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Chapter 1

Preliminaries

1.1 Propositions and quantifiers

Propositions

The basic building blocks of formal logic are propositions or expressions. Propositions are
denoted by A, B, C, . . . We focus only on the truth value; a proposition must be either true or
false, and cannot both at the same time. If we cannot determine whether a proposition is true
or false, then it is not a valid proposition. We introduce a shorthand, denoting + for true and
− for false.
Example 1.1. “2 is an even number” is true.

Just like with natural languages, we can form new expressions from given ones.

1) The negation operator “not”, denoted by ¬A, is the opposite of the proposition A. From
the use of the word “not”, it is natural to require that if a proposition A is true then its negation
¬A is false and vice versa. The truth value presented in a table is

A ¬A

+ −
− +

2) The conjunction “and”, denoted by A ∧ B, is true only if both A and B are true:

A B A ∧ B

+ + +
+ − −
− + −
− − −

Example 1.2. Let A be “3 is an odd number” and B be “2 + 2 = 5”. Then A ∧ B is false.

3) Disjunction “or” is denoted by A∨B. The natural language has two meanings for or, the
exclusive “either-or” and the inclusive “either-or- or both”. Disjunction has the latter meaning
as shown by its truth table:

A B A ∨ B

+ + +
+ − +
− + +
− − −
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4) Implication is denoted by A ⇒ B and read as “if A, then B”, “A implies B”, “B follows
from A” or “A only if B”. Determining the truth values is trickier when A is false. By convention
the implication is then true. If A is true, the implication is true precisely when B is true:

A B A ⇒ B

+ + +
+ − −
− + +
− − +

It must be noted here that there need not be any causal relationship; A ⇒ B can be true
even if the propositions A and B are not causally linked.
Example 1.3. A =“Laura is wearing a red shirt” and B =“The time is 12 o’clock”.

5) Equivalence “A is equivalent to B”, “A and B are logically equivalent” or “A if and only
if B” is denoted by A ⇔ B. Here A ⇔ B is true if A and B have the same truth value, and
false if A and B have different truth values:

A B A ⇔ B

+ + +
+ − −
− + −
− − +

The tables presented above can be used to determine truth values of other expressions: if we
know the truth values of the expressions A and B, the truth values of new expressions formed
from A and B can be determined by their tables.
Example 1.4. Let V denote the expression (A ⇒ B) ⇔ (¬B ⇒ ¬A). We write the truth table
for V :

A B ¬A ¬B A ⇒ B ¬B ⇒ ¬A V

+ + − − + + +
+ − − + − − +
− + + − + + +
− − + + + + +

We result in that V is true regardless of the truth values of A and B. Such an expression is
called a tautology.

Certain tautologies form rules of inference that are used in mathematical proofs. In the
following theorem, each statement can be proved by writing the truth table.

Theorem 1.5. Let p, q, r be propositions. The following propositions are identically true:

(1) ¬(p ∨ q) ⇔ (¬p ∧ ¬q) (De Morgan’s law),

(2) ¬(p ∧ q) ⇔ (¬p ∨ ¬q) (De Morgan’s law),

(3) [p ∧ (q ∨ r)] ⇔ [(p ∧ q) ∨ (p ∧ r)] (distributivity),

(4) [p ∨ (q ∧ r)] ⇔ [(p ∨ q) ∧ (p ∨ r)] (distributivity),

(5) (p ⇒ q) ⇔ (¬p ∨ q) (implication),

(6) (p ⇔ q) ⇔ [(p ⇒ q) ∧ (q ⇒ p)] (equivalence),
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(7) [(p ⇒ q) ∧ (p ⇒ ¬q)] ⇔ ¬p,

(8) (p ⇒ q) ⇔ (¬q ⇒ ¬p) (contrapositive),

(9) [p ∧ (p ⇒ q)] ⇒ q,

(10) [(p ⇒ q) ∧ ¬q] ⇒ ¬p

(11) [(p ⇒ q) ∧ (q ⇒ r)] ⇒ (p ⇒ r),

(12) [(p ⇔ q) ∧ (q ⇔ r)] ⇒ (p ⇔ r).

In the expression L ⇒ M , L is called the hypothesis and M is called the conclusion. If
L ⇒ M is true then “L is true” is a sufficient condition for M to be true, and “M is true” is a
necessary condition for L to be true.

Quantifiers

Example 1.6. Every rational number is a real number. The number 3 is a rational number,
therefore 3 is a real number.

The hitherto introduced logic cannot be used to infer formally that the conclusion is correct.
We introduce

– the universal quantifier : “for all x”, “given any x”, “for any choice of x”, denoted by ∀x;

– the existential quantifier : “there exists x”, “for some x”, “there is at least one x”, denoted
by ∃x.

The notation A(x) expresses an argument pertaining to x that is true or false depending
on the value of x. It is read as “x has property A”. This is called a one-term predicate or a
one-term formula.
Example 1.7. Let A(x) be the expression “x > 2”. If we substitute the value 1 for x, we get a
false proposition; for the value 3 we get a true proposition.

The existential quantifier has another form, ∃!x: “there exists exactly one x such that...” In
the following example x and y are real numbers:
Example 1.8. a) ∀x (x2 > x), “for all real numbers x we have x2 > x ”. This argument is

false. The inequality does not hold for, say, x = 1
2 .

b) ∃x (x2 > x), “there exists some x such that x2 > x”. This is true.

c) ∃!x (|x| ≤ 0), “there exists exactly one x such that |x| ≤ 0”. This is also true since x = 0
is the only number that satisfies the inequality.

d) ∀x ∃y (x2 − y = y2 − x), “for each x there exists a y such that x2 − y = y2 − x”. This is
true since y = x works, for example.

e) ∃y ∀x (x2 − y = y2 − x), “there exists a y such that for all x we have x2 − y = y2 − x”.
Substituting x = 0 we see that we must have y = 0 or y = −1. Yet for x = 1 neither of
these satisfies the condition. Thus the argument is false.

f) 1. ∀x A(x): “For every element x, A(x) is true”.
2. ∃x A(X): “There exists some x for which A(x) is true”.
3. ∀x ¬A(x): “For no element x is A(x) true” or “for all elements x, A(x) is false”.
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4. ∃x ¬A(x): “There exists some x for which A(x) is false”.
Note that 1 and 4 are negations of each other, likewise 2 and 3.

If a negation and a quantifier, or two quantifiers, are in the same expression, their order is
important. In the next examples x denotes a human and P (x) the predicate “x is mortal”.

1. ¬(∀x P (x)) can be read as follows: “it is not true that every human is mortal” or “there
exists some immortal human”; this can thus be written as well as ∃x ¬P (x).

2. ∀x ¬P (x) means “every human is immortal”.

The meaning thus changed when the order of the negation and the quantifier was switched!
Example 1.9. L(x, y) is a two-term formula. The notation ∀(x, y) L(x, y) is read as “for all
elements x and y, L(x, y) holds”. The notation ∀x ∃y L(x, y) is read as “for all elements x,
there exists at least one y such that L(x, y) holds”. The notation ∃y ∀x L(x, y) is read as “there
exists at least one y such that L(x, y) holds for all elements x”.
Remark 1.10. In mathematical language it is common to omit the notation ∀x. For example,
when we write (x + 1)2 = x2 + 2x + 1, where x is considered a real number, we actually mean
∀x

[
(x + 1)2 = x2 + 2x + 1

]
.

Example 1.11. The negation of the expression “the function f has property A at every point”
is “there exists some point where f does not have the property A”. Beware of the error: “in no
point does f have the property A”.

Theorem 1.12. The following propositions are true for all predicates p(x) and q(x):

∀x [p(x) ∧ q(x)] ⇔ [∀x p(x) ∧ ∀x q(x)] ;
∃x [p(x) ∧ q(x)] ⇒ [∃x p(x) ∧ ∃x q(x)] ;
∃x [p(x) ∨ q(x)] ⇔ [∃x p(x) ∨ ∃x q(x)] ;
[∀x p(x) ∨ ∀x q(x)] ⇒ ∀x [p(x) ∨ q(x)] .

The latter two propositions can be obtained from the former ones:

∃x [p(x) ∨ q(x)] ⇔ ¬¬∃x [p(x) ∨ q(x)]
⇔¬∀x ¬ [p(x) ∨ q(x)] ⇔ ¬∀x [¬p(x) ∧ ¬q(x)]
⇔¬ [∀x ¬p(x) ∧ ∀x ¬q(x)] ⇔ [¬∀x ¬p(x)] ∨ [¬∀x ¬q(x)]
⇔ [∃x ¬¬p(x)] ∨ [∃x ¬¬q(x)] ⇔ [∃x p(x) ∨ ∃x q(x)] ;

[∀x p(x) ∨ ∀x q(x)] ⇔ [∀x ¬¬p(x)] ∨ [∀x ¬¬q(x)]
⇔ [¬∃x ¬p(x)] ∨ [¬∃x ¬q(x)] ⇔ ¬ [∃x ¬p(x) ∧ ∃x ¬q(x)]
⇒¬∃x [¬p(x) ∧ ¬q(x)] ⇔ ¬∃x ¬ [p(x) ∨ q(x)]
⇔¬¬∀x [p(x) ∨ q(x)] ⇔ ∀x [p(x) ∨ q(x)] .
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1.2 Mathematical proofs
Mathematics deals with abstract structures. Let us take the concepts to be defined as a starting
point. We assume that these concepts have some basic properties, which are enumerated in
axioms. An axiom is thus a theorem that is true by convention. Definitions and axioms fix the
structure to be considered.

Axioms must not contain contradictions: They must not contain conflicting claims, and
further logical inference must not conclude in a contradiction. The number of axioms is striven
to be minimal: they ought to be independent, that is, no axiom can be proven true by the others.
The idea of the axiomatic approach is that all properties of the structure to be considered are
derived from the axioms.

Later as an example, we will consider the axiomatic definition of the natural numbers.
Thereafter we develop mathematical theory pertaining it by proving theorems starting from the
axioms. A theorem comprises an assumption p and an argument q; when proving the theorem
we deduce that if p is true then q is true as well.

A direct proof of a theorem or statement corresponds to the tautology

[p ∧ (p ⇒ q)] ⇒ q,

where the idea is that if p is true and the implication p ⇒ q can be concluded as true, then the
argument q is also true.

Because (p ⇒ q) ⇔ (¬q ⇒ ¬p) is a tautology, the expression

[p ∧ (¬q ⇒ ¬p)] ⇒ q

is also a tautology. This contains the principle of indirect proofs: If the assumption p is true
and we can prove that the negation of the argument ¬q implies the negation of the assumption
¬p, then a contradiction arises if ¬q is true. Both p and ¬p cannot be true simultaneously. The
only option is that ¬q is not true, so q is true.

The essential content of an indirect proof thus comprises proving the implication ¬q ⇒ ¬p.
Then we start by considering the negation of the argument ¬q, the so-called antithesis, and
exploring what follows. If a contradiction with the assumption or some derived statement arises,
the antithesis cannot be true so its negation, the argument, is true.
Example 1.13. A natural number is said to be perfect if it can be written as the sum of its
factors. The number itself is not included as a factor. Some examples of perfect numbers are
6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14.

Indirectly we can prove the following argument: A perfect number is not a prime. The
assumption p is thus “n is a perfect number” and the argument q is “n is not a prime”. The
antithesis is “n is a prime”.

If n is a prime, then it has only two factors, 1 and n. The number itself is not included in
the sum, so the sum equals 1. Since the smallest prime is 2, n is not a perfect number.

The antithesis has thus lead to a contradiction with the assumption; the antithesis is false
and so the argument is true.

Note in particular that a theorem cannot be proven by deriving the assumption or some
equivalent statement from the argument. This can be seen from the fact that the expressions
p ⇒ q and q ⇒ p are not equivalent, that is, (p ⇒ q) ⇔ (q ⇒ p) is not a tautology. As an
example, the statement “the sum of the angles of an n-gon is nπ

3 ” cannot be justified simply by
stating the fact that it gives the correct result for n = 3.

Instead starting from the argument q and resulting in the assumption or some other true
statement p serves as a proof if a chain of equivalences

q ⇔ . . . ⇔ p
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can be formed. Yet even then it is essential that this chain contains the implication chain from
right to left, the reasoning from assumption to argument.

Deducing that a proposition of the form ∀x p(x) is false is often easier than deducing that
it is true. To prove that something is false, it is sufficient to find one element x for which p(x)
is false; this is called a counter example. If instead the proposition needs to be proven true, all
possible elements must be considered.

For example, the prior statement “the sum the angles of an n-gons is given by the formula
nπ/3” can be proven false by counter example, it does not hold for squares. Proving the
corresponding correct statement “the sum of the angles of an n-gon is (n−2)π” is more difficult.

Finally, proofs of mathematical statements rarely follow the methods of formal logic, instead
natural intuitive logic is applied. Logical symbols should be mainly understood as shorthand.
Nonetheless, sometimes the logical structure of a proof may be so complex that understanding
it may necessitate the use of formal logic.

1.3 Notations of set theory
The basic objects in the language of mathematics are sets, such as sets of numbers, sets of
functions, or sets of vectors. You are surely familiar with the following notations for sets of
numbers:

N = {0, 1, 2 . . .}, the natural numbers,

Z, the integers,

Q, the rational numbers,

R, the real numbers,

C, the complex numbers.

The following concepts and notations are everyday tools for the mathematician.

x ∈ A: x is an element of the set A, or x belongs to the set A; the opposite is denoted by
x /∈ A;

B ⊂ A (or B ⊆ A): B is a subset of A or B is contained in A;

B ⊊ A: B is a proper subset of A, that is, B ⊂ A and B ̸= A;

{x, y, z, . . .}: a set whose elements are x, y, z, . . .;

{x ∈ A | P1(x), . . . , Pn(x)} or {x | P1(x), . . . , Pn(x)}: the set of elements x (in A) that satisfy
the conditions P1(x), . . . , Pn(x).

Example 1.14. (i) If A = {2, 4, 6, 8, 10}, then for example 6 ∈ A, 7 /∈ A, {4, 8} ⊂ A and
{4, 8} ⊊ A.

(ii) Observe that {1, 2} = {2, 1} = {1, 1, 2}, for example.

(iii) {x ∈ Z | 0 < x < 5, x is even } = {2, 4}.

(iv) {x ∈ R | a < x < b} = is the open interval from point a to point b, denoted by (a, b). It
is sometimes denoted by ]a, b[.
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If A and B are subset of some larger set M , then we can define more subsets of M as follows:

union A ∪ B = {x ∈ M | x ∈ A or x ∈ B},

intersection A ∩ B = {x ∈ M | x ∈ A and x ∈ B},

(set) difference A \ B = {x ∈ M | x ∈ A and x /∈ B},

complement Ac = M \ A.

The intersection and union of more than two sets or even infinitely many sets is defined
similarly.

The set with no elements is called the empty set and it is denoted by ∅. Note that ∅ ∈ A
whatever the set A is.
Example 1.15. (i) A \ B = A ∩ Bc,

(ii) Z \ Q = ∅,

(iii) {(x, y) ∈ R2 | x = y} ∩ {(x, y) ∈ R2 | x = −y} = {(0, 0)},

(iv) The union of all closed real intervals [n, n + 1] where n = 0, ±1, ±2 is equal to R.

We shall denote

– the power set of a set A by P(A) = {B | B ⊂ A},

– the cartesian product of the sets A and B by

A × B = {(x, y) | x ∈ A, y ∈ B}.

The set A × A is also denoted by A2.

1.4 Congruence
The concept of congruence introduced below provides a method for handling divisibility in a
similar way to equations.

Definition 1.16. Let m be a positive integer. If a, b ∈ Z and a − b is divisible by m, we say
that a is congruent to b modulo m, denoting

a ≡ b (mod m).

This is called a congruence of the set Z; the number m is called its modulus. The contrary: a
is incongruent to b modulo m, denoted by a ̸≡ b (mod m).

Example 1.17. 38 ≡ 2 (mod 6), 12 ≡ −3 (mod 5), 100 ̸≡ 1 (mod 10).

Lemma 1.18. Let m be a positive integer. For all a, b, c ∈ Z we have

a ≡ a (mod m),

a ≡ b (mod m) =⇒ b ≡ a (mod m),

a ≡ b (mod m) and b ≡ c (mod m) =⇒ a ≡ c (mod m).
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According to the definition a ≡ b (mod m) if and only if a is some multiple of m away from
b, that is

a ≡ b (mod m) ⇐⇒ a = b + mq, q ∈ Z.

We see from this that the congruence modulo m splits Z into disjoint sets of the following form:

[a] = {a + mk | k ∈ Z}.

The set [a] is called the residue class modulo m of a; it is also denoted by a, [a]m, am or a+mZ.
Numbers belonging to the same residue class give the same remainder when divided by m. By
going through all possible division remainders, that is, the numbers 0, 1, . . . , m − 1, we get a set
of representatives for the residue classes, the smallest nonnegative remainders modulo m of the
integers. We can write the set of all residue classes modulo m, denoted by Zm, as follows:

Zm = {0, 1, . . . , m − 1} = {0m, 1m . . . , (m − 1)m}.

Sometimes the residue mark, the bar or subscript, is omitted.
Example 1.19. Z3 = {0, 1, 2}, where

03 = 0 = 3Z = {3k | k ∈ Z} = {. . . , −9, −6, −3, 0, 3, 6, 9, . . .},

13 = 1 = 1 + 3Z = {1 + 3k | k ∈ Z} = {. . . , −8, −5, −2, 1, 4, 7, 10, . . .}
23 = 2 = 2 + 3Z = {2 + 3k | k ∈ Z} = {. . . , −7, −4, −1, 2, 5, 8, 11, . . .}.

The set Z3 can also be presented as {−1, 0, 1} or {7, 33, 2}, for example.
Example 1.20. In the special case of m = 1, the congruence modulo m is trivial:

a ≡ b (mod 1) ∀ a, b ∈ Z.

In particular, we have Z1 = {0} where 0 = Z.

Theorem 1.21. (i) If a ≡ b (mod m) and c ≡ d (mod m), then

a + c ≡ b + d (mod m) and ac ≡ bd (mod m).

(ii) If ca ≡ cb (mod m) and gcd(c, m) = 1, then a ≡ b (mod m).

(iii) If a ≡ b (mod km) where k is a positive integer, then a ≡ b (mod m).

Proof. (i) The number (a + c) − (b + d) = (a − b) + (c − d) is divisible by m because m | a − b
and m | c − d; likewise for ac − bd = (a − b)c + b(c − d).

(ii) It follows from the conditions m | c(a − b) and gcd(c, m) = 1 that m | (a − b).

(iii) Because a − b is a multiple of km, it is also a multiple of m.

Part (i) of the theorem says that congruences modulo m can be added and multiplied,
likewise subtracted and raised to a power. In particular, if P (x) is an integer polynomial,

P (x) = c0 + c1x + · · · + ctx
t (ci ∈ Z ∀ i),

then it follows from the congruence a ≡ b (mod m) that P (a) ≡ P (b) (mod m).
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Example 1.22. Let us compute the remainder of 182 + 2100 divided by 11. We compute the
powers first and then the sum. Firstly,

182 ≡ 72 = 49 ≡ 5 (mod 11).

We notice that 25 = 32 ≡ 10 ≡ −1 (mod 11), which makes calculating 2100 simple:

2100 =
(
25
)20

≡ (−1)20 = 1 (mod 11).

Thus the remainder is 182 + 2100 ≡ 5 + 1 = 6 (mod 11).
Example 1.23. If the congruence 3 ≡ 15 (mod 12) is divided by 3 on both sides, we get 1 ≡ 5
(mod 12) which does not hold. Observe that gcd(3, 12) ̸= 1. By part (ii) of Theorem 1.21, the
requirement gcd(c, m) = 1 is thus imperative.

However, observe that 1 ≡ 5 (mod 4). Based on these observations, we can hypothesise that

ca ≡ cb (mod m) =⇒ a ≡ b (mod m

gcd(c, m))

in general. To prove this, suppose that m = kx1 and c = kx2, where gcd(c, m) = k. We rewrite
the initial congruence as

kx2a ≡ kx2b (mod kx1).
By part (iii) of Theorem 1.21 we can eliminate k from the modulus:

kx2a ≡ kx2b (mod x1).

Since k = gcd(c, m), we know that gcd(x1, x2) = 1 = gcd(x1, k). Therefore we get by part (ii)
of Theorem 1.21 that

a ≡ b (mod x1),
which proves our hypothesis.

The set of residue classes Zm forms an important algebraic system when we define addition
and multiplication appropriately. It will be discussed later in the theory of groups, rings and
fields. Nonetheless as preparation, let us define these operations here:

a + b = a + b, a · b = ab. (1.1)

The problem is though that residue classes a are represented by a representative a and the
choice of the representative is not unique. It is to be shown that the thus defined addition and
multiplication are not dependent on the choice of the representatives.

Situations like this where the definition seems to depend on the choice of the representatives
of the equivalence classes is common in mathematics. When this seeming dependence has been
disproved, we tend to say that the concept in question is well defined.

Theorem 1.24. The addition and multiplication of residue classes defined by the Equations (1.1)
are well defined.

Proof. Suppose that a = a′ and b = b′. Then we have a ≡ a′ and b ≡ b′ (mod m). By
Theorem 1.21 (i), we get

a + b ≡ a′ + b′, ab ≡ a′b′ (mod m).

It follows that a + b = a′ + b′ and ab = a′b′, which proves the argument.

Example 1.25. Among the set of residue classes modulo 7, we have 4 + 5 = 2. On the other
hand, we also have 4 = 60 and 5 = 75, so 4 + 5 = 60 + 75 = 135. Check by computing that
135 = 2.
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Congruences are used to study Diophantine equations. These are equations for whom we
search for integer solution.
Example 1.26. Consider the Diophantine equation x2 − 2y2 = 5. The congruence x2 − 2y2 ≡ 5
(mod 8) has no solutions because the square residues modulo 8 are 0, 1, 4. Consequently, the
equation has no integer solutions.
Example 1.27. Alex bought big cakes at a price of 15€ each and small cakes 11€ each. The bill
was 137€. How many of cakes of each type did Alex buy?

