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ERGMs and SBMs

I Learning goals this week:
I Learn the basics of exponential random graphs (ERGMs)
I Learn the basics of stochastic block models (SBMs)

I Materials: Newman 15.2
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Graph ensembles with given properties

I Ensembles where graphs have predetermined values for
properties x(G) = x∗.

I “Microcanonical”: G in the ensemble iff x(G) = x∗.
I Otherwise maximally random: P(G) = 1/c if x(G) = x∗ and

P(G) = 0 if x(G) 6= x∗

I Difficult to deal with analytically
I “(Macro)canonical”: 〈x〉 = x∗.

I Otherwise maximally random: maxP [−∑
G P(G) log P(G)]

I Leads to “exponential random graphs” (ERGM)
I Nice statistical properties
I Depending on x , might be difficult or easy to deal with

analytically
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Exponential random graphs (ERGMs)

I Class of network models for which

P(G) =
e−

∑
i xi (G)θi

Z (θ)
,

I where each xi is an observation (a number) that we
measure from the network
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Exponential random graphs (ERGMs)

+ ERGMs are in the exponential family of distributions:
I Desirable statistical properties
I Maximum entropy derivation

- The normalisation constant Z can be difficult to calculate
I Sampling from the model can be difficult
I Fitting the model can be even more difficult
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ERGM in the literature

I You already know examples of ERGMs:
I The (p version of ) Erdős-Rényi networks
I The “soft” configuration model

I Stochastic block models are ERGMs
I The social network analysis literature uses ERGMs

extensively
I Their models don’t usually have a solution for Z
I Selecting wrong observables xi leads to computational

problems
I Selecting xi is an art form by itself
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ERGMs from the maximum entropy principle

I ERGMs are probability distribution of graphs for which:
1. The expected value of each observable gets some

predetermined value 〈xi (G)〉 = x∗
i , s.t.

2. the entropy of the distribution is maximised.

→ The most random probability distribution with a specified
expected value

I If we only know the expected value of the observables,
ERGM gives us the “best guess” of the distribution
I “the least biased estimate possible”
I “maximally noncommittal with regard to missing

information”
I Proof as an exercise
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A simple example of exponential distributions

I States of the system: s ∈ {s1 . . . s6}
I Observable: x(si) = i
I P(si |θ) = eiθ∑6

j=1 ejθ

I P(si |0) = 1
6
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ERGMs and statistics

I Part of the “exponential family” of distributions
I Exponential distribution, normal distribution, . . .

I x is the vector of “sufficient statistics”
I If the model is defined without fixing parameters θ and you

have a single observed nework Go
I Choosing θ = θ̂ such that 〈xi (G)〉 = xi (Go) equivalent to

finding the maximum-likelihood estimates
θ̂ = argmaxθ P(Go|θ)

I Proof as exercise.
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ERGMs and statistical physics

I The ERGMs are of the same form as canonical
ensembles, the Boltzmann distribution, . . .
I Distribution of energy levels of a system (at state S and

observables xi )
I Hamiltonian: H =

∑
i xi(S)θi

I Partition function: Z (θ)

I Free energy: F = − ln Z
I Chemical potentials, inverse temperature, . . . : θi
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ERGM version of the configuration model

I Observables: degree of each node ki = ki(G)
I In our ensemble 〈ki〉 = k∗

i (k∗
i are the target values)

I Our Hamiltonian is:

H(G, θ) =
∑

i

ki(G)θi (1)

I So the distributions is:

P(G|θ) =
e−H(G,θ)

Z (θ)
=

e−
∑

i ki (G)θi

Z (θ)
(2)
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ERGM version of the configuration model

I The Hamiltonian can be written as:

H(G, θ) =
∑

i

θiki =
∑

i

θi
∑

j

Aij =
∑
i<j

(θi + θj)Aij . (3)

I In this case the partition function can be written without the
sum over all graphs!

