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Dynamical models of/on networks

> Learning goals this week:
» Gain insights on the big picture on how to approach

network dynamic problems analytically

> Ability to recognize and formulate approximations for these
problems

> Ability to write down master/rate equations

» Newman: Networks, An Introduction - Sections 14 and 17
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Dynamical models of/on networks

» Models of networks: Network evolves according to some
rules

» Models on networks: States of nodes evolve according to
some rules

» Co-evolution models: Both network and states of nodes
evolve simultaneously

» Similar techniques can be used to solve all of these
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Pipeline, as presented in a publication
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Pipeline, a more realistic picture

Too difficult to solve, Analytlcal Interpret the approx.,

simplify the model solution for but conclude about
. / an approx. Yiraa' phenomenon
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definition lT No match, (Explanation
Numerical change

confirmation approx. v
Simulation doesn't match " Too difficult to solve

the reality, adjust the modVeI\ analytically, interpret
the simulation results
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Example: Barabasi-Albert model

» Phenomena: Networks are born via growth, new nodes are
more likely to connect to already popular nodes

» Data: Probability of link creation can be measured as a
function of degree, power-law degree distributions
» Model: A variation of preferential attachment models (e.g.,
Price model):
0. Start with f; seed nodes with some connections, and set
timetot =1
1. Increase time t = t + 1, add node with index t
2. Add m Imks from t to other nodes, each link to node i prob.
pi =
3. GOTO 1
» There could be multi-links (or the probabilities are
different), but we ignore this
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Example: Barabasi-Albert model

» We can solve the BA model exactly if we so wish
» |dea: Think about the BA model as a Markov chain where
the state space is (a subset of) all graphs
> Easy to write the transition probabilities between graphs
> The result give us a probability distribution over all graphs
for each time t
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Example: Barabasi-Albert model

» We can solve the BA model exactly if we so wish
» |dea: Think about the BA model as a Markov chain where
the state space is (a subset of) all graphs
> Easy to write the transition probabilities between graphs
> The result give us a probability distribution over all graphs
for each time t
» Problem: the size of the state space explodes
» 27(T-1)/2 graphs with T nodes, but not all reachable
> For every state at time t, there are () possible transitions
> Total number of states at time T is Nr = [T, (\) > e™"
(for T large enough)

> This solution is not practical
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Approximate solutions

> Idea: Define a simple system that mimics the (expected)
behavior of a complex system
» The state of the system at each time is reduced to a
property or a vector of properties
> The choise of properties is usually guided by the process
» The evolution rules are written in terms of average
behavior (master/rate equation)
» Either as difference or differential equation(s)
» Only mean behavior matters: statistical fluctuations are
ignored

» The properties are assumed to be independent
» Dependencies can be added by including combinations of
properties

» The resulting system is usually much easier to solve!
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Typical procedure in approximate solutions

» The “real” model for the system S is defined using
stochatic rules F such that S(t) = F(S(t — 1))
» Calculate some properties X of the system X(S) = X
» The properties can be discrete in the system S but evolve
to be continuous in X: e.g., probability that an edge exists
» Define deterministic rules f for the evolution of the
properties X(t) = f(X(t — 1)), s.t. {(X) = (F(S)|X(S) =X)
» Usually defined in elementwise way: X;(t) = fi(X(t — 1))
> Set X(S(fp)) = X(f) and solve X(t) = f(X(t — 1)) for any
value of t or for t — oo
> We now hope that X({(F'(S(t)))) ~ f'(X(t))
> For continuous time one defines ZX(t) = f(X(t))
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Example: Barabasi-Albert model

» ldea: map each graph to a vector where each element
corresponds to an edge, s.t. X; = 1 if edge exists, and 0

otherwise
» Expected value of binary variable is the probability of
getting 1
> Notation: Aj is the probability that link between i/ and j
exists

> Set m =1 for simplicity
» The update rule for X(t):
> Calculate expected degree for each node (ki) = >, Aj

> Set Ay = %

» The final state X(T) gives the probability of each edge
existing attime T
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Practical guidelines for selecting variables for
approximations

» Anything that can be measured from the state of the
system could be selected as a property we track
> Some selections make it difficult to come up with the
update function
> The selecting variables appearing in the update rule is a
good idea
» The above approximation discards dependencies between
the variables, but one can define a combination variables
that keep track of these
> Example: Probability for each triangle to exists, instead of a
probability each link to exists
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Example: Barabasi-Alberts model

» Idea 1: map each graph into a vector of degrees of nodes
> The expected degree of each node is tracked
> Note: expected degrees are continuous variables