The problem to be solved is the Diophantine equation 15x + 11y = 137. We solve it by
transitioning to the congruence 15x ≡ 137 (mod 11)

We can immediately see that solving a linear Diophantine equation in two indeterminates
ax + my = c is in general equivalent to solving the congruence

ax ≡ c (mod m). (1.2)

The next result pertaining to congruences is of use in many situations later.

Theorem 1.28. If gcd(a, m) = 1, the congruence (1.2) has a unique solution x ∈ Z in the
interval 0 ≤ x ≤ m − 1.

Proof. By assumption there exists u, v ∈ Z such that au + mv = 1, and therefore

a(uc) + m(vc) = c.

The congruence has thus a solution x = uc. Furthermore, all solutions x of the congruence are
congruent to one another modulo m because by Theorem 1.21 (ii)

ax1 ≡ ax2 (mod m) =⇒ x1 ≡ x2 (mod m).

Thus exactly one of the solutions belongs to the interval 0 ≤ x ≤ m − 1.

For small values of m it is often quicker to find the solution by trial and error.

1.5 Maps
The mathematical terms function and mapping or map are synonyms. The latter is more
common in algebra. In the following we present a summary of basic facts pertaining to maps.

A map f from a set A to a set B, denoted by f : A → B, connects every element x in A
uniquely to an element y = f(x) in B. Here

• A is the domain of f ,

• B is the range of f ,

• y is the image of x.

We may also say that f maps the element x to the element y, denoting

f : A → B, x 7→ y,

or
f : A → B, f(x) = y.

13



Example 1.29. We denote R∗
+ = {x | x > 0}. Some familiar maps from real analysis are

f : R → R, f(x) = sin x

g : R∗
+ → R, g(x) = ln x.

Example 1.30. The following are some examples from linear algebra.

(i) The determinant map
d : M2(R) → R, d(A) = det(A).

The determinant map can be defined more generally for Mn(R) → R.

(ii) Denote by Sn the set of all permutations of the numbers 1, 2, . . . , n. For a permutation
α ∈ Sn, its sign sign(α) is defined by the map

s : Sn → Z, s(α) = sign(α).

(iii) If V is a vector space, we can define the map

n : V → V, n(X) = −X.

(iv) The absolute value map is defined in the vector space R by

N : R → R, N(X) = |X|.

This can be generalised as the norm map for an inner product space V ,

N : V → R, N(X) = ∥X∥.

Some more terminology related to a map f : A → B:

• The set f(A) = {f(x) | x ∈ A} is the image set, or simply the image, of the map f . It is
also denoted by Im(f).

• More generally, if A0 ⊂ A, the set f(A0) = {f(x) | x ∈ A0} is the image (set) of the
subset A0.

• If B0 ⊂ B, the set f−1(B0) = {x ∈ A | f(x) ∈ B0} is the preimage of the set B0.

• A map f is called surjective or a surjection if Im(f) = B. Then we say that f is a map
from A onto B.

• A map f is called injective or an injection if all elements have different images, that is,

x1, x2 ∈ A, x1 ̸= x2 =⇒ f(x1) ̸= f(x2).

This can also be written in the following form, which is often more convenient:

x1, x2 ∈ A, f(x1) = f(x2) =⇒ x1 = x2.

• A map f is called bijective or a bijection if it is inversely unique, if it is an injection and
a surjection. Then every element y in B has a unique preimage x in the set A.
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Two maps f1 : A → B and f2 : A → B are determined to be equal if

f1(x) = f2(x) ∀ x ∈ A.

Then we write f1 = f2. Then in particular the maps have the same domain and range.
The map

f : A → A, f(x) = x

is called the identity map of the set A and denoted by f = idA.
The composition of two maps f : A → B and g : B → C is defined as

g ◦ f : A → C, (g ◦ f)(x) = g(f(x)).

It follows immediately that the composite map is associative, i.e., if we have an additional
function h, then

(h ◦ g) ◦ f = h ◦ (g ◦ f).

Composing a map with the identity map is simple:

idB ◦ f = f, f ◦ idA = f. (1.3)

The composition g ◦ f is also written as gf .
If a map f : A → B is a bijection, then it has an inverse map

f−1 : B → A, f(x) 7→ x.

Then (think why!)
f−1 ◦ f = idA, f ◦ f−1 = idB.

More generally every injective map f : A → B defines a bijection A → Im(f), x 7→ f(x).
Then as well the map Im(f) → A, f(x) 7→ x is called (slightly imprecisely) the inverse map of
f , and denoted by f−1.

If a map f : A → B has an inverse map, the notation f−1(B0) with B0 ⊂ B can be interpreted
in two ways. Both mean the same set nonetheless.

Theorem 1.31. Let f be a map A → B. If there exists some map g : B → A such that

g ◦ f = idA, f ◦ g = idB,

then f is a bijection and f−1 = g.

Proof. If y ∈ B, then by the condition f ◦g = idB we have f(g(y)) = y. Hence y has a preimage
g(y) and therefore f is surjective.

If x1, x2 ∈ A and f(x1) = f(x2), then we also have g(f(x1)) = g(f(x2)). Because g◦f = idA,
this equation simplifies to x1 = x2. Hence f is injective.

By the previous, f is a bijection and its inverse map f−1 thus exists. It follows from the
equation f ◦ g = idB that

f−1 ◦ (f ◦ g) = f−1 ◦ idB.

By applying the associativity property of function composition, the condition f−1 ◦f = idA and
Equations (1.3), we obtain the result g = f−1.

If f is a map A → B and A0 ⊂ A, the map

g : A0 → B, g(x) = f(x)

is called the restriction of f to the set A0, denoted by g = f |A0 . We also say that f is the
extension of the map g to the set A.
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Example 1.32. We denote R+ = {x ∈ R | x ≥ 0}. The map

f : R+ → R+, f(x) =
√

x

is a bijection; its inverse map is the restriction of the map

h : R → R+, h(x) = x2

to the set R+.
Example 1.33. For a complex number z = x + iy its absolute value |z| =

√
x2 + y2 defines a

map C → R+, z 7→ |z|, which is the extension of the map R → R+, x 7→ |x|.

Lemma 1.34. If f is a map X → Y , A ⊂ X and B ⊂ Y , then

(a)) f−1 (f(A)) ⊃ A,

(b)) f
(
f−1(B)

)
⊂ B.

In both cases the inclusion can be proper.

Proof. a) Let x ∈ A. Now we have f(x) ∈ f(A), so x ∈ f−1 (f(A)).

b) Let y ∈ f(
(
f−1(B)

)
. Then there exists x ∈ f−1(B) for which y = f(x). Because x ∈

f−1(B), we have f(x) ∈ B. Therefore we get y ∈ B.

An example demonstrating that the inclusion can be proper: Take X = Y = {1, 2, 3} and
f : X → Y, f(x) = 1. Let A = {3} and B = Y . Now f−1(f(A)) = f−1({1}) = X ̸= A
and f(f−1(B)) = f(x) = {1} ≠ B.

1.6 Induction and the natural numbers
The set of the natural numbers N = {0, 1, 2, . . .} is important because it is the basis upon which
more complicated sets, such as the integers, the rational numbers, and the residue classes Zn,
are constructed. Furthermore, inspecting algebraic structures needs certain mappings from the
natural numbers to the structure in question.

The natural numbers can be formed with a purely set-theoretic construction. Another way
is to define N axiomatically. Here we use the Peano axioms to define N. Intuitively the first
number in N is 0 ∈ N, and we can define a mapping s : N → N by 0 7→ 1 7→ 1 7→ 2 7→ . . . 7→ n 7→
n + 1 7→ . . .

Definition 1.35 (Peano axioms). Let N be a set, s a mapping N → N and 0 ∈ N. The triple
(N, s, 0) is the set of natural numbers if the following conditions hold:

(P1) s is an injection;

(P2) 0 /∈ s(N);

(P3) if A ⊂ N and

(i) 0 ∈ A,
(ii) n ∈ A ⇒ s(n) ∈ A,

then A = N (induction axiom).
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We define addition and multiplication based on these axioms; in particular s(n) = n + 1.
The induction principle follows from Axiom (P3): Assume that we attach an argument E(n)
to every natural number, and denote A = {n ∈ N | E(n) is true }. If E(0) is true and if
E(r) ⇒ E(s(r)), then E(n) is true for all n ∈ N. The phase E(r) ⇒ E(s(r)) is called the
induction step.

Induction proofs can also be applied to arguments of the form E(n) ∀ n ≥ n0, that is, the
starting point can be some n0 ≥ 0. The following theorem states when we can start from the
number 1 instead of 0.

Theorem 1.36. Let A ⊂ N+ = N \ {0}. If

(i) 1 ∈ A and

(ii) k ∈ A ⇒ k + 1 ∈ A,

then A = N+.

Proof. Let B = A ∪ {0}, then we have 0 ∈ B. Now let n ∈ B. If n = 0 then 1 ∈ A ⊂ B, so
0 + 1 ∈ B. If n ̸= 0, then n ∈ A, so n + 1 ∈ A and consequently n + 1 ∈ B. Now we have
B = N, therefore A = B \ {0} = N \ {0}.

The following illustrates the content of the induction principle: First we state that the
argument E(n0) holds. When the induction has been proved, we get the validity of E(n0 + 1).
Likewise, step by step, we prove E(n0 + 2) and so forth E(n) for all n ≥ n0.
Example 1.37. We prove by induction that

12 + 22 + · · · + n2 = n

6 (n + 1)(2n + 1), n ∈ N \ {0}.

Now E(n) is the equation 12 +22 + · · ·+n2 = n
6 (n+1)(2n+1), and the starting point is n0 = 1.

Proof. 1) For the value n = 1, the left side is 12 = 1 and the right side is 1
6 · 2 · 3, hence E(1)

is true.

2) When proving the induction step, we assume E(n) and prove E(n + 1) based on it:

12 + 22 + · · · + n2 + (n + 1)2 =
[
12 + 22 + · · · + n2

]
+ (n + 1)2

(∗)= n

6 (n + 1)(2n + 1) + (n + 1)2 = n + 1
6 [(n + 1) + 1] [2(n + 1) + 1] ,

where the step (∗) is justified by the induction assumption E(n).

Example 1.38. We prove by induction the formula
n∑

k=0
k = n(n + 1)

2 .

Proof. 1) For the value n = 0, the left side is 0, and the right side is 0(0+1)
6 = 0. Hence E(0)

is true.

2) The induction step:

1 + 2 + · · · + n + (n + 1) = [1 + 2 + · · · + n] + (n + 1)

= n(n + 1)
2 + (n + 1) = (n + 1) [(n + 1) + 1]

2 .
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The Peano axioms do not uniquely define the set of natural numbers, there are many sets
satisfying the Axioms (P1)–(P3). These are all equally good models for the natural numbers
because they are “structurally equivalent”. This can be expressed precisely by the following
theorem whose proof we will omit.

If (N, s, 0) and (N′, s′, 0′) are models of the natural numbers, then there exists a unique
bijection f : N → N′, for which f ◦ s = s′ ◦ f and f(0) = 0′.

1.7 Equivalence relations and partitions
Recall that the Cartesian product of two sets A1 and A2 is the set A1 × A2 that is formed by all
ordered pairs (a1, a2) where a1 ∈ A1 and a2 ∈ A2. The Cartesian product A × A is also denoted
by A2.

Every subset R of a Cartesian product A × A defines a relation on the set A: If (a, b) ∈ R
we say that the element a is R-related to the element b, denoted by a R b. Mathematically
interesting relations are usually such that some “rules” determine when a R b. This rule is
often, though slightly imprecisely, called the relation.
Example 1.39. Examples of some different relations.

(i) On the set R2: the distance from a point (x1, y1) to the point (x2, y2) is an integer.

(ii) On the set R: x < y.

(iii) On the set M2(R): det(AB) = 0.

(iv) The integers x and y can be related by the following relations:
x ≤ y, x | y, gcd(x, y) = 1, x = 2 + y.

Definition 1.40. A relation R on a set A is called an equivalence relation on A if it satisfies:

(E1) ∀ a ∈ A : a R a (reflexivity),

(E2) if a, b ∈ A and a R b, then b R a (symmetry),

(E3) if a, b, c ∈ A and a R b and b R c, then a R c (transitivity).

These conditions can also be expressed as follows: for all a, b, c ∈ A

(a, a) ∈ R,

(a, b) ∈ R ⇒ (b, a) ∈ R,

(a, b) ∈ R and (b, c) ∈ R ⇒ (a, c) ∈ R

The equivalence relation is denoted by ∼. If a ∼ b, we say that a is equivalent to b. Due to
symmetry, we can also say that a and b are equivalent.

Definition 1.41. Let ∼ be an equivalence relation on a set A. The elements equivalent to each
a ∈ A form a subset of A that is called the equivalence class of a and denoted by [a], that is,

[a] = {b ∈ A | b ∼ a}.

The element a is called the representative of the equivalence class [a].
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Every equivalence class is formed by elements that are equivalent to one another, that is,

a and b belong to the same equivalence class ⇐⇒ a ∼ b.

Indeed if a ∼ b, then b ∈ [a] and by (E1) we have a ∈ [a]. Conversely if a and b belong to [c],
then a ∼ c and b ∈ c, thus by (E2) and (E3) we get a ∼ b.

Theorem 1.42. If ∼ is an equivalence relation on a set A, then A can be expressed as a union
of disjoint equivalence classes:

A =
⋃

a∈D

[a] ([a] ∩ [a′] = ∅ ∀ a, a′ ∈ D, a ̸= a′),

where D is a subset of A that contains exactly one representative from each equivalence class,
the so-called set of representatives of the equivalence classes.

Proof. We need to show that for a, b ∈ A either [a] = [b] or [a] ∩ [b] = ∅ holds. Suppose that
[a] ∩ [b] ̸= ∅. Then some element c ∈ A belongs to both of the classes [a] and [b], that is, c ∼ a
and c ∼ b. Just like above, it follows that

a ∼ b.

Now let x be an arbitrary element of [a], so x ∼ a. Combined with what we just got, it follows
from (E3) that x ∼ b, so x ∈ [b]. Thus we have proven that [a] ⊂ [b]. By symmetry, we also
have [b] ⊂ [a]. Now combining these, we result in the equality [a] = [b].

If a set A is the union of its nonempty disjoint subsets, we say that these subsets form a
partition of A. We can rewrite Theorem 1.42 thus: If an equivalence relation is defined on the
set A, then this equivalence relation forms a partition of A.

The collection or set of all equivalence classes is called the quotient set of A. It is denoted
by A/ ∼, that is,

A/ ∼= {[a] | a ∈ A} = {[a] | a ∈ D}.

Example 1.43. Some examples of the partitions of a set A ̸= ∅:

(a) B = {A},

(b) B = {{a} | a ∈ A},

(c) B = {B, A \ B} when ∅ ≠ B ⊊ A.

Theorem 1.44. If f : A → E is a mapping, the set

Of = {f−1{e} | e ∈ f(A)}

is a partition of A. Conversely, every partition of A can be formed like this.

Proof. It is trivial that f−1{e} ≠ ∅ for every e ∈ f(A). Every a ∈ A belongs to exactly one set
in the family Of , namely the set f−1{f(a)}. Hence Of is a partition of A.

Conversely let O be a partition of A. Now we can define a mapping g : A → O by setting
g(a) = O when a ∈ O ∈ O. The mapping g is a surjection, and every O ∈ O satisfies the
condition O = g−1{O}. Thus O = Og.

The mapping g defined in the proof is called the canonical surjection A → O.

Theorem 1.45. If O is a partition of a set X, then the relation

EO = {(x, y) ∈ X × X | ∃ O ∈ O : x ∈ O and y ∈ O}

is an equivalence relation.
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Proof. Let f : X → O be the canonical projection, that is, f(x) = O ⇔ x ∈ O where O ∈ O is
arbitrary. The condition (x, y) ∈ EO is equivalent to the condition f(x) = f(y). Thus for all
elements x, y, z ∈ X we have:

f(x) = f(x);
f(x) = f(y) ⇒ f(y) = f(x);
f(x) = f(y) and f(y) = f(z) ⇒ f(x) = f(z).

1.8 Order relations
Let A be a set.

Definition 1.46. A relation ≤ on the set A is called a partial order on A if it satisfies

(O1) ∀a ∈ A : a ≤ a (reflexivity),

(O2) if a, b ∈ A, a ≤ b and b ≤ a, then a = b (antisymmetry),

(O3) if a, b, c ∈ A, a ≤ b and b ≤ c, then a ≤ c (transitivity).

If in addition it satisfies

(O4) ∀ a, b ∈ A : a ≤ b or b ≤ a (strongly connected),

then the relation ≤ is called a total order , a full order or a linear order .

A set A equipped with such a relation ≤ is called a partially ordered set or a totally ordered
set respectively. A totally ordered set may also be called a chain.

The condition a ≤ b is read as “a before b”, “a precedes b” or “b follows a”. Observe that
Postulate (O1) says that every element is both before itself and after itself.
Example 1.47. The usual order of magnitude x ≤ y is a total order on R.
Example 1.48. The division relation a | b is a partial order on the set of positive integers Z+.
However, it is not a total order.
Example 1.49. The inclusion relation A ⊂ B is a partial order on the set of all subsets P(x) of
a given set X.

Observe that if (A, ≤) is a partially (or totally) ordered set, so is every subset of A under
the relation ≤.
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Chapter 2

Groups

2.1 Notion of groups
Groups are a basic concept of algebra. The concept was already used by Galois but the mod-
ern definition is the result of a long process. As an introduction to groups, let us study the
properties of two sets of numbers, and encapsulate the definition of a group. Afterwards we
shall introduce some examples of groups from different branches of mathematics. The following
chapters continue the topic of group theory.

Let us study the set of integers Z and the subset of the real numbers R∗ = R \ {0}. We
highlight the common properties in the following table.

CH: In the table the last row is not consistent with the other rows (math display has an
empty line above). Also the row titles (e.g., associativity) could stand out a bit better, maybe
in italic? NS: Better?

Z, operation + R∗, operation ·
1. Stability of the operation:

b, c ∈ Z ⇒ b + c ∈ Z. b, c ∈ R∗ ⇒ b · c ∈ R∗.
2. Associativity:

For all a, b, c ∈ Z we have
(a + b) + c = a + (b + c).

For all a, b, c ∈ R∗ we have
(a · b) · c = a · (b · c) .

3. Existence of a neutral element:
There exists 0 ∈ Z such that
0 + a = a + 0 = a ∀ a ∈ Z.

There exists 1 ∈ R∗ such that
1 · a = a · 1 = a ∀ a ∈ R∗.

4. Existence of an inverse element:
For every a ∈ Z there is an
element −a ∈ Z for which
a + (−a) = (−a) + a = 0.

For every a ∈ R∗ there is an
element a−1 ∈ R∗ for which
a · a−1 = a−1 · a = 1.

The listed properties are not the only properties in common between the addition of integers
and multiplication of nonzero real numbers. These ones are chosen because they appear in many
other contexts as well.
Remark 2.1. The set of rational numbers Q has all the properties 1–4 under addition, as does
the set of real numbers R and the set of complex numbers C. These properties also hold when
these sets are replaced with the set of polynomials in x with coefficients in one of these sets,
denoted by Z[x], Q[x], R[x], C[x] respectively.

Property 4 does not hold for the set of integers under multiplication, because no integer x
exists such that, say, 3 · x = 1. On the other hand, properties 1-4 hold for the sets Q∗ = Q \ {0}
and C∗ = C \ {0} under multiplication.
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Let us study the previous conditions more rigorously. We have a set, Z or R∗, and an
operation, that is, a method to connect a pair of elements in the set to a third element in the
set. If the operation on a set S is denoted by ◦, then we can write s ◦ s′ = s′′ where s, s′, s′′ ∈ S.
In the previous example the operation ◦ is + for Z and · for R∗. The second property in the
table states that the operation is associative.

Note that the table does not include commutativity: a + b = b + a. This choice is done on
purpose so as to not restrict ourselves to the so called commutative groups. Because the result
of the operation can depend on the order of the pair of elements, we should consider the pair
as an ordered pair. Now we conclude with a definition for the operation.

Definition 2.2. The operation ◦ on a set S connects a unique element s′′ ∈ S for each ordered
pair s, s′. This can be denoted by

s ◦ s′ = s′′ or (s, s′) ◦7−→ s′′.

This definition can be paraphrased as follows: An operation on a set S is a map S × S → S.

Now let us define a group.

Definition 2.3. Let G be a nonempty set. The pair (G, ◦) is called a group if is satisfies the
following conditions:

(G1) ◦ is an operation on G, that is, a ◦ b ∈ G ∀ a, b, ∈ G;

(G2) (a ◦ b) ◦ c = a ◦ (b ◦ c);

(G3) There exists an element e ∈ G (a neutral element) such that e ◦ a = a ◦ e = a ∀ a ∈ G;

(G4) For every a ∈ G there exists an element a−1 ∈ G (an inverse element) such that
a ◦ a−1 = a−1 ◦ a = e.

Definition 2.4. We call (G, ◦) a commutative group or an Abelian group if the operation is
commutative, that is, a ◦ b = b ◦ a ∀ a, b ∈ G.

