic Tools

In the real world, it is impossible to expect each developer to fully under-

stand and strictly follow the specification without making any mistakes.

Thus, many security diagnostic tools are designed to detect vulnerabilities

automatically, warn users and fix potential issues. This section explains

some newly-designed security diagnostic tools.

PrOfESSOS. PrOfESSOS is a simple tool for automatic analysis of

OpenID Connect implementations. It can detect, and evaluate both single-

phase and cross-phase attacks [1].

OAuthGuard. OAuthGuard is a Javascript Chrome browser extension,

capable of automatically monitoring HTTP requests, identifying potential

vulnerabilities and performing appropriate mitigation approaches [16].

OAuthGuard supports detecting five classes of OpenID Connect security

vulnerabilities, including CSRF attacks, impersonation attacks, autho-

rization flow misuse, unsafe token transfers and privacy leaks. According

to the experiment [16], OAuthGuard successfully revealed that half of the

137 RPs had at least one security vulnerability.

4 Discussion

This section provides some thought-provoking findings based on the re-

view of security analyses, which might enlighten OpenID Connect devel-

opers.

(1) Most vulnerabilities arise from the unlinkability between phases.

Most attacks take advantage of the unlinkability between two or more

phases. For example, in malicious endpoints attacks [10], the RP does

not know whether the endpoints received in the discovery phase are re-

liable. In session swapping attacks [9, 6] and naïve RP session integrity

attacks [6], the RP fails to redeem tokens at the IdP where the user au-

thentication happens. All the mitigation approaches add additional pa-

rameters, such as the issuer identifier and the state value, to link differ-

ent phases together. Mainka et al.’s [1] analyses shows similar results.

The lack of binding between multiple phases causes cross-phase attacks,

which are difficult to detect. On the contrary, single-phase attacks, such

as the wrong recipient attack, replay attack and signature bypass attack

[1], are well-researched. If RP developers follow the specification, these

attacks can be avoided.

(2) Most attacks rely on other classical attacks. Nearly all the attacks

reviewed in this paper depend on a CSRF or XSS attack, which leads

to the user sending unauthorized requests or leaking essential values.

Developers should keep paying attention to these well-studied classical

attacks and adopting appropriate mitigation approaches.

(3) Both RPs and IdPs should take responsibility. Most attacks are

caused by RP developers failing to follow the security guidelines in the

specification [5]. Developers either misunderstand how to implement the

OpenID Connect service or sacrifice security for easy implementation.

However, IdPs should also be responsible for these attacks. For exam-

ple, according to an analysis [9], Google did not return the state value

in step 14, and the sample code did not instruct developers to verify the

state value. In addition, the "automatic authorization granting" feature

also brings potential vulnerabilities. All in all, both RPs and IdPs need to

collaborate to build more web applications.

5 Conclusions

This paper reviews common attacks against OpenID Connect, methods,

and tools to mitigate and detect those attacks. The review finds that

the loose bindings between multiple protocol phases may be the primary

reason for most security vulnerabilities. Some classical attacks are the

foundation of most OpenID Connect attacks. In the future, it is highly

recommended that RP developers should understand and follow the spec-

ification before implementation. After that, developers can utilize appro-

priate security diagnostic tools to detect potential vulnerabilities in their

implementation. In addition to RPs, IdPs should improve their OpenID

Connect service documentation and actively fix reported security vulner-

abilities.

References

[1] Christian Mainka, Vladislav Mladenov, Jörg Schwenk, and Tobias Wich.
SoK: single sign-on security—an evaluation of OpenID Connect. In 2017
IEEE European Symposium on Security and Privacy (EuroS&P), pages 251–
266. IEEE, 2017.

[2] Glauber Batista, Charles Miers, Guilherme Koslovski, Maurício Pillon, Nel-
son Mimura Gonzalez, and Marcos Simplicio. Using externals IdPs on
OpenStack: A security analysis of OpenID Connect, Facebook Connect, and
OpenStack authentication. In 2018 IEEE 32nd International Conference
on Advanced Information Networking and Applications (AINA), pages 920–
927. IEEE, 2018.

[3] Nitin Naik and Paul Jenkins. Securing digital identities in the cloud by
selecting an apposite federated identity management from SAML, OAuth
and OpenID Connect. In 2017 11th International Conference on Research
Challenges in Information Science (RCIS), pages 163–174. IEEE, 2017.

[4] Michael Jones and Dick Hardt. The OAuth 2.0 authorization framework:
Bearer token usage. Technical report, 2012.

[5] Natsuhiko Sakimura, John Bradley, Mike Jones, Breno De Medeiros, and
Chuck Mortimore. OpenID Connect core 1.0. The OpenID Foundation,
page S3, 2014.

[6] Daniel Fett, Ralf Küsters, and Guido Schmitz. The web SSO standard
OpenID Connect: In-depth formal security analysis and security guide-

lines. In 2017 IEEE 30th Computer Security Foundations Symposium
(CSF), pages 189–202. IEEE, 2017.

[7] Paul Jones and Gonzalo Salgueiro. WebFinger. Technical report, 2013.

[8] Michael Jones, John Bradley, and Nat Sakimura. JSON web token (JWT).
Technical report, 2015.

[9] Wanpeng Li and Chris J Mitchell. Analysing the security of Google’s imple-
mentation of OpenID Connect. In Detection of Intrusions and Malware, and
Vulnerability Assessment: 13th International Conference, DIMVA 2016, San
Sebastián, Spain, July 7-8, 2016, Proceedings 13, pages 357–376. Springer,
2016.

[10] Vladislav Mladenov, Christian Mainka, and Jörg Schwenk. On the security
of modern single sign-on protocols: Second-order vulnerabilities in OpenID
Connect. arXiv preprint arXiv:1508.04324, 2015.

[11] Danny Dolev and Andrew Yao. On the security of public key protocols.
IEEE Transactions on information theory, 29(2):198–208, 1983.

[12] Daniel Fett, Ralf Küsters, and Guido Schmitz. An expressive model for
the web infrastructure: Definition and application to the browser id SSO
system. In 2014 IEEE Symposium on Security and Privacy, pages 673–688.
IEEE, 2014.

[13] Daniel Fett, Ralf Küsters, and Guido Schmitz. A comprehensive formal
security analysis of OAuth 2.0. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 1204–1215,
2016.

[14] Wanpeng Li, Chris Mitchell, and Thomas Chen. Mitigating CSRF attacks
on OAuth 2.0 systems. In 2018 16th Annual Conference on Privacy, Security
and Trust (PST), pages 1–5. IEEE, 2018.

[15] Wanpeng Li, Chris Mitchell, and Thomas Chen. Mitigating CSRF attacks
on OAuth 2.0 and OpenID Connect. arXiv preprint arXiv:1801.07983, 2018.

[16] Wanpeng Li, Chris Mitchell, and Thomas Chen. Oauthguard: Protecting
user security and privacy with OAuth 2.0 and OpenID Connect. In Pro-
ceedings of the 5th ACM Workshop on Security Standardisation Research
Workshop, pages 35–44, 2019.

Adversarial Attacks on Machine Learning
Based Malware Detection Systems

Sanzhar Yeleuov
sanzhar.yeleuov@aalto.fi

Tutor: Blerta Lindqvist

Abstract

KEYWORDS: adversarial attacks, malware detection

1 Introduction

In recent years, interest in machine learning is rapidly growing both in

industry and academia. Machine learning is extensively used in predic-

tion and complex decision-making processes due to the ability to analyze

and learn from huge data sets. Among applications that benefit from us-

ing machine learning algorithms, there are critical applications such as

self-driving cars and malware detection.

However, security concerns have been raised due to the potential for ma-

chine learning algorithms to be exploited in adversarial settings, leading

to misclassification [4, 6, 11, 14, 15]. This type of behavior is known as

Adversarial Attack.

To address these issues some studies proposed defense strategies, some

examples of which are Adversarial Training and Gradient Hiding. [5].

Although, some protection mechanisms were proved to be insufficient by

techniques presented by other researchers [3].

This paper reviews black-box testing data attacks against malware de-

tection models, their limitations and success rates of attacks against bench-

mark models. Section 2 covers background knowledge about adversarial

attacks and techniques used to detect malware. A detailed review of the

algorithms proposed by state-of-the-art attacks will be introduced in sec-

tion 3. Section 4 will cover experimental results against VirusTotal [1].

Section 5 concludes with a summary and further research proposals.

2 Background

2.1 Malware Detection Methods

Malware detection methods can be categorized into three types: signature

based, specification based and heuristic based. [20]

Signature-based malware detection is a traditional approach that in-

volves the identification of known malware through the use of prede-

fined patterns, or signatures, that are unique to each malware variant.

This technique relies on the comparison of the digital fingerprint of a

suspicious file or code segment with a database of signatures that are

generated by analyzing the characteristics of known malware samples.

When a match is found between the suspicious code and a signature in

the database, the file is classified as malicious and appropriate action

is taken. Although signature-based detection is effective against known

malware, it may fail to detect new and previously unseen malware vari-

ants that do not match any existing signatures.

Specification-based malware detection is a technique that involves

the creation of a set of rules, or specifications, that define the expected be-

havior of legitimate software applications or operating system functions.

[20] These specifications are used to verify the behavior of a program or

system component. If the observed behavior deviates from the expected

specifications, the program or component is flagged as potentially mali-

cious. Advantages of this method are ability to detect zero-day attacks

and low rate of false positives. On the other side, main disadvantage of

this approach is that it requires a detailed understanding of the expected

behavior of the software or system components being monitored, which

can be challenging in complex and constantly evolving software environ-

ments.

Heuristic-based malware detection is another technique that observes

behavior of the program in order to identify malware. However, in con-

trast with specification-based approach, it does not require specification of

tested software. Instead, heuristic-based malware detection utilizes ma-

chine learning to make a decision. [20] By analyzing specific attributes

or patterns within a program, these techniques aim to uncover previously

unknown or undetected malware by drawing on a broader understanding

of malicious behavior. However, it may also produce false positives and

may be less effective against sophisticated malware that is specifically

designed to evade heuristic-based detection methods.

2.2 Machine Learning in Malware Detection

Application of machine learning varies in malware detection process. Firstly,

machine learning model can be used as a classifier. According to Kasper-

sky, data used for classification can be divided into two categories: pre-

execution phase data and post-execution phase data [12]. Pre-execution

phase data refers to information that can be retrieved without file execu-

tion, while post-execution phase data refers to artifacts of the program,

e.g. logs of events triggered during execution [12]. Classifiers utilizing

pre-execution phase data are safer and require less computation power,

since program is not executed to be tested. However, malicious part of

some malware is either encrypted or absent, since it is downloaded from

remote server during execution and, additionally, it is not always possi-

ble to identify malware solely based on pre-execution phase data. Conse-

quently, most vendors use classifiers utilizing post-execution phase data

or multiple classifiers based on both types of data [12, 18]. Secondly,

machine learning can be used to generate signatures for signature-based

malware detection [19].

2.3 Adversarial Attacks

Adversarial attacks are a class of attacks that aim to exploit vulnera-

bilities in machine learning models by intentionally modifying input data

to cause misclassification or erroneous predictions. Based on which data

is manipulated, those attacks can be categorized into two types: training

and testing data attacks.

Training data attacks, also known as poisoning attacks [16], refer to

attempts to manipulate or compromise the data used to train machine

learning models. These attacks may involve introducing biases or distor-

tions into the training data to produce models that exhibit undesirable

behavior or are susceptible to targeted attacks.

Testing data attacks aim to manipulate input data that elicits incor-

rect outputs or outputs revealing sensitive information from the target

model, without making any direct modifications to the underlying archi-

tecture of the model itself [16]. Based on amount of knowledge attacker

possess about target model, testing data attacks can be divided into two

categories: white-box and black-box.

White-box attacks are characterized by adversary conversant of inter-

nal structure and parameters of the target model.

Black-box attacks are characterized by lack of knowledge regarding

target model. As a result, attackers are typically restricted on collecting

input-output pairs to infer decision-making process of the model.

