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Dynamical models of/on networks

I Learning goals this week:
I Gain insights on the big picture on how to approach

network dynamic problems analytically
I Ability to recognize and formulate approximations for these

problems
I Ability to write down master/rate equations

I Newman: Networks, An Introduction - Sections 14 and 17
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Dynamical models of/on networks

I Models of networks: Network evolves according to some
rules

I Models on networks: States of nodes evolve according to
some rules

I Co-evolution models: Both network and states of nodes
evolve simultaneously

I Similar techniques can be used to solve all of these
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Pipeline, as presented in a publication
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Pipeline, a more realistic picture
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Example: Barabási-Albert model

I Phenomena: Networks are born via growth, new nodes are
more likely to connect to already popular nodes

I Data: Probability of link creation can be measured as a
function of degree, power-law degree distributions

I Model: A variation of preferential attachment models (e.g.,
Price model):

0. Start with t0 seed nodes with some connections, and set
time to t = t0

1. Increase time t = t + 1, add node with index t
2. Add m links from t to other nodes, each link to node i prob.

pi = ki∑
j kj

3. GOTO 1.
I There could be multi-links (or the probabilities are

different), but we ignore this
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Example: Barabási-Albert model

I We can solve the BA model exactly if we so wish
I Idea: Think about the BA model as a Markov chain where

the state space is (a subset of) all graphs
I Easy to write the transition probabilities between graphs
I The result give us a probability distribution over all graphs

for each time t

I Problem: the size of the state space explodes
I 2T (T−1)/2 graphs with T nodes, but not all reachable
I For every state at time t , there are

( t
m

)
possible transitions

I Total number of states at time T is NT =
∏T

t=t0

( t
m

)
≥ emT

(for T large enough)
I This solution is not practical
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Approximate solutions

I Idea: Define a simple system that mimics the (expected)
behavior of a complex system

I The state of the system at each time is reduced to a
property or a vector of properties
I The choise of properties is usually guided by the process

I The evolution rules are written in terms of average
behavior (master/rate equation)
I Either as difference or differential equation(s)

I Only mean behavior matters: statistical fluctuations are
ignored
I The properties are assumed to be independent
I Dependencies can be added by including combinations of

properties
I The resulting system is usually much easier to solve!
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Typical procedure in approximate solutions

I The “real” model for the system S is defined using
stochatic rules F such that S(t) = F (S(t − 1))

I Calculate some properties X of the system X (S) = X
I The properties can be discrete in the system S but evolve

to be continuous in X: e.g., probability that an edge exists
I Define deterministic rules f for the evolution of the

properties X(t) = f (X(t − 1)), s.t. f (X) ≈ 〈F (S)|X (S) = X〉
I Usually defined in elementwise way: Xi (t) = fi (X(t − 1))

I Set X (S(t0)) = X(t0) and solve X(t) = f (X(t − 1)) for any
value of t or for t →∞
I We now hope that X (〈F t (S(t0))〉) ≈ f t (X(t0))
I For continuous time one defines d

dt X(t) = f (X(t))
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Example: Barabási-Albert model

I Idea: map each graph to a vector where each element
corresponds to an edge, s.t. Xi = 1 if edge exists, and 0
otherwise
I Expected value of binary variable is the probability of

getting 1
I Notation: Aij is the probability that link between i and j

exists
I Set m = 1 for simplicity

I The update rule for X(t):
I Calculate expected degree for each node 〈ki〉 =

∑
j Aij

I Set Ait = 〈ki〉∑
j〈kj〉

I The final state X(T ) gives the probability of each edge
existing at time T
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Practical guidelines for selecting variables for
approximations

I Anything that can be measured from the state of the
system could be selected as a property we track
I Some selections make it difficult to come up with the

update function
I The selecting variables appearing in the update rule is a

good idea
I The above approximation discards dependencies between

the variables, but one can define a combination variables
that keep track of these
I Example: Probability for each triangle to exists, instead of a

probability each link to exists
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Example: Barabasi-Alberts model

I Idea 1: map each graph into a vector of degrees of nodes
I The expected degree of each node is tracked
I Note: expected degrees are continuous variables

I Xi(t) is the expected degree of node i at time step t
I Now we should write the equations Xi(t) = fi(X(t − 1))



Mathematical Methods for Networks
February 2, 2023

14/26

Example: Barabasi-Alberts model

I Idea 2: map each graph into a vector of counts of nodes of
each degree (or a degree distribution)
I The expected number of nodes of each degee is tracked

I Xk (t) is the expected number of nodes of degree k at time
step t

I Now we should write the equations Xk (t) = fk (X(t − 1))
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Practical guidelines for writing master equations