Abelian groups are named after the Norwegian mathematician Niels Henrik Abel. If (G, ◦)
is a group, then we may loosely say that G is a group (under operation ◦).
Example 2.5. Z,Q,R,C are Abelian groups under addition. The neutral element is 0 and the
inverse element of an element a is −a. Denote Q∗ = Q \ {0}, R∗ = R \ {0}, C∗ = C \ {0}. These
sets are Abelian groups under multiplication. The neutral element is 1, the inverse element of
a is 1

a . (Why are Q,R,C not groups under multiplication? What about Z or Z \ {0}?)
We do not denote Z∗ = Z \ {0} for a good reason, as this notation S∗ for some set S is

commonly reserved for the so-called unit group. Unit groups will be discussed in Section 5.1.
Next, let us study the following five properties in common between the groups (Z, +) and

(R∗, ·):

1. The neutral element is unique in the group.

2. Every element of the group has exactly one inverse element a.

3. If a and b are elements of the group, then there exists unique elements x and y such that
a ◦ x = b and y ◦ a = b.

4. Rules of reduction hold:

• If a ◦ b = a ◦ c, then b = c;
• if b ◦ a = c ◦ a, then b = c.
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5. The inverse element of a ◦ b is b ◦ a

In the case of the group (Z, +), property 1 says that 0 is the only integer z such that
z + a = a + z = a for any a ∈ Z. Property 2 says that every integer z has exactly one inverse
−z. Property 3 says that the equations a + x = b and y + a = b can always be solved in Z no
matter how a and b are chosen. Property 4 says that the equation a + b = a + c or b + a = c + a
implies b = c. Property 5 says that the inverse of a + b is (−b) + (−a).

In case of the group (R∗, ·), property 1 states that 1 is the only nonzero real number z such
that z · a = a · z = a for any a ∈ R∗. Property 2 states that every nonzero real number z has
exactly one inverse 1

z . Property 3 says that the equations a · x = b and y · a = b can always be
solved in R∗ no matter how a and b are chosen. Property 4 says that the equation a · b = a · c
or b · a = c · a implies b = c. Property 5 says that the inverse of a · b is 1

b · 1
a .

All of these mentioned five properties can be derived from Definition 2.3. This means that
whenever some set under some operation is a group, these properties hold. Next we will show
how properties 1 and 2 follow from Definition 2.3.

Theorem 2.6. Let G be a group. The neutral element is unique. Similarly, for each a ∈ G the
inverse element a−1 is unique.

Proof. Suppose e and e′ are neutral elements of G. Then Postulate (G3) of Definition 2.3 gives
e′ = e′ ◦ e = e. Suppose a−1 and a′ are both inverses of a ∈ G. By Postulate (G4) we have
a ◦ a′ = e. Multiplying this on the left by a−1, we get a−1 ◦ (a ◦ a′) = a−1 ◦ e = a−1 from (G3),
and by (G2) we also have a−1 ◦ (a ◦ a′) = (a−1 ◦ a) ◦ a′ = e ◦ a′ = a′ from (G3). Thus we have
a′ = a−1.

In group theory the operation on G is often written by using the common multiplication
notation as a shorthand:

a ◦ b = a · b = ab.

Then the neutral element is also called the identity and denoted by e = 1 = 1G.
Additive notation is sometimes used: a ◦ b = a + b. In particular, additive notation is used

when G is Abelian or the group operation is truly addition. In this case the neutral element is
also called the additive identity and denoted by e = 0 = 0G. The inverse element a−1 of element
a is called the additive inverse −a.

The phrases (G, ·) is a multiplicative group and (G, +) is an additive group are also used.
The number of elements in a group G is called the order of G, denoted by #G. (The order is
also sometimes denoted by |G|.)
Example 2.7. The vectors of an arbitrary vector space V form an additive Abelian group with
the zero vector 0⃗ as the additive identity and the additive inverse of a vector X⃗ being its negation
−X⃗.

Examples of such groups are Rn and Cn (n = 1, 2, . . .), F (R), the set of functions R → R,
and R[x], the set of polynomials with real coefficients.
Example 2.8. The group of matrices Mm×n(R) is an additive Abelian group. The additive
identity is the zero matrix and the inverse element of a matrix A is −A.
Example 2.9. The group of regular 2 × 2 matrices

GL2(R) = {A ∈ M2(R)
∣∣ det(A) ̸= 0}

is a multiplicative group. The identity is the identity matrix I2 and the inverse element of
matrix A is its inverse matrix A−1. This group is not Abelian.

Similarly we can define GLn(R) for general n = 1, 2, . . .. It is called the general linear group.
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Example 2.10. Residue classes modulo m form an additive Abelian group (Zm, +) when addition
is defined as a + b = a + b. The additive identity is 0 and the inverse of element a is −a.

This is an example of a finite group: #Zm = m.
If gcd(a, m) = 1, the residue class a is called a reduced residue class. Note that this is well

defined, since
gcd(a, m) = 1, a = a′ =⇒ gcd(a′, m) = 1.

If we write a = km + r and a′ = k′m + r′, then a = a′ implies r = r′. In addition, we know that
gcd(km + r, m) = gcd(r, m) for any integers, hence we see that

1 = gcd(a, m) = gcd(r, m) = gcd(r′, m) = gcd(a′, m).

The set of all reduced residue classes mod m

Z∗
m = {a ∈ Zm

∣∣ gcd(a, m) = 1}

is a group under multiplication of residue classes defined a · b = a · b. The identity is the residue
class 1 and the inverse of element a is the element x that satisfies the congruence

ax ≡ 1 (mod m) .

The group (Z∗
m, ·) is called the multiplicative residue group mod m. We denote its order

by
#Z∗

m = φ(m),

and call this function of m Euler’s phi function, or Euler’s totient function. If p is a prime,
then Z∗

p = {1, 2, . . . , p − 1}, and φ(p) = p − 1. As an example for a composite number, say,
Z∗

9 = {1, 2, 4, 5, 7, 8}.
Example 2.11. Let Jn = {1, 2, . . . , n} be a set. A bijective map α : Jn → Jn is called a permu-
tation of the set Jn. When α(j) = kj for all elements j ∈ Jn, we can write the permutation α
in the form

α =
(

1 2 . . . n
k1 k2 . . . kn

)
,

where k1, k2, . . . , kn are the numbers 1, 2, . . . , n in some order.
The set of all permutations of the set {1, 2, . . . , n} forms a group under composition of

permutations, called the symmetric group of n elements

Sn = {α : Jn → Jn

∣∣ α is a bijection }.

The identity is the identity map on Jn and the inverse of α is its inverse map α−1. The
composition of bijections is a bijection, so (G1) is satisfied, and composition of functions is
associative so (G2) is satisfied as well. If n > 2, then Sn is not Abelian.

Note that #Sn = n!. The notation used above works well for calculating compositions of
permutations. For example, (observe the order)(

1 2 3
1 3 2

)(
1 2 3
3 2 1

)
=
(

1 2 3
2 3 1

)
,(

1 2 3
3 2 1

)(
1 2 3
1 3 2

)
=
(

1 2 3
3 1 2

)
.

Example 2.12. Consider the linear maps ϱ : R2 → R2 whose matrices are of the form

Lθ =
(

cos θ − sin θ
sin θ cos θ

)
.
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By writing the point (x1, x2) ∈ R2 in the polar coordinates (r cos φ, r sin φ), we see that

ϱθ(x1, x2) = (r cos(φ + θ), r sin(φ + θ)) .

Hence ϱθ is the rotation around the origin by the angle θ > 0.

φ
θ

(r cos φ, r sin φ)

In the set of maps ϱθ, we can define an operation via composition ϱθ1 ◦ ϱθ2 . Multiplying
their respective matrices, we state that the product is again a rotation with angle θ1 + θ2:

ϱθ1 ◦ ϱθ2 = ϱθ1+θ2 .

The matrix of the identity is (
1 0
0 1

)
=
(

cos 0 − sin 0
sin 0 cos 0

)
,

so id = ϱ0. The formula
ϱθ ◦ ϱ−θ = id = ϱ−θ ◦ ϱθ

states that the rotation by angle θ in the negative direction is the inverse element of ϱθ since
the rotations cancel out.
Example 2.13. Consider the n-sided polygon (n-gon) centred at the origin in the xy-plane. We
consider those maps of the plane that map the n-gon to itself, namely reflections and rotations.
These mappings form a group under composition, which is called the symmetry group of the
n-gon, denoted by Dn and has order 2n. It is also called a Dihedral group.

For example, D4 consists of four rotations, with angles 0, π/2, π, 3π/2, and four reflections,
with the diagonals and the perpendicular bisectors of the edges as reflection axes, see Section 3.6.

If the vertices of the n-gon are labelled as 1, 2, . . . , n, then each element of Dn can be
represented by a permutation α ∈ Sn.

The concept of symmetry groups can be generalised to shapes in higher dimensions. These
groups are important in geometry and physics, where they are used to describe the symmetry
of a shape or an object.
Remark 2.14. A pair (G, ◦) that satisfies Postulates (G1) and (G2) of the definition of a group
is called a semigroup. If a semigroup G has a neutral element in addition, that is, (G3) holds,
then G is called a monoid.

For example, the sets Z and 2Z are semigroups under multiplication. Furthermore, the
former is a monoid. The theory of semigroups and monoids are not discussed on this course.
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Exercises
1. Which of the following subsets of Z11 are groups under multiplication?

a) {1, 3, 4, 5, 9},
b) {1, 3, 4, 5, 8},
c) {1, 10}.

2. We define an operation on the real numbers as follows:

x ∗ y = max{x, y}.

Prove that this operation is associative.

3. Prove that the operation of substraction on the integers is not associative.

4. Prove that (m, n) 7→ m + n + 1 is an operation on N. Does it have a neutral element?

5. The operation on the set E has a left neutral element e, which satisfies e ∗ x = x ∀x ∈ E,
and a right neutral element e′, which satisfies x ∗ e′ = x ∀x ∈ E. Prove that e = e′.

6. The operation on the set E = {0, 1} is defined by the following table.

0 1
0 0 1
1 1 0

Prove that E is a group under this operation.

7. An operation on the set R × R is defined by

(x, y) ∗
(
x′, y′) =

(
xx′, yy′) .

Prove that this operation is associative but not commutative.

8. Which elements of monoids (N, ·) and (N+, ·) have inverse elements?

9. Let (E, ∗) be a monoid. Prove that if an element x ∈ E has a left inverse element x′ (i.e.,
x′ ∗ x = e) and a right inverse element x′′ (i.e., x ∗ x′′ = e), then x′ = x′′ (that is, x has an
inverse).

10. An operation ∗ on the integers is defined as follows:

x ∗ y = x + y + 1.

Prove that (Z, ∗) is a group.

11. An operation on the set G = {(x, y) ∈ R2 ∣∣ x ̸= 0} is defined by

(x, y) ∗
(
x′, y′) =

(
xx′, yx′ + y′) .

Prove that (G, ∗) is a group.

12. Define addition + on the set RR of maps f : R → R as

(f + g) (x) = f (x) + g (x) ∀x ∈ R.

Prove that
(
RR, +

)
is a group.
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13. Let (A, ≤) be a totally ordered set. Denote for all x, y ∈ A

a ∗ b =
{

a, when a ≤ b

b, when b ≤ a.

Show that ∗ is associative and commutative. When is (A, ∗) a monoid?

14. Determine the stable subsets and possible submonoids of A in the previous exercise.1

15. Determine whether (Z, ·) is a group.

16. Determine whether the set {1, −1, i, −i} is a group under multiplication of complex num-
bers.

17. Is the set of positive rational numbers a group under multiplication of real numbers?

18. Does the matrix
( 2 2

1 1
)

have an inverse element when the neutral element is the identity
matrix? What about when the neutral element is the zero matrix?

2.2 Basic properties
Hereon the group G will be denoted multiplicatively unless otherwise stated.

Since a(bc) = (ab)c, the product of three or more elements in a group can be written without
parentheses, for example, abc.

The power of an element of G is defined as usual:

a0 = 1, an = a · a · · · a (n factors), a−n = (an)−1 (∀ n ≥ 1) .

It is worth to note that (a−1)n = (an)−1. This follows from

an(a−1)n = a · · · aa−1 · · · a−1 = 1, (a−1)nan = a−1 · · · a−1a · · · a = 1.

From the definition of exponentiation, we get the nice identities

(am)n = amn, aman = am+n, (2.1)

where the exponents m, n are nonnegative. Moreover with a hint of work, we see that these
identities hold for all exponents. For example, when m > 0, n > 0

(am)−n = ((am)n)−1 = (amn)−1 = a−mn,

ama−n = am
(
a−1

)n
= a · · · a︸ ︷︷ ︸

m
a−1 · · · a−1︸ ︷︷ ︸

n
= am−n (m > n) .

The other cases can be considered similarly.
However, the identity (ab)n = anbn familiar from basic arithmetic clearly does not hold in

general if G is not commutative! In addition, note the identity (compare with matrix calcula-
tions)

(ab)−1 = b−1a−1.

Remark 2.15. When using additive notation the power an corresponds to the multiple na.
Below is a summary of notations depending on the notation of the group operation.

1These concepts have not been defined but one can find their definitions easily online.
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(G, ·) (G, +)
a · b or ab product a + b sum
e or 1 neutral element or

identity
0 neutral element or

additive identity
a−1 inverse element −a additive inverse
an power of a na multiple of a
ab−1 quotient a − b difference

Theorem 2.16. Let G be a group and a, b ∈ G. The equations

ax = b, ya = b

have unique solutions in G, namely x = a−1b and y = ba−1.

Proof. Multiplying the equation ax = b on the left by a−1, we get x = a−1b. Vice versa, x = a−1b
satisfies the equation since a

(
a−1b

)
b = b. Similarly, multiplying the equation ya = b on the

right by a−1, we get y = ba−1. Vice versa, y = ba−1 satisfies the equation since
(
ba−1) a = b.

We can deduce from Theorem 2.16 or directly that the rules of reduction hold in a group:

ac = bc =⇒ a = b; ca = cb =⇒ a = b.

A finite group can be described by writing its Cayley table, which is also called the group
table. The columns and rows of the table are labelled with the group elements and the element
ab is written in the cell of row a and column b. It follows from 2.16 that every column and every
row contains each group element exactly once.
Example 2.17. In the case of a group with three elements, 1, a, b, we obtain only a single possible
Cayley table when taking the prior condition into account. Postulates (G1), (G3) and (G4) are
clearly satisfied. Checking (G2) requires some effort. However, this effort can be skipped by
finding a group with this Cayley table. For example, one such group is the additive group
Z3 = {0, 1, 2}.

· 1 a b
1 1 a b
a a b 1
b b 1 a

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Result: There is, essentially, one single group with three elements. This group can be presented
in the form G = {1, a, a2}, where a3 = 1. Groups like this are called cyclic and will be discussed
in Section 3.3.
Example 2.18. There are essentially two groups with four elements, 1, a, b, c, defined by whether
a2 = 1 or a2 = b holds. Their Cayley tables are the following:

· 1 a b c
1 1 a b c
a a b c 1
b b c 1 a
c c 1 a b

cyclic group

· 1 a b c
1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

Klein four-group

Definition 2.19. Let G be a group. If H ⊂ G and H is a group under the operation on G, we
call H a subgroup of G, and denote H ⩽ G.
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Note that 1H = 1G. This can be seen by multiplying the equation 1H1H = 1H viewed in G
by 1−1

H . Consequently, the inverse of every element a in H is the inverse of a in G.
Example 2.20. The trivial subgroups of a group G are {1} and G.

If H ⩽ G and H ̸= G, we say that H is a proper subgroup of G, and denote H < G.
Example 2.21. Z < Q < R < C as additive groups, and Q∗ < R∗ < C∗ as multiplicative groups.

The next theorem provides a short method for testing whether a subset H of group G is a
subgroup of G.

Theorem 2.22 (Subgroup criterion). Let G be a group and H ⊂ G. Then H is a subgroup of
G if and only if H ̸= ∅ and

ab−1 ∈ H ∀ a, b ∈ H.

Proof. Suppose a ∈ H. Now 1 = aa−1 ∈ H and further a−1 = 1 · a−1 ∈ H. From these we see
that H satisfies Postulates (G3) and (G4). Because the operation on G is associative, so is the
operation on H, and (G2) is satisfied as well.

We shall show that (G1) holds. If a, b ∈ H, then according to what we stated above b−1 ∈ H,
and by assumption ab = a

(
b−1)−1 ∈ H. Thus H is a group, thus H ⩽ G.

Suppose H is a subgroup of G. By (G3) we know that H is nonempty. By (G4) each
element b in H has an inverse element b−1 ∈ H. Finally (G1) states that ab−1 ∈ H for any
a, b−1 ∈ H.

The subset H is usually given as the set of elements in G with some property P . The use
of Theorem 2.22 has two steps, which you can compare with the proof by induction:

1. Show that some elements of G have the property P . The neutral element e of G is often
suitable. Thus state H ̸= ∅.

2. Assume that elements a and b have this property P , and show that the element ab−1 also
has the property P .

Example 2.23. Let G be an Abelian group with neutral element e. We shall show that the
subset H = {x ∈ G

∣∣ x2 = e} is a subgroup of G.
Now, the defining property P of the subset H is the condition x2 = e. First note that e2 = e,

so H ̸= ∅. Then we assume that a, b ∈ H. This means that a2 = e and b2 = e. We need to
show that

(
ab−1)2 = e. Since G is Abelian, we have(

ab−1
)2

= ab−1ab−1 = a2
(
b−1

)2
= a2

(
b2
)−1

= ee−1 = e.

Thus ab−1 ∈ H and by the Subgroup criterion, H is a subgroup of G.

Corollary 2.24. If H ⩽ G and K ⩽ G, then H ∩ K ⩽ G.

Proof. Because 1 ∈ H ∩ K, the intersection is not empty. If a, b ∈ H ∩ K, then a, b ∈ H and
a, b ∈ K, so H as a group contains the element ab−1 as does K. Thus ab−1 ∈ H ∩ K.

This result can be generalised to intersections of arbitrary collections of subgroups. From
Theorem 2.22 we can easily form the next, slightly longer test for a subgroup.

Theorem 2.25. Let G be a group and H some nonempty subset of G. Then H is a subgroup
of G if

ab ∈ H ∀ a, b ∈ H and
a−1 ∈ H ∀ a ∈ H.
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Proof. By the Subgroup criterion it is sufficient to show that a, b ∈ H implies ab−1 ∈ H. Let
a, b ∈ H. Then b−1 ∈ H by the latter condition and ab−1 ∈ H by the former condition.

If the subset is a finite subset of the group G, then it can be handled in a slightly simpler
way.

Theorem 2.26. Let G be a group and H a finite subset of G. Then H is a subgroup of G if
H ̸= ∅ and

ab ∈ H ∀ a, b ∈ H.

Proof. Suppose that a, b ∈ H. We shall show that ab−1 ∈ H, and the statement will follow
from the Subgroup criterion. By assumption bk ∈ H for any k ≥ 1, and abk ∈ H whenever
k ≥ 0. Because H is finite, we must have abk = abj for some exponents k, j ≥ 0, k ̸= j. We
can assume that k < j. Now j − k − 1 ≥ 0 and we see that

ab−1 = abj−k−1 ∈ H.

Example 2.27. We will show that the following subsets are subgroups:

a) G = GLn (R), H = {A ∈ GLn (R)
∣∣ det (A) = 1}:

H clearly contains the identity matrix so H ̸= ∅. Suppose A, B ∈ H. Then we have

det(AB−1) = det(A)det(B−1) = det(A)det(B)−1 = 1 · 1
1 = 1.

Hence AB−1 ∈ H, and H is a subgroup of G by the Subgroup criterion.

b) G = Dn, H = {r ∈ Dn

∣∣ r is a rotation}:
The identity, the rotation by 0 degrees, belongs to H so H ̸= ∅. Suppose ϱθ1 , ϱθ2 ∈ H,
that is, θ1 = k 360◦

n and θ2 = l 360◦

n with k, l ∈ Z. Then

ϱθ1ϱ−1
θ2

= ϱθ1−θ2 ∈ H

because θ1 − θ2 = 360◦

n (k − l) is another integer multiple of 360◦

n , which is a rotation of the
n-gon. Hence H is a subgroup of G by the Subgroup criterion.

c) G = (Z, +), H = mZ = {mk
∣∣ k ∈ Z}:

Firstly, H is nonempty because 0 = m · 0 ∈ mZ. Suppose that a = mk, b = ml ∈ H.
Then a − b = mk − ml = m(k − l) ∈ mZ = H. Thus by the Subgroup criterion H is a
subgroup of G.

Theorem 2.28. If G1 and G2 are groups, then their Cartesian product G1 × G2 is a group
under the following operation:

(a1, a2) (b1, b2) = (a1b1, a2b2) , ai, bi ∈ Gi. (2.2)

This group is called the direct product of the groups G1 and G2. If we use the additive notation,
it is called the direct sum.

Proof. Postulates (G1), (G2), (G3) and (G4) can be checked easily.
(G1): Suppose a1, b1 ∈ G1 and a2, b2 ∈ G2. Then since G1 and G2 are groups, a1b1 ∈ G1

and a2b2 ∈ G2. Thus
(a1, a2) (b1, b2) = (a1b1, a2b2) ∈ G1 × G2.
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(G2): Since the operations of G1 and G2 are associative, (a1b1)c1 = a1(b1c1) and (a2b2)c2 =
a2(b2c2) for c1 ∈ G1 and c2 ∈ G2. Thus

[(a1, a2) (b1, b2)] (c1, c2) = (a1, a2) [(b1, b2) (c1, c2)] .

For (G3) we note that the identity is (1, 1) and for (G4) we note that (a1, a2)−1 =
(
a−1

1 , a−1
2

)
.

Example 2.29. If G1 = G2 = R under addition, then Theorem 2.28 gives the familiar group
R × R = R2, where (u1, u2) + (v1, v2) = (u1 + v1, u2 + v2).

Note that in the formula (2.2), the operation a1b1 is computed in G1 and a2b2 is computed
in G2. The direct product and sum generalise in a similar way for groups G1, G2, . . . , Gn, n > 2.

Exercises
1. Is (Zn, +) a subgroup of (Z, +)?

2. Solve the pair of equations in Z8 {
18x2 + 48y2 = 08

18x + 28y = 48.

3. Consider the set R under addition. Show that the subset of rational numbers is stable,
that is, closed under addition. Is the subset of irrational numbers stable?