3 State-of-the-Art Attacks

Many research is executed covering various adversarial attacks. However,

most of the classical research works in the field of adversarial attacks,

both white-box [3, 4, 15] and black-box [6, 14], are done in the field of

image recognition [3, 6]. The primary limitation transferring adversarial

attacks designed for image recognition models to the domain of malware

detection is the restricted freedom in modifying malware samples. While

several operations performed on image samples may produce negligible

alterations, the same operations, when applied to executable files, may

disrupt the format of the executable file or impact the behavior of the

program, rendering it non-malicious. Due to this reason this section will

cover only works specifically focused on adversarial attacks on malware

detection machine learning models.

3.1 Padding Attack

The white-box adversarial attack proposed by Kolosnjaji et al. [13] seeks

to generate adversarial malware samples that evade detection by deep

learning models trained for malware detection. The approach involves

analyzing the target model’s decision boundary and the algorithm utiliz-

ing a gradient-based optimization technique that iteratively modifies the

malware samples to generate adversarial perturbations, which are unde-

tectable by the model. The mutation process in proposed work employed

the property, where appending bytes to the PE executable has no effect

to the behavior of the program. Experimental results demonstrated the

ability of proposed algorithm to generate effective adversarial malware

samples evading detection by MalConv, the deep neural network malware

detection model proposed by Raff et al. [17].

3.2 DOS header manipulation

Another successful white-box adversarial attack targeted against Mal-

Conv [17] was proposed by Demetrio et al. [9]. Additionally, authors of

this work also utilized the algorithm proposed by Kolosnjaji et al. [13] to

generate perturbations. However, instead of padding samples, generated

byte sequence was injected into DOS header, utilizing the fact that the

majority of bytes contained within the DOS header of a PE file have no

impact on execution of the program.

3.3 RAMEN

Article called "Adversarial EXEmples" by Demetrio et al. [8] propose ad-

versarial attack framework called RAMEN. RAMEN allows to reduce ad-

versarial examples generation to the form of problem optimization. In

case of white-box scenario, adversary can approach reduced problem us-

ing gradient-based attacks [8]. Same method was employed by previously

mentioned works [13, 9]. On the other hand, author suggests that black-

box attacks may be approached by exploiting gradient-free optimizers, e.g.

genetic algorithms and zeroth-order optimizers [6]. Additionally, another

contribution of this paper is description of functionality-preserving modi-

fications from previous works, as well as introduction of three novel attack

strategies. Some of the modification strategies will be referred in subse-

quent sections, i.e. header fields, extend and shift.

Header Fields locates perturbations in fields inside COFF and optional

file headers, which can be altered in an independent and arbitrary man-

ner.

Extend expands the DOS header’s area and injects there adversarial

examples the same way as in previously mentioned DOS header manipu-

lation [9].

Shift forges space for the perturbations inside the samples by shifting

first section and modifying offset in section table.

3.4 GAMMA

Black-box adversarial attack framework called Genetic Adversarial Ma-

chine learning Malware Attack (GAMMA) was presented by Demetrio et

al. [10]. Framework employs functionality-preserving modifications, e.g.

padding and DOS header manipulation, as a base block. This work is

the implementation of RAMEN using genetic optimizer. Genetic opti-

mizer starts by generating initial population. Initial population of the

GAMMA is generated from set of benign applications in attempt to op-

timize query efficiency. Population consists of vectors of functionality-

preserving modifications applied to generate mutation of the malware.

Furthermore, new samples are produced by mixing and mutating popula-

tion samples. All malware mutations, including both population and new

samples, are tested against target classifier. Finally, new population is

selected by picking N samples with lowest classification outputs. Process

is repeated until query limit is reached and sample with lowest classifier

outputs is returned.

3.5 MalGAN

Hu and Tan [11] proposed approach utilizing a generative adversarial net-

work (GAN) to craft adversarial perturbations called MalGAN. MalGAN

consists of generator and substitute detector. Generator is a multi-layer

feed-forward neural network. Input vector fed to the generator is con-

sisted of feature vector extracted from malware and noise vector. Firstly,

generator, which is limited to adding insignificant features to the mal-

ware to maintain malicious features intact, produces perturbations. Sec-

ondly, generated adversarial example is tested against black-box classi-

fier. Lastly, input-output pair is sent to second multi-layer feed-forward

neural network, substitute detector. Primary objective of the substitute

detector is to fit target model and supply generator with gradient infor-

mation.

4 Experiments

Majority if not all vendor malware detection solutions utilize machine

learning to some extent. Goal of conducted experiments was evaluation

of adversarial attacks against proprietary antivirus products. For ex-

Figure 1. Demonstrates total amount of malware detectors that marked initial sample
as malicious, but was not able to identify at least one mutation as malicious
within all populations of samples and within first 35 mutations

periments secml-malware python library [7] was utilized. Library con-

tains implementation of multiple attacks mentioned in section 3. Secml-

malware also contains MalConv pre-trained on Ember dataset [2].

4.1 Limitations

VirusTotal [1] limits daily API usage on free accounts. Additionally, con-

ceivably accounts activities are monitored to prevent malicious actors abus-

ing service to generate undetectable mutation of the malware. Combina-

tion of these constrains limited ability to conduct profound and statisti-

cally sound experiments.

4.2 Setup

MAX malware detection solution was selected, as it was one of the prod-

ucts utilizing machine learning and providing maliciousness score as an

output. Decision boundary appears to be either 1 or 10, since minimal

found value is 11. Attacks participated in the testing trails are: gamma

padding [10], gamma section [10], padding, partial DOS header modifica-

tion [9], full DOS header modification [8], header fields, shift and extend

[8]. Attacks were tested with random malware sample from VirusTotal

[1]. The samples were classified into three categories based on their size,

namely, large (approximately 1MB), medium (approximately 500KB), and

small (approximately 10KB).

4.3 Results

Despite the fact that testing sample is too small to draw any conclu-

sions there are still some indicators of specific trends for further research.

Firstly, despite the fact that 100% of black-box padding attack mutations

Figure 2. Illustrates total amount of malware detectors that was not able to identify at
least one mutation as malicious including original sample

were detected in the original work [7] against MalConv trained on [2], it

was the only algorithm that was misclassified by MAX. Moreover result

was achieved after first mutation. Short trails utilizing rest of adversarial

attacks allowed to achieve misclassification as well. Another interesting

insight was that gamma section attack is significantly outperformed other

attack strategies. Without considering outlier sample, every trial except

gamma section with 500KB sample, showed score within range between

100 and 80. On the other hand gamma section scores were within range

between 60 and 69. Additionally, gamma section showed better evasion

rates comparing to other types of attacks, which can be seen in figures 1

and 2.

5 Conclusion and future work

This paper covered recent black-box adversarial attacks in the domain
of malware detection. Some of the covered attacks tested against vendors
solutions. As a future work it would be interesting direction to test perfor-
mance of state-of-the art attack in conditions with higher query limit and
to include attacks that affect behavior of the program, e.g. by appending
irrelevant API system calls [11].

References

[1] Virustotal. https://www.virustotal.com/.

[2] Hyrum S Anderson and Phil Roth. Ember: an open dataset for training
static pe malware machine learning models. arXiv preprint arXiv:1804.04637,
2018.

[3] Nicholas Carlini and David Wagner. Adversarial examples are not easily
detected: Bypassing ten detection methods. In Proceedings of the 10th ACM
workshop on artificial intelligence and security, pages 3–14, 2017.

[4] Nicholas Carlini and David Wagner. Towards evaluating the robustness
of neural networks. In 2017 ieee symposium on security and privacy (sp),
pages 39–57. Ieee, 2017.

[5] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay,
and Debdeep Mukhopadhyay. Adversarial attacks and defences: A survey.
arXiv preprint arXiv:1810.00069, 2018.

[6] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh.
Zoo: Zeroth order optimization based black-box attacks to deep neural net-
works without training substitute models. In Proceedings of the 10th ACM
workshop on artificial intelligence and security, pages 15–26, 2017.

[7] Luca Demetrio and Battista Biggio. Secml-malware: Pentesting windows
malware classifiers with adversarial exemples in python. arXiv preprint
arXiv:2104.12848, 2021.

[8] Luca Demetrio, Battista Biggio, Giovanni Lagorio, Alessandro Armando,
and Fabio Roli. Adversarial exemples: Functionality-preserving optimiza-
tion of adversarial windows malware. In ICML 2021 Workshop on Adver-
sarial Machine Learning, 2021.

[9] Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, and Alessan-
dro Armando. Explaining vulnerabilities of deep learning to adversarial
malware binaries. arXiv preprint arXiv:1901.03583, 2019.

[10] Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, and Alessan-
dro Armando. Functionality-preserving black-box optimization of adver-
sarial windows malware. IEEE Transactions on Information Forensics and
Security, 16:3469–3478, 2021.

[11] Weiwei Hu and Ying Tan. Generating adversarial malware examples for
black-box attacks based on gan. In Data Mining and Big Data: 7th Inter-
national Conference, DMBD 2022, Beijing, China, November 21–24, 2022,
Proceedings, Part II, pages 409–423. Springer, 2023.

[12] Kaspersky. Machine learning for malware detection. https://media.

kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.

pdf, 2021.

[13] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Gior-
gio Giacinto, Claudia Eckert, and Fabio Roli. Adversarial malware binaries:
Evading deep learning for malware detection in executables. In 2018 26th
European signal processing conference (EUSIPCO), pages 533–537. IEEE,
2018.

[14] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in
machine learning: from phenomena to black-box attacks using adversarial
samples. arXiv preprint arXiv:1605.07277, 2016.

[15] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay
Celik, and Ananthram Swami. The limitations of deep learning in adver-
sarial settings. In 2016 IEEE European symposium on security and privacy
(EuroS&P), pages 372–387. IEEE, 2016.

[16] Shilin Qiu, Qihe Liu, Shijie Zhou, and Chunjiang Wu. Review of artificial
intelligence adversarial attack and defense technologies. Applied Sciences,
9(5):909, 2019.

[17] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catan-
zaro, and Charles Nicholas. Malware detection by eating a whole exe. arXiv
preprint arXiv:1710.09435, 2017.

[18] SentinelOne. Machine learning with a little magic on top! https://www.
sentinelone.com/blog/machine-learning-little-magic-top/, 2018.

[19] Daniel Stepanic and Andrew Davish. Linux malware protection in elastic
security. https://www.elastic.co/blog/linux-malware-protection-in-elastic-security,
2022.

[20] Rabia Tahir. A study on malware and malware detection techniques. Inter-
national Journal of Education and Management Engineering, 8(2):20, 2018.

Approahes to Accelerate Mesh
Deformation in Practical Situations

Fan Yuanhao
yuanhao.fan@aalto.fi

Tutor: Mauranen Henry

Abstract

This paper introduces an overview of recent articles that are dedicated to

accelerating the mesh deformation process. Mesh deformation plays an im-

portant role in computer graphics. Therefore several approaches have been

devised to accelerate the mesh deformation process. The paper mainly dis-

cusses two classes, mesh simplification concerning methods, and transform

matrix modification. The paper also considers some real-life, especially

medical-concerned application topics of mesh deformation, and explains

how these approaches improve the results under these situations.

KEYWORDS: Mesh Deformation, Laplace coordinates, medical applica-

tion, vertex contracting, Hierarchical Progressive Meshes.

1 Introduction

Deformation is always a subject undergoing intense study in computer

graphics (CG). The construction of 3D models emerges after the appear-

ance of the technology of 3D-CG, and develops with 3D-CG or 3D-CGI

(Computer Graphic Imagery), thus promoting the so-called Computer-

Aided Modeling(CAM) and Computer-Added Design(CAD). In practice, 3D

Models are always represented as meshes, i.e. approximated with trian-

gular facets on the surface, called surface meshes, and tetrahedral mesh

in the interior, called volumetric meshes. One important topic of these

meshes is mesh deformation, which concerns the study of how to repre-

sent the deformation of the soft body with the mesh.

In this study, we start with the knowledge of Laplacian Coordinates(LCs),

one of the fundamental mathematical tools for deformation simulation.

The study then presents some modifications of the standards key-points

based deformation simulation technology. There exist mainly two differ-

ent approaches. One focuses on mesh simplification, and one focuses on

the improvement of deformation representation. The study then discusses

the result of these approaches and gives some application scenarios.

