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This lecture

1. Basic concepts and notation (remind CS-E5740)
2. Basic network models (remind CS-E5740)
3. Common approximations:

I Tree-like approximations
I “Thermodynamic limit”
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Basic definitions and notation (1/8)

I Graph G = (V ,E), where V is the set of nodes and
E ⊆ V × V is the set of edges
I Usually no self-edges: (v , v) /∈ E for any v ∈ V .
I In this course: undirected networks, no multiedges or

weighted edges (unless otherwise mentioned)
I We will use both vertices/edges and nodes/links.
I N = |V | and L = |E |
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Basic definitions and notation (2/8)

I Two nodes v ,u are adjacent or neighbors if there is a link
(v ,u) ∈ E , and (v ,u) is incident to v and u.

I Neighborhood of node v is the set of nodes adjacent it:
Γ(v) = {u|(v ,u) ∈ E}

I Degree of node v is the number of adjacent nodes:
kv = |Γ(v)|
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Basic definitions and notation (3/8)

I Walk is a sequence of nodes and connected by links
(v0,e1, v1,e2, . . . ,el , vl), where ei = (vi−1, vi) ∈ E
I Length of the walk is the number of edges in it

I Path is a walk where all nodes are distinct, with the
exception that the first and the last node can be the same.

I Cycle is a path where the first and the last node are the
same

I Distance between two nodes is the length of the shortest
path between those nodes

I Note! Some sources might have different definitions for
walk and path! Always define these concept (outside of
this course) for clarity.
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Basic definitions and notation (4/8)

I Two nodes are connected if there is a path between them
I Component is a maximal set of nodes that are connected

I Connectivity partitions an undirected graph into
components (i.e., each node is in exactly one component)

I The size of the component is the number of nodes in it
I The largest component is the one with largest size

I Connected graph is a graph with a single component
I Giant component is the component that spans non-zero

fraction of an infinitely large network
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Basic definitions and notation (5/8)

I Percolation theory in networks describes the properties of
connected components
I Site percolation: paths are allowed only through occupied

nodes
I Bond percolation: paths are allowed only through occupied

edges
I Identical to removing nodes/edges

I Physics: regular lattices, nodes or edges set independently
and uniformly occupied with occupation probability
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Basic definitions and notation (6/8)

I We assume that the nodes are (or are implicitly mapped
to) numbers from 0 to N − 1

I Adjacency matrix:

Auv =

{
1, if (u, v) ∈ E
0, if (u, v) /∈ E .

I Useful when working with networks, e.g.,
I Degree: kv =

∑
u Auv

I Number of walks of length n starting at v and ending at u:
(An)uv

I . . .
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Basic definitions and notation (7/8)

I Global clustering coefficient or transitivity is

C =
# of triangles

# connected triplets
=

∑
uvh Auv AvhAhu∑

uvh Auv Ahu
=

Tr(A3)

Tr(AFA)

I Tr is the trace operator and F is the adjacency matrix of a
full graph

I Local clustering coefficient for node u is

cu =

∑
vh Auv AvhAhu∑

vh Auv Ahu
=

(A3)uu

(AFA)uu
=

(A3)uu

ku(ku − 1)/2
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Basic definitions and notation (8/8)

I Tree is a connected graph with no loops
I Equivalently, a connected graph with N − 1 edges

I Forest is a graph that consists of trees
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Random graph models

I Create an artificial random network with desired properties
I = probability distributions over all graphs P(G)
I (Physicist jargon: probability distribution is an “ensemble”)

I Can be roughly divided to two categories:
1. Null models that have some set of structural properties but

otherwise maximally random: Usually closed form formula
for P(G)

2. Stylised models to analyse particular microscopic
generation rules: No closed form formula for P(G), only
algorithm for sampling
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Erdős-Rényi random graphs

I “soft” and “hard” versions:
I G(N,p): N nodes, each link exists with probability p
I G(N,L): N nodes and L links distributed uniformly

randomly between the nodes
I (Physicist jargon: These are some times called “canonical

ensemble” and “microcanonical ensemble”)
I G(N,p = L

N(N−1)/2) ≈ G(N,L), because
〈L〉 = pN(N − 1)/2
I Often used interchangeably for large networks
I Differences in these two discussed later in the course

I G(N,p) AKA Bernoulli random graphs
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Configuration model (1/6)

I Configuration model: a completely random graph with
given degree sequence {ku}u

I Again “soft” and “hard” variants can be constructed:
I Each graph with the exactly the given degree sequence is

sampled uniformly randomly
I The expected value of degrees is given by the degree

sequence, but there can be slight deviations
I More on these on the 5th lecture

I In practise also other variants and complications, see a
recent review article: https://arxiv.org/abs/1608.00607

I Note: Often only the “hard” variant is said to be a
configuration model, and “soft” variants have different
names (e.g., Chung-Lu model)

https://arxiv.org/abs/1608.00607
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Configuration model (2/6)

I The “hard” variant of the configuration:

P(G|{ku}) =

{
1

Ω({ku}) , if k(G) = {ku}
0, otherwise.

I The sequence {ku} is a graphic sequence iff
I

∑
u ku is even, and

I
∑r

u=0 ku ≤ r(r − 1) +
∑N−1

i=r+1 min(r , ku), for all r ≤ N − 2
(where in the sums {ku} ordered such that ku ≥ ku+1)
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Configuration model (3/6)

I The configuration model can be relaxed by allowing
multi-links and self-loops
I Only requirement is that

∑
u ku is even

I Large sparse networks will have small number of multi-links
and loops

I Easy generation algorithm based on stubs
I Node u has ku stubs
I Select two stubs uniformly randomly and connect
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Configuration model (4/6)

I Example: {ku} = {2,2,1,1}. Stubs:

k = 21

k = 22

k = 14

k = 13
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Configuration model (5/6)

I Example: {ku} = {2,2,1,1}. Two of the possible solutions:

k = 21

k = 22

k = 14

k = 13 k = 21

k = 22

k = 14

k = 13
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Configuration model (6/6)
I A “soft configuration model”: each edge (u, v) (including

u = v ) is present independently with probability

P((u, v) ∈ G|{ku}) =

{
kukv∑

u ku
, if u 6= v

kukv
2
∑

u ku
, if u = v .

I This leads to the expected value of the degree of each
node to follow the given sequence 〈k(G)〉 = {ku}

I Very similar formula can be derived for the expected
number of edges between two nodes in the “hard”
configuration model variant with multiedges
I ... but the edges do not appear independently of each other

I Few variants exist (see Hofstad: inhomogeneous random
graphs, Chung-Lu model, Norros-Reittu model)
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Assumption and approximations

I Analytical calculations are often impossible if you want to
do them precisely for finite networks

I We want the big picture, and don’t care about minor details
or extreme accuracy of our calculations

I We do simplifying assumptions and approximations, such
as
I Concentrate on what happens at the infinite network size
I Assume that we can disregard some aspects of the network

structure
I Leave out higher order terms in series expansions
I . . .
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Infinitely large networks
I Assumption: Network is big enough that it behaves like

an infinitely large system
I It is often convenient to study some class of networks

when N →∞
I (Physicist jargon: Taking infinite limit on a size of the

system keeping some other variables constant is called the
“thermodynamic limit”)

I Calculations and results often become simpler: only the
largest effects matters, details and higher order effects can
be omitted

I Example: G(N,p) and G(N,L) become in effect the same
ensemble at the thermodynamic limit
I Warning: it is often assumed that all “soft” and “hard”

distributions become the same, but this is not necessarily
true, see Squartini et al. “Breaking of Ensemble Equivalence in Networks” PRL (2015)
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Tree-like approximations
I Assumption: Network doesn’t have any loops, or the

loops only have a minor effect to the phenomena that is
studied

I Many calculations for trees are often easier than for
general graphs
I Example: Calculate the number of nodes that can be

reached from a node
I Sparse random networks are locally tree-like [Exercise 1.3]

I Many results can be shown to be precise for infinitely large
networks using this idea (see Hofstad)

I The tree-like assumption is very common in networks
literature and often implicit

I Real networks have high clustering coefficient but the
theory still seems to work, see Melnik et al. “The unreasonable effectiveness of

tree-based theory for networks with clustering” PRE (2011)
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Mean-field-type approximations

I Assumption: Parts of the network can be grouped
together in a way that we can concentrate on the
average behavior of each group
I Example: All nodes of the same degree have the same

probability of being infected in epidemics
I Calculations relying on this assumption are called “mean

field theory”
I Very common approach in network science
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Does my theory work for real networks?

I Often in the literature no formal tools are given to
determine if the theory works for particular network
I Example: How much fluctuations from the theory I should

expect to have when my network has N nodes?
I Typical approach: compare analytical results to example

data or detailed simulations
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Does my theory work for real networks?

Figure from: Melnik et al. “The unreasonable effectiveness of tree-based theory for networks with clustering” PRE (2011)
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Following a link leads to high degree nodes

I A node with degree k has probability proportional to k of
being reached when a link is followed
I Selecting a random link, and one of its endpoints
I Selecting a random node and one of its neighbors

p′(k) ∝ kp(k)

I Recurring theme in calculations
I Spreading process is more likely to reach high degree

nodes, high degree nodes are more effective spreaders ...
I Neighboring nodes have higher degree than uniformly

random nodes, high degree nodes are more likely to belong
to the giant component ...

I Your friends have more friends than you do
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Following a link leads to high degree nodes

I Selecting a random link and following one of its neighbors,
the degree of the node is always distributed according to:

p′(k) ∝ kp(k)

I Selecting a random node and one of its neighbors differs
from above in the real world since the degrees of adjacent
nodes are often correlated.
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Following a link leads to high degree nodes

I Example: {ku} = {2,2,1,1}. Probabilities to reach node
when following a link {2

6 ,
2
6 ,

1
6 ,

1
6}.

k = 21

k = 22

k = 14

k = 13
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Excess degrees

I Follow a link, how many new links does the node have (i.e.,
not counting the link used to come to the node)

q(k) ∝ (k + 1)p(k + 1)

I Network is a forest, start breadth first search from any
node...
I Excess degree is the branching factor
I Tree can be infinitely large iff avg. excess degree larger

than one
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Excess degrees

I Example: {ku} = {2,2,1,1}. Excess degree sequence
(one element for each stub) {1,1,1,1,0,0}.

k = 21

k = 22

k = 14

k = 13