4. Show that in the group (G, ◦), the equation

a ◦ x ◦ b ◦ c ◦ x = a ◦ b ◦ x

has a unique solution and find it.

5. In the three element symmetric group S3 solve equation(
1 2 3
3 2 1

)
◦ S =

(
1 2 3
3 1 2

)
.

6. Show that (xm)n = xmn for all m, n ∈ Z where x is an element of a group G.

7. Suppose that a group (G, +) has property 2 (x + y) = 2x + 2y. Show that G is Abelian.

8. Suppose (G, +) is Abelian and H is the set of elements in G that satisfy 4x = x. Show
that (H, +) is a subgroup of (G, +).

9. Suppose that the group G = {0, 1, 2, 3} whose group operation uses addition notation has
the Cayley table

0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2
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Determine all subgroups of (G, +).

10. Let (G, ◦) be a group and

H = {x ∈ G
∣∣ x ◦ a = a ◦ x ∀a ∈ G}.

Show that (H, ◦) is a commutative subgroup of (G, ◦).

11. Suppose that H and K are subgroups of a group G. Show that H ∪ K is a subgroup of
G if and only if H ⊂ K or K ⊂ H.

12. Let a and b be elements of a group (G, ·) satisfying

b6 = e and ab = b4a.

Show that b3 = e and ab = ba.

13. Let (A, +) be an Abelian group and B its subgroup. Show that the set

H = {a ∈ A
∣∣ na ∈ B for some n ∈ N \ {0}}

is a subgroup of A that contains B.

14. Suppose (E, ◦) is a monoid and that its element a has an inverse in E. Show that the
maps

f : E → E, x 7→ a ◦ x;
g : E → E x 7→ x ◦ a,

are bijections.

15. The operation ◦ on the set Z∗ × Z, defined by

(i, a) ◦ (j, b) = (ij, a + ib) , i, j ∈ Z∗ = {1, −1}, a, b ∈ Z,

is known to be associative. Show that (Z∗ × Z, ◦) is a noncommutative group and compute
the inverse of the element (−1, 5).

16. Let (A, ◦) be a finite monoid and let a, b ∈ A be such that a ◦ b = eA. Show that a and b
are the inverse elements of each other. (Hint: Show that the map f : A → A, f(x) = b◦x,
is an injection.)

17. Solve the following equation within the symmetric group S6:

f ◦
(

1 2 3 4 5 6
3 1 6 5 4 2

)
=
(

1 2 3 4 5 6
2 3 6 4 1 5

)
.

18. Prove that (Z, +) is an Abelian group by starting from the definition Z = N × N/ ∼ and
by using analogious properties of (N, 0).

19. Prove that {5, 15, 25, 35} is a group under multiplication modulo 40. What is the neutral
element?
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2.3 Generating groups; cyclic groups
Let G be a group and S some subset of G. Consider the collection of subgroups of G that
contain S. This collection is nonempty because at least G belongs to it. The intersection of
subgroups H of G is a subgroup of G, which is proved similarly to Corollary 2.24. We call this
subgroup the subgroup of G generated by S and denote it by ⟨S⟩; that is,

⟨S⟩ =
⋂

S⊂H⩽G

H.

The elements of the set S are called the generators of the group ⟨S⟩.
If there are finitely many generators, that is, S = {a1, . . . , ak} for some finite k, we say that

the group ⟨S⟩ is finitely generated, and denote

⟨S⟩ = ⟨a1, . . . , ak⟩.

By definition ⟨S⟩ is the smallest subgroup of G that contains the set S. Any other subset of G
that contains S also contains ⟨S⟩.
Example 2.30. ⟨∅⟩ = {1}, ⟨1⟩ = {1}. If H ⩽ G, then ⟨H⟩ = H.

Theorem 2.31. The subgroup of a group G generated by its subset S consists of all products
whose factors are elements of S and the inverses of the elements of S including the empty
product 1, that is,

⟨S⟩ = {a1a2 · · · am

∣∣ ai or a−1
i ∈ S ∀ i, m ≥ 0}.

Proof. Denote the right-hand side by H. From the Subgroup criterion we see that H ⩽ G.
Moreover, S ⊂ H. Hence ⟨S⟩ ⊂ H because ⟨S⟩ is by definition the smallest subgroup that
contains S.

Conversely, every subgroup of G that contains S also contains all the previously stated
products, that is, it contains H. Thus H is contained in the intersection of all such subgroups,
in other words, H ⊂ ⟨S⟩. These together give ⟨S⟩ = H

Remark 2.32. If G is a finite group, then Theorem 2.31 can be simplified to

⟨S⟩ = {a1a2 · · · am

∣∣ ai ∈ S ∀ i; m ≥ 0}

as we can use Theorem 2.26.
Example 2.33. The subset of primes P of the group R∗ generates the subgroup Q+, which
consists of all positive rational numbers under multiplication.
Example 2.34. If V is a vector space of dimension n, then its basis {B1, . . . , Bn} generates a
subgroup {k1B1 + . . . + knBn

∣∣ ki ∈ Z ∀ i} of the group (V, +). (Why is it not a subspace of
V ?)
Example 2.35. The dihedral group D4 = ⟨r, s⟩, where r is a rotation by (π/2) and s is a suitable
reflection.
Example 2.36. The infinite group Z is finitely generated: Z = {n · 1

∣∣ n ∈ Z} = ⟨1⟩ = ⟨−1⟩.

Definition 2.37. A group G is called cyclic if G is generated by one element, that is, if there
is an element a ∈ G such that G = ⟨a⟩.

Theorem 2.38. Let G = ⟨a⟩ be a cyclic group. If #G = n ∈ N, then G is of the form

G = {1, a, a2, . . . an−1},

and n is the smallest positive integer such that an = 1. If #G = ∞, then

G = {. . . , a−2, a−1, 1, a, a2, . . .}

and all powers am (m ∈ Z) are distinct, in particular, am ̸= 1 ∀ m ̸= 0.
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Proof. By Theorem 2.31
G = {am

∣∣ m ∈ Z}. (2.3)

First assume that #G = n. Then among the powers am there are only m distinct ones, which
means that there exist exponents m and k, m > k with am = ak. Now am−k = 1 and m−k > 0.
We choose the smallest positive exponent such that as = 1 and s ≤ m − k.

By the division algorithm, every exponent m ≥ 0 can be written as m = qs + r with
0 ≤ r ≤ s − 1. Because

am = aqs+r = (as)q ar = 1qar = ar,

all elements of G are of the form ar, r = 0, . . . , s − 1. Moreover, these elements are distinct;
otherwise, a similar inference would result in at = 1 with 0 < t < s, contradicting the minimality
of s. In particular, #G = s, so s = n. Moreover, we see that G is exactly as in the claim.

If G is infinite, then all the powers in Equation (2.3) are distinct, since otherwise we would
result in the same finite group as above.

Example 2.39. Zm is an additive cyclic group of order m since for all m ≥ 1:

Zm = ⟨1⟩ = {0, 1, 2 · 1, . . . , (m − 1) · 1}.

Z is an infinite cyclic group with generators 1 and −1.
Example 2.40. The group Z∗

5 is a cyclic group generated by 2 since 4 = 22, 3 = 23 and 1 = 24.

Why is it called a cyclic group? If G = ⟨a⟩ has order n, then in the infinite sequence
. . . , am−1, am, am+1, . . . any n consecutive elements form a cycle, which repeats when moving
along the sequence. This can also be expressed as follows:

ak = ah ⇐⇒ k ≡ h (mod n).

An infinite cyclic group is a special case in the previous sense, where there is only a single
infinitely long cycle.

Definition 2.41. Let G be a group and a ∈ G. The order of the subgroup ⟨a⟩ of G is called
the order of the element a and denoted by ord(a), that is,

ord(a) = #⟨a⟩.

It follows immediately from Theorem 2.38 that a is of (finite) order n if and only if n is
the smallest positive exponent such that an = 1. Moreover, all the distinct powers of a are
1, a, a2, . . . , an−1. Note that ord(a) = 1 if and only if a = 1.
Example 2.42. (i) In the group R∗, ord(1) = 1, ord(−1) = 2 and the order of any other

element is infinite.

(ii) In the group Z∗
21, we have ord(2) = 6 and ord(20) = 2 .

Later we will present how we can simplify the computation of the order of an element.

Exercises
1. Consider the group (Z10, +). What is ⟨10⟩?

2. Is ⟨−1⟩ = Zm?
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3. What is the order of the group Z12? Compute the orders of all its elements.

4. Find all possible generators of (Z8, +).

5. Determine the subgroup of R generated by its subset {6, 15, 21}.

6. Let G = ⟨a, b⟩ with ord(a) = ord(b) = 2 and ab = ba. Show that G is the Klein four-group.

7. Prove that ⟨a⟩ = ⟨a−1⟩ no matter what group a belongs to.

8. What is the order of the matrix A =
( 1 1

0 1
)

in GL2 (R)?

9. Let x be an element of the group (G, ·). Suppose that x2 ̸= 1 and x6 = 1. Prove that
x4 ̸= 1 and x5 ̸= 1. What can we say about the order of x?

2.4 Group homomorphisms and isomorphisms
In Section 2.2 we stated that two groups are essentially the same if their Cayley tables differ only
by how the elements are labelled. In this chapter, we shall explore this “equality” comparison
in more detail, starting with the following definition.

Definition 2.43. Let (G, ·) and (G′, ∗) be two groups. Then we say that a map f : G → G′ is
a (group) homomorphism if it satisfies the Homomorphism criterion

f(ab) = f(a) ∗ f(b) ∀ a, b ∈ G. (2.4)

If multiplication notation is used for both group operations, then the criterion is written as
f(ab) = f(a)f(b) ∀ a, b ∈ G.
Example 2.44. Suppose U and V are vector spaces. Then every linear map t : U → V is a
homomorphism between additive groups U and V because

t(X1 + X2) = t(X1) + t(X2) ∀ X1, X2 ∈ U.

Example 2.45. (i) The map f : R∗ → R∗ defined by f(x) = x2 is a homomorphism because

f(xy) = (xy)2 = x2y2 = f(x)f(y) ∀ x, y ∈ R∗.

(ii) Let us denote by R+ the multiplicative group formed by the positive real numbers. The
map f : R+ → R defined by f(x) = ln(x) is a homomorphism because

f(xy) = ln(xy) = ln(x) + ln(y) = f(x) + f(y) ∀ x, y ∈ R+.

(iii) The map f : Z → Zm defined by f(a) = a is a homomorphism because a + b = a + b.

(iv) The map f : G → G′ defined by f(a) = 1G′ ∀ a ∈ G is called the trivial homomorphism.
It is clearly a homomorphism as

f(a)f(b) = 1G′ = f(ab) ∀ a, b ∈ G.
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A group homomorphism f : G → G′ preserves the identity element and the relationship
between inverse elements. That is,

f(1G) = 1G′ , f(a−1) = f(a)−1 ∀ a ∈ G.

The first equation can be obtained directly by multiplying equation

f(1G)f(1G) = f(1G · 1G)

by f(1G)−1 on both sides. Note that often the identity elements of both groups are denoted by
1. We will mostly use this shorthand notation. The second equation can be obtained from the
equations

f(a)f(a−1) = f(aa−1) = f(1) = 1, f(a−1)f(a) = 1.

Applied to a linear map t, the previous result expresses a familiar fact that t preserves the
identity element and the inverse elements, which follows directly from the definition of t in the
theory of linear maps.

Definition 2.46. Let (M, ·) and (M ′, ∗) be two monoids. We say that a map f : M → M ′ is
a (monoid) homomorphism if it satisfies the Homomorphism criterion (2.4) and f(1M ) = 1M ′

holds.

The following theorem has an analogy in the theory of linear maps.

Theorem 2.47. Let f : G → G′ be a group homomorphism.

(i) If H ⩽ G, then f(H) ⩽ G′.

(ii) If H ′ ⩽ G′, then f−1(H ′) ⩽ G.

Proof. (i) The set f(H) is nonempty as H ̸= ∅. Suppose a′, b′ ∈ f(H), that is a′ = f(a) and
b′ = f(b) where a, b ∈ H. Then

a′b′−1 = f(a)f(b)−1 = f(ab−1) ∈ f(H).

Now the statement follows from the Subgroup criterion because H is a subgroup so ab−1 ∈
H.

(ii) Because H ′ contains the identity 1G′ of G′ whose preimage is the identity 1G of G, we
have 1G ∈ f−1(H ′). In particular, f−1(H ′) ̸= ∅. The implication a, b ∈ f−1(H ′) ⇒ ab−1 ∈
f−1(H ′) is proved once again by using the Homomorphism criterion (try it!).

Similarly as with linear maps, note the important special cases H ′ = {1} and H = G of the
theorem. The kernel of a homomorphism f : G → G′ is

Ker(f) = f−1({1}) = {a ∈ G
∣∣ f(a) = 1},

and its image is
Im(f) = f(G) = {f(a)

∣∣ a ∈ G}.

Example 2.48. Let us determine the kernels and images of the homomorphisms from Exam-
ple 2.45.

(i) For the map f : R∗ → R∗ defined by f(x) = x2, we have

Ker(f) = {1, −1} and Im(f) = R∗
+.
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(ii) For the map f : R+ → R defined by f(x) = ln(x), we have

Ker(f) = {1} and Im(f) = R.

(iii) For the map f : Z → Zm defined by f(a) = a, we have

Ker(f) = mZ and Im(f) = Zm.

(iv) For the trivial map f : G → H defined by f(a) = 1H ∀ a ∈ H, we have

Ker(f) = G and Im(f) = {1}.

The group Im(f) is called the homomorphic image of the group G. This group retains some
of the properties of G; however, it loses more properties of G the more elements f maps to the
same element of G′. We will handle this rigorously later. For now, we will only consider the
case where f is the best possible in this regard.

Definition 2.49. A group homomorphism f : G → G′ is called a (group) isomorphism if f is
bijective. We say that the group G is isomorphic to group G′ if there exists some isomorphism
f : G → G′, and denote G ≃ G′.

Example 2.50. The map f : R+ → R, f(x) = ln(x) from Example 2.45 (ii) is an isomorphism,
so (R+, ·) ≃ (R, +).

If a homomorphism f : G → G′ is injective, then the map f : G → Im(f) is a bijective
homomorphism, that is, an isomorphism. In other words, the homomorphic image Im(f) of
a group G of an injective map f is isomorphic to G. When studying the injectivity of a
homomorphism, the following theorem is often useful.

Theorem 2.51. A group homomorphism f : G → G′ is an injection if and only if

Ker(f) = {1G}.

Proof. a) Suppose that f is injective. Because f (1G) = 1G′ , we have Ker(f) = {1G}.
b) Suppose now that Ker(f) = {1G}. Let x, y ∈ G and f(x) = f(y). Now

1G′ = f(x)f(y)−1 = f
(
xy−1

)
and thus xy−1 ∈ Ker(f). Hence by assumption x = y. Thus f is an injection.

Example 2.52. Let G be a group and u ∈ G. The map

fu : G → G, fu(a) = uau−1,

is an isomorphism. Let a, b ∈ G. Firstly, fu is a homomorphism since

fu(ab) = uabu−1 = uau−1ubu−1 = fu(a)fu(b).

Injectivity is easy to check as well. Suppose that f(a) = f(b), that is,

uau−1 = ubu−1.

Multiplying this by u on the right and by u−1 on the left, we get a = b. Thus fu is an injection.
Now since fu is injective and maps #G elements to #G elements, fu must be surjective. As

an injection and a surjection, fu is a bijection, and hence, an isomorphism. An isomorphism
from G to itself is called an automorphism of G.
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Theorem 2.53. Let f : G → G′ and g : G′ → G′′ be group homomorphisms. Then

(i) the map f ◦ g is a homomorphism;

(ii) if f and g are isomorphism, then so is f ◦ g.

Proof. (i) g(f(ab)) = g(f(a)f(b)) = g(f(a))g(f(b)).

(ii) The bijectivity of map f ◦g can be determined straightforwardly. Thereafter the statement
follows from part (i).

Theorem 2.54. Let f : G → G′ be a group isomorphism. Then f−1 : G′ → G is an isomor-
phism.

Proof. The map f−1 is clearly bijective; we just need to show that it is a homomorphism. Let
a′, b′ ∈ G′, with a′ = f(a), b′ = f(b) and a, b, ∈ G. Now a′b′ = f(a)f(b) = f(ab), so

f−1 (a′b′) = ab = f−1 (a′) f−1 (b′) .

Remark 2.55. In particular, as a consequence of the theorem we get that the inverse map of a
homomorphism, if it exists, is a homomorphism.

The isomorphy of groups is an equivalency relation on any collection of groups. Symmetry
can be seen from Theorem 2.54, and transitivity can be seen from Theorem 2.53. To see
reflexivity, just note that idG is an isomorphism G → G.

Isomorphic groups G and G′ are structurally the same in the view of group theory: their
elements correspond to each other bijectively, and the product of some elements in G corresponds
to the product of their images in G′. Particularly, if G and G′ are finite, then we can obtain
the Cayley table of G′ by replacing each element in the Cayley table of G with its image in G′.
Example 2.56. In Examples 2.17 and 2.18 of Section 2.2, we showed that there is exactly one
group with three elements and two groups with four elements up to isomorphism. The only
group with one element is {e}, where e is the neutral element. There is only a single group of
order two up to isomorphism. This can be seen by writing its Cayley table with the neutral
element e and the other element a.

e a
e e a
a a e

Example 2.57. Let us show that the groups (R, +) and (R∗, ·) are not isomorphic. First, recall
that isomorphisms preserve group structure. Suppose f : R∗ → R is any isomorphism. As a
homomorphism f maps the neutral element of R∗ to the neutral element of R, f(1) = 0. The
order of −1 in R∗ is 2 since (−1)(−1) = 1, and

f(−1) + f(−1) = f((−1)(−1)) = f(1) = 0.

However, in (R, +) the only solution to the equation a + a = 0 is a = 0. This yields a
contradiction to the bijectivity of f .

One of the basic problems in group theory is the classification of nonisomorphic groups, see
Section 3.5

38



Exercises
1. Determine whether (Z, +) and (2Z, +) are isomorphic.

2. Is the map f : (R+, ·) → (R \ {−1}, ◦) a homomorphism when · is ordinary multiplication
and ◦ is defined by x ◦ y = xy + x + y?

3. Let E be a set and F its subset. Define an operation (A, B) 7→ A∩B on the power set P(E).
Show that the map f : P(E) → P(E), f(A) = A∪F , satisfies the Homomorphism criterion
and maps neutral element to neutral element ,i.e., that it is a monoid homomorphism.

4. Let X, Y be sets and f : X → Y a map. Show that the map

θ : P(Y ) → P(X); θ(B) = f−1(B);

is a monoid homomorphism (P(Y ), ∪) → (P(x), ∪).

5. Let f : G → H be a group homomorphism. Show that f (xn) = f (x)n ∀x ∈ G, n ∈ Z.

6. Determine the cyclic subgroups of the group (Z∗ × Z∗) from Exercise 15. of Section 2.2,
and then show that this group is noncyclic.

7. Let G and H be groups. Let A be the subset generated by the set S ⊂ G and f : G → H
a homomorphism. Show that the subgroup f(A) is generated by the set f(S).

8. Let G = {a + b
√

2
∣∣ a, b, ∈ Q} and H = {

(
a 2b
b a

) ∣∣ a, b ∈ Q}. Are G and H isomorphic
under addition?

2.5 Lagrange’s theorem
Definition 2.58. Let H ⩽ G. Then for each element a ∈ G, the left coset of a with respect to
the subgroup H is the set

aH = {ah
∣∣ h ∈ H}.

We define the right cosets Ha respectively. When using additive notation we denote the cosets
a + H, H + a.

In the following, we mainly consider left cosets; right cosets behave in the same way. If G
is an Abelian group, then aH = Ha for all a ∈ G and we can exclude the attributes left and
right.

The condition
b ∼ a ⇐⇒ b ∈ aH

defines an equivalence relation on G (check!). Its equivalence classes are of the form

[a] = {b ∈ G
∣∣ b ∈ aH} = aH.

They are exactly the left cosets with respect to H. From this we see that the left cosets with
respect to the subgroup H in G form a partition of G

G =
⋃

a∈D

aH,

where a goes through some set D of representative left cosets.
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The subgroup H itself is a coset: for instance H = 1 · H = H · 1. The condition b ∈ aH is
equivalent to the condition a−1b ∈ H. When dealing with cosets, it is helpful to keep in mind
the rule

aH = bH ⇐⇒ a ∈ bH,

which follows from the basic properties of a partition.
Example 2.59. For the group Z, the cosets with respect to the subgroup ⟨m⟩ = mZ are mZ,
1 + mZ, 2 + mZ, . . . , (m − 1) + mZ; they are the residue classes mod m (m ≥ 1).

In the case of additive Abelian groups, cosets are often called residue classes.
Example 2.60. The left cosets with respect to the subgroup H = ⟨s⟩ in thes group D4 = ⟨r, s⟩ =
{1, r, r2, r3, s, sr, sr2, sr3} are:

H = {1, s}, rH = {r, srr}, r2H = {r2, sr2}, r3H = {r3, sr},

where note that rs = sr3 Determine the right cosets as well.
The number of left cosets with respect to a subgroup H in a group G is called the index of

H in G and denoted by [G : H]. The index can also be infinite of course. The next theorem is
also called the index theorem.

Theorem 2.61 (Lagrange’s theorem). If G is a finite group and H ⩽ G, then

[G : H] = #G

#H
.

In particular, the order of any subgroup of a finite group G divides the order of G.

Proof. Every coset aH has as many elements as H because the equation ah1 = ah2 implies
h1 = h2 for h1, h2 ∈ H. We get

#G =
∑
a∈D

# (aH) =
∑
a∈D

#H = [G : H] · (#H) .