This paper is organized as follows: Section 2 describes the backgrounds,

Section 3 provides the selected Method, Section 4 demonstrates the Re-

sults of the survey, Section 5 presents Discussion of the overall survey

outcome, and ends with Section 6 Conclusion.

2 Background

This section will introduce the fundamental process of Deformation with

Laplacian Coordinates(LCs). The idea is developed by Sorkine, Olga as

in [8, 7]. Uwe Hahne and Andrew Nealen further developed this method

as in [3, 5], and the synthesized method was well-represented by Tao Ju

in the course CSE 554 of Washington University St.Louis (wusl) as pre-

sented below.

In Practice, mesh deformation defines key points, and implements the

process of deformation by fitting other points according to these key points.

In most practical situations, several points in the original mesh called key

points will be assigned to a new position. This happens, for example, when

the user drags some points in the mesh with the mouse. To simulate the

soft body deformation, the other points also need to change their posi-

tion to make a smooth transition. One simple but fundamental scheme

is just to first calculate the transform matrix and then applied it to all

the points. The paper will introduce this method further in Background

Section. However, it is always too slow to simply adapt this direct-matrix-

applying method.

Suppose the source mesh and the target mesh have been aligned, the

problem could be set up with input: n source points p1, p2, ..., pn and the

target location of m handles/key points q1, ..., qm m ≤ n, and output: de-

formed locations of all the source points p′1,, p′n. The desired p′i could be

seen as the one that minimizes two terms: Ef fitting term measuring how

close the deformed source is to the target and Ed distortion term measur-

ing how the source shape is changed. While the former could be simply

written as Ef =
∑m

i=1 ||p′i − qi||2, the latter need more consideration.

To measure the degree of distortion, Tao introduces a "Laplacian" to

describe the bumpiness at each vertex. This Laplacian Coordinates is a

linear operator that maps vectors[15, 8] to vectors and is defined below:

L[pi] = pi −
1

|Ni|
∑

j∈Ni

pj (1)

where Ni are indices of neighboring vertices of pi. Let δi = L[pi], the

distortion term could be written as Ed =
∑n

i=1 ||L[p′
i] − δi||2 Thus we can

rearrange the two items into a form of min
∑k

i=1 ||aTi x− bi||2 = ||Ax−B||.
At this stage, we can easily solve it with partial derivatives, formulated

as x = (ATA)−1ATB

It is noticeable that the LC operator is invariant under translation, but

not invariant under rotation and scaling. So we need to add another trans-

forming term Ti to the original Laplacian vectors before comparing them

to the deformed Laplacians like Ed =
∑n

i=1 ||L[p′
i] − Tiδi||2. It is also no-

ticeable this Laplacian coordinator operator is a differential element of

the famous Laplacian Operator ∆ = ∇2

3 methods

This survey mainly contains articles from IEEE. The paper referenced by

this survey is firstly on the problem of mesh deformation and secondly

satisfied the 15-year limit, i.e. from 2010 till now. With a belief that every

scientific research matters, this survey paper does not restrict the impact

factor of the articles, but only concerns the relativity of the keywords e.g.

mesh deformation and vertex contracting. The paper is selected either

from the IEEE official website with Xplore or from the reference made

by the former, preferrable with a higher citation rate and excludes the

ones with deep mathematics such as Finite Element Methods(FEM), or

with Artificial Intelligence(AI), Deep Learning (DL) added to narrow the

scope. A detailed survey and summary were made from these articles,

thus selecting innovative accelerate approaches.

Based on the steps in which the methods are applied, the methods are

roughly classified into 2 categories, mesh simplifications, and deformation

Figure 1. Figure 3.3.1

representation. The process of mesh deformation could be generalized in 3

steps First, construct the mesh, second, solve the mathematical represen-

tation of the deformation based on some key points, last, apply this rep-

resentation to all the points in the mesh and therefore get the deformed

mesh. Thus a simple problem-solving structure is constructed, though

there is still space to speed. To accelerate, two main positions exist, after

the first step, simplify the mesh, and during the second step, modify the

deformation representation according to the simplified mesh.

4 Results

In this section, the paper analyses the approaches used in the 10 arti-

cles, filtered from approximately 20 articles selected via the method de-

scribed above. The approaches are categorized and organized as men-

tioned, firstly the mesh simplification and then the deformation represen-

tation. Some impressive approaches are highlighted in the correspond-

ing sections and others might be mentioned briefly. The last part of this

section will introduce the application of several approaches under their

original practical scenery, and evaluate their performance.

4.1 Mesh Simplification

Essentially mesh simplification methods are edge collapse, which elim-

inates certain edges in the original mesh and therefore simplifies the

mesh. This method was utilized in [1, 4] and successfully reduced the

computation cost. Figure 3.1.1 shows a simple model of edge collapse.

Here the edge e and the vertex u are collapsed, and therefore edges t3 and

t4 are also collapsed, resulting in a more simplified mesh. The problems

continued as to how to select the less essential edge of the mesh, since un-

der certain conditions the elimination of several critical edges would lead

to the collapse of the whole mesh. Here Shungang Hua in the paper [4]

gives an important measurement as shown below:

λu =
∑

t∈(T (u)−T (uv)

max
f∈T (uv)

{1− tn · fu}

where T (u), T (uv) is the set of triangles containing vertex u, and bothu

and v respectively, while tn, fn are the normals of triangle t, f , respec-

tively. Since 1− tn · fu denotes the degree of coplanar of two triangles, the

more coplanar the two facets are, the smaller λn is, and the more trivial

replacing these plans is. [1] uses simply Hausdorff distance of the edge to

measure the importance of this edge with the formula shown below:

∆(v) =
∑

p∈planes(v

(pTv)2

where p = [a, b, c, d]T represents the plane defined by the equation ax+by+

cz + d = 0 where a2 + b2 + c2 = 1.[2] Moreover, [1] found the simplification

process could be abstracted as a sequence shown below. Thus [1] applies

a CPM(Critical path method) algorithm with three restrictions to assure

there will be no elimination of critical edges.

M =M0
ecol(v1)−→ M1

ecol(v2)−→ ...
ecol(v1)−→ Mn =Msimplified

The restrictions of [1] are namely (a) at most two vertices can be collapsed

at once, (b) For all edge e = (v1, v2) that will be collapsed, and any vertex

w that is connected to both v1 and v2, triple (v1, v2, w) must define a valid

triangle, and (c) For all edge e1 = (v1, v2) that will be collapsed, and any

edge e2 = (w1, w2) forms a quadrilateral (v1, v2, w1, w2) e1 and e2 cannot be

collapsed at once.

Jingui Pan in [6] provides another hierarchical approach for mesh sim-

plification. Firstly, the paper constructs a dual map of the original map(the

dual map is basically changing the surface of the original map into ver-

tices and edges into lines) to store the connectivity information. Sec-

ondly, Jingui Pan in [6] defines three measurements to describe the conse-

quences of the collapse of one edge, Efit, planarity (similar to coplanarity

in [4]), Edir, orientation variety, and Eshape, overall shape regularity. The

total error is defined as E = Efit + α1Edir + α2Eshape with two user modi-

fiable parameter α1, α2. It is also noticeable that [6] also add constructed

a tree of the collapsed vertices in the simplification process. The tree

is useful for the construction of multi-Level Detailed Model, which is a

data structure storing different clustering-level meshes that is used for

the further acceleration of deformation implementation. Thus the process

is called Hierarchical Progressive Meshes (HPM) for the hierarchical, i.e.

tree-like structure.

Multiple simplification schemes can be used as shown in [14]. [14]

adapts an iterative binary space partition to obtain surface clustering.

The criterion to select the meshes forming a cluster mainly contains the

normal variation (identical to coplanar in [4]) and geometry variation.

The latter is computed with three steps: firstly, compute covariance ma-

trix C =
∑

Pi∈Ω(pi − p̄)(pi − p̄)T (Ω the partitioned region, p̄ the centroid

of Ω) secondly, do the eigenvalue of C with the greatest three eigenvalues

λ0, λ1, λ2 and lastly compute geometry variation σg = λ0
λ0+λ1+λ2

.

4.2 Deformation Representation

As Tao Ju illustrated in the Background Section, since the Laplacian co-

ordinate operator is not invariant under rotation and scalar, another op-

erator is needed to assist deformation. This assistant operator would be

plausible if it is linear, therefore it can be written as a matrix. There are

different approaches to constructing the desired matrix [4, 11]used affine

matrix, with an explicit method and an implicit method respectively. This

paper will introduce the main idea of both of them.

[4] introduced an explicit affine matrix construction, based on the un-

known rotation and translation matrix, while the whole mathematical

derivation could be slightly laborious. Suppose the unknown rotation ma-

trix Ri is a 3× 3 matrix for the ith key point, with the form of

Ri =

ri11 ri12 ri13

ri21 ri22 ri23

ri31 ri32 ri33

 = (ci1, c

i
2, c

i
3) (2)

. and the unknown translation vector for the ith key point is 3 × 1 vector

defined as Ti = (ti1, t
i
2, t

i
3). Then we can construct two terms i.e. regu-

larization term Ereg realizing smooth translation and rotation term Erot

realizing rotation, where

Ereg =

m∑

i=1

∑

k∈N(i)

||Ri(Pk −Pi) +Pi +Ti − (Pk +Tk)||22

Erot =
m∑

i=1

((ci1 · ci2)2 + (ci1 · ci3)2 + (ci2 · ci3)2

+ (ci1 · ci1 − 1)2 + (ci2 · ci2 − 1)2 + (ci3 · ci3 − 1)2)

(3)

where N(i) denote the neighbour of i. m is the total number of key points,

Pi = (pi1, p
i
2, p

i
3)

T is the position vector of the ith key point The goal is to

minimize the weighted sum of these two terms, i.e.

min
R1,T1,...,Rm,Tm

αEreg + βErot (4)

where α, β are user defined parameters. Let f(x) satisfy f(x)f(x)T =

αEreg + βErot, where x = (ri11, r
i
12, r

i
13, r

i
21, r

i
22, r

i
23, r

i
31, r

i
32, r

i
33, ..., t

i
1, t

i
2, t

i
3)

T

12m items, f(x) must be 3×∑m
i=1 |N(i)|+6m entries vector. Recombining

all quadratic terms, f(x) could be shown as below

f(x) =(ϕij1 (x), ϕ
ij
2 (x), ϕ

ij
3 (x), ...,

ψi
1(x), ψ

i
2(x), ψ

i
3(x), ψ

i
4(x), ψ

i
5(x), ψ

i
6(x), ...)

T
(5)

where i ∈ [m], j ∈ N(i), and

ϕijk (x) = Ri(Pj −Pi) + pi
k + tik − (pj

k + tjk) (6)

ψi
1(x) = ci1 · ci2,ψi

1(x) = ci1 · ci3,

ψi
3(x) = ci2 · ci3,ψi

1(x) = ci1 · ci1 − 1

ψi
1(x) = ci2 · ci2 − 1,ψi

1(x) = ci3 · ci3 − 1
(7)

synthesis of all the equations above the optimization goal is modified to

minx F (x) = f(x)T f(x), which is a non-linear least-squares problem. It

could be solved by the Gaussian-Newton algorithm, i.e. approximate with

the linear term of Taylor expansion and obtain a solution via iteration.

The approaches above introduce a feasible solution, while it is obvious

that it cost a lot in mathematical derivation and computation. [11] pro-

vides another method that calculates the affine matrix implicitly, with the

main idea to adapt the minimum properties in its definition. As we can

see in the formula introduced in the background Ẽ(V ′) =
∑n

i=1 ||L(v′
i) −

TiδAi||2 +
∑n

i∈H ||v′
i − ui||2(where H is the handle region and ui are key

points while vi all the points in ROI, L Laplace coordinate position and

δAi = L(ui), v′ denotes deformed vertices). The goal is to obtain T . Con-

sidering the T should be the smallest matrix to transform all the points

and the fact that the least square can deduce a linear function, T should

satisfy

Ti = argmin
Ti

(||v′
i −Tivi||2 +

k∑

j=1

||v′
ij −Tiv

′
ij ||2) (8)

where v′
ij

denotes the jth neighbour of vi. With the introduction of the

Laplacian Coordinates(LC) operator, the translation component could be

omitted since the LC operator is translation invariant. For the fact that

anisotropic scaling is rare and complex, the affine matrix could be written

as

Ti =

s −h3 h2 0

h3 s −h1 0

−h2 h1 s 0

0 0 0 1

(9)

. with s scaling coefficient and hi rotation coefficients. Solving optimal

Ti is equivalent to solve optimal vector (si, hi1, hi2, hi3). Get the partial

derivative of the vector, therefore, reached the solution

(si, hi1, hi2, hi3)
T = (AT

i Ai)
−1AT

i b (10)

where

Ai =

vjx 0 vjz −vjy
vjy −vjz 0 vjx

vjz vjy −vjx 0

...

