

CS-E5745 Mathematical Methods for Network Science

Mikko Kivelä

Department of Computer Science Aalto University, School of Science mikko.kivela@aalto.fi

January 25, 2023

Generating functions and their use in networks

- Learning goals this week:
 - Recap of probability generating functions from last week
 - Learn how to use PGFs to solve component size distributions in networks
- We will be following the Section 13 in Newman: Networks, An Introduction

PGFs from last week

Definition:

$$g(z) = p(0) + p(1)z + p(2)z^{2} \cdots = \sum_{k=0}^{\infty} p(k)z^{k}$$
 (1)

 \triangleright p(k) can be extracted through derivation:

$$p(k) = \left[\frac{1}{k!} \frac{d^k}{dz^k} g(z)\right]_{z=0}$$
 (2)

Moments can also be calculated through derivation:

$$\langle X^m \rangle = \left[z \frac{d}{dz} \dots z \frac{d}{dz} g(z) \right]_{z=1} = \left[(z \frac{d}{dz})^m g(z) \right]_{z=1}$$
 (3)

PGFs from last week

Sums of independent RVs

$$g_{X_1+X_2}(z) = g_{X_1}(z) * g_{X_2}(z)$$
 (4)

$$g_{\sum_{i=1}^{N} X_i}(z) = [g_{X_i}(z)]^N$$
 (5)

$$g_{X_1+c}(z) = g_{X_1}(z) * z^c$$
 (6)

▶ If N is also a RV in $S = \sum_{i=1}^{N} X_i$:

$$g_{\mathcal{S}}(z) = g_{\mathcal{N}}(g_{X_i}(z)) \tag{7}$$

Notation for networks (from Newman)

For the degree distribution p(k):

$$g_0(z) = \sum_{k=0}^{\infty} p(k) z^k$$

For the excess degree distribution q(k):

$$g_1(z) = \sum_{k=0}^{\infty} q(k)z^k$$

These two are related:

$$g_1(z) = \frac{1}{\langle k \rangle} \frac{d}{dz} g_0(z)$$

Solving the Galton-Watson process for networks

 Last week we derived the equations for Galton-Watson processes

$$g_{K_1}(z) = g_0(z)$$

 $g_{K_d}(z) = g_{K_{d-1}}(g_1(z))$

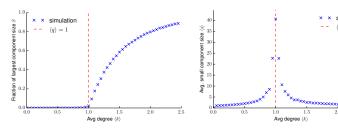
Solution for the expected value:

$$\langle K_d \rangle = \langle q \rangle^{d-1} \langle k \rangle = \left(\frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} \right)^{d-1} \langle k \rangle$$

A criterion for the percolation threshold!

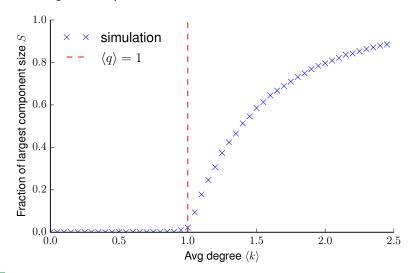
Solving the Galton-Watson process for networks

- ▶ We have the percolation threshold, but we are still missing
 - ▶ Shape of the relative giant size curve ($\sum_d K_d$ in the giant)
 - Size distributions of small components ($\sum_{d} K_{d}$ when not in the giant)
- Note: GW process approximation for networks only works when *d* is small



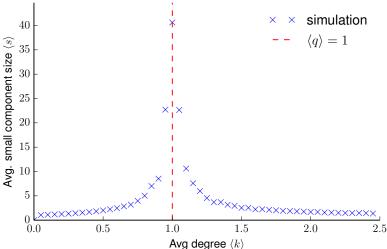
Giant component size in ER networks

▶ Largest component size in ER networks with $N = 10^5$



Expected small component size in ER networks

Expected size of components other than the largest component in ER networks with $N = 10^5$