Remark 2.62. (i) Even if H is infinite, as is G, every coset aH has the same order as H since
the map H → aH, h 7→ ah is a bijection.

(ii) The index [G : H] also states the number of right cosets with respect to H. This follows
by showing (do it!) that the map aH 7→ Ha−1 is a bijection from the set of left cosets to
the set of right cosets. If G is finite, the result can be obtained more easily by looking at
the proof of Theorem 2.61.

Example 2.63. Examples 2.59 and 2.60 give [Z : mZ] = m and [D4 : ⟨s⟩] = 4. The latter also
follows from Lagrange’s theorem.
Example 2.64. Suppose that a group G has finite subgroups H and K whose orders are coprime.
What is H ∩ K? The answer is given by Lagrange’s theorem. Because the order of (H ∩ K)
divides both the order of #H and #G, it must be 1. Thus H ∩ K = {1}.

Lagrange’s theorem is an effective aid when studying which subsets of a given finite group
G are subgroups. For instance, it follows from Lagrange’s theorem that no proper subset S of
G with more than (#G) /2 elements can be a subgroup of G.

Corollary 2.65. The orders of the elements of a finite group G divide the order of G.

Proof. This follows directly from Lagrange’s theorem because ord(a) = #⟨a⟩.
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Example 2.66. Let us compute the orders of the elements of the group Z∗
13. 13 is a prime number

so the possible orders are 1 and 13. Only the identity can have order 1, so ord(1) = 1. Then all
other elements have order 13.
Corollary 2.67. If G is a finite group, #G = g, and a ∈ G, then ag = 1.
Proof. Let us denote the order of an element a by h; ah = 1. By Corollary 2.65 we have h

∣∣ g,
that is, g = th for some t ∈ Z. Now ag = ath =

(
ah
)t

= 1.

Example 2.68. Applying the previous corollary to the group Z∗
m, we get aφ(m) = 1 ∀ a ∈ Z∗

m.
Writing this as a congruence, we get Euler’s theorem:

aφ(m) ≡ 1 (mod m) when gcd (a, m) = 1.

In particular, when m = p ∈ P, we get Fermat’s little theorem:

ap−1 ≡ 1 (mod p) when p ∤ a.

For instance, 34 ≡ 1 (mod 5), 22102 ≡ 1 (mod 103) and so forth. Fermat was able to prove
this using only methods of number theory (try it yourself!).

Fermat’s little theorem can also be written as

ap ≡ a (mod a) ∀ a ∈ Z.

Note that Euler’s theorem, which is very important in number theory, was obtained above
as just a special case of a general result in group theory.
Corollary 2.69. If the order of a group G is a prime, then G is cyclic.
Proof. Choose a ∈ G, a ̸= 1. Because ord(a) divides p and it is greater than 1, it must be p.
Thus a generates the whole group G : G = ⟨a⟩.

Because cyclic groups of identical orders are isomorphic (think why), it follows from the
previous corollary that there is exactly one cyclic group for each given prime up to isomorphy.

Exercises
1. Let H = 7Z. Determine all cosets in Z with respect to H.

2. Find all subgroups of the group (Z30, +).

3. Find all generators of the groups (Z6, +), (Z8, +) and (Z20, +).

4. Let a be a group element with ord(a) = 15. Compute the orders of the elements an, 0 ≤
n ≤ 15.

5. Why are all nontrivial subgroups of a group G of order p2 cyclic when p is a prime? What
is the largest possible number of such subgroups of G?

6. Let H = 3Z. Consider the cosets with respect to H in Z. Determine whether the following
cosets are equal:

a) 11 + H and 17 + H,
b) −1 + H and 5 + H.

7. Let H and K be subgroups of a group G. Prove that if the group G has elements a, b
such that aH = bK, then H = K.
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Chapter 3

Structure of groups

3.1 Factor groups
When studying a given group G, it is often helpful to consider simpler groups, such as groups of
smaller order. With this in mind we introduce the concepts normal subgroup and factor group.

If G is a group and H its subgroup, cosets aH and Ha may not coincide. If they do, then
we get an important special case, whose significance Galois noticed around 150 years ago.

Definition 3.1. A subgroup N of a group G is called normal if its left and right cosets coincide,
that is,

aN = Na ∀ a ∈ G.

In this case, we denote N ⊴ G, or if N is a proper subset, N � G.

If G is Abelian, then all of its subgroups are normal. Note that the definition aN = Na
does not imply na = an for all a ∈ G, n ∈ N ; instead it implies that

∀ n ∈ N ∃n1 ∈ N : an = n1a. (3.1)

The next criterion is suitable for checking whether a subgroup is normal.

Theorem 3.2 (Normal subgroup criterion). Let N ⩽ G. Then

N ⊴ G ⇔ ana−1 ∈ N ∀ a ∈ G, n ∈ N or aNa−1 ⊂ N ∀ a ∈ G.

Proof. (⇒) Suppose N ⊴ G. Then by applying condition (3.1) we get ana−1 = n1 ∈ N.
(⇐) Let a ∈ G. We need to prove that aN = Na.
Let n ∈ N and denote ana−1 = n1. By assumption we have n1 ∈ N . Hence we get

an = n1a ∈ Na. Thus aN ⊂ Na.
Now we apply the assumption to the elements a−1 and n. Then we get that a−1na = n2 ∈ N ,

so na = an2 ∈ aN . This shows that Na ⊂ aN .
These results combined prove the statement.

Remark 3.3. If N ⊴ G, then it follows from the definition that

aNa−1 = N ∀ a ∈ G.

The normal subgroup criterion thus states that it is enough to prove the inclusion relation
⊂ instead of equality when checking normality of a subgroup.
Example 3.4. For any group G, the trivial subgroups {1} and G are normal. Further, any
subgroup H of index 2 is always normal: aH = H = Ha ∀ a ∈ H and aH = G \ H ∀ a ̸∈ H,
so the left cosets of H are H and G \ H; likewise the right cosets. Therefore the left and right
cosets coincide.
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Example 3.5. We show for the subgroups

SLn (R) = {A ∈ GLn (R)
∣∣ det (A) = 1},

H = {A ∈ GLn (R)
∣∣ A is diagonal}

of the group GLn (R) that the former is normal but the latter is not when n > 1.
Let A ∈ SLn (R) and P ∈ GLn (R). Then

det
(
PAP −1

)
= det(P ) det(A) det(P )−1 = det(A) = 1.

Hence PAP −1 ∈ SLn (R). Thus by the Normal subgroup criterion SLn (R) is normal.
We show by counter example that H is not a normal subgroup. Choose D ∈ H and

P ∈ GLn (R) as

D =


−1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

 , H =


1 1 0 · · · 0
1 −1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

 .

Now,

PDP −1 =


0 −1 0 · · · 0

−1 0 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

 ̸∈ H.

Hence H is not a normal subgroup of GLn (R) when n > 1.
Remark 3.6. Suppose that a, x ∈ G. The group element y = axa−1 is called a conjugate of the
element x. We also say that we get axa−1 from the element x by conjugating it by a.

The relation
a ∼ y ⇐⇒ ∃a ∈ G : y = axa−1

is an equivalence relation on G. Its equivalence classes

[x] = {axa−1 ∣∣ a ∈ G}

are called the conjugacy classes of G.
The Normal subgroup criterion can also be expressed as follows: The subgroup N of a group

G is normal if and only if N is closed, that is, stable under conjugation by all elements of G, or
if and only if N consists of whole conjugacy classes of G.

If N ⊴ G, then the set of cosets in G is denoted by G/N ,

G/N = {aN
∣∣ a ∈ G} = {aN

∣∣ a ∈ D},

where D is some set of representatives.

Theorem 3.7. Suppose that N ⊴ G. The group G/N is a group under the operation defined
as follows:

aN · bN = abN.
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Proof. (G1) follows after we show that the operation is well defined. Suppose aN = a′N and
bN = b′N . Then a ∈ a′N and b ∈ b′N , so

a = a′n1, b = b′n2, n1, n2 ∈ N.

Now ab = a′n1b′n2. Because the subgroup N is normal, we have Nb′ = b′N and hence the
element n1b′ can be written as b′n2, where n3 ∈ N . The result is

ab = a′b′n3n2 ∈ a′b′N.

This shows that abN = a′b′N , that is, aN · bN = a′N · b′N .
Associativity (G2) follows from the associativity of the operation on G:

(aN · bN) · cN = abN · cN = (ab) cN = a (bc) N = aN · bcN = aN · (bN · cN) .

The neutral element is N and the inverse of aN is a−1N (check!).

Definition 3.8. The group (G/N, ·) is called the factor group (or quotient group) of G with
respect to N .

Note that # (G/N) = [G : N ]. If G is Abelian and H ⩽ G, then H ⊴ G and the factor
group G/H is an Abelian group, since aH · bH = abH = baH = bH · aH ∀ a, b ∈ G.
Example 3.9. Let us form the the Cayley table of the factor group Z∗

21/H with H = ⟨4⟩ =
{1, 4, 16}. Group Z∗

21 is Abelian so left cosets and right cosets coincide. The left cosets are
1H = 4H = 16H, 2H = 8H = 11H, 5H = 17H = 20H and 10H = 13H = 19H. The Cayley
table is then

· 1H 2H 5H 10H

1H 1H 2H 5H 10H
2H 2H 1H 10H 5H
5H 5H 10H 1H 2H
10H 10H 5H 2H 1H

Example 3.10. The factor group in R∗ with respect to the subgroup H = ⟨−1⟩ = {+1, −1} is

R∗/H = {aH
∣∣ a ∈ R∗} = {aH

∣∣ a ∈ R+}; aH · bH = abH.

Here aH = {+a, −a}.
Example 3.11. The factor group in the group Z with respect to the subgroup ⟨m⟩ = mZ (m ≥ 1)
is

Z/mZ = {k + mZ
∣∣ k ∈ Z} = {k + mZ

∣∣ k = 0, 1, . . . , m − 1},

under the operation (k + mZ) + (h + mZ) = (k + h) + mZ. This can also be written as

Z/mZ = {0, 1, . . . , m − 1}; k + h = k + h.

This is the familiar residue group mod m : Z/mZ = Zm. Factor groups can be considered a
generalisation of the concept of residue groups.

Definition 3.12. An operation and an equivalence relation ∼ defined on a set A are said to
be compatible if a ∼ a′ b ∼ b′ ⇒ ab ∼ a′b′.
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Exercises
1. Let H = ⟨618⟩. Form all the cosets in Z18 with respect to H and write the Cayley table

for the group (Z18/H, +).

2. Let (G1, ·) and (G2, ·) be groups. Show that G1 × {1G2} is a subgroup of the group
G = G1 × G2. Is it a normal subgroup?

3. Suppose H and K are normal subgroups of a group G. Show that H ∩ K is also a normal
subgroup of G.

4. Determine the subgroups of the group (Z4, +), and the factor groups they define.

5. Because R is an Abelian group, its subgroup Z is normal and the factor group R/Z is
thus defined. Explain why the elements of the factor group can be written as q +Z where
q ∈ R, 0 ≤ q < 1. Write the elements

(
1
2 + Z

)
+
(

2
3 + Z

)
and −

(
3
4 + Z

)
with this form.

What is the order of the element 35
99 + Z?

6. Let G be a group and E an equivalence relation compatible with the operation on G.
Show that the equivalence class of the identity element of G is a normal subgroup of G
and that the partition of G formed by the cosets of this subgroup corresponds to the
equivalence E.

7. Determine the cyclic subgroups that are normal of the group in Exercise 15. of Section 2.2.

8. Prove that ⟨3⟩/⟨12⟩ is isomorphic to Z4, where ⟨3⟩ ⩽ Z and ⟨12⟩ ⩽ Z.

9. Suppose H is a normal subgroup of a group G with index k. Prove that ak ∈ H ∀a ∈ G.
(Hint: Consider the factor group.)

10. What is the order of the group Z60/⟨15⟩?

3.2 Homomorphism theorem
Theorem 3.13. Let f : G → G′ be a group homomorphism.

(i) If N ⊴ G, then f(N) ⊴ f(G).

(ii) If N ′ ⊴ G′, then f−1(N ′) ⊴ G.

(Compare this to Theorem 2.47 where we had ⩽ instead of ⊴. Notice the other difference!)

Proof. (i) By Theorem 2.47 f(N) is a group, moreover f(N) ⩽ f(G). So we only need to show
that byb−1 ∈ f(N) for all b ∈ f(G) and y ∈ f(N).

We write b = f(a) and y = f(x), where a ∈ G and x ∈ N . Then

byb−1 = f(a)f(x)f(a−1) = f(axa−1).

Since N is a normal subgroup of G, we have axa−1 ∈ N . Hence f(axa−1) ∈ f(N).
(ii) The proof is similar to above ().
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In particular, if we choose N ′ = {1} we get the following result: The kernel Ker(f) of a
group homomorphism f : G → G′ is a normal subgroup of G.

The next theorem states that every homomorphism induces a certain isomorphism, which
is why the theorem is also called the Isomorphism theorem. It is one of the basic theorems in
group theory.

Theorem 3.14 (Homomorphism theorem). If f : G → G′ is a group homomorphism, then

G/Ker(f) ≃ Im(f).

More specifically: the homomorphism f induces an isomorphism

F : G/Ker(f) → Im(f), F (a · Ker(f)) = f(a).

NS: This theorem has too many names so I stuck with the name used in the Finnish version,
although it may be less common in English.

Proof. We denote K = Ker(f) and consider the map F . First we claim that F is well defined.
If aK = bK then a ∈ bK, that is, a = bk for some k ∈ K. Now

F (aK) = f(a) = f(bk) = f(b)f(k) = f(b) · 1 = f(b) = f(bK),

which proves the claim. Next, we need to show that F is an isomorphism.
Homomorphity: For aK, bK ∈ G/K, we have

F (aK · bK) = F (abK) = f(ab) = f(a)f(b) = F (aK)F (bK).

Injectivity: If F (aK) = 1, we have f(a) = 1 and a ∈ K. Then aK = K is equal to the
identity element of the group G/K. This proves that F is an injection by Theorem 2.51.

Surjectivity follows directly from the definition of F .

Remark 3.15. If N ⊴ G, the map

π : G → G/N, π(a) = aN,

is called the (canonical) projection or surjection from the group G to the factor group G/N . It
is trivially surjective and also a homomorphism (check).

If we have a given homomorphism f and we choose the group K = Ker(f) as N , we see
that f(a) = F (aK) = F (π(a)) ∀ a ∈ G. Hence

f = F ◦ π.

This can be expressed by saying that the diagram below commutes, that the mapping of the
elements does not depend on the “path”. The notation ≃ denotes that F is an isomorphism.

G

G/Ker(f)

Im(f) ⩽ G′f

F

≃
π

Remark 3.16. By Theorem 3.14 every homomorphic image f(G) = Im(G) of a group G is iso-
morphic to some factor group G/Ker(f) of G. Vice versa, every factor group G/N is isomorphic,
and further, identical, to some homomorphic image of G. From the previous remark we see that
G/N = Im(π) where π is the projection G → G/N .
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It follows from above that we can find all homomorphic images of G just by finding all of its
factor groups. We can thus start from a homomorphism f of G, in which case Ker(f) is always
a normal subgroup of G and the factor group H/Ker(f) is isomorphic to the image Im(f); or
we can start from the normal subgroup N of G and use the canonical projection π : G → G/N .
Example 3.17. Let us study the isomorphism induced by the homomorphism f : Z → Zm, f(a) =
a. The kernel of f is

Ker(f) = {a ∈ Z
∣∣ a = 0} = mZ = ⟨m⟩

and the image is {0, 1, . . . , m − 1} = Zm.
Thus by the Homomorphism theorem we get Z/⟨m⟩ = Zm.

Example 3.18. The isomorphism induced by the homomorphism f : R∗ → R+, f(x) = |x| is

F : R∗/{±1} → R+, F (x{±1}) = x ∀ x > 0.

Note that x{±1} = {±x}. (Compare with Example 3.10.)
Example 3.19. The homomorphism f : GLn (R) → R∗, f(A) = det(A) induces the isomor-
phism

GLn(R)/SLn(R) ≃ R∗ (See Example 3.5).

Since invertible matrices have nonzero determinants, the image of GLn(R) is contained in R∗.
In addition, if A, B ∈ GLn(R), then f(AB) = det(AB) = det(A)det(B) = f(A)f(B). By
definition, the kernel of f is SLn(R). Finally, if a ∈ R∗, then f

((
a 0
0 1
))

= a, so f is surjective.
Example 3.20. The trivial homomorphism f : G → G, f(a) = 1 and the identity map (homo-
morphism) idG respectively yield isomorphisms

G/G ≃ {1}, G/{1} ≃ G.

By applying the Homomorphism theorem to various homomorphisms, we get a number of
general isomorphism theorems. The following is one example.

If H ⩽ G and K ⊴ G, then the set

HK = {hk
∣∣ h ∈ H, k ∈ K}

is a subgroup of G (check with the Subgroup criterion; observe that this is generated by the set
H ∪ K). By assumption, K is also a normal subgroup of HK. The map

f : H → HK/K, f(a) = aK,

is a homomorphism and Ker(f) = H ∩ K, Im(f) = HK/K (check these yourself). Hence

H/ (H ∩ K) ≃ HK/K.

The diagram below shows why this isomorphism theorem is called the parallelogram rule.

G

HK

KH

H ∩ K
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Exercises
1. For the group of integers determine all its

a) homomorphisms to itself,
b) automorphisms.

2. Prove that the factor group (5Z/20Z, +) and the group (Z4, +) are isomorphic.

3. Show that the set H := {f ∈ S4
∣∣ f(4) = 4} is a subgroup of S4 that is isomorphic to S3,

and whose cosets g ◦ H are

Xk := {f ∈ S4
∣∣ f(4) = k} (k = 1, 2, 3, 4).

4. Show that the groups Z6 and S3 are not isomorphic.

5. Show that the subgroup T := {z ∈ C
∣∣ |z| = 1} of the group (C∗, ·) is isomorphic to the

factor group R/Z of the group (R, +). (Hint: |z|2 = zz. Use the Homomorphism theorem
and Euler’s formula e2πit = cos t + i(sin t), t ∈ R.)

6. Suppose G = RR = {f
∣∣ f : R → R} and G = {f ∈ G

∣∣ f is integrable }. Show that G
and G are groups under addition and that the map f 7→

∫
f is a homomorphism G → G

when we assume that the integration constant is 0. What is the kernel of this map? Is
the map a homomorphism if we assume that the integration constant is 1?

7. How many homomorphisms exist between the groups (Z20, +) and (Z8, +)? How many of
these are surjections?

3.3 Cyclic groups
Recall that a group G is called cyclic if it is generated by one of its elements:

G = ⟨a⟩

Cyclic groups form the simplest category among groups. In this section we will, among
other things, determine all subgroups of a cyclic group.

A cyclic group of order n is denoted by Cn:

Cn = ⟨c⟩ = {1, c, c3, . . . , cn−1}; cn = 1

for n = 1, 2, . . . Similarly, an infinite cyclic group is

C∞ = ⟨c⟩ = {. . . , c−2, c−1, 1, c, c2, . . .}.

When considering these groups, it is often helpful to remember that

Cn ≃ Z/nZ, C∞ ≃ Z,

with isomorphisms respectively, say, c 7→ 1 and c 7→ 1. Here the groups on the right-hand side
are additive.
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Example 3.21. The complex solutions of the equation xn = 1 are

e2πik/n = cos(2πk/n) + i · sin(2πk/n), k = 0, 1, . . . , n − 1,

the so-called n-th roots of unity. If we denote the first n-th root of unity by ζn = e2πi/n, these
roots can be written as ζk

n, where k = 0, 1, . . . , n − 1. They form a subgroup of the group C∗

that is cyclic of order n with generator ζn:

⟨ζn⟩ ≃ Cn.

This is on multiplicative realisation of the group Cn. The figure below shows the 5th (n = 5)
roots of unity in the complex plane.

ζ0
5

ζ1
5

ζ2
5

ζ3
5

ζ4
5

Theorem 3.22. The subgroups of an infinite cyclic group C∞ = ⟨c⟩ are

⟨cn⟩, n = 0, 1, 2, . . .

and they are all distinct.

Proof. Anyhow, the group C∞ has the stated groups ⟨cn⟩ as subgroups.
Suppose that H is a subgroup of C∞. If H = {1}, then H = ⟨c0⟩. If H ̸= {1}, then H

contains some element cn where n > 0. We choose the smallest such n. We show that H = ⟨cn⟩.
If a ∈ H, then because a ∈ ⟨c⟩, a is of the form cm for some m ∈ Z. By writing m = kn + r,

where 0 ≤ r < n, we get
cr = cm−kn = cm (cn)−k ∈ H.

By the minimality of n, we get r = 0. Hence m = kn and a = cm = (cn)k ∈ ⟨cn⟩. Thus we have
obtained the result H ⊂ ⟨cn⟩. The reverse relation ⟨cn⟩ ⊂ H follows immediately from the fact
that cn ∈ H. Together these prove the statement.

Because cn is the smallest power of c in the group ⟨cn⟩, we see that

⟨cn⟩ = ⟨cn′⟩, n, n′ > 0 ⇒ n = n′.

Thus, we result in the latter statement.

Consequently, all subgroups ̸= {1} of an infinite cyclic group C∞ are ≃ C∞.
When applied to the group Z, the previous statement says that nZ (n = 0, 1, . . .) are all of

its subgroups. What about all of the factor groups of Z? Because Z is Abelian, every subgroup
is normal; the factor groups of Z are the groups Z/nZ. By Example 3.11 we get the result: All
factor groups of the group Z are the residue groups Zn (n = 1, 2 . . .) and Z itself (n = 0).

A similar result holds naturally for any general cyclic group C∞ as well.

Theorem 3.23. Let Cn = ⟨c⟩ be a cyclic group of order n. For any divisor m of n, there exists
exactly one subgroup whose order is m. It is

⟨ck⟩ = {1, ck, c2k, . . . , c(m−1)k}, where k = n/m.

The group Cn has no other subgroups.
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Proof. Because
(
ck
)m

= cn = 1, the group mentioned in the statement is a subgroup of order
m of Cn. Thus it only needs to be shown that this is the only such subgroup.

Suppose H ⩽ Cn and #H = m. If m = 1, then H = {1} = ⟨1⟩ as it should. We assume
that m > 1. Just like in the proof of Theorem 3.22, we choose the smallest positive exponent
k for which ck ∈ H. A similar reasoning gives H = ⟨ck⟩. Here the order of the element ck is
equal to #H = m, so km = n and thus k = n/m.

The latter statement in the theorem follows by Lagrange’s theorem.

As a corollary to Theorems 3.22 and 3.23, we see that all subgroups of a cyclic group are
cyclic. It also follows from Theorem 3.23 that if p is a prime number then the group Cp has no
other subgroups than the trivial ones.
Example 3.24. Let us determine the subgroups of the group C12. The divisors of 12 are
1, 2, 3, 4, 6, 12. Applying Theorem 3.23, we get the subgroups ⟨1⟩, ⟨c⟩ = C12, ⟨c2⟩, ⟨c3⟩, ⟨c4⟩
and ⟨c6⟩.

We can present the subgroups in a subgroup diagram, which is also called a Hasse diagram.

⟨c⟩ = C12

⟨c3⟩⟨c2⟩

⟨c6⟩⟨c4⟩

{1}

The next theorem presents a simple formula for computing the order of an element in a
finite group.
Theorem 3.25. If ord(a) = n, then ord(am) = n

gcd(n,m) .

Proof. Denote d = gcd(n, m) and n = n1d, m = m1d. We need to prove that ord(am) = n1,
that is,

(am)r = 1 ⇐⇒ n1 | r.

Since ord(a) = n, then amr = 1 if and only if n | mr. This is equivalent to the condition
n1 | m1r. Because gcd(n1, m1) = 1, the statement follows.

Consequently the generators of a cyclic group Cn = ⟨c⟩ are exactly the elements cm with
gcd(n, m) = 1. The number of such generators is φ(n).
Example 3.26. Let us compute the orders of the elements in the group Z∗

9. Firstly, Z∗
9 is cyclic

since ⟨2⟩ = {1, 2, 4, 5, 7, 8⟩ = Z∗
9. Thus ord(2) = 6. The order of the identity element is

ord(1) = 1. Now, applying Theorem 3.25 we get

ord(4) = ord(22) = 6
gcd(6, 2) = 3,

ord(5) = ord(25) = 6
gcd(6, 5) = 6,

ord(7) = ord(24) = 6
gcd(6, 4) = 3,

ord(8) = ord(23) = 6
gcd(6, 3) = 2.
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Example 3.27. Every group of prime order is cyclic. See Section 2.5 Corollary 2.69.

Exercises
1. List the elements of the subgroup ⟨3⟩ of the group (Z18, +).

2. What are the subgroups of the group (Z30, +)? Compute their orders and write down
their generators.

3. Find all generators of the cyclic groups C6 = ⟨a⟩, C8 = ⟨b⟩ and C20 = ⟨c⟩.

4. What elements form the subgroup H = ⟨a, b⟩ of C∗ when a = e2πi/5 and b = e2πi/7?
Determine whether H is cyclic.

5. Draw the Hasse diagram of all subgroups of the cyclic group C30. Choose such a subgroup
H of C30 that the factor group C30/H has order 3, and construct the Cayley table for this
factor group.

6. Suppose that G and H are finite groups whose orders are distinct primes. Determine all
homomorphisms f : G → H. (Hint: Consider the groups Ker(f) and Im(f).)

7. Determine all group homomorphisms f : Z9 → Z15. (Hint: The subgroups of (Z, +) are
known to be cyclic. First determine all homomorphisms g : Z → Z15 and then solve the
equations f ◦ j = g, where j is a projection Z → Z9.)

3.4 Permutation groups
In Section 2.1 we studied an example of the symmetric group of n elements

Sn = {α : Jn → Jn

∣∣ α is a bijection },

where Jn = {1, 2, . . . , n} and the bijection, a permutation, α was denoted

α =
(

1 2 . . . n
k1 k2 . . . kn

)
.

Here we have α(i) = ki (i = 1, . . . , n).
Subgroups of the group Sn are called permutation groups. Let us switch to a more convenient

notation for permutations. We call the permutation of the distinct elements a1, . . . , ar, where

a1 7→ a2, a2 7→ a3, . . . , ar−1 7→ ar, ar 7→ a1,

a r-length cycle or simply an r-cycle and denote it by

(a1a2 · · · ar).

Every permutation α ∈ Sn can be written as a product of cycles that have no elements in
common. The idea of the proof is to first write a cycle starting from the element 1, then a new
cycle starting from one of the remaining elements and so on. For example,(

1 2 3
2 3 1

)
= (123),

(
1 2 3 4 5 6
4 1 6 2 5 3

)
= (142)(36)(5).
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We can prove that this cyclic form is unique up to the order the cycles are written in and what
element each cycle starts from, for example,

(142)(36)(5) = (36)(214)(5).

Furthermore, 1-cycles as the identity map are usually excluded from the product, for exam-
ple, (142)(36)(5) = (142)(35). Note especially that disjoint cycles commute.

A 2-cycle is called a transposition. Note the order of terms in a product of permutations,
for example,

(23)(12) = (132), (12)(23) = (123).

Example 3.28. Let us write the elements of S4 in cyclic notation, with (1) denoting the identity
map.

(1) (132) (12)(34) (1432)
(12) (123) (13)(24) (1243)
(13) (123) (14)(23) (1342)
(14) (143) (1423)
(23) (234) (1234)
(24) (134) (1324)
(34) (124)

(142)

For example, the set H4 = {(1), (12), (34), (12)(34)} is a subgroup of S4. For any transpo-
sition (ij) we have (ij)2 = (1), and since (ij)(kl) = (kl)(ij), we have (12)(34)(12)(34) = (1).
Thus we have closure, each element has an inverse in H4, and H4 is nonempty by definition.
Thus H4 is a subgroup of S4 by Theorem 2.25. The Cayley table of H4 is

(1) (12) (34) (12)(34)
(1) (1) (12) (34) (12)(34)
(12) (12) (1) (12)(34) (34)
(34) (34 (12)(34) (1) (12)

(12)(34) (12)(34) (34) (12) (1)

which is the same as the table of the Klein four-group. (See Example 2.18.)
A permutation α ∈ S4 is said to be of type (r1, . . . , rm) if the lengths of its cycles are

r1, . . . , rm. For example, the type of the previous six element permutation (142)(36)(5) is
(1, 2, 3). The numbers r1, . . . , rm (whose order does not matter) form a partition of n, that is,

r1 + · · · + rm = n.

Theorem 3.29. If the type of a permutation α ∈ Sn is (r1, . . . , rm), then

ord(α) = lcm(r1, . . . , rm).

Proof. For k = 1, . . . , r − 1, the permutation (a1a2 . . . ar)k maps the element a1 to the element
ak+1. Thus (a1a2 . . . ar)k ̸= idJn for these values of k. Because (a1a2 . . . ar)r = (1), we see that
the order of the r-cycle is r.

By assumption α = α1 · · · αm where aj are disjoint rj-cycles. Since disjoint cycles commute,
we have αt = αt

1 · · · αt
m. Thus we get

αt = (1) ⇐⇒ αt
j = (1) (j = 1, . . . , m) ⇐⇒ rj | t (j = 1, . . . , m).

And the statement follows.
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Remark 3.30. Each conjugacy class of Sn comprises all permutations of the same type (see
Remark 3.6). This can be seen by writing

α = (a1a2 . . . ap)(ap+1a . . . aq) · · · (. . . an),

τ =
(

a1 a2 . . . ap ap+1 . . . aq . . . an

b1 b2 . . . bp bp+1 . . . b1 . . . bn

)

and computing
τατ−1 = (b1b2 . . . bp)(bp+1 . . . b1) · · · (. . . bn).

Example 3.31. Let us show that H4 is a normal subgroup of S4. Recall that a subgroup is normal
if and only if it is a union of whole conjugacy classes. Looking at the table in Example 3.28, we
see that the conjugacy classes of S4 are

• the 4-cycles (abcd) with 6 elements

• the 3-cycles (abc)(d) with 8 elements

• the products of two transpositions (ab)(cd) with 3 elements

• the transpositions (ab) with 6 elements

• the identity with 1 element.

The subgroup H4 has order 4 = 1 + 3, so it is the union of the identity and the products of two
transpositions. Hence, it is normal.

Consider the polynomial in n indeterminates x1, . . . , xn,

∆ =
∏
i<j

(xi − xj) = (x1 − x2)(x1 − x3) · · · (x1 − xn)·

(x2 − x3) · · · (x2 − xn)·
· · · · · · · · · · · ·
(xn−1 − xn).

We assume that α ∈ Sn and denote by α(∆) the polynomial that is obtained by applying
the permutation α on the indices of the polynomial ∆.

For example, if n = 3 and α = (13), then

α(∆) = (x3 − x2)(x3 − x1)(x2 − x1) = −∆.

We see that α(∆) = ±∆ always holds. This sign is called the sign of the permutation α and
denoted by sign(α); then

α(∆) = sign(α)∆ =
{

+∆, if α is even,

−∆, if α is odd.

If α ∈ Sn and β ∈ Sn, then

sign(αβ) = sign(α)sign(β), (3.2)

since
sign(αβ)∆ = (αβ)(∆) = α(β(∆)) = sign(α)sign(β)∆.

The map sign : Sn → {±1} is thus a homomorphism.
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Example 3.32. a) sign(α−1) = sign(α) because

sign(α−1)sign(α) = sign(α−1α) = sign(id) = 1.

b) sign(∗α∗−1) = sign(∗)sign(α)sign(∗−1) = sign(∗)2sign(α) = sign(α).

Theorem 3.33. (i) Permutations of the same type have the same sign.

(ii) Transpositions are odd. More generally: the sign of an r-cycle is (−1)r−1.

Proof. (i) By Remark 3.30, permutations in Sn are of the same type if and only if they are
conjugate elements in Sn. The statement now follows from Example 3.32 b).

(ii) The transposition (12) is always odd because α(∆) = −∆. All transpositions are thus odd
by part (i). We obtain the more general statement from Equation (3.2) since an r-cycle
is always a product of (r − 1) transpositions:

(a1a2 . . . ar) = (a1ar)(a1ar−1) · · · (a1a2).

Because
(ab) = (1a)(1b)(1a),

the last equation in the previous proof shows that every cycle – and every permutation – can be
written as a product of transpositions (12), (13), . . . , (1n). We get the result that the transpo-
sitions (12), (13), . . . , (1n) generate the group Sn. Compare the number of these transpositions
to the order of Sn!

The set of all even permutations of n elements

An = {α ∈ Sn

∣∣ sign(α) = ±1}

forms a subgroup of Sn because the product of even permutations is even. It is called the
alternating group of n elements. We can prove that A1 = S1 and [Sn : An] = 2 ∀ n ≥ 2. In
particular, we have An ⊴ Sn.
Example 3.34. Let us determine the elements of A4. In the previous example we wrote down the
types of elements in S4. Now using Theorem 3.33, the types of elements in S4 are the identity
(even), six transpositions (odd), eight 3-cycles (even), six 4-cycles (odd), and three products of
two disjoint transpositions (even). Thus

A4 = {(1), (132), (123), (243), (143), (234), (134), (124), (142), (12)(34), (13)(24), (14)(23)}.

The significance of permutations is illustrated by Cayley’s theorem: Every finite group is
isomorphic to some permutation group.

The idea of the proof is simple: Let x1, . . . , xn be the elements of a group G. For x ∈ G,
the map tx defined by tx(xi) = xxi is a permutation of G. We denote xxi = xj and state that
when the index i goes through the set {1, 2, . . . , n}, j goes through it as well. Thus tx defines
the permutation αx ∈ Sn. The map

p : G → Sn, p(x) = αx,

is an injective homomorphism; that is, G ≃ Im(p) ⩽ Sn. (Go through the details.)
Example 3.35. Let us determine the permutation group that C3 is isomorphic to. First we write
the Cayley table for C3 = {1, a, a2}:
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1 a a2

1 1 a a2

a a a2 1
a2 a2 1 a

We then have

λ1 =
(

1 a a2

1 a a2

)
, σ1 =

(
1 2 3
1 2 3

)
= (1)

λa =
(

1 a a2

a a2 1

)
, σ2 =

(
1 2 3
2 3 1

)
= (123)

λa2 =
(

1 a a2

a2 1 a

)
, σ3 =

(
1 2 3
3 1 2

)
= (132)

where we replaced 1, a, a2 with 1, 2, 3 respectively. Hence C3 ≃ {(1), (123), (132)} ⩽ S3.

Exercises
1. Compute the orders of the following permutations.

a) (14),
b) (147),
c) (14762),
d) (147)(62).

2. Let α =
(

1 2 3 4 5 6
2 1 3 5 4 6

)
and β =

(
1 2 3 4 5 6
6 1 2 4 3 5

)
. Compute

a) α−1,
b) αβ,
c) βα.

3. Let α =
(

1 2 3 4 5 6 7 8
2 1 3 5 4 7 6 8

)
. Write α as the product of disjoint cycles.

4. Prove that [Sn : An] = 2. (Use, e.g., the Homomorphism theorem).

3.5 What next?
In this section we will briefly introduce some ideas which can extend the basic group theory
discussed above to solving broader problems.

If H � G, the properties of the group G can be returned to the groups H and G/H. This
motivates a definition: A group G is called simple if its only normal subgroups are {1} and G.
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Example 3.36. A cyclic group Cp is simple when p is a prime number. By Lagrange’s theorem
the order of any subgroup of a group divides the order of the group. As p is a prime, the only
possible subgroups are {1} of order 1 and Cp, both of which are normal.

NS: I wrote the case n=5 but should the whole proof be written out in this example? We
can prove for n ≥ 5 that the alternating group An is simple. Let us prove the case n = 5. The
order of A5 is 60, and the sizes of its conjugacy classes are 1, 12, 12, 20, and 15. A normal
subgroup must contain the conjugacy class of size 1, the identity, and one or more of the other
conjugacy classes. Therefore the order of any normal subgroup is some sum of these numbers,
including the 1. By Lagrange’s theorem the order must also divide the order of A4. However,
no such sum among these numbers divides 60 other than 1 and 60 themselves.

Every finite group G can be constructed of simple groups in the following sense: there exists
a sequence of normal subgroups, called the composition series,

{1} ⊴ H1 ⊴ H2 ⊴ · · · ⊴ Ht ⊴ G

such that the groups G/Ht, Ht/Ht−1, . . . , H2/H1, H1 (≃ H1/{1}) are simple. These (factor)
groups are called the composition factors of the group G, and they are unique up to isomorphy.

In order to classify all (finite) groups we need to know all (finite) simple groups. Searching
for them has provided researchers an adventure that only reached its end in 1981.

Definition 3.37. A finite group G is called solvable if its composition factors are cyclic groups
whose orders are primes.

We easily observe that all subgroups of a solvable group are solvable.
Example 3.38. The solvability of the symmetric group Sn:

• n = 1, n = 2 : S1 ≃ C1, S2 ≃ C2; thus S1 and S2 are solvable.

• n = 3 : {(1)} � A3 � S3, where S3/A3 ≃ C2 and A3 ≃ C3; thus S3 is solvable.

• n = 4 : {(1)}�{(1), (12)(34)}�H4�A4�S4 by Example 3.31, and hence the composition
factors of S4 are C2, C3, C2, C2; thus S4 is solvable.

• n ≥ 5 : {1} � A4 � Sn, where Sn/An is simple (≃ C4), similarly An. These are the
composition factors of Sn. Because #An is not a prime number, the group Sn is not
solvable for n ≥ 5.

Every equation
p(x) = 0,

where p(x) is a polynomial of degree n, can be linked to a certain permutation group Gp ⩽ Sn

determined by its roots, which satisfies the following condition: the equation p(x) = 0 is solvable
if and only if the group Gp is solvable. Here, the solvability of an equation means that its roots
can be obtained from the coefficients by using rational operations and taking roots, similar to
the solution formula for second degree equations.

For each n we can form such a polynomial p(x) that its linked group Gp is the whole Sn.
We see that a general solution formula exists for an n-th degree polynomial if and only if the
group Sn is solvable. The previous example shows that this occurs if and only if n < 5.

This result was attained by Abel and Galois in the early 19th century. It solved a centuries-
old problem and signified the beginning of group theory.

In the proof of Cayley’s theorem we attached a permutation αx of the set {1, 2, . . . , n} to
each element x of the group G = {x1, x2, . . . , xn}. Let V be a n-dimensional (complex) vector
space and let fix a basis {B1, . . . , Bn} . When we apply the permutation αx to the basis vectors,
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we get a regular linear map V → V . This in turn corresponds to a regular n × n matrix Ax.
Thus we form the map

G → GLn(C), x 7→ Ax

which is a group homomorphism. This map – or the matrix group obtained as a homomorphic
image of G – is called the regular representation of group G. Instead of the matrix group
GLn(C), we could have just as well considered a group it is isomorphic to:

GL(V ) = {t : V → V
∣∣ t is a regular linear map }.

In general, any group homomorphism

G → GLn(C) or G → GL(V )

is called a representation of group G. Representations allows us to study groups via the theory
of matrices or linear maps. This so-called representation theory of groups has proven to be
fruitful in both group theory and its applications.
Example 3.39. Let us determine the regular (matrix) representation of the cyclic group C3. By
Example 3.35 we know that C3 is isomorphic to the subset {(1), (123), (132)} of the symmetric
group S3. Using the standard basis for C3, we get

ρ((1)) =

1 0 0
0 1 0
0 0 1

 ,

ρ((123)) =

0 0 1
1 0 0
0 1 0

 ,

ρ((132)) =

0 1 0
0 0 1
1 0 0

 .

3.6 Symmetry group of the square
In this section we demonstrate the theory in Chapters 2 and 3 by studing the dihedral group
D4 in more detail. We will examine the square

1 2

34

both as a set of points in the plane as well as those rotations and reflections of the plane that
map the square to itself.

Rotations

A square, as a set of points in the plane, maps to itself in the following rotations: rotations
around the centre of the square by the angle α = 0, π

2 , π, 3π
2 . Let us denote these rotations by

I = R0 (identity map), R90, R180, R270 respectively. By denoting the vertices by 1, 2, 3, 4 we
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obtain a connection to permutations of four elements: for example, R90 =
(

1 2 3 4
4 1 2 3

)
∈ S4.

Nonetheless, we will proceed with geometric observations.

1 2

34
I

1 2

34

1 2

34
R90

4 1

23

1 2

34
R180

3 4

12

1 2

34
R270

2 3

41

The group action is the composition of maps, for example, (R180, R90) 7→ R180 ◦ R90 = R270.
Here, recall that A ◦ B denotes a composition where we first apply B then A. This is known
to be associative, the neutral element is the identity map I, and the maps I, R90, R180, R270
have inverses. For instance, R−1

270 = R90 because R270 ◦ R90 = R90 ◦ R270 = I. Hence
({I, R90, R180, R270}, ◦) is a group. Check the Cayley table below and note that the group
is commutative since the table is symmetric with respect to the diagonal.

h g

h h ◦ g
g g ◦ h

◦ I R90 R180 R270
I I R90 R180 R270

R90 R90 R180 R270 I
R180 R180 R270 I R90
R270 R270 I R90 R180

Reflections

The square has exactly four symmetry axes and reflecting with respect to them maps the square
to itself: H is the reflection with respect to the horizontal axis, V the reflection with respect
to vertical axis, D the reflection with respect to the diagonal through vertices 1 and 3, and D′

the reflection with respect to the diagonal through vertices 2 and 4.

1 2

34
H

4 3

21

1 2

34
V

2 1

43

1 2

34
D

1 4

32

1 2

34
D′

3 2

14

For example, ({I, H}, ◦) forms a group whose Cayley table is
◦ I H

I I H
H H I
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Compare this to the group (Z2, +). Is ({I, H, D}, ◦) a group?
By taking the compositions of the reflections we get, for instance, H ◦V = R180. You should

check how the vertices are mapped – what number of vertices is sufficient?. Thus the reflections
do not form a group, yet ({I, R90, R180, R270, H, V, D, D′}, ◦) is a group, the symmetry group of
the square, or the dihedral group D4, and we obtain its Cayley table:

◦ I R90 R180 R270 H V D D′

I I R90 R180 R270 H V D D′

R90 R90 R180 R270 I D D′ V H
R180 R180 R270 I R90 V H D′ D
R270 R270 I R90 R180 D′ D H V
H H D′ V D I R180 R270 R90
V V D H D′ R180 I R90 R270
D D H D′ V R90 R270 I R180
D′ D′ V D H R270 R90 R180 I

This group is not commutative since for example, H ◦ R270 = D, R270 ◦ H = D′. The maps
I, R90, R180, R270, H, V, D, D′ are called the symmetries of the square. The group of rotations
G = ({I, R90, R180, R270}, ◦) is a subgroup of D4, because earlier G was stated to be a group
and G ⊂ D4.

Subgroups of D4

a) First we consider the subgroup G formed by the rotations of the square. By comparing
the tables below, we state that (Z4, +) is isomorphic to the group (G, ◦).

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

◦ I R90 R180 R270

I I R90 R180 R270
R90 R90 R180 R270 I
R180 R180 R270 I R90
R270 R270 I R90 R180

The map f : 0 7→ I, 1 7→ R90, 2 7→ R180, 3 7→ R270 is a bijection Z4 → G and a
group homomorphism, since for all a, b, ∈ Z4 we have f(a + b) = f(a) ◦ f(b). Note the
interpretation of the equation f(x−1) = f(x)−1, here f(−x) = f(x)−1. For example,
−3 = 1 since 3 + 1 = 0, and f(−3) = f(1) = R90 = R−1

270 = f(3)−1.

b) G is also an example of a cyclic group, generated by R270 for example: using the usual
notation R2

270 = R270 ◦ R270, we get R2
270 = R180, R3

270 = R90, R4
270 = I. In addition, R90

generates the group G: (R90)2 = R180, (R90)3 = R270, (R90)4 = I. Observe the geometry
as well: R270 is the rotation by the angle −π

4 and R90 is the rotation by the angle π
4 , that

is, R270 is a rotation in the negative direction (clockwise) and R90 is a rotation in the
positive direction (counterclockwise).

c) Let us find all the subgroups of D4 without relying on geometry. It is easiest to investigate
what are the cyclic subgroups of D4, that is, those subgroups of the type {an

∣∣ n ∈ Z}.
Anyhow the group has the cyclic subgroup of one element {I}. Cyclic subgroups with two
elements of D4 can be obtained by choosing a reflection or a rotation by π in addition to the
identity map. When the order of the map is 2, the map is its own inverse: {I, D}, {I, D′},
{I, R180}, {I, H}, {I, V }. You should observe this from the Cayley table and compare it
to Exercise 6. of Section 2.1. For this particular group there are no cyclic subgroups with
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three elements but G has a subgroup with four elements. No other subgroups exist. In
fact, by taking advantage of the fact #D4 = 8, we would have directly gotten that D4
only has subgroups with 1, 2, 4, or 8 elements.

Let us now explore what are the noncyclic subgroups of D4 that are generated by two
elements. Let S be generated by elements a and b. Then we must have an, bn ∈ S and
aibj ∈ S whenever n, i, j ∈ Z, and in turn these elements form a subgroup. The generators
of the subgroup {I, D, D′, R180} are D, D′ or D, R180 or D′, R180. The generators of the
subgroup {I, H, V, R180} are R180, H or H, V or R180, V . The generators of the group
D4 are R270, H or D, H or D′, H. Below is the Hasse diagram of the group D4.

D4

{I, D, D′, R180} {I, R90, R180, R270} {I, H, V, R180}

{I, D} {I, D′} {I, R180} {I, H} {I, V }

{I}

Let us consider the statement that D4 is generated by R270 and H:

R0
270 = I, R270 = R270, R2

270 = R180, R3
270 = R90, H = H,

R270 ◦ H = D′, R2
270 ◦ H = V, R3

270 ◦ H = D,

R4
270 = I, H2 = I.

All the elements of the group Dn can be written in the unique form

Rj
270 ◦ H i, j = 0, 1, 2, 3, i = 0, 1.

To verify this observe that

H ◦ R270 = R3
270 ◦ H, R4

270 = I, H2 = I,

the so-called relations. For example,

V ◦ D′ = (R2
270 ◦ H) ◦ (R270 ◦ H) = R2

270 ◦ (H ◦ R270) ◦ H

= R2
270 ◦ R3

270 ◦ H ◦ H = R270 ◦ H2 = R270 ◦ I = R270
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Cosets

Let us determine by direct computation, without utilising general theory, what are the cosets
with respect to the subgroup S = {I, H}. They have the form x ◦ S, x ∈ D4:

I ◦ {I, H} = {I, H},

R180 ◦ {I, H} = {R180 ◦ I, R180 ◦ H} = {R180, V },

R270 ◦ {I, H} = {R270, R270 ◦ H} = {R270, D′},

R90 ◦ {I, H} = {R90, R90 ◦ H} = {R90, D},

H ◦ {I, H} = {H, I},

V ◦ {I, H} = {V, R180},

D ◦ {I, H} = {D, R90},

D′ ◦ {I, H} = {D′, R270}.

Thus the left cosets of S are {I, H}, {R180, V }, {R270, D′} and {R90, D}. The group S is
not normal because, for instance, R270 ◦ {I, H} = {R270, D′} and {I, H} ◦ R270 = {R270, D}.

Finally we state that we have obtained a partition of four cosets for the group D4 where
each part has two elements. Since 2 · 4 = 8, as it should be. (By which theorem?)

Centre of D4

We define the set N = {c ∈ D4
∣∣ x ◦ y = y ◦ x ∀ x ∈ D4}. From the Cayley table we see that

N = {I, R180}. N is a normal subgroup because y ◦ N = N ◦ y, ∀ y ∈ D4. Now, the cosets are

I ◦ N = R180 ◦ N = {I, R180},

R270 ◦ N = R90 ◦ N = {R270, R90},

H ◦ N = V ◦ N = {H, V },

D ◦ N = D′ ◦ N = {D, D′}

and for example, R270 ◦ {I, R180} = {R270, R90} = {I, R180} ◦ R270. Since {I, R180} is a normal
subgroup, we can form the factor group

Dn/N = {{R270, R90}, {H, V }, {D, D′}, {I, R180}}.

The group action is (x ◦ N) ◦ (y ◦ N) = (x ◦ y) ◦ N .
For example, {R270, R90}◦{H, V } = (R270◦N)◦(H◦N) = (R270◦H)◦N = D′◦N = {D, D′}.

The projection π : D4 → D4/N is a homomorphism, π(x) = x ◦ N and Ker(π) = N .

Ornaments

One of the uses of symmetry groups is ornamental decoration.
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By reflecting over the edges of the square, we can tile the plane with images of the square
as in the picture above. The reflection axes are marked with dashed lines. Observe that by
combining the reflections with respect to the vertical and horizontal axes, we get a rotation by
the angle π around a vertex of the square, previously H ◦ V = V ◦ H = R180.

D4 and Cn

Dn is the symmetry group of the regular n-sided polygon when n ≥ 3. The group Dn has a
cyclic subgroup Cn, which is generated by the rotation R by angle 2π/n around the centre point
of the n-gon; that is, Rn = I. Furthermore, the reflections with respect to the symmetry axes
of the n-gon are contained in the group Dn.

n = 3 n = 4 n = 5

If we denote a reflection with respect to some symmetry axis by H, then the relations
H2 = I, Rn = I hold in the group Dn, and the maps H and R generate the group Dn.

Exercises
1. Let G be the symmetry group of the circle. Prove that for each positive integer n there

exists an element of G whose order is n. Find some element of G whose order is infinite.

2. What maps belong to the group D6? For what values of n does Cn ⩽ D6 hold?
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Chapter 4

Rings and integral domains

4.1 Rings
Groups are an algebraic system equipped with one operation. Below we describe an object
equipped with two operations, a ring, whereof one typical example is the set of integers Z with
addition and multiplication. Even in the general definition it is customary to denote and call
the operations as addition and multiplication.

Definition 4.1. A set R equipped with two binary operations + and · is called a ring, and
denoted by (R, +, ·), if

(R1) (R, +) is an Abelian group;

(R2) multiplication · is defined on the set R;

(R3) a(bc) = (ab)c ∀ a, b, c ∈ R (associativity of multiplication);

(R4) there exists an element 1 in R, the identity, such that a · 1 = 1 · a = a ∀ a ∈ R;

(R5) a(b + c) = ab + ac, (a + b)c = ac + bc ∀ a, b, c ∈ R (distributivity)

If multiplication is commutative as well, that is, ab = ba ∀ a, b ∈ R, we say that R is a
commutative ring.

The Postulates (R2), (R3) and (R4) together state that (R, ·) is a monoid, see Remark 2.14.
Sometimes Postulate (R4) is omitted from the definition. Then the ring defined above would
be called a ring with identity.

The identity 1 is necessarily unique. This follows from Postulate (R4) similarly it does for
groups. Postulate˝(R1) yields an additive identity 0 and the additive inverse −a for the element
a. Furthermore, it follows from (R1) that addition is associative and commutative in a ring.
Example 4.2. Z,Q,R,C are rings under usual addition and multiplication and have identity 1.
Yet, for instance, 2Z is not a ring.

The set Z[i] = {a + bi
∣∣ a, b ∈ Z} is also a ring under addition and multiplication, it is called

the Gaussian integers. These number rings are all commutative.
Example 4.3. The set Mn(R) of n × n matrices with real entries forms a ring under addition
and multiplication of matrices, and the identity is the identity matrix In. Other matrix rings
are, for instance, Mn(Z), Mn(Q), Mn(C). You should check that these sets are closed under
the operations. These mentioned matrix rings are noncommutative when n > 1.
Example 4.4. The set of functions

C[a, b] = {f : [a, b] → R
∣∣ f is continuous }
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is a ring under pointwise addition and multiplication of functions:

(f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x) ∀ x ∈ [a, b].

The identity is the function f(x) = 1 ∀ x ∈ [a, b]. Remember that C[a, b] is also a vector
space. It follows that (C[a, b], +) is an Abelian group; compare with Example 2.7.

The ring C [a, b] is commutative. The definition can be generalised by replacing R with an
arbitrary ring R, where commutativity depends on the commutativity of the ring R.
Example 4.5. The set of residue classes mod m, Zm, forms a ring under addition and multipli-
cation of residue classes, and the identity is 1. Zm is a finite commutative ring. It is also called
the quotient ring modulo m. The term quotient ring will be introduced later in a more general
sense.
Example 4.6. The power set P(S), the collection of all subsets, of a given set S forms a ring
when addition is the symmetric difference of sets

A △ B = (A \ B) ∪ (B \ A)

and multiplication is the intersection of sets A ∩ B.
First, let us show that (P(S), △) is an Abelian group, Postulate (R1). Suppose that

A, B, C ∈ P(S), that is, A, B and C are subsets of S. As subsets their set-theoretic difference
and union are subsets of S. Thus A △ B ⊂ S, so A △ B ∈ P(S) and we have closure.

The symmetric difference is commutative:

A △ B = (A \ B) ∪ (B \ A) = (B \ A) ∪ (A \ B) = B △ A.

It is also associative, which is easier to see by drawing a Venn diagram:

(A △ B) △ C = A △ (B △ C).

The empty set is the additive identity as

A △ ∅ = (A \ ∅) ∪ (∅ \ A) = A ∪ ∅ = A.

Finally, each set is its own inverse since

A △ A = (A \ A) ∪ (A \ A) = ∅ ∪ ∅ = ∅.

Hence (P(S), △) is a commutative group.
Since A, B ⊂ S, their intersection is another subset of S and thus A ∩ B ∈ P(S). Thus (R2)

holds. Postulate (R3) follows from basic set operation properties:

(A ∩ B) ∩ C = A ∩ (B ∩ C).

The set S also belongs to P(S) and S ∩ A = A for any A ⊂ S, so S is the identity and
Postulate (R4) holds. Finally, the distributivity postulate (R5) follows from basic set operation
properties

A ∩ (B △ C) = A ∩ ((B \ C) ∪ (C \ B)) = (A ∩ (B \ C)) ∪ (A ∩ (C \ B))
= ((A ∩ B) \ (A ∩ C)) ∪ ((A ∩ C) \ (A ∩ B))
= (A ∩ B) △ (A ∩ C).

Rings like this (P(S), △, ∩) are called Boolean rings.
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Example 4.7. Let (G, +) be some Abelian group. The set

End(G) = {f : G → G
∣∣ f is a group homomorphism }

forms a ring under pointwise addition and composition of maps:

(f + g)(a) = f(a) + g(a), (f ◦ g)(a) = f(g(a)) ∀ a ∈ G.

The identity is the identity map idG. Checking the postulates is a good exercise!
A group homomorphism G → G is called an endomorphism of the group G. The notation

for the ring End(G) and the name endomorphism ring is due to this. This type of ring is usually
not commutative.

The set with one element R = {a} forms a ring trivially when we define a + a = a and
aa = a. Then a is the additive identity R, and hence this ring is also called the zero ring.

Henceforth we assume, unless otherwise stated, that the ring R is not the zero ring.

Definition 4.8. We call an element u of a ring R a unit if u has an inverse element u−1, that
is, if ∃ u−1 ∈ D : uu−1 = u−1u = 1. The set of all units is denoted by R∗.

Theorem 4.9. (R∗, ·) is a group, the unit group of R.

Proof. R∗ ̸= ∅ because 1 is a unit with inverse element 1. The set R∗ is closed under multipli-
cation because the product uv of units u and v has the inverse element v−1u−1. The product is
associative in the whole R and therefore also in R∗. If u ∈ R∗ then its inverse u−1 ∈ R∗ since(
u−1)−1 = u.

Example 4.10. The rings Q, R and C have unit groups Q∗ = Q\{0}, R∗ = R\{0}, C∗ = C\{0}.
These are the familiar groups introduced in group theory, likewise the unit group of the factor
ring Zm (m ≥ 2) that is Z∗

m = {a ∈ Zm

∣∣ gcd(a, m) = 1}.
Some other examples of unit groups:

Z∗ = {−1, +1}, Mn(R)∗ = GLn(R) = {A ∈ Mn(R)
∣∣ det(A) ̸= 0}.

Exercises
1. The set {06, 26, 46} has an multiplicative identity. What is it?

2. We define two operations on Z by

x ⊕ y = x + y + 1, x ⊙ y = x + y − xy.

Prove that (Z, ⊕, ⊙) is a ring.

3. Show that the set {m + n
√

2
∣∣ m, n ∈ Z} is a commutative ring under the usual addition

and multiplication of numbers.

4. Show that the multiplication

(a, b, c)(x, y, z) = (ax, bx + cy, cz)

extends the group (Z∗, +) to a noncommutative ring with identity (1, 0, 1).
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5. Let (R1, +, ·) and (R2, +, ·) be rings. Prove that (R1 × R2, +, ·) is a ring when we define

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2),
(x1, x2)(y1, y2) = (x1y1, x2y2).

6. Determine the units of the ring Z[i]. Is this unit group cyclic?

4.2 Ring arithmetic
Because (R, +) is a group, Abelian moreover, addition in the group obeys the rules familiar
from group theory. As is always the case for additive groups, we have the difference of elements
a and b: a − b = a + (−b).

Multiplication rules can also be inferred from group theory. Observe that the negative
powers of an element a are only defined when an inverse element a−1 exists.

Now we outline the necessary rules on how multiplication and addition in a ring are con-
nected. The foundation is distributivity (R5). Firstly, we get by induction

a(b1 + · · · + bn) = ab1 + · · · + abn,

(a1 + · · · + am)b = a1b + · · · + amb,

and more generally

(a1 + · · · + am)(b1 + · · · + bn) = a1b1 + a1b2 + · · · + ambn.

Theorem 4.11. If R is a ring and a, b, c ∈ R, then

(i) 0 · a = a · 0 = 0,

(ii) a(−b) = (−a)b = −(ab), (−a)(−b) = ab,

(iii) a(b − c) = ab − ac, (a − b)c = ac − bc.

Proof. (i) By writing 0 · a = (0 + 0)a = 0 · a + 0 · a and subtracting 0 · a from both sides, we
end up with the equation 0 = 0 · a. The statement a · 0 = 0 is proved similarly.

(ii) Because ab + a(−b) = a(b + (−b)) = a · 0 = 0, the product a(−b) is the additive inverse
of ab. Likewise, we see that (−a)b is also the additive inverse of ab. From the previous
equations we get (−a)(−b) = −((−a)b) = −(−(ab)) = ab.

(iii) a(b − c) = ab + a(−c) = ab + (−(ac)) = ab − ac. The latter statement follows similarly.

Remark 4.12. Theorem 4.11 can also be proved by considering the maps

ρ : R → R, ρ(a) = ab,

τ : R → R, τ(a) = ba,

where b ∈ R is fixed. The maps ρ and τ are homomorphisms – endomorphisms to be precise –
of the group (R, +), and the statements (i)–(iii) follow from the basic properties of homomor-
phisms.
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Remark 4.13. It follows from (i) that 1 ̸= 0 always in a ring. If we had 1 = 0 then a = a · 1 =
a · 0 = 0 ∀ a ∈ R, and remember that we excluded R = {0}.

By (ii) there is no ambiguity in writing −ab; the minus sign can be thought of as either part
of the product ab or part of element a.

As we stated in group theory, multiples obey the rules of operation:

(m + n)a = ma + na, (mn)a = m(na), n(a + b) = na + nb ∀ m, n ∈ Z, a, b ∈ R.

Observe that the notations 0a and 1a can be understood in two ways but in either case 0a = 0
and 1a = a. For the sake of clarity we may also denote 0R and 1R for the additive identity and
(multiplicative) identity of the ring R.

Theorem 4.14. If R is a ring and a, b ∈ R, then

(iv) na = (n · 1)a = a(n · 1) ∀ n ∈ Z (here 1 = 1R),

(v) n(ab) = (na)b = a(nb) ∀ n ∈ Z,

(vi) (ma)(nb) = (mn)(ab) ∀ m, n ∈ Z.

Proof. (iv) If n = 0, then all three products are equal to zero. Suppose n > 0. Then

(n · 1)a = (1 + · · · + 1)a = a + · · · + a = na.

Further, (−n) · 1 = n(−1) and (−n)a = n(−a) by the definition of negative multiples;
that is,

((−n) · 1)a = ((−1) + · · · + (−1))a = (−a) + · · · + (−a) = n(−a) = (−n)a.

The products a(n · 1) and a((−n) · 1) are handled similarly.

(v) easily reduces to (iv) and part (vi) reduces to (v).

This theorem as well can be proven by using the homomorphisms ρ and τ from Remark 4.12.
Example 4.15. (a + b)2 = a2 + ab + ba + b2. If R is commutative, then (a + b)2 = a2 + 2ab + b2

and in general

(a + b)n = an +
(

n

1

)
an−1b + · · · +

(
n

n − 1

)
abn−1 + bn.

Example 4.16. In the ring Zm we have ka = k · a by Theorem 4.14 (iv) for all k, a ∈ Z. In the
ring Z2 we have (a + b)2 = (a)2 + (b)2 since 2ab = 2 · ab = 0 · ab = 0.

Exercises
1. Prove that the formula x2 − y2 = (x + y)(x − y) holds in commutative rings.

2. Prove that a ring R is commutative if and only if (x + y)2 = x2 + y2 + 2xy ∀a, y ∈ R.

3. Suppose that for a ring (R, +, ·) we have x2 = x ∀x ∈ R. Show that 2x = 0 ∀x ∈ R and
that R is commutative.

4. Which of the following equations hold in an arbitrary ring R?
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a) a2 − ba = (a − b)a,
b) (a + b + 1)(a − b − 1) = a2 − b2 − 2b − 1,
c) 2a · 4b − ab = 7ab.

4.3 Subrings and ideals
Definition 4.17. A subset S of a ring (R, +, ·) is called a subring of R if

(SR1) S is a ring under the operations + and ·, and

(SR2) the identity of S is the identity of R.

If S is a subring of R, then (S, +) is a subgroup of the group (R, +). It follows that the
additive identity 0 of R belongs to S and is the additive identity of S.
Example 4.18. Z ⊂ Q ⊂ R ⊂ C, here each ring is a (proper) subring of those following it.

Example 4.19. The set of all matrices
(

a 0
0 0

)
, where a ∈ R, forms a ring that is contained in the

matrix ring M2(R). Yet it is not a subring of M2(R) because its identity is
(

1 0
0 0

)
̸=
(

1 0
0 1

)
.

Theorem 4.20 (Subring criterion). Let R be a ring and S ⊂ R. Then S is a subring of R if
and only if the following conditions hold:

(a) 1R ∈ S,

(b) a − b ∈ S ∀ a, b ∈ S,

(c) ab ∈ S ∀ a, b ∈ S.

Proof. If S is a subring of R, then it trivially satisfies the conditions. Conversely, by condition
(a) we know that S ̸= ∅ and, hence it follows from condition (b) that (S, +) is a subgroup of
(R, +). Conditions (a) and (c) ensure that S satisfies the ring postulates (R2) and (R4). The
necessary rules of computation in postulates (R3) and (R5) are inherited from the ring R. Thus
(SR1) holds, and (SR2) follows directly from condition (a).

It is often easier to show that a given subset is a ring by using the Subring criterion than
by checking the ring postulates.
Example 4.21. The number sets

Z
[√

n
]

= {a + b
√

n
∣∣ a, b ∈ Z} (n = −1, ±2, ±3, . . .)

are subrings of C, and also subrings of R when n > 0. In the special case n = −1 we have the
Gaussian integers, see Example 4.2.

When we study the rings Z [
√

n], we usually assume that n is square free, that is, n is not
divisible by the square of any integer greater than 1. Then Z

[√
n1
]

̸= Z
[√

n2
]

holds whenever
n1 ̸= n2.
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Example 4.22. The set of all polynomials with real coefficients

R[x] = {a0 + a1x + · · · + anxn
∣∣ n ≥ 0, ak ∈ R (k = 0, . . . , n)}

is a ring under addition and multiplication of polynomials, namely a subring of the function
ring

C(R) = {f : R → R
∣∣ f is continuous },

see Example 4.4.
Some other examples of polynomial rings are the subrings Z[x] and Q[x] of the ring R[x].

Later we will consider the general polynomial ring R[x] where R is any commutative ring.
Example 4.23. Let V be a (real) vector space. The set of linear maps

EndR(V ) = {t : V → V
∣∣ t ∈ is linear }

is a subring of End(V ). Here End(V ) denotes the endomorphisms of the group (V, +), see
Example 4.7; the addition of maps is defined pointwise and the product is composition.

In group theory we stated that normal subgroups enjoy a special status. In ring theory,
normal subgroups correspond to ideals.

Definition 4.24. A subset I of a ring R is called an ideal of R if

(I1) (I, +) is a subgroup of the group (R, +) and

(I2) ra ∈ I and ar ∈ I ∀ r ∈ R and a ∈ I.

If we omit the condition ar ∈ I from (I2) then we would get a more general concept of a left
ideal; likewise a right ideal.

Every ring has the trivial ideals R itself and the zero ideal {0}. Is an ideal I of a ring also
its subring? If so, then 1 ∈ I and by (I2) we have r ∈ I ∀ r ∈ R, that is, I = R. Therefore R
itself is the only ideal of R that is also a subring.