> X;(t) is the expected degree of node i at time step t

» Now we should write the equations X;(t) = f;(X(t — 1))
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Example: Barabasi-Alberts model

> Idea 2: map each graph into a vector of counts of nodes of
each degree (or a degree distribution)
» The expected number of nodes of each degee is tracked
> Xi(t) is the expected number of nodes of degree k at time
step t
» Now we should write the equations X(t) = f(X(t — 1))
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Practical guidelines for writing master equations

» When the tracked variables are not binary variables, it
might be more difficult to write the update equations
» Think about each element X;(t) separately, divide it to
> growth X;*(t) = £ (X(t — 1)) term and
> decline X (t) = f~ (X(t — 1)) term
> The total is
Xi(1)=Xi(t=1) = X;" (1) =X (8) = £7(X(t=1))+ £ (X(t-1))
> Are there any conserved quantities? (If something grows,
others decline)

» Same applies for rate equations
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Example: Barabasi-Alberts model

> Xi(t) is the expected number of nodes of degree k at time
step t
> Addition of nodes to degree categories:
> X (t) = WX" 1(t—1),when k > m
> X (t)=1,whenk=m
» Removal of nodes from degree categories:
> X (1) = m Xi(t—1)
> Note that >, kXk(f) =2mN(t)

A
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Example: Barabasi-Alberts model

> |n total we have:
> Xi(t) = Xie(t = 1) + gy X1 (t = 1) = gy Xt = 1),
when k > m
> At the stationary state we should have:
Xie = X (1) /N(t) = Xie(t — 1) /N(t = 1):
> X = Ixq, whenk > m

K+

1+m/2
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Models on networks

» Above approach can also be used to solve models on
networks

» The state of the systems is not a graph, a vector of states
for the nodes

» Examples:

> Infection spreading: Nodes are either infected or not
infected

» Opinion formation: Each nodes state represent its opinion
(discreet or continuous value)
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Spreading models on networks

» Network spreading models follow the classic literature on
mathematical epidemiology

> Models are determined by the possible states and
transition rates between them

» States:

S: Susceptible

> E: Exposed

» |: Infected

> R: Recovered (or Removed)

» Naming convention: state changes from left to right
» Typical models include: Sl, SIS, SIRS, SEIR

v
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Example: SIR on networks

»s%12%R
> Classic result (no network): Epidemic if Ry = 2 > 1
> i.e., when rate or infectino is larger than rate of recovery
» Degree-based approximation: Epidemic if g > <17>
> where (q) is the expected excess degree
» Node-based approximation: Epidemic if % > Al]
» where )\ is the largest eigenvalue of an adjacency matrix
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SIR can be mapped to percolation

» Modification: all individuals stay infected for time 7 (instead
of I 5 R)

» Infected node: probability that an edge leading out is
activated during infection is ® = 1 — A7

> Set edges occupied with probability & — components give
you the possible sizes of epidemics

> We can now calculate the statistics of epidemics using
percolation theory on networks
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Binary state models on networks

» A general theory for approximating processes where each
node can be in one of two states’
» Examples: Sl, SIS, voter model, ...
» Assumption: network is produced by configuration model
» Probabilities that node of degree k is susceptible (infected)
and has m infected neighbors: sk m (ik.m)
» Dynamics determine the rates S — I: Fx p,and | — S:
Rk,m
> Example: in the SIS model Fx » = mg and Rk m =~

"Phys. Rev. Lett. 107, 068701 (2011)
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Binary state models on networks

» The master equations become complicated:

ds )
;l:m = —Fik.mSk.m + Bk mik,m
—B%(k — m)sk,m + B5(k — m+ 1)k m—1
_'Ysmsk,m + 'Ys(m + 1)sk,mJﬂ
k k .
S Wh S — (Zmzo(kfm)Fk,msk,m> S — <Zm:0(k7m)Rk,m’k,m>
ere B = S k-msem (5 o (kM) m)

» Similar equation for i
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Binary state models on networks

Skm 1 set Skm set Sk m+1 Set
C\{ —_ Rg' — [Y

o= ?D V*%
e ,.
B—?D Y=7D
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Binary state models on networks

» The (kmax + 1)(kmax + 2) master equations can be solved
numerically, or further approximations can be made
» Pair approximation (PA):
> pk: Probability that node of degree k is infected

> pk: Probability that neighbor of a node of degree k is
infected

> Skm ~ (1= pk) Be,m(Pk), where B m(p) = (K)p™(1 — p)k—™
» Mean-field approximation (MF):

> pk: Probability that node of degree k is infected

> skm ~ (1= pk)Br,m((&px)
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Binary state models on networks
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