Uniqueness of the giant component

- Assume that there are two large components in ER networks with S_1 , $S_2 > 0$ proportion of all nodes in them
- Number of nodes: S_1N and S_2N
- Possible edges between the components: $S_1 N S_2 N = S_1 S_2 N^2$
- Probability that no two pairs are connected: $q = (1 p)^{S_1 S_2 N^2} = (1 \frac{\langle k \rangle}{N-1})^{S_1 S_2 N^2}$
- ▶ In "thermodynamic limit" ($N \to \infty$, s.t. $\langle k \rangle$ constant):

$$q = q_0 e^{-\langle k \rangle S_1 S_2 N} \rightarrow 0$$

Solving for giant component size

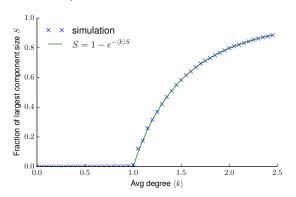
- Idea: Instead of the GW process, we write down "self-consistency equations"
 - Write down the probability random node not being in giant u as a function of u
 - ► The fixed point where u = f(u) gives us u
 - ▶ The probability of random node in giant S = 1 u

Solving for giant component size for ER networks

- ▶ Definition: u is the probability that (uniformly) randomly selected node doesn't belong to the giant component
 - Note that for Poisson degree distributions: p(k) = q(k)
- If node i doesn't belong to the giant then for every other node j:
 - ► There is no connection between i and j (probability 1 p), or
 - ► There is connection, but *j* doesn't belong to the giant (probability *pu*)
- ▶ In total the following must hold $u = [(1 p) + pu]^{N-1}$
 - $u = e^{-\langle k \rangle (1-u)}$, when $N \to \infty$

Solving for giant component size for ER networks

Shape of the relative giant size curve for ER network (with $N = 10^5$ nodes)



Solving for giant component size for configuration model (1/3)

- Definition: u is the probability that following an edge (and removing it) doesn't lead to the giant component
- ▶ If node *i* doesn't belong to the giant then none of the neighbors *j* belong to the giant
 - The number of new neighbors the node i has k is distributed as the excess degree q(k)
 - Probability that none of the k neighbors is in the giant is u^k
- ▶ In total the following must hold $u = \sum_{k=0}^{\infty} q(k)u^k$

Solving for giant component size for configuration model (2/3)

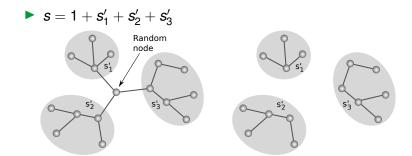
- ▶ In total the following must hold $u = \sum_{k=0}^{\infty} q(k)u^k$
 - ▶ Using the definition of the PGF [Eq. (1)]: $u = g_1(u)$
 - Probability of uniformly randomly selected node not being in the giant is $\sum_{k=0}^{\infty} p(k)u^k = g_0(u)$
- ▶ Returns the previous result for ER networks: $u = e^{-\langle k \rangle (1-u)}$

Solving for giant component size for configuration model (3/3)

- We can also solve the component size distributions of non-giant components
- Write equations for component size distributions using component size distributions
 - Leads to nice equations when done using PGF's

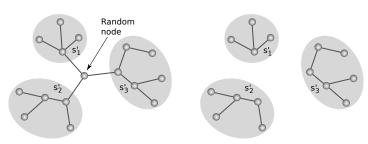
- Separate giant component size and small component size distribution
- S: Probability that uniformly randomly selected node belongs to the giant component
- RV s: size of non-giant component where uniformly randomly selected node belongs to
- Notation from Newman:
 - $P(s=k)=\pi_k$
 - $h_0(z) = g_s(z)$
- ▶ Sum of the above probabilities is one: $h_0(1) + S = 1$

- RV s': Follow a link and remove it. s' is the size of the non-giant component after that link is removed ("excess small component size")
- Notation from Newman:
 - $P(s'=k)=\rho_k$
 - ► $h_1(z) = g_{s'}(z)$