The previous inference also gives the following: If I is a proper ideal of a ring R, then
I ∩ R∗ = ∅. If a unit u ∈ I, then the product uu−1 = 1 also belongs to I, and hence I = R.
Example 4.25. In Section 3.3 we showed that the only subgroups of the group (Z, +) are the
groups mZ, m = 0, 1, . . .. Because the groups mZ also satisfy (I2), they are ideals of the ring
Z. These are thus all the ideals of the ring Z.

Theorem 4.26 (Ideal criterion). Let R be a ring and I ⊂ R. Then I is an ideal of R if and
only if the following hold:

(a) I ̸= ∅,

(b) a − b ∈ I ∀ a, b ∈ I,

(c) ra ∈ I and ar ∈ I ∀ r ∈ R, a ∈ I.

Proof. The conditions (a) and (b) are equivalent to (I1) and the condition (c) is the same as
(I2).

Example 4.27. The set of polynomials with real coefficients, whose constant terms are 0, form
an ideal of the polynomial ring R[x]. Let us denote this set by

I = {f ∈ R [x]
∣∣ f(0) = 0}.

It is easy to see that I is nonempty since at least the polynomial f(x) = x belongs to I. Suppose
that f, g ∈ I. Then (f − g)(0) = f(0) − g(0) = 0 − 0 = 0, so f − g ∈ I and thus (I1) holds.
Finally, let h ∈ R[x]. Then we have f(0)h(0) = 0 · h(0) = 0 and h(0)f(0) = h(0) · 0 = 0, and we
get fh ∈ I and hf ∈ I. Since these hold for any f, g ∈ I and h ∈ R[x], (I2) holds. Hence I is
an ideal of R[x] by the Ideal criterion.

69



Theorem 4.28. If I and J are ideals of a ring R, then so are their intersection I ∩ J and sum

I + J = {a + b
∣∣ a ∈ I, b ∈ J}.

This hold even for more than two ideal, and for intersections even for infinitely many.

Proof. This follows immediately from the Ideal criterion.

Similarly to how a subset of a group G generates a subgroup of G, a subset S of a ring R
generates an ideal of R

⟨S⟩ =
⋂

S⊂I

I;

where I is an ideal of R. Here we used Theorem 4.28. The ideal ⟨S⟩ is the smallest ideal of R
that contains S.

If S is a finite set, S = {a1, . . . , ak}, then the ideal ⟨S⟩ is said to be finitely generated, and
denoted by ⟨S⟩ = ⟨a1, . . . , ak⟩. An ideal that is generated by one element is called a principal
ideal.

Observe that
⟨a1, . . . , ak⟩ = ⟨b1, . . . , bh⟩,

if both ideals contain the generators of each other. For example, by the above it follows that
⟨a1, . . . , ak⟩ ⊂ ⟨b1, . . . , bk⟩ if ai ∈ ⟨b1, . . . , bj⟩ (i = 0, . . . , k).
Example 4.29. The trivial ideals R and {0} are principal ideals: R = ⟨1⟩ and {0} = ⟨0⟩.

Theorem 4.30. If the ring R is commutative, then

⟨a1, . . . , ak⟩ = {r1a1 + · · · + rkak

∣∣ ri ∈ R ∀ i}.

Proof. The proof is similar to the proof of Theorem 2.31. It is essential that the right-hand side
is, firstly, an ideal by the Ideal criterion, and secondly, that it is contained in every ideal that
the elements a1, . . . , ak are contained in.

Using a similar notation as we did for cosets with respect to subgroups, when R is commu-
tative we can write

⟨a1, . . . , ak⟩ = Ra1 + · · · + Rak, in particular ⟨a⟩ = Ra.

The notation Ra1 + · · · + Rak can also be interpreted as the sum of the principal ideals Rai.
Example 4.31. The principal ideal generated by the element x of the polynomial ring R[x] is

⟨x⟩ = xR[x] = {a0x + a1x2 + · · · + anxn+1 ∣∣ n ≥ 0, ai ∈ R ∀ i},

which is the same ideal as the ideal that appeared in Example 4.27.
Example 4.32. By Example 4.25, the ideals of the ring Z are the principal ideals

⟨m⟩ = mZ (m = 0, 1, . . .).

Definition 4.33. A ring whose every ideals is a principal ideal is called a principal ideal ring,
abbreviated by PIR.

Example 4.34. Example 4.32 shows that Z is a PIR. Thus if a1, . . . , ak ∈ Z, then there exists a
d ∈ Z, such that

⟨a1, . . . , ak⟩ = ⟨d⟩.
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How can we determine this d? The answer is simple: d = gcd(a1, . . . , ak). To show this, let us
denote si = ai

d for 1 ≤ i ≤ k. Each element of ⟨a1, . . . , ak⟩ can be written in the form

a1b1 + · · · + akbk = ds1b1 + · · · + dskbk = d(s1b1 + · · · + skbk) ∈ ⟨d⟩

where b1, . . . , bk ∈ Z. Therefore ⟨a1, . . . , ak⟩ ⊂ ⟨d⟩.
Conversely, any element db ∈ dZ can be written as db = a1b1 + · · · + akbk because db is

a multiple of gcd(a1, . . . , ak) by definition. Remember that a Diophantine equation a1x1 +
· · · anxn = c has a solution if and only if c is a multiple of gcd(a1, . . . , an). Therefore ⟨d⟩ ⊂
⟨a1, . . . , ak⟩.

Thus we get equality ⟨a1, . . . , ak⟩ = ⟨d⟩.
As an example, ⟨3, 4⟩ = ⟨1⟩ = Z and ⟨4, 6⟩ = ⟨2⟩ = 2Z.

Example 4.35. Let R = {f
∣∣ f : R → R} and S = {f ∈ R

∣∣ f is differentiable }. Then S is a
subring of R but not an ideal.

Exercises
1. Show that {06, 26, 46} is a ring, but not a subring of Z6.

2. Let R be a ring and C(R) = {x ∈ R
∣∣ xy = yx ∀y ∈ R}. Prove that C(R) is a subring of

R.

3. Prove that RR is a ring and that the differentiable functions R → R generate a subring of
it. (Like earlier, RR = {f

∣∣ f : R → R} and the operations are like in Example 4.4.)

4. Prove that
I = {f ∈ RR ∣∣ f(1) = 0}

is an ideal of the ring RR.

5. Let A and B be ideals of a ring R. Prove that A + B is also an ideal of R.

6. Let A and B be ideals of a ring R. Prove that A ∩ B is also an ideal of R.

7. Determine the ideals of the ring Z12.

8. Show that the set {a + b 3√2 + c 3√4
∣∣ a, b, c, ∈ Z} is a subring of R.

9. Show that M and {0m} are the only ideals of the matrix ring

M = {
(

a b
c d

) ∣∣ a, b, c, d ∈ R}.

(Hint: If I ̸= {0m} is an ideal of M , then show that 1m ∈ I.)

10. Prove that the Gaussian integers Z [i] = {a + bi
∣∣ a, b ∈ Z} form a subring of the ring of

complex numbers C.

11. Prove that the set {
(

a 0
0 b

) ∣∣ a, b ∈ Z} is a subring of the matrix ring M2(Z).
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4.4 Quotient rings
Earlier, using the normal subgroup N of a group G, we defined the factor group G/N of G. An
analogous concept for a ring R is the quotient ring, or factor ring, R/I where I is an ideal of R.

Suppose that I is an ideal of R. Then (I, +) is a normal subgroup of (R, +), since normality
follows from the commutativity of the group (R, +). Thus we can form a factor group

R/I ={a + I
∣∣ a ∈ R} = {a + I

∣∣ a ∈ D};
(a + I) + (b + I) = (a + b) + I,

where D is some collection of representative residue classes a + I (= cosets, see Example 2.59).

Theorem 4.36. If I is an ideal of a ring R, then R/I is a ring under the following operations:

(a + I) + (b + I) = (a + b) + I, (a + I)(b + I) = ab + I.

Proof. As we noted above (R/I, +) is a group. It is moreover an Abelian group because (R, +)
is Abelian by definition.

Second, we prove that the multiplication of residue classes as defined in the statement is
well defined. Suppose that a + I = a′ + I and b + I = b′ + I, that is, a = a′ + i1 and b = b′ + i2
with i1, i2 ∈ I. Then

ab = (a′ + i1)(b′ + i2) = a′b′ + a′i2 + i1b′ + i1i2.

Because I is an ideal of R, it contains the products a′i2, i1b′ and i1i2 and thus their sum.
Hence ab = a′b′ + i for some i ∈ I. This can also be stated as ab ∈ a′b′ + I and implies that
ab + I = a′b′ + I.

The ring postulates (R3)–(R5) revert to the equivalent postulates in R by the definitions of
addition and multiplication of residue classes. The identity of the ring R/I is 1 + I.

Definition 4.37. The ring R/I is called the quotient ring with respect to ideal I. It is also
called a factor ring or a residue class ring.

Remember that for all a, b ∈ R we have

a + I = b + I ⇐⇒ a ∈ b + I ⇐⇒ a − b ∈ I.

Make sure that you understand the following facts of R/I: the additive identity is I (= 0 + I),
the (multiplicative) identity is 1 + I, the additive inverse of a + I is −a + I, and if a is a unit,
the multiplicative inverse is a−1 + I. If the ring R is commutative, then so is R/I.
Example 4.38. The quotient ring of the ring Z with respect to the ideal mZ is

Z/mZ = {a + mZ
∣∣ a ∈ Z} = {0, 1, . . . , m − 1},

a + b = a + b, a · b = ab.

Thus is the familiar ring Zm, the residue class ring mod m. In the case of m = 1 we get the
zero ring Z/Z = {0}. In general as well R/R = {0} of course.
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Exercises
1. Form the residue classes of the ideal I = ⟨

√
2⟩ in the ring Z

[√
2
]
.

2. Let ⟨24⟩ be the ideal generated by the element 24 in the residue class ring Z4. Form the
quotient ring Z4/⟨24⟩.

3. Form the quotient ring Z
[√

10
]

/I, where Z
[√

10
]

= {a + b
√

10
∣∣ a, b ∈ Z} and

I = ⟨5,
√

10⟩.

4.5 Ring homomorphisms and isomorphisms
Definition 4.39. Let R and R′ be rings. A map f : R → R′ is called a (ring) homomorphism
if it satisfies:

(RH1) f(a + b) = f(a) + f(b) ∀ a, b ∈ R,

(RH2) f(ab) = f(a)f(b) ∀ a, b ∈ R,

(RH3) f(1R) = 1R′ .

According to the definition, a map f : R → R′ is a ring homomorphism if and only if f is a
group homomorphism (R, +) → (R′, +) and it has properties (RH2) and (RH3). It follows by
the properties of group homomorphisms that a ring homomorphism f : R → R′ satisfies

f(0R) = 0R′ , f(−a) = −f(a) ∀ a ∈ R.

Moreover, it follows from (RH2) and (RH3) that

f(a−1) = f(a)−1 ∀ a ∈ R∗

since f(a)f(a−1) = f(aa−1) = f(1R) = 1R′ , and likewise f(a−1)f(a) = 1R′ .
Example 4.40. The identity map idR is a homomorphism R → R. The zero map f(a) = 0 for
all a ∈ R is not a homomorphism as it does not satisfy (R4).
Example 4.41. The map f : R[x] → R, f(a0 +a1x + · · · +anxn) = a0 is a ring homomorphism.
Is the map g(a0 + a1x + · · · + anxn) = a0 + a1 + · · · + an also a ring homomorphism?

The next theorem gives analogous results to Theorems 2.47 and 3.13 in group theory.

Theorem 4.42. Let f : R → R′ be a ring homomorphism.

(i) If S is a subring of R, then f(S) is a subring of R′.

(ii) If S′ is a subring of R′, then f−1(S′) is a subring of R.

(iii) If I is an ideal of R, then f(I) is an ideal of the ring f(R).

(iv) If I ′ is an ideal of R′, then f−1(I ′) is an ideal of R.

Proof. These are proven in a straightforward manner using the Subring criterion, the Ideal
criterion and the conditions (RH1)–(RH3). For proving (iii) and (iv) we can use the definition
of an ideal and Theorem 2.47 instead of the Ideal criterion.
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In particular, from (iv) we get that the kernel of a ring homomorphism

Ker(f) = f−1({0}) = {a ∈ R
∣∣ f(a) = 0}

is an ideal of the ring R. Similarly, from (i) we get that the homomorphic image of the ring R

Im(f) = f(R) = {f(a)
∣∣ a ∈ R}

is a ring, namely a subring of R′.
If we consider the map f as just a group homomorphism (R, +) → (R′, +), its kernel and

image are the same as stated above. In particular, note that the kernel is defined with 0 and
not 1! Thus from Theorem 2.51 it follows that a ring homomorphims f : R → R′ is injective if
and only if Ker(f) = {0}.
Example 4.43. The kernel and the image of the map f in Example 4.41 are

Ker(f) = {a0 + a1x + · · · + anxn ∈ R[x]
∣∣ a0 = 0} = {a1x + · · · + anxn ∈ R[x]},

Im(f) = R.

Definition 4.44. A ring homomorphism f : R → R′ is called a (ring) isomorphism if f is
bijective. We say that the rings R and R′ are isomorphic, and denoting R ≃ R′, if some
isomorphism R → R′ exists.

Remark 4.45. More terminology related to homomorphisms, some of which have been mentioned
earlier:

monomorphism = an injective homomorphism,

epimorphism = a surjective homomorphism,

endomorphism = a homomorphism from an object to itself,

automorphism = an isomorphism from an object to itself.

Example 4.46. The map f : C → C, f(x + iy) = x − iy is an automorphism of ring C. First,
let us check that f is a ring homomorphism.

f(x + iy) + f(u + iv) = x − iy + u − iv = x + u − i(y + v) = f(x + u + i(u + v)),

f((x + iy)(u + iv)) = f(xu − yv + i(xv + yu)) = xu − yv − i(xv + yu)
= (x − iy)(u − iv) = f(x + iy)f(u + iv),

f(1) = 1
Thus f is a homomorphism by Definition 4.39.

Since f(x + iy) = 0 implies x = y = 0, the kernel is Ker(f) = {0}, and thus f is injective.
As an injective endomorphism, f is necessarily surjective, and hence a ring isomorphism, and
further, an automorphism of C.

The analogy between group and ring homomorphisms also applies to Theorems 2.53 and
2.54, which can easily be extended to ring homomorphisms. Consequently, ring isomorphisms
are equivalence relations. Isomorphic rings can thus be equated in the view of ring theory.

Theorem 4.47 (Homomorphism theorem for rings). If f : R → R′ is a ring homomorphism
then

R/K ≃ Im(f) (K = Ker(f)).
More precisely, f induces a ring isomorphism

F : R/K → Im(f), F (a + K) = f(a).
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Proof. By the Homomorphism theorem for groups, we know that the map F is a group iso-
morphism (R/K, +) → (Im(f), +). Thus it needs only be proven that F satisfies the ring
homomorphism conditions (RH2) and (RH3).

(RH2): F ((a + K)(b + K)) = F (ab + K) = f(ab) = f(a)f(b) = F (a + K)F (b + K).

(RH3): F (1 + K) = f(1) = 1.

Just like for groups, the Homomorphism theorem gives the commuting diagram below, where
π is the (canonical) projection

π : R → R/I, π(a) = a + I,

when I = Ker(f). Check that π truly is a ring homomorphism. Because π is surjective in
addition, we see that the homomorphic images of a ring R correspond bijectively to the quotient
rings of R.

R

R/Ker(f)

Im(f) ⊂ R′f

F

≃
π

Example 4.48. Let us determine what isomorphism the homomorphism f in Example 4.41 gives.
In Example 4.43 we determined the kernel and image of f . The kernel is

K = Ker(f) = {a1x + · · · + anxn ∈ R[x]}

and the image is Im(f) = R. Thus the induced ring isomorphism is

F : R [x] /K ≃ R, F (a + K) = f(a).

Example 4.49. Let us show that the map f : Z → Zm, f(a) = a is a ring homomorphism for
m ≥ 2. We already know that (Z, +) → (Zm, +) is a group homomorphism so we need to check
(RH2) and (RH3).

Firstly, f(ab) = ab = ab = f(a)f(b), and secondly, f(1) = 1, so f is a ring homomorphism.
The kernel of f is mZ and its image is {0, 1, . . . , m − 1}. The isomorphism that f induces is
thus

F : Z/mZ ≃ Zm F (a + mZ) = f(a) = a.

Exercises
1. Show that the condition x4 7→ (5x)10, x ∈ Z gives a well-defined map Z4 → Z10. Is it a

ring homomorphism?

2. Suppose that there exists a surjective homomorphism from a commutative ring R to a
ring R′. Prove that R′ is also commutative.
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3. Let (Z, ⊕, ⊙) be a ring under the operations defined as x ⊕ y = x + y − 1 and x ⊙ y =
x + y − xy. Prove that (Z, ⊕, ⊙) and (Z, +, ·) are isomorphic.

4. Let X be a set and Y ⊂ X. Prove that the map between Boolean rings (see Example 4.6)
f : P(X) → P(Y ), f(A) = A ∩ Y is a ring homomorphism. Determine Ker(f).

5. Determine all ring homomorphisms f : Z → Z and g : Q → Q.

6. The set A =
{(

a b
0 d

) ∣∣ a, b, d ∈ R
}

is a ring. Show that the set I =
{(0 b

0 0

) ∣∣ b ∈ R
}

is an ideal of A and that the quotient ring A/I is isomorphic to R × R. (Hint: The
Homomorphism theorem for rings.)

7. Let f : R → R be a ring homomorphism. Prove that if I is an ideal of R, then f(I) is an
ideal of the ring f(R).

8. Does a map f : 2Z → 3Z which satisfies conditions (RH1) and (RH2) exist? Does such a
bijection exist?

9. Determine whether the map f : Z4 → Z12, x4 7→ (3x)4 (∀x ∈ Z) is well defined. Does it
satisfy the conditions (RH1) and (RH2)?

10. Prove that Z
[√

2
]

= {a + b
√

2
∣∣ a, b ∈ Z} and H =

{(
a 2b
b a

) ∣∣ a, b ∈ Z
}

are isomorphic

rings.

4.6 Integral domains; characteristics
The number rings, such as R, have the important property that the product of two numbers is
equal to zero if and only if at least one of the factors is zero. This is used for solving equations,
such as

x4 = 1 ⇐⇒ (x − 1)(x + 1)(x − i)(x + i) = 0 ⇐⇒ x = ±1, ±i.

Not all rings have this property: for example, in the ring Z12 we have 3 · 4 = 0.
Example 4.50. Let us solve the equation x3 + x = 0 in the ring Z10. We want to find those
elements of Z10 that satisfy x3 = −x. Clearly 0 is one.

x 0 1 2 3 4 5 6 7 8 9
x3 0 1 8 7 4 5 6 3 2 9

From this table we see that the solutions are 0, 3, 5, 7, 8.

Definition 4.51. A nonzero element of a ring R is called a zero divisor if there exists a nonzero
b ∈ R such that

ab = 0 or ba = 0.

Example 4.52. The matrix
(

1 2
2 4

)
is a zero divisor of the ring M2(R) since

(
1 2
2 4

)(
6 2

−3 −1

)
=
(

0 0
0 0

)
.
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Example 4.53. Let us show that a is a zero divisor of the ring Zm if and only if a is nonzero
and gcd(a, m) > 1. First suppose that gcd(a, m) > 1. Since Zm is cyclic and generated by 1, by
Theorem 3.25 we know that the order of an element a is ord(a) = ord(a · 1) = m

gcd(a,m) . Thus by
assumption the order of a is less than m. Therefore there exists a nonzero element b = ord(a))
such that ab = 0, and hence a is a zero divisor.

Suppose now that a is a zero divisor. Then there exists a nonzero element b such that
ab = 0. We assume that b is the smallest such element. Then ord(a) = b < m which implies
that gcd(a, m) > 1 by Theorem 3.25.

Definition 4.54. A ring R is called an integral domain if

(D1) R is commutative, and

(D2) R has no zero divisors.

Example 4.55. All the number rings (Z,Q, etc.) are integral domains.
Example 4.56. It follows from Example 4.53 that the residue class ring Zm is an integral domain
if and only if m is a prime number.

Laws of cancellation hold in any integral domain D: If a ∈ D, a ̸= 0 then

ab = ac =⇒ b = c ∀ b, c ∈ D.

The left equation can be written in the form a(b − c) = 0; the statement follows from this
because a is not a zero divisor. Note that here a need not have an inverse.
Example 4.57. Let us solve the equation x3 + 10x = 0 in the rings Z5 and Z7. As 5 and 7 are
prime number, these rings are both integral domains by Example 4.56.

In Z5 the equation reduces to x3 = 0 which thus only has the solution x = 0. In Z7 the
equation reduces to x3 + 3x = 0 or x(x2 + 3) = 0. This has the solutions x = 0, x = 2 or x = 5
because (2)2 = (5)2 = 4 = −3.

Note that the operations in an integral domain D depend on what multiples of the identity
1 = 1D satisfy n1 = 1 + · · · + 1 = 0. This leads to the next definition.

Definition 4.58. The characteristic of an integral domain D is

char(D) =
{

the smallest positive integer n such that n1D = 0,

0, if no such n exists.

In other words, char(D) is the order of the identity element in the group (D, +) unless this
order is ∞, when we define char(D) = 0.

Example 4.59. The characteristic of every number ring is 0. The characteristic of the residue
class ring Zp for any prime p is p.
Remark 4.60. In an integral domain D, all nonzero elements a have the same order in the group
(D, +); the use of the identity in the definition is just for simplicity. The equation na = 0 can be
written as (n1D)a = 0 by Theorem 4.14, and because D has no zero divisors, this is equivalent
to the equation n1D = 0.

Theorem 4.61. The characteristic of an integral domain D is either 0 or a prime number.

Proof. Suppose that char(D) = n ̸= 0. We write n = n1n2, where n