Z (θ) =
∑
G∈G

e−H(G,θ) = · · · =
∏
i<j

(1 + e−(θi+θj )) . (4)

I Similar derivation as an exercise.
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ERGM version of the configuration model

I In total the factors can be reorganised in a way that:

P(G|θ) =
∏
i<j

pAij
ij (1− pij)

1−Aij , (5)

where the model parameters have been transformed s.t.

pij =
1

1 + eθi+θj
. (6)

I When we require that 〈ki〉 = k∗i , we need to solve θi from

k∗i =
∑

j

pij =
∑

j

1
1 + eθi+θj

, ∀i (7)
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ERGM version of the configuration model

I In the “sparse limit”, where eθi+θj � 1 we can write

k∗i =
∑

j

1
1 + eθi+θj

≈
∑

j

e−θi e−θj . (8)

I Solution:

e−θi ≈ k∗i√
2m

pij ≈ e−θi e−θj =
k∗i k∗j
2m

I This is the “soft” configuration model from the first lecture!
I The sparse limit approximation can be written 1/pij � 1
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About the partition function

I In the configuration model we could write Z (θ) without the
sum over all graphs
I One can always do it IF the Hamiltonian can be written in

form H =
∑

ij ΘijAij
I This doesn’t always happen!

I It is difficult to do calculations if Z (θ) cannot be solved
I MCMC methods for sampling and inference
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Stochastic block model (SBM)

I Each node i belongs to block bi ∈ {1, . . .K}
I Links with probability depending on their blocks prs (prob.

of link between block r and s)

P(G|b, {prs}) =
∏
i<j

pAij
bi bj

(1− pbi bj )
1−Aij . (9)

I psr is sometimes called the “block matrix”
I One can think of it spanning a new more simple “block

network”
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SBM as ERGM

I SBM is an ERGM!
I The observations are the number of links between blocks r

and s: ers

I The Z can be solved and the form in the previous slide is
returned with change of variables

prs =
1

1 + eλrs
(10)

I Derivation as an exercise
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SBM examples1 (1/4)

1http://tuvalu.santafe.edu/~aaronc/courses/5352/

http://tuvalu.santafe.edu/~aaronc/courses/5352/
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SBM examples (2/4)
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SBM examples (3/4)
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SBM examples (4/4)
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Inference with SBM

I SBM produces a network with the planted partition bi and
the block matrix prs

I Inference: we want to know the most likely model to
produce the data

I Finding prs is easy given a network G and bi (exercise)
I Finding bi difficult→ heuristic algorithms
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Problem with SBM: degree distributions

I Real networks have fat-tail degree distributions, SBM finds
this structure2

2Karrer & Newman, PRE 83, 016107
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Degree-corrected SBM

I Idea: combine the ERGM configuration model and SBM
I Observables: the degrees of nodes AND number of links

between blocks
I Model parameters related to degree θi and blocks λrs
I The best fit to data explains degrees with θ and blocks with

λrs
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Problem with SBM: degree distributions
No degree correction:

With degree correction:
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Problem with SBM: overfitting
I More blocks→ better likelihood3

S = − log P(G|θ), B number of blocks
3Figures from Peixoto, Como’16
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Minimum description length and SBM

I Instead of maximising (log) likelihood P(G|θ) maximise the
posterior P(θ|G) = P(G|θ)P(θ)

P(G)

→ Minimise: − ln P(θ|G) = − ln P(G|θ)− ln P(θ) + ln(P(G)),
I P(G) is constant
I S = − ln P(G|θ) : information needed to describe G when

model known
I L = − ln P(θ) : information needed describe to the model
I Description length S + L

I Calculating L based on giving each partition b equal
probability (uniform prior) etc.
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Minimum description length and SBM

I MDL finds a compromise between the model fit S and
complexity of the model L 4

4Peixoto, PRL 110, 148701 (2013)
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ERGMs in social network analysis (SNA)

I ERGMs are a popular tool for analysing small social
networks

1. select the observables xi (“network statistics”) based on a
research question (often includes metadata on nodes),

2. fit the model to data, and
3. look at the θi to interpret the results

I The Z (θ) not solvable→ numerical methods to find MLE θ
I Find numerically θ s.t. 〈xi〉 = x∗

i , with MCMC methods
I Selecting wrong observables xi might lead to serious

computational problems (“degeneracy”: multiple parameter
combinations might explain the data)

I Often p-values are calculated for testing a null-model where
θi = 0
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Example: ERGMs in SNA

I Data: 6+6 classes, around 24 nodes per class5

5Daniel et al., Social Net. 35(1), 25 (2013)
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Example: ERGMs in SNA
I Social network of judges6

6Lazega et al., Social Net. 48, 10 (2017)
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Example: ERGMs in SNA