I When the tracked variables are not binary variables, it
might be more difficult to write the update equations

I Think about each element Xi(t) separately, divide it to
I growth X+

i (t) = f+i (X(t − 1)) term and
I decline X−i (t) = f−i (X(t − 1)) term

I The total is
Xi(t)−Xi(t−1) = X+

i (t)−X−i (t) = f+i (X(t−1))+f−i (X(t−1))

I Are there any conserved quantities? (If something grows,
others decline)

I Same applies for rate equations
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Example: Barabasi-Alberts model

I Xk (t) is the expected number of nodes of degree k at time
step t

I Addition of nodes to degree categories:
I X+

k (t) = m (k−1)∑
k kXk (t−1)Xk−1(t − 1), when k > m

I X+
k (t) = 1, when k = m

I Removal of nodes from degree categories:
I X−k (t) = m k∑

k kXk (t−1)Xk (t − 1)

I Note that
∑

k kXk (t) = 2mN(t)
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Example: Barabasi-Alberts model

I In total we have:
I Xk (t) = Xk (t − 1) + (k−1)

2N(t−1)Xk−1(t − 1)− k
2N(t−1)Xk (t − 1),

when k > m
I Xm(t) = Xm(t − 1) + 1− m

2N(t−1)Xm(t − 1)

I At the stationary state we should have:
xk = Xk (t)/N(t) = Xk (t − 1)/N(t − 1):
I xk = k−1

k+2 xk−1, when k > m
I xm = 1

1+m/2
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Models on networks

I Above approach can also be used to solve models on
networks

I The state of the systems is not a graph, a vector of states
for the nodes

I Examples:
I Infection spreading: Nodes are either infected or not

infected
I Opinion formation: Each nodes state represent its opinion

(discreet or continuous value)
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Spreading models on networks

I Network spreading models follow the classic literature on
mathematical epidemiology

I Models are determined by the possible states and
transition rates between them

I States:
I S: Susceptible
I E: Exposed
I I: Infected
I R: Recovered (or Removed)

I Naming convention: state changes from left to right
I Typical models include: SI, SIS, SIRS, SEIR
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Example: SIR on networks

I S
β−→ I

γ−→ R
I Classic result (no network): Epidemic if R0 = β

γ > 1
I i.e., when rate or infectino is larger than rate of recovery

I Degree-based approximation: Epidemic if βγ >
1
〈q〉

I where 〈q〉 is the expected excess degree

I Node-based approximation: Epidemic if βγ >
1
λ1

I where λ1 is the largest eigenvalue of an adjacency matrix
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SIR can be mapped to percolation

I Modification: all individuals stay infected for time τ (instead
of I

γ−→ R)
I Infected node: probability that an edge leading out is

activated during infection is Φ = 1− e−βτ

I Set edges occupied with probability Φ→ components give
you the possible sizes of epidemics
I We can now calculate the statistics of epidemics using

percolation theory on networks
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Binary state models on networks

I A general theory for approximating processes where each
node can be in one of two states1

I Examples: SI, SIS, voter model, ...
I Assumption: network is produced by configuration model

I Probabilities that node of degree k is susceptible (infected)
and has m infected neighbors: sk ,m (ik ,m)

I Dynamics determine the rates S → I: Fk ,m and I → S:
Rk ,m
I Example: in the SIS model Fk,m = mβ and Rk,m = γ

1Phys. Rev. Lett. 107, 068701 (2011)
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Binary state models on networks

I The master equations become complicated:

dsk ,m

dt
= −Fk ,msk ,m + Rk ,mik ,m

−βs(k −m)sk ,m + βs(k −m + 1)sk ,m−1

−γsmsk ,m + γs(m + 1)sk ,m+1

I Where βs =
〈
∑k

m=0(k−m)Fk,msk,m〉
〈
∑k

m=0(k−m)sk,m〉
, γs =

〈
∑k

m=0(k−m)Rk,m ik,m〉
〈
∑k

m=0(k−m)ik,m〉
I Similar equation for ik ,m
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Binary state models on networks
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Binary state models on networks

I The (kmax + 1)(kmax + 2) master equations can be solved
numerically, or further approximations can be made

I Pair approximation (PA):
I ρk : Probability that node of degree k is infected
I pk : Probability that neighbor of a node of degree k is

infected
I sk,m ≈ (1− ρk )Bk,m(pk ), where Bk,m(p) =

(k
m

)
pm(1− p)k−m

I Mean-field approximation (MF):
I ρk : Probability that node of degree k is infected
I sk,m ≈ (1− ρk )Bk,m(〈 k

z ρk 〉)
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Binary state models on networks