, j ∈ {i} ∩Ni (11)

b =

v′jx

v′jy

v′jz

......

j ∈ {i} ∩Ni (12)

Similar formula as [4] are derived in [14], written

min
∑

j∈Ns(i)

wij ||Ripj + ti − pj ||2 (13)

but here the user could use Ns(i) to parameterize s-ring neighbor of ith

vertex and wij the weight of the neighbor to control the degree of the rigid-

ness of the mesh deformation. In HPM [6], the multi-Level Detail model

also adapts a weight in the mesh transformation. HPM needs to traverse

from the root to construct the multi-Level Detail model, and there are

weights related to each cluster to control the resolution. Only if encoun-

tered with those clusters with larger weights than a predefined threshold

will the algorithm go to the submesh of these nodes, otherwise the de-

formation will apply to only this simplified mesh. These two approaches

further accelerate the deformation progress.

Another simple but effective deformation method is the normal-alignment

method used in [12, 13]. In circumstances where the normal of a trian-

gle facet is known as ni and the intersection of the norm and the facet is

known as pi, one can move the extra v̂ on the boundary of facet to mini-

mize ni·(pi−v̂)
||ni||·||(pi−v̂)|| , the resulting v̂ would be perpendicular to the facet and

therefore the triangle facet would divide into two and the shape can be

deformed

4.3 Applications

Dongdong Zhou in [15] designed the experiment mainly on palm deforma-

tion. The project meshes the whole human body and focuses on the chal-

lenge of controlling the huge number of nodes/points to implement mesh

deformation. The program used the standard Laplacian Deformation dis-

cussed previously and applied dedicated data structures to store the topo-

logical information. The test scenario was designed as examining the ro-

tation of the palm. A detailed comparison between different numbers of

control points, the deformed effect, and the iteration time was recorded.

In this scheme, with a topological structure stored for each tetrahedral, 8

control point is enough to produce plausible effects.

[1, 6] adapted only the mesh simplification modification, and their re-

sult is quite impressive. Sha Chenming et. al in [1] successfully applied

their edge collapse method to simulate a deformed robot cat and a walk-

ing dinosaur, while Jingui Pan et. al in [6], as shown above, utilize the

HPM with dual map. They also designed a comparison between their

modified method with original vertices and some other deformation meth-

ods. While the challenge concerns the deformation of Horse, Armadillo,

and Dragon meshes, the original vertices methods took thousands of mil-

liseconds, and their methods 177.90 ms for the most complicated Dragon

meshes, achieving interactivity and real-time performance especially for

large-scale models.

[14, 4] used both mesh simplification and modified deformation repre-

sentation to accelerate. Yong Zhao in [14], as mentioned in section 4.2,

parameterized the stiffness/rigidness of the body by controlling the size of

the s-ring neighborhood in the formula (13). Meshed of a Bar and a House

were designed for deformation tests and the results showed the larger

the size, the more stiff the mesh. Shungang Hua et al. in [4] test their

affine matrix methods along with edge collapse methods via camel and

cat meshes, containing 48485 and 7007 vertices respectively. However,

the simplification method reduces the size to 200 key points under both

circumstances and succeeded in simulation leg-moving, head-turning and

model-stretching. This indicated the two methods can extract and express

the feature of the original shape effectively.

5 Discussion

The experiments are confined to parts of human bodies, yet the results

are plausible enough. It is easy to see that the application scenarios con-

tain mainly body parts, such as teeth, faces, and palms, and under these

circumstances, the modified deformation scheme is sufficient for real-time

situations. While in the 3D reconstruction field, the mesh deformation is

also competent in detailed 3D modeling.

The technique required for the overall movement of the human body,

such as jumping, running, playing basketball, or martial arts, is another

topic of deformation. However, these topics containing more than minor

deformation require not only pure mathematical calculation but also ap-

proaches including skeleton construction, and sometimes aided from deep

learning with neural networks as shown in projects like [10, 9] and After

an in-depth study of these articles, the future study may concern more

about the overall human body movement

6 Conclusion

This paper gives a literature review of several projects concerning meth-

ods that support accelerated mesh deformation. This paper roughly clas-

sified the approaches into two categories i.e. mesh simplifications and de-

formation representation. The former contains mainly the edge collapse

method with a brief introduction to hierarchical progressive meshed(HPM)

and bipartition clustering. The latter contains mainly explicit and im-

plicit affine matrix calculation and a brief mention of normal vector align-

ment. The application results of all of these approaches are satisfiable

enough and greatly save computation time resulting in the support of

real-time deformation. However, the scenarios are limited in minor de-

formation mainly on body parts. For more complicated deformation such

as body movement, another scheme containing skeleton construction and

deep learning may need to adapt.

References

[1] Sha Chenming, Zhang Xiaojing, and Yue Yajie. 3d meshes deformation
based on mean value coordinates. In International Conference on Software
Intelligence Technologies and Applications and International Conference on
Frontiers of Internet of Things 2014, pages 288–291, 2014.

[2] Michael Garland and Paul Heckbert. Surface simplification using quadric
error metrics. Proceedings of the ACM SIGGRAPH Conference on Computer
Graphics, 1997, 07 1997.

[3] Uwe Hahne. Weighting in laplacian mesh editing, 2006.

[4] Shungang Hua, Qing Zhong, and Qiuxin Jiang. Direct manipulation of 3d
mesh deformation. In 2010 Third International Symposium on Information
Science and Engineering, pages 202–206, 2010.

[5] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Laplacian
mesh optimization. GRAPHITE ’06, New York, NY, USA, 2006. Association
for Computing Machinery.

[6] J. Pan and W. Lu. An adaptive deformation method based on hierarchical
progressive meshes. In International conference on Networking and Ser-
vices, pages 375–380, Los Alamitos, CA, USA, mar 2010. IEEE Computer
Society.

[7] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel.
Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing, SGP ’04, page 175–184,
New York, NY, USA, 2004. Association for Computing Machinery.

[8] Olga Sorkine. Laplacian mesh processing. Eurographics (State of the Art
Reports), 4(4), 2005.

[9] Sebastian Starke, Ian Mason, and Taku Komura. Deepphase: Periodic
autoencoders for learning motion phase manifolds. ACM Trans. Graph.,
41(4), jul 2022.

[10] Sebastian Starke, Yiwei Zhao, Fabio Zinno, and Taku Komura. Neural
animation layering for synthesizing martial arts movements. ACM Trans.
Graph., 40(4), jul 2021.

[11] Jin Sun, Yu Ding, Zedong Huang, Ning Wang, Xinglong Zhu, and Juntong
Xi. Laplacian deformation algorithm based on mesh model simplification.
In 2018 IEEE 3rd International Conference on Image, Vision and Comput-
ing (ICIVC), pages 209–213, 2018.

[12] Ryo Tamura, Seiya Ito, Naoshi Kaneko, and Kazuhiko Sumi. Towards de-
tailed 3d modeling: Mesh super-resolution via deformation. In 2020 Joint
9th International Conference on Informatics, Electronics & Vision (ICIEV)
and 2020 4th International Conference on Imaging, Vision & Pattern Recog-
nition (icIVPR), pages 1–6, 2020.

[13] Genyuan Xia and Li Chen. 3d dental mesh repairing using template-based
deformation. In 2014 7th International Conference on Biomedical Engineer-
ing and Informatics, pages 410–414, 2014.

[14] Yong Zhao. Scalable mesh deformation with controllable stiffness. In 2013
International Conference on Computer-Aided Design and Computer Graph-
ics, pages 449–450, 2013.

[15] Dongdong Zhou, Xiaobing Chen, Chuangchuang Zhang, Shuxin Guo, Khadka
Ashim, and Jianchu Lin. Research on topological deformation of 3d human
image based on laplace optimization. In 2022 International Conference on
High Performance Big Data and Intelligent Systems (HDIS), pages 329–332,
2022.

Managing Secrets in Cloud Applications

Zainab Ahmad
zainab.ahmad@aalto.fi

Tutor: Jose Luis Martin Navarro

Abstract

Storing sensitive information in the cloud can pose inherent risks, making

effective secret management crucial for ensuring the security and privacy

of such data. This paper examines default secret management approaches

used by Docker and Kubernetes, two widely used containerization and

orchestration platforms. We explore their built-in security features and

discuss best practices for secret management in cloud applications. These

practices include secure storage with strong encryption, fine-grained access

control, auditing capabilities, usage monitoring, versioning, and the ability

to distribute and rotate secrets. Implementing robust security measures

and best practices can help organizations mitigate the risks of storing

sensitive data in the cloud.

KEYWORDS: cloud, secrets, secret management, Docker, Kubernetes

1 Introduction

In this rapidly progressing era, the use of cloud technologies is integral to

many businesses, and the cloud computing market is experiencing rapid

growth. The European cloud computing market growth trend [11] is in

line with the global outlook for cloud computing, as Gartner predicts

significant growth in worldwide public cloud end-user spending [10].

Efficient and cost-effective storage, processing, and access to data are

driving the growth of Cloud infrastructure usage.

As more organizations look to leverage these benefits, Venafi, a

cybersecurity company, has reported a significant increase in the number

of cloud security incidents over the past year [8]. The 2022 LastPass

breach [20], where unauthorized access was gained to customer data,

serves as a reminder of the risks associated with storing sensitive data

in the cloud. The breach resulted from a DevOps engineer’s hacked

credentials, highlighting the importance of proper security practices for

all individuals with access to sensitive data.

In the realm of Information Technology (IT), secrets act as keys

that secure resources. Such resources include passwords, API keys,

certificates, encryption keys, and other types of sensitive data. Secrets are

utilized to authenticate access to systems and applications, and safeguard

sensitive information in transit or at rest. Various methods are employed

in the cloud to safeguard secrets to ensure their confidentiality, integrity,

and availability.

In light of the growing reliance on cloud technologies and the increasing

number of cloud security incidents, it is imperative for organizations to

adopt robust security measures to protect their sensitive information.

While third-party solutions provide viable options for managing secrets,

the native capabilities of popular containerization and orchestration

platforms, such as Docker and Kubernetes, should not be overlooked.

Therefore, this paper particularly focuses on examining the default secret

management approaches employed by Docker and Kubernetes [5, 7].

This paper is organized as follows. Section 2 presents a general

discussion on managing secrets to maintain the security and privacy

of information over the cloud. Section 3 discusses Docker secret

management. Section 4 discusses Kubernetes and its key features in

secret management. Section 5 presents an analysis of the two along

with the influence of third-party resources in the context of secret

management. Finally, Section 6 presents some concluding remarks.

2 Managing Secrets

Effective management of secrets is crucial for maintaining the security

and privacy of information and systems, particularly when utilizing

cloud-based solutions. In order to safeguard data privacy and security, it

is important to consider key factors such as protecting data in transit and

addressing potential risks posed by cloud service providers. These risks

may include:

• Unauthorized access to data

• Insecure APIs

• Identity and access management issues

• Technology vulnerabilities

• Data breaches

It should be noted that cloud-based technologies such as containers,

virtual machines, and microservices can also pose risks if not configured

or managed properly. The decentralized structure of cloud-based

applications can increase the likelihood of vulnerabilities due to the

complexity of cloud environments and shared infrastructure. Provisioning

errors can result in misconfigured or insecure systems that could be

exploited by attackers. Therefore, implementing proper security measures

and strategies is essential in mitigating these risks, and protecting

data within the cloud. Secrets managers play a critical role in solving

some of these problems by securely storing credentials required for

accessing sensitive information without exposing them directly to users

or applications.

2.1 Secret Management Lifecycle

Secret management involves ensuring full protection at every stage of a

secret’s lifecycle, from creation to deletion [3, 18]. The four key phases of

a secret’s lifecycle can be seen in Figure 1.

Figure 1. Key phases of a secret’s lifecycle.

Creation: During the creation phase, secrets can be manually created

by users, such as a password, or automatically generated, such as an

encryption key for decrypting a protected database.

Storage: In the storage phase, secrets can be stored in various places in

the cloud, including designated secret management services such as AWS

Secrets Manager, HashiCorp Vault, or Kubernetes Secrets. They can also

be stored in configuration files or environment variables in the application

or container images.

Rotation: To improve overall protection, secrets can be changed or reset

on a schedule, which is required by many regulations and standards,

during the rotation phase.

Revocation: In case of a cybersecurity incident, or when an employee

leaves or no longer needs access to certain resources, secrets can be

revoked during the revocation phase to prevent unauthorized access

to critical systems and data, limit negative consequences and prevent

attackers from accessing critical resources.

Throughout each phase, unauthorized access, intervention, and

manipulation of secrets must be prevented.

2.2 Microservices

Microservices are referred to as an approach to software architecture

that organizes an application into a set of independent services [16]. These

services are designed to be loosely coupled, enabling them to be deployed

and scaled independently of one another [19]. Each service is focused on

a specific business capability and is owned by a small, dedicated team.

Characteristics of microservice architecture can be seen in Figure 2. The

microservice architecture promotes high maintainability and testability,

allowing for the rapid and reliable delivery of large, complex applications.

Figure 2. Characteristics of microservice architecture [1].

Containerization technologies, such as Docker, are used to deploy

microservices [5]. Container orchestration platforms, such as Kubernetes,

can be used to manage the deployment, scaling, and management of these

containerized microservices [7]. Docker and Kubernetes are commonly

used tools in the implementation and management of microservices-based

applications.

2.3 Docker

Docker is an open-source platform that automates the deployment,

scaling, and management of applications in containers [15]. Containers

are lightweight, isolated environments that package an application and

its dependencies together, allowing the application to run consistently on

any infrastructure. Docker simplifies the management and maintenance

of applications across various stages of development and production, by

providing a uniform and repeatable environment for building, testing, and

deploying applications. With Docker, developers can create, deploy, and

manage applications more efficiently and effectively, reducing the time

and effort required to set up and maintain the development environment.

2.4 Kubernetes

Kubernetes is an open-source container orchestration platform that

automates the deployment, scaling, and management of containerized

applications [7]. It provides a platform-agnostic way to manage

containerized workloads and services, enabling teams to run and

manage applications on any infrastructure. Organizations of various

sizes, ranging from small startups to large enterprises, commonly use

the platform to simplify application deployment and management. This

results in improved scalability, reliability, and flexibility.

3 Docker Secret Management

Docker is a widely-used platform for containerization, and security is

a critical aspect of its architecture. Docker security is based on three

components [9]:

• The isolation of processes by the Docker daemon in the user space

• The enforcement of this isolation by the kernel

• The security of network operations.

Docker has several mechanisms in place to secure secrets by default.

3.1 Encrypted Secrets

One of the key methods is through the use of encrypted secrets. Docker

allows developers to store secrets, such as passwords, API keys, and other

sensitive data, in a separate file that can be encrypted. This file can then

be mounted into the container as a read-only file system, ensuring that

secrets are not exposed in clear text within the container.

3.2 Using environment variables

While storing configuration in environment variables is a common

practice, it is also common to use .env variables for sensitive information

[5]. However, this practice has a few drawbacks, such as increased

vulnerability to accidental exposure and difficulty tracking access [14].

Debugging can also lead to the accidental printing of the entire collection

of .env variables, and secrets can be shared with subprocesses without

proper oversight. In order to overcome this problem, Docker developed

Docker Secrets.

3.3 Docker Secrets

Storing sensitive data such as private keys becomes crucial when a cluster

of containers communicate with each other or with external services.

To address this need, Docker has introduced Docker secrets [14]. With

Docker secrets, the sensitive data is encrypted and stored in a highly

secure and controlled fashion. This information is only accessible by the

services that are authorized to use it, and it is never stored in clear text

on disk or transmitted over the network unencrypted. Docker secrets can

be used to manage secrets within a swarm cluster, allowing to control

access to sensitive data across the entire application stack. This feature is

especially useful when managing a large number of containers or services,

as it simplifies the process of storing, managing, and distributing secrets

to the relevant services.

3.4 Docker Swarm

Docker Swarm provides a secure and scalable way to manage secrets

for containerized applications [5]. TLS mutual authentication and

encryption are enforced by each node in the swarm, which ensures

secure communication between nodes. Users have the choice to use

self-signed root certificates or certificates issued by a custom root CA.

In addition to using certificates for secure communication between nodes

in a Docker swarm, Raft consensus algorithm can be used to establish

a leader node in the swarm, which manages the swarm state and

ensures consistency across all nodes [12]. The use of certificates also

enables swarm locking features, which prevent conflicts and ensure data

consistency in distributed systems by allowing only one node to perform

write operations at a time. Secrets can be created, updated, and deleted

through the Docker CLI or API, and are automatically encrypted and

securely stored in the Swarm’s Raft consensus store. When a container

needs access to a secret, it is securely delivered to the container’s

runtime environment as an in-memory file system, isolated from the host

and other containers. The secrets are automatically removed from the

container’s memory when the container stops, and access to the secrets

can be restricted to specific services or nodes within the Swarm.

Docker Swarm offers a secure and scalable approach to managing

containerized applications by utilizing a combination of certificates and

Raft. It presents a convenient and reliable method for handling sensitive

data in a distributed container environment.

These mechanisms ensure that Docker containers are secure by

built-in features, without using any secret management services, whilst

protecting sensitive data from unauthorized access and breaches.

4 Kubernetes Secret Management

Kubernetes is responsible for managing confidential data utilized by a

cluster, including login credentials, access keys, and encryption keys [7]. It

enables a secure and scalable way to manage containerized applications.

Secrets can be managed independently of the pods, which are the smallest

units that can be created and deployed, and can be made available to the

pods as required.

Kubernetes secrets provide multiple mechanisms to enhance the

security of its cluster [13]. One of them is ensuring the secure exchange

of configuration data between a controller and its workers, such as the

communication between a kubelet and a pod. Additionally, Kubernetes

provides an alternative approach for storing sensitive information

within the Kubernetes cluster, such as login credentials used to access

external applications. This is done through Kubernetes secrets, which are

encrypted and only made available to the intended recipient.

By default, Kubernetes secrets are stored in an unencrypted manner in

the server of the API. Therefore, some steps need to be taken in order to

secure secrets in Kubernetes [7].

4.1 Ecryption at Rest

Kubernetes Secrets are stored in etcd, a distributed key-value database

used to store configuration data and metadata of a Kubernetes cluster, as

plain text and encoded in base64 format. However, storing Secrets in plain

text can pose a risk as attackers can easily compromise them, and gain

access to the system. Since etcd is not encrypted by default, Secret data

needs to be encrypted at rest to prevent sensitive information from being

accessed by unauthorized users. Without encryption, an attacker with file

system access can read the Secrets. To address this issue, Kubernetes

offers an encryption at rest feature that encrypts Secrets before storing

them in etcd. This can be studied in detail in the ‘Encrypting Secret Data

at Rest’ section of the Kubernetes documentation [7].

4.2 Configure RBAC rules

Kubernetes Secrets and RBAC, Role Based Access Contol, rules are

closely related [13]. To configure RBAC rules, a cluster administrator

defines roles, a set of permissions that define a user’s or group’s access,

and role bindings, which can be applied at the cluster level or the

namespace level. Roles can be customized to fit specific use cases, and

they can include a combination of permissions for different resources. It

is important to carefully manage RBAC rules to ensure that users have

the appropriate level of access to Kubernetes resources and to prevent

unauthorized access to sensitive data. RBAC controls access to creating,

modifying, and deleting Secrets and limits it to specific users only.

4.3 Types of secrets

When generating a Secret in Kubernetes, its classification can be

designated by using the "type" attribute of the Secret resource. The

Secret type is employed to enable automated processing of the Secret

data. Kubernetes comes with various pre-defined types for typical

use cases. These types differ in their validation procedures and the

restrictions that Kubernetes applies to them. Some of the types, that

are mentioned in the ‘Secrets’ section of the Kubernetes documentation

[7], include Opaque Secrets, Basic Auth Secret, TLS Secrets, Dockercfg

Secret, SSH Secrets, Bootstrap Token Secrets, and Immutable Secrets.

These methods can be used to accomplish secret management in

Kubernetes without using any third-party solutions.

5 Analysis

To have a comprehensive secret management solution, it is essential to

have features such as secure storage with strong encryption, fine-grained

access control, auditing capabilities, usage monitoring, versioning, and

the ability to distribute and rotate secrets. Docker and Kubernetes have

several built-in security features to secure secrets.

Docker Swarm enables secure management of Secrets in distributed

container environments via TLS mutual authentication and encryption.

It supports secret distribution and access control, limiting access to

authorized entities. Docker secrets lack versioning; new secrets must

be created for any changes. However, rolling updates allow updating

services and containers with new secrets. Secrets are encrypted at

rest and managed via the Docker CLI or API. While Docker lacks

built-in centralized secret management, third-party tools can provide this

functionality.

Similarly, Kubernetes uses base64 encoding to store secrets in etcd. It

also provides encryption at rest, enabling encryption of secrets before

storing them in etcd. It uses RBAC to enforce access control and

fine-grained authorization to secrets, enabling cluster administrators to

define granular policies that restrict access to secrets based on roles,

users, and groups. A secret rotation feature is provided by Kubernetes

that enables users to update the contents of a secret without changing

the secret name or breaking existing applications. Kubernetes also offers

built-in support for centralized secret management through its Secrets

API. Secrets can be created and managed at the cluster level, and accessed

by individual containers or pods as needed.

Docker and Kubernetes provide a convenient API and client SDKs

for accessing and managing secrets, making it easy for developers to

integrate secrets management into their applications. Table 1 aims to

provide an overview of the differences between secret management of

Docker, Kubernetes, and other secret managers.

Feature Docker Kubernetes (k8s) Vault by HashiCorp AWS Secrets Manager Azure Key Vault Google Cloud Secret Manager

Secret storage Docker secrets Kubernetes’ etcd storage Encrypted storage Encrypted storage Encrypted storage Encrypted storage

Encryption at rest Yes Yes Yes Yes Yes Yes

Encryption in transit Yes, with Docker swarm Yes Yes Yes Yes Yes

Access control Docker Swarm services RBAC ACLs IAM policies Azure RBAC IAM policies

Versioning No No Yes Yes Yes Yes

Rotation No Yes Yes Yes, with Lambda functions Yes, with Azure Functions Yes, with Cloud Functions

Centralized management No Partially, with central cluster Yes Yes Yes Yes

Table 1. Secrets Management: Docker vs. Kubernetes vs. Other Secret Managers [5, 7, 4,
17, 2, 6].

In comparison to other secret managers, Docker and Kubernetes offer

several advantages, such as tighter integration with containerization

platforms and support for RBAC. However, other secret management

platforms such as HashiCorp Vault and AWS Secrets Manager offer more

comprehensive features such as dynamic secrets, secret revocation, and

more advanced access control mechanisms. Choosing the right secret

management platform depends on the specific needs of the organization,

the level of integration required, and the complexity of the secret

management workflow.

6 Conclusion

In conclusion, this paper emphasizes the importance of effective secret

management in cloud applications to ensure the security and privacy of

sensitive information. The native capabilities of popular containerization

and orchestration platforms, such as Docker and Kubernetes, provide

viable options for managing secrets, each with its strengths and

limitations. However, it is also important to consider third-party solutions

in the context of secret management. By adopting robust security

measures and best practices for secret management, organizations can

mitigate the risks associated with storing sensitive data in the cloud.

References

[1] Hossein Ashtari. What Are Microservices? Definition, Examples,
Architecture, and Best Practices for 2022. https://www.spiceworks.com/
tech/devops/articles/what-are-microservices/. Accessed Feb 2023.

[2] Azure Authors. Azure Key Vault Documentation. https://azure.

microsoft.com/en-us/products/key-vault/. Accessed April 2023.

[3] Ekran System Authors. Secrets Management: Importance, Challenges, Best
Practices. https://www.ekransystem.com/en/blog/secrets-management.
Accessed March 2023.

[4] HashiCorp Vault Authors. Manage Secrets Protect Sensitive Data with
Vault. https://www.vaultproject.io/. Accessed April 2023.

[5] The Docker Authors. Docker Documentation. https://www.docs.docker.
com/. Accessed Feb 2023.

[6] The Google Cloud Authors. Google Cloud Secret Manager Documentation.
https://cloud.google.com/secret-manager. Accessed April 2023.

[7] The Kubernetes Authors. Kubernetes Documentation. https://kubernetes.
io/docs/home/. Accessed Feb 2023.

[8] Shelley Boose. 81% of Companies have had a Cloud Security Incident in the
Last Year. https://venafi.com/blog/81-companies-have-had-had-cloud-
security-incident-last-year-venafi-research/. Accessed Feb 2023.

[9] Theo Combe, Antony Martin, and Roberto Di Pietro. To docker or not to
docker: A security perspective. IEEE Cloud Computing, 3(5):54–62, 2016.

[10] Gartner. Gartner Forecasts Worldwide Public Cloud End-User Spending
to Reach Nearly $600 Billion in 2023. https://www.gartner.com/en/

newsroom/press-releases/2022-10-31-gartner-forecasts-worldwide-

public-cloud-end-user-spending-to-reach-nearly-600-billion-in-

2023. Accessed March 2023.

[11] Justus Haucap, Daniel Fritz, and Susanne Thorwarth. The
Economic Impact of Cloud Computing in Europe. https://www.

europeancloudalliance.com/wp-content/uploads/2022/11/Cloud-

Computing-in-Europe-fin.pdf. Accessed Feb 2023.

[12] Luc Juggery. Raft logs on Swarm mode. https://medium.com/lucjuggery/
raft-logs-on-swarm-mode-1351eff1e690. Accessed March 2023.

[13] Eric Kahuha. Best practices for Kubernetes Secrets management. https:
//snyk.io/blog/best-practices-for-kubernetes-secrets-management/.
Accessed March 2023.

[14] Allan MacGregor. The Complete Guide to Docker Secrets. https://earthly.
dev/blog/docker-secrets/. Accessed March 2023.

[15] Dirk Merkel. Docker: Lightweight Linux Containers for Consistent
Development and Deployment. Linux Journal, 2014:2, 2014.

[16] Chris Richardson. What are microservices? https://microservices.io/.
Accessed Feb 2023.

[17] Amazon Web Services. AWS Documentation. https://aws.amazon.com/
secrets-manager/. Accessed April 2023.

[18] OWASP CheatSheets Series Team. Secrets Management Cheat Sheet.
https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_

Cheat_Sheet.html#26-secret-lifecycle. Accessed Feb 2023.

[19] Johannes Thönes. Microservices. IEEE Software, 32(1):116–116, 2015.

[20] Karim Toubba. LastPass: Notice of Recent Security Incident. https://blog.
lastpass.com/2022/12/notice-of-recent-security-incident/. Accessed
Feb 2023.

Monolithic vs Microservices: A
Comparative Analysis of Architectural
Approaches for Application
Development and Migration

Zainab Khan
zainab.khan@aalto.fi

Tutor: Antti Ylä-Jääski

Abstract

In the traditional approach, systems and applications were developed as

a single unit, known as the monolith approach. However, this approach

resulted in complications as user demands increased with the widespread

acceptance of digitization. To address issues such as availability, fault tol-

erance, responsiveness, and consistency, various companies, such as Ama-

zon, Google, Netflix, and eBay, have shifted towards distributed cloud com-

puting. This involves migrating systems from a monolithic architecture

to a microservices-based architecture, which enables modular and inde-

pendent expansion of horizons. This paper aims to analyze both architec-

tural approaches while outlining their respective advantages and disad-

vantages. In addition, it will discuss case studies conducted on migration

methods and highlight important areas that need to be considered dur-

ing the migration of any application from a monolithic architecture to a

microservices-based architecture.

KEYWORDS: Monolithic architecture, Microservices architecture, Distributed

applications, modular approaches.

1 Introduction

In contemporary times, the widespread usage of software-based services

and applications has emphasized the importance for system designers to

anticipate future demand trends. Selecting an appropriate architecture

for the system in question is crucial to withstand high loads while si-

multaneously maintaining availability and reliability. The two prevalent

architectures being discussed currently are monolithic architecture and

microservice architecture.

In the context of software architecture, the monolithic approach refers to

the implementation of an application in which all functionality is tightly

coupled and integrated into a single unit. In contrast, microservice ar-

chitecture is based on the deployment of multiple independent services,

each representing a separate functionality in the system, with indepen-

dent business logic, data access, and database layers, as illustrated in

Figure 1. While the monolithic approach has been the traditional method

of building software systems, numerous legacy systems are now transi-

tioning towards a microservice-based architecture due to its benefits over

the monolithic approach.

The selection of an appropriate architecture for a system remains de-

pendent on the specific needs and intricacy of the implementation. Both

monolithic and microservice architectures have their respective strengths

and weaknesses. The development, deployment, and initial testing of

monolithic applications are relatively straightforward; however, their main-

tenance becomes challenging as they grow, and a single error can bring

down the entire application, thus raising concerns for scalability, main-

tainability, and reliability [1]. On the other hand, microservice architec-

ture ensures scalability, maintainability, and reliability due to its loosely

coupled nature. Additionally, dividing work among teams assigned to

each microservice is convenient. However, this approach has its own

drawbacks, including complex deployments, the complexity of communi-

cation, the need for more resource allocation for each service, and global

testing [1].

This paper aims to provide a comprehensive survey of monolithic and

microservice architectural styles, highlighting the challenges and advan-

tages of each approach. In addition, the paper investigates various ap-

proaches that legacy systems adopt to migrate from monolithic architec-

ture to microservice architecture.

The structure of the paper is organized as follows: Section 2 presents an

analysis of previous research studies, which compares the two architec-

tures. Section 3 identifies several crucial factors that must be considered

during the transition from a monolithic approach to microservices. Sec-

tion 4 provides an in-depth analysis of the survey results. Finally, Section

5 concludes the study.

Figure 1. Monolithic VS Microservice architecture

2 Architectural Comparison and Migration Methods Based on
Some Experiments

Al-Debagy and Martinek [2] compared microservices with monolithic ar-

chitecture by evaluating the performance of a development platform un-

der various scenarios and tests. The three testing scenarios were load

testing, concurrency testing, and endurance testing. The load test re-

vealed that both architectures exhibit similar performance under average

load, but, with small-scale load (i.e., less than 100 users), monolithic ap-

plication performed better than microservices-based application. On the

other hand, concurrency testing showed that the monolithic application

exhibited higher throughput (i.e., the requests were handled faster in it).

The final test scenario was conducted on two microservices applications

having different service discovery technologies (i.e., Eureka and Consul).

This test showed that the application with Consul service discovery pro-

vided better throughput than Eureka.

One of the main challenges in migrating a monolithic application to

microservice architecture is the identification of potential modular can-

didates to be converted to microservices. Mazlami et al. [3] addressed

this issue algorithmically, which consists of three formal coupling strate-

gies namely, logical, semantic, and contributor coupling strategies. These

strategies were then provided to a graph-based clustering algorithm to

generate suggestions for microservice candidates. They obtained their ob-

servations by prototyping the strategies on various open-source projects

to assess the performance (execution time) and quality of the generated

microservices. With respect to performance, their approach scaled with

the size of revision history in logical and contributor coupling. However,

the quality metric showed that the proposed model can reduce the team

size for a microservice-based implementation to a quarter of the team size

in a monolith approach.

Kazanavicius and Mažeika [4] also discussed the migration process of a

monolithic system to microservices. They discussed some infrastructure

requirements for the migration which should be considered whilst tak-

ing the decision. The requirements encompassed continuous integration

(CI) and continuous deployment (CD) (i.e., how the microservices will be

developed, tested, and deployed), execution environment (containers and

cloud technologies), monitoring, and logging. They also discussed various

migration methods, each of which had specific models based on different

parameters.

The work in [5] compared the two architectural styles, by prototyping on

a car sharing application built on Java. They tested the application under

two test cases, one with 30,000 requests made by 30 users simultaneously,

and the other one with 300,000 requests. The microservice architecture

was tested with three forms of replication, i.e., without replication, repli-

cated twice, and replicated four times. The performance metric for the

requests (HTTP GET and HTTP POST) showed that monolithic architec-

ture responded to a larger number of requests when the load was light

(30,000 requests case), but when the load increased to 300,000 requests,

the microservice (with replication of two times) performed better than the

rest. The response time metric also showed that the microservice was

relatively slower than monolithic under the first test case, but as the re-

quests increased, the microservice architecture outperformed monolithic.

Romani et al. [6] proposed a data-centric approach to migrate legacy

systems from monolithic to microservice architecture. The two-phase pro-

cess included microservice identification and refactoring of code. They

partitioned the data models from legacy system to more related and co-

hesive sub-models and packaged them along with their business logics to

corresponding number of microservices. Next steps in their work were

code refactoring, data migration, and writing Application Programming

Interfaces (APIs) to support the newly separated business logic but it was

out of the scope of current paper.

3 Considerations and Challenges during Migration to Microservice
Architecture

The following are key factors that should be carefully considered by devel-

opers before initiating the transition process from monolithic architecture

to microservices architecture. [7].

3.1 Division of services

Identification of modules that are capable of independent standalone ser-

vices is the most fundamental as well as a critical step in migration to-

wards microservice architecture. Technical teams must be sufficiently fa-

miliar with the business requirements, domain and scope of the applica-

tion, and future expectations before converting the existing monolithic ap-

plication or starting the development from scratch towards microservice-

based architecture. New features and functionalities should also be con-

sidered towards expanding the microservice-based architecture instead of

appending them together in monolithic fashion. This way, all the existing

code refactoring as well as new functionalities will promote the adoption

of a distributed and loosely coupled architecture, which is the prime goal

of microservice architecture.

3.2 Automated Testing

When an application is implemented in microservice-based architectural

style, it produces several services which are developed, maintained and

deployed independently in production environment whenever they need

to be released. This makes it difficult for manual testing approaches to

test all the services in their own scopes as well as their integrations with

other services. Hence, it is a good idea to move towards automated testing

coverage to address the role and feature-specific testing requirements of

each microservice. Therefore, practices, such as continuous integration

and continuous deployment go hand in hand to ensure frequent release

and maintenance of multiple services on their own timeline.

3.3 Integration with other Services

In a microservice-based application individual teams can opt for different

programming languages or technology stacks to implement the service

assigned to them. This makes integration of various services together

challenging. To avoid this problem, it is recommended that the services

should not be tied together through specific technology. Instead, integra-

tion should be achieved by technology-independent means of communica-

tion, such as Representational State Transfer (REST) APIs and Google

Remote Procedure Call (gRPC) APIs [8] based communication mecha-

nisms.

3.4 Automated Deployments

With microservices, multiple deployments can occur per day to the pro-

duction environment. Traditional deployment processes cannot handle

the challenges caused by such scenarios. This raises a need for the us-

age of tools to automate deployment and management of these services

in real-time, such as Gitlab CI/CD [9], Docker [10] and Kubernetes [11].

These tools can help developers in pipelining the deployment into several

jobs, as well as containerization of services by making them isolated and

free of dependency conflicts. Developers can imitate the production envi-

ronment locally in containers before releasing a deployment while these

tools can also help with load balancing, service discovery and horizontal

scaling.

3.5 Monitoring and Logging

Monitoring and logging important events and data is an important as-

pect of any application and can benefit the organization in the longer run.

When different microservices are released independently with their spe-

cific functionalities, it becomes challenging to keep their events tracking

and logging centralized in order to obtain meaningful information from

those scattered logs. The logging should also be searchable and aggre-

gated together to ease the process of fault tracking. Additionally, good,

automated tools are required to be put in place to notify exactly which

microservice is causing the failure and which team is required to fix it.

3.6 Fault Tolerance

An application whose execution depends on the proper functioning of all

the microservices involved in it must incorporate fault tolerance mecha-

nisms in its design and implementation. Under different circumstances

such as heavy load and network congestion, any of the microservice can

fail to respond timely. This is where the circuit breaker pattern comes into

use. It monitors and counts for failure events taking place in a specified

time period and allows microservices to respond according to the load. If

the count of failure events exceeds a certain threshold value, the circuit

breaker will transit into open state [12]. The circuit breaker returns ei-

ther the default data or an error to the user immediately, instead of send-

ing more requests to the service, this way, the microservice under severe

load can get time to recover. Hystrix [13] is a library commonly used these

days to provide latency and fault tolerance in order to ensure resilience in

distributed systems.

3.7 Team Structure

To proceed with the development of a microservice-based application, the

organization should also structure itself in a similar manner. This means

that, having large teams with well-defined roles work well for a mono-

lith product, but with microservices, those teams must split into smaller

teams working autonomously.

4 Analysis

This paper presents a comparative analysis of two popular approaches for

application development, namely monolithic architecture and microser-

vice architecture. While monolithic architecture has been a long-standing

choice for numerous tech companies, it has become increasingly challeng-

ing to maintain the applications in a unified monolithic way. As a result,

companies have started to migrate their systems towards a microservice-

based architecture, which involves breaking down the application into

separate, independent modules based on their respective functionalities

and feature sets.

The analysis of migration methods and experiments in Section 2 has

revealed that monolithic architecture is suitable for systems with limited

functionality and scope for growth, and also when the system is not under

constant heavy load. Additionally, it is a suitable choice for companies

whose business models are based on large teams handling the complete

application development lifecycle, from design and development to testing

and maintenance.

As the system under development grows exponentially and demands for

newer features increase, monolithic architecture can become inefficient

due to its limited scalability. On the other hand, microservice architec-

ture has been proven to be more efficient in such situations, owing to its

modular nature. In a microservice architecture-based system, the appli-

cation is divided into multiple independent microservices, which makes

development, deployment, testing, and maintenance significantly easier

than a monolithic application. This architectural style is better suited for

business models that are structured around having multiple small teams,

each responsible for delivering a particular piece of functionality in the

system, rather than the entire system.

The migration from monolithic architecture to microservice-based archi-

tecture requires careful consideration of various technical, organizational,

and infrastructure-based factors. Section 3 of this paper discusses some

of these critical factors, such as the assessment of candidacy for service

division, automated testing, integrations, deployment, logging, fault tol-

erance, and team structure. The evaluation of these factors is crucial in

determining whether a system should migrate to microservice-based ar-

chitecture or not. Additionally, modern cloud-based tools and technologies

must be used throughout the entire migration process, such as technology-

independent APIs, automated testing, continuous integration and deploy-

ment (CI/CD), version control systems, and containerization.

5 Conclusion

This paper surveyed the two popular architectural styles of developing ap-

plications: monolithic and microservice architecture. The analysis of pre-

vious migration studies led us to conclude that the selection of the appro-

priate architecture cannot be determined by a universal rule; rather, it is

highly dependent on the system’s requirements and future prospects. Be-

fore adopting a specific architecture, companies must define their expec-

tations from the application and align them with their business structure.

Additionally, this paper highlighted various crucial aspects that need to

be taken into account when migrating from monolithic to microservice-

based architecture. Nonetheless, prior to initiating the actual migration

process, several other technical and organizational factors must be care-

fully observed.

References

[1] C. Harris, “Microservices vs. monolithic architecture,” URL: https://www.
atlassian.com/microservices/microservices-architecture/microservices-vs-monolith.

[2] O. Al-Debagy and P. Martinek, “A comparative review of microservices and
monolithic architectures,” in 2018 IEEE 18th International Symposium on
Computational Intelligence and Informatics (CINTI), pp. 000149–000154,
2018.

[3] G. Mazlami, J. Cito, and P. Leitner, “Extraction of microservices from mono-
lithic software architectures,” pp. 524–531, Institute of Electrical and Elec-
tronics Engineers Inc., 9 2017.

[4] J. Kazanavičius and D. Mažeika, “Migrating legacy software to microser-
vices architecture,” in 2019 Open Conference of Electrical, Electronic and
Information Sciences (eStream), pp. 1–5, 2019.

[5] K. Gos and W. Zabierowski, “The comparison of microservice and monolithic
architecture,” in 2020 IEEE XVIth International Conference on the Perspec-
tive Technologies and Methods in MEMS Design (MEMSTECH), pp. 150–
153, 2020.

[6] Y. Romani, O. Tibermacine, and C. Tibermacine, “Towards migrating legacy
software systems to microservice-based architectures: A data-centric pro-
cess for microservice identification,” pp. 15–19, Institute of Electrical and
Electronics Engineers Inc., 2022.

[7] M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges when moving from
monolith to microservice architecture,” in Current Trends in Web Engineer-
ing (I. Garrigós and M. Wimmer, eds.), (Cham), pp. 32–47, Springer Inter-
national Publishing, 2018.

[8] gRPC: A high performance, open source universal RPC framework. URL:
https://grpc.io/.

[9] GitLab CI/CD. URL: https://docs.gitlab.com/ee/ci/.

[10] Docker: Develop faster. Run anywhere. URL: https://www.docker.com/.

[11] Kubernetes for Application Orchestration. URL: https://montel.fi/kubernetes/
?gclid=CjwKCAiAmJGgBhAZEiwA1JZoll4Jq4W5y2nV5Iy6iwcifKU2AKYVYrVPS6E14i_

Ef3t2viinnhjMIRoCHhQQAvD_BwE.

[12] C. Dulanga, “Circuit breaker pattern in microservices,” URL: https://
blog.bitsrc.io/circuit-breaker-pattern-in-microservices-26bf6e5b21ff.

[13] Hystrix: Latency and Fault Tolerance for Distributed Systems. URL: https:
//github.com/Netflix/Hystrix.

Comparative analysis of Container
Network Interface (CNI) implementations

Zsombor Takács
zsombor.takacs@aalto.fi

Tutor: Tuomas Aura

Abstract

Containerization is an essential part of cloud software development. The

application source code with all its dependencies is packaged into a con-

tainer, and orchestrator systems, such as Kubernetes, are used to deploy

them into a cloud environment. Container Network Interface (CNI) con-

sists of a specification and a set of core plugins (programs) that provide

a standard interface for pod network configurations. There are various

plugin CNI-compliant implementations and this paper evaluates the most

widely used ones: Calico, Cilium, Flannel, Kube-router, and Weave. The

analysis concerns technical implementations, performance, and potential

use cases. The investigation shows that they provide similar networking

models, but differ in packet forwarding and filtering methods. Perfor-

mance is highly dependent on the chosen networking model, and it can

be improved by executing forwarding and filtering decisions closer to the

hardware. The analyzed plugins are suitable for general use, but once

enterprise-grade features and performance is required, Calico and Cilium

stand out. Based on the analysis, CNI plugin technologies are moving

towards eBPF implementations for routing and network policies, consider-

ing its extended developer audience, security, and flexibility.

KEYWORDS: Kubernetes, Container Network Interface, CNI, Container

networking, Containers, Calico, Flannel, Weave, Kube-router, eBPF

1 Introduction

In recent years, software development has adopted various virtualization

technologies. Hardware virtualization (i.e., virtual machine) is an effec-

tive method to create multiple fully isolated computing environments on

the same physical host by full emulation of a physical computer. However,

with the advent of microservices and function-as-a-service applications,

the need for more lightweight virtualization has emerged [10]. Contain-

ers provide virtualization on the operating system (OS) level by sharing

the kernel of the host OS. This creates a more lightweight, isolated en-

vironment with all the required dependencies encapsulated in one con-

tainer image. Containers (i.e., deployed images) serve as building blocks

of microservice-based applications, and to manage the increased number

of containers, an orchestrator system is used, e.g., Kubernetes. Such a

system automates numerous tasks, including the deployment of contain-

ers across several host machines, application scaling, load balancing, and

container self-healing. Containers implement microservices and need to

connect to each other and to external networks to form a cloud applica-

tion. This networking is provided by Container Network Interface (CNI)

plugins, such as Calico, Cilium, Flannel, Kube-router, and Weave. There

are a large number of plugins, each using different underlying technolo-

gies, and the aim of this paper is to analyze the internal design of the most

widely used ones and understand their implementation, performance, and

potential use cases.

The rest of the paper is structured as follows. Section 2 introduces CNI,

Section 3 introduces various design solutions, Section 4 presents a perfor-

mance comparison, Section 5 discusses possible use cases of the selected

plugins, and Section 6 shows the results of the document. Finally, Sec-

tion 7 concludes the paper.

2 Container Network Interface (CNI)

CNI is a Cloud Native Computing Foundation project that comprises a

specification and a set of libraries for writing plugins that offer various

solutions for Linux containers to connect to a network. In addition, it

provides a set of core reference plugins that serve as a starting point to

understand the purpose of CNI.

A CNI plugin is an executable between the container runtime and the

container itself. The runtime calls it to execute a network configuration,

such as adding a network interface to the container, connecting it to the

host network, or assigning an IP address.

The reference plugins are centered around single-host container net-

work interface configuration. For example, the bridge plugin creates a

virtual switch in the host network namespace and connects the container

to it, thus setting up a connection between the host and the container [1].

When it comes to a cluster consisting of multiple hosts, a number of

third-party plugins are available, which advance the capabilities of the

reference plugins, providing more extensive, out-of-the-box network so-

lutions for container networking across multiple nodes. The most widely

used Kubernetes container runtimes (containerd, CRI-O) make use of CNI

plugins to implement the desired container network configuration. In Ku-

bernetes, a pod is the smallest deployable unit of computation that con-

sists of one or more containers sharing the same network namespace.

The specification states directives for container runtime and plugin de-

velopers in order to provide a unified method container networking con-

figuration. The specification defines five directives as follows [2]:

1. A network configuration format

The network configuration must be specified in a JSON file where all

the necessary plugins along with their configuration are listed. The run-

time processes this file and converts it to a format that can be passed to

the plugin executable.

2. A protocol for runtimes to make requests to network plugins

It defines a protocol for the communication between the runtime and

the plugin executable. It contains protocol parameters that the runtime

passes when calling a plugin to execute a certain network configuration,

including CNI_COMMAND, CNI_CONTAINER_ID, CNI_NETNS, and

CNI_IFNAME. Furthermore, four basic operations are outlined: ADD,

DEL, CHECK, and VERSION, which are denoted by CNI_COMMAND

during plugin execution. E.g., the ADD operation means the creation of

interface CNI_IFNAME inside container CNI_CONTAINER_ID in net-

work namespace CNI_NETS.

3. A procedure for runtimes to execute plugins according to the configura-

tion

The network configuration JSON file contains a list of plugins to call.

The specification defines how the runtime should understand the file

and convert it to a form the plugin binary can process. For example, the

provided network configuration might translate to a sequence of ADD

and DEL operations, and the specification defines the order in which the

runtime should invoke these operations. Furthermore, it is forbidden to

call parallel operations for the same container.

4. A procedure for plugins to delegate functionality to another plugin

A plugin might call another already existing plugin, for instance, in

case of IP address assignment. To manage the IP address allocation of

the interface and add the corresponding routes, the IP Address Manage-

ment (IPAM) core plugin can be called. CNI specifies rules, such as the

required parameters the delegating plugin should pass to the delegatee

plugin and the way error messages should be forwarded.

5. Data types for plugins to return their results to the runtime

CNI defines the result response format the plugin should return after

executing an operation. The specification consists of three values: Suc-

cess, Error, and Version, and the respective keys to return. For example,

after ADD operation the plugin should return the CNI version, the re-

spective interfaces, IP addresses, routes, and DNS information in the

JSON formatted result message.

3 Design considerations

This section compares the technical solutions of the most common CNI

implementations.

3.1 Layer of operation

Regarding a Kubernetes cluster with several hosts containing multiple

pods, communication can be classified into two broad categories: intra-

host and inter-host communication [11]. Intra-host communication takes

place on the host level, between two or more pods on the same host,

whereas in the case of inter-host communication, a pod on one host should

be able to reach a pod on another host.

Intra-host communication is simpler since the messages do not leave

the hosts where the pods reside. However, there are multiple strategies

to achieve it, depending on the layer of operation. Fig.1 (based on [10])

depicts two widely used approaches.

Figure 1. Intra-host pod-to-pod communication approaches

The L3 (Fig.1(a)) relies solely on the routing capability of the host ma-

chine and forwards every packet based on the IP address of the pods. The

L2 (Fig.1(b)) implements L2 switching capabilities by taking advantage

of the bridge reference plugin. In this setup, multiple virtual links, "veth-

pairs", are created, where one end is connected to the respective pod, and

the other is inserted in the virtual switch. This way, all inter-pod commu-

nication traverses through the virtual switch.

Inter-host communication can also be divided into two general cate-

gories. Figures 2 and 3 (based on [10]) illustrate underlay and overlay

networking modes, respectively. In the case of underlay networking, pack-

ets transit via the underlying IP network between the hosts. The routing

protocol of choice depends on the data center. However, Border Gate-

way Protocol (BGP) is commonly used since it can route across different

autonomous systems, which can be desirable for cloud sites. The other

widely used approach is to use an overlay network, i.e., a tunnel, on top

of the physical network to create virtual connections between the hosts.

Essentially, packets are encapsulated using a protocol other than that of

the underlying network. The most commonly used tunneling protocols are

Virtual Extensible LAN (VXLAN) and IP-in-IP.

Figure 2. Inter-host pod-to-pod communication via the underlying cluster network

Figure 3. Inter-host pod-to-pod communication via an overlay tunnel

As to third-party plugins, a widely used approach, implemented by Flan-

nel and Kube-router, is to use L2 virtual switching for intra-host commu-

nication and support both underlay and overlay modes for inter-host com-

munication. Alternatively, Calico and Cilium only operate on L3, without

utilizing a virtual switch for intra-host communication, while supporting

underlay as well as overlay modes between different hosts.

3.2 Packet forwarding and filtering

In the L3 CNIs (Cilium and Calico), a widely used approach for packet for-

warding has been to rely on kernel IP functions [11]. However, recently,

Cilium and Calico have added support for extended Berkeley Packet Filter

(eBPF) datapath, which allows attaching kernel-level microprograms to

certain networking events (hooks) [4]. eBPF enables efficient and secure

execution of user-defined code in the kernel space and is applied in dif-

ferent computational areas, including networking, security, observability,

and tracing. A Just-In-Time compiler converts the eBPF microprogram to

kernel byte code, thus allowing natively compiled kernel code efficiency

during execution. For enhanced security, the program goes through a ver-

ification, which ensures that it runs to completion and does not try to

access memory out of bounds [12]. As an additional hardening step, the

verified byte code is made read-only at execution time, and any modifica-

tion attempt will result in a kernel crash [4]. These eBPF programs can be

attached to the veth-pairs to route packets inside the host or to another.

Most of the discussed plugins support the standard Kubernetes network

policy [3], based on iptables, which operates on L3 and L4 [11]. While

Flannel does not implement any network policy technologies, Calico and

Cilium utilize alternative solutions, along with the standard L3-L4 ap-

proach. These enable more fine-grained network policies covering L3-

L7. Calico achieves this by implementing its own iptables-based solution,

whilst Cilium relies on eBPF microprograms for this purpose, as well.

eBPF programs are more customizable than iptables. For instance, they

can be written using high-level programming languages, and packets can

be filtered based on the contents of the packet, rather than just the source

or destination IP address [4].

4 Performance

Container network performance can be measured by several metrics, in-

cluding the amount of data that can be transferred from one container

to another in a unit of time (i.e., throughput), and the time it takes for

a packet to travel from the source to the destination (i.e., latency). [10],

[11], [6], and [13] evaluated the performance of widely used CNIs using

various tools such as iperf, netperf, sockperf and sparkyfish. In addition,

open-source Kubernetes benchmark tools are available for this purpose,

such as knb [7].

In intra-host communication, eBPF approaches outperform the L2 bridge

and kernel IP forwarding ones in both throughput and latency [10]. While

bridging, IP forwarding kernel calls and processing iptables rules incur

overhead, eBPF consumes less CPU power by the kernel microprograms

handling both packet forwarding and filtering, thus achieving lower la-

tency and higher throughput.

For inter-host communication, overlay mode performs poorly compared

to native underlay networks [13]. In addition to the overhead of encapsu-

lation and decapsulation, the lack of hardware acceleration, (i.e. tunnel

offloading) can play a role in the underperformance [11]. Tunnel offload-

ing is a mechanism that enables more efficient handling of overlay net-

work traffic by delegating the task of encapsulation and decapsulation to

the host Network Interface Controller (NIC), thus allowing the host CPU

to perform other tasks. Not all NICs support every tunneling protocol of

the CNI, therefore some CNIs might achieve degraded performance with

a set of overlay tunneling protocols.

Numerous technical solutions can improve container network perfor-

mance, including memory sharing, Remote Direct Memory Access (RDMA),

and Data Plane Development Kit (DPDK). Sharing the host memory and

enabling Inter-Process Communication between containers on the same

host would eliminate the overhead incurred by network transmission [15].

RDMA allows direct memory-to-memory data transfer between hosts by

enabling the NIC to directly communicate with the host memory con-

troller, thus decreasing the computational burden of the CPU [9]. Note,

these approaches degrade the isolation of containers, which might be un-

desirable for certain applications. DPDK enables containers to access the

NIC directly without involving the kernel network stack, thereby achiev-

ing lower latency and higher throughput [5].

5 Use cases for different CNIs

This section compares the intended uses of the analyzed CNI implemen-

tations. It is partly based on the stated goals of the plugin developers and

partly on the technical analysis of their implementation, and performance

above.

While Flannel, Kube-router, and Weave only serve as standalone CNI

plugins, Calico [14], and Cilium [8] provide consumer-grade as well as

enterprise-scale Kubernetes networking solutions. The enterprise offer-

ings include customer support, managed clusters, and monitoring fea-

tures. Therefore, if these features are critical for the given containerized

applications, Calico and Cilium are feasible options.

As mentioned in Section 3, CNIs differ in network policy rule specificity.

Unlike the others, Flannel does not support any network policy solution.

This results in fewer configuration options, and eliminating the overhead

of rule processing can also improve performance. Thus, Flannel could be

a suitable option for a quick, basic network without extensive security

measures. Weave and Kube-router can be used if no packet filtering is

needed above the transportation layer. However, for more control, Calico

and Cilium could be suitable.

As pointed out in Section 3, most of the CNIs support both underlay

and overlay networking for intra-host communication. [13] measured

the performance of both modes based on packet size. When it comes to

small-sized packets, the overlay approaches of Flannel, Weave, and Cal-

ico demonstrated comparable performance. However, in larger-sized data

transfer, underlay Calico outperformed the overlay alternatives. As a re-

sult, for small packet traffic, e.g., message queue services, both modes

seem to be viable. In contrast, for bulk data transfer, such as file sharing,

overlay mode could be more efficient.

6 Discussion

CNI plugins fit very well in the Kubernetes ecosystem since they provide

standard, pluggable interfaces to configure inter-pod network connectiv-

ity. There are technologies moving routing and filtering decisions closer to

hardware, and CNI plugin development seems to be going towards eBPF

microprograms due to their efficiency, security, and customizability. Cil-

ium has completely adopted eBPF, and Calico has integrated it as one of

their datapath offerings. As opposed to changing the kernel source code

or writing a kernel module, these programs can be developed at a much

faster rate. Furthermore, since eBPF is not limited to networking appli-

cations, it spans a larger developer community. For basic, general use, the

analyzed plugins (Calico, Cilium, Flannel, Kube-router, and Weave) prove

to be sufficient. Most of them support both underlay and overlay networks

with multiple tunneling options, therefore users can flexibly choose de-

pending on the type of application. However, Calico and Cilium seem to

be standing out with their fine-grained network policies and enterprise

offerings.

7 Conclusion

This paper has reviewed the technical solutions of the most widely used

CNI plugins and analyzed their design, performance, and possible use

cases. The CNI specification defines rules about the network configura-

tion format, the plugin-runtime communication protocol, plugin delega-

tion and return data types. The base plugins configure essential single-

host networking and serve as a good starting point for plugin developers.

Generally, in intra-host communication, most of the plugins operate on L3

(kernel IP forwarding) or L2 (virtual switch). In addition, eBPF micropro-

grams (implemented by Cilium and Calico) are more flexible and outper-

form the other solutions. In inter-host communication, by eliminating the

overhead of encapsulation and decapsulation, underlay solutions provide

more efficient communication. Regarding packet filtering, while Flannel

does not implement network policies at all, Calico (using its own ipta-

bles implementation) and Cilium (relying on eBPF) allow rules on higher

layers than L3 and L4, therefore achieving more fine-grained network

policies.

References

[1] Bridge plugin README.md. https://www.cni.dev/plugins/current/main/bridge/.
accessed 12-04-2023.

[2] CNI specification. https://github.com/containernetworking/cni/blob/main/
SPEC.md. accessed 12-04-2023.

[3] Kubernetes Network Policy API. https://kubernetes.io/docs/reference/generated
/kubernetes-api/v1.19/. accessed 12-04-2023.

[4] What is eBPF? An Introduction and Deep Dive into the eBPF Technology.
https://ebpf.io/what-is-ebpf/. accessed 12-04-2023.

[5] Ubaid Abbasi, El Houssine Bourhim, Mouhamad Dieye, and Halima Elbi-
aze. A Performance Comparison of Container Networking Alternatives.
IEEE Network, 33(4), July 2019. Conference Name: IEEE Network.

[6] Alexis Ducastel. Benchmark results of Kubernetes network plugins (CNI)
over 10Gbit/s network. https://itnext.io/benchmark-results-of-kubernetes-
network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49.
accessed 12-04-2023.

[7] InfraBuilder. k8s-bench-suite. https://github.com/InfraBuilder/k8s-bench-
suite. accessed 12-04-2023.

[8] Isovalent. Isovalent Cilium Enterprise: Observability, Security, Network-
ing. https://isovalent.com/product/. accessed 12-04-2023.

[9] Jacob Nelson and Roberto Palmieri. Understanding RDMA Behavior in
NUMA Systems. In 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), February 2019.

[10] Shixiong Qi, Sameer G Kulkarni, and K. K. Ramakrishnan. Understanding
Container Network Interface Plugins: Design Considerations and Perfor-
mance. In 2020 IEEE International Symposium on Local and Metropolitan
Area Networks, Orlando, FL, USA, July 2020. IEEE.

[11] Shixiong Qi, Sameer G. Kulkarni, and K. K. Ramakrishnan. Assessing Con-
tainer Network Interface Plugins: Functionality, Performance, and Scal-
ability. IEEE Transactions on Network and Service Management, 18(1),
March 2021.

[12] Dominik Scholz, Daniel Raumer, Paul Emmerich, Alexander Kurtz, Krzysztof
Lesiak, and Georg Carle. Performance Implications of Packet Filtering with
Linux eBPF. In 2018 30th International Teletraffic Congress (ITC 30), vol-
ume 01, September 2018.

[13] Kun Suo, Yong Zhao, Wei Chen, and Jia Rao. An Analysis and Empirical
Study of Container Networks. In IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications, April 2018.

[14] Tigera. Calico Cloud Documentation. https://docs.tigera.io/calico-cloud/.
accessed 12-04-2023.

[15] Tianlong Yu, Shadi Abdollahian Noghabi, Shachar Raindel, Hongqiang Liu,
Jitu Padhye, and Vyas Sekar. FreeFlow: High Performance Container Net-
working. In Proceedings of the 15th ACM Workshop on Hot Topics in Net-
works, HotNets ’16, New York, NY, USA, November 2016. Association for
Computing Machinery.