 \triangleright RVs s, s', and the first neighborhood size k_1 are related

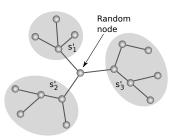
$$s=1+\sum_{k=0}^{K_1}s'$$

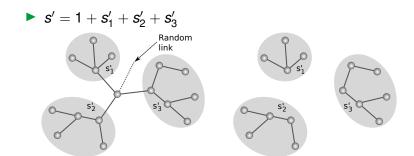


- Notation from Newman: $h_0(z) = g_s(z)$ and $h_1(z) = g_{s'}(z)$
- Using GF properties

$$s = 1 + \sum_{k=0}^{K_1} s' \iff$$

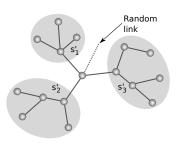
$$h_0(z) = zg_0(h_1(z))$$





 $ightharpoonup s'(h_1)$ and the excess degree $K_{1,i}(g_1)$ are related

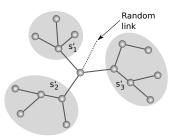
$$s'=1+\sum_{k=0}^{K_{1,i}}s'$$



Using GF properties

$$s' = 1 + \sum_{k=0}^{K_{1,i}} s' \iff$$

 $h_1(z) = zg_1(h_1(z))$



In total we have

$$h_0(z) = zg_0(h_1(z))$$
 (8)

$$h_1(z) = zg_1(h_1(z))$$
 (9)

- Solving $h_0(z)$ possible but not easy
- Solving $h_0(1)$ easier
 - ▶ Remember: $h_0(1) + S = 1$

▶ Using $h_0(1) + S = 1$ and Eq. (8):

$$S = 1 - h_0(1) = 1 - g_0(h_1(1))$$

▶ The value $h_0(1)$ can be solved from Eq. (9):

$$h_1(1) = g_1(h_1(1))$$

▶ Using Newmans notation: $u = h_1(1)$ (=probability that following a link does not lead to the giant component):

$$S = 1 - g_0(u) (10)$$

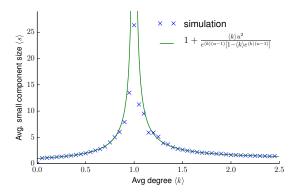
$$u = g_1(u) (11)$$

With some (home)work one can use previous equations to solve for the expected small component size

$$\langle s \rangle = 1 + \frac{g_0'(1)u^2}{g_0(u)[1 - g_1'(u)]}$$
 (12)

Solving for giant component size for ER networks

Shape of the expected size of the small components in ER network (with $N = 10^5$ nodes)



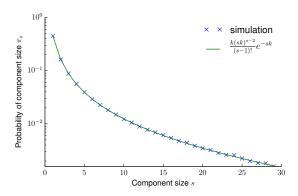
- With even more work one can find a formula for the whole small component size distribution!
 - ► See Newman pp. 468–469

$$\pi_{s} = \frac{\langle k \rangle}{(s-1)!} \left[\frac{d^{s-2}}{dz^{s-2}} \left[g_{1}(z) \right]^{s} \right]_{z=0}$$
 (13)

Note that the formula works only for s > 1 and $\pi_1 = p_0$

Solving for component size distribution for ER networks

► Component sizes in ER network (with $N = 10^7$ nodes and $\langle k \rangle = 0.8$)



Summary on component sizes

- We can now solve:
 - Threshold for connectivity (percolation threshold)
 - The (expected) number of nodes d steps away in BFS process
 - The size of the giant component
 - Component size distribution
- ... with some limitations:
 - Equations are derived for large configuration models (but might give good approximations for real networks)
 - We can write the equations but they might not have closed form solutions
 - Some equations do not work for the critical point (one can also solve for this separately)

Extensions

- Similar ideas (PGF's, self-consistency equations ...) can be used for many extensions
 - Networks with degree correlations
 - Networks with triangles
 - Mutual connectivity
 - **.**..
- Some of these extensions are done in the possible projects

Percolation problems

- In percolation problems one removes nodes or edges can calculates the connected components
- Equivalent to finding component size distributions with altered degree distributions! (if done for configuration model or ER networks)
 - If K and K' are RV's of the original and the modified degree distribution, then percolation methods are given by P(K' = k | K = m)

 - ► $P(K' = k) = \sum_{m=0}^{\infty} P(K' = k | K = m) * P(K = m)$ ► $g_{K'}(z) = \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} P(K' = k | K = m) * P(K = m) z^k$
 - Some projects might include percolation done in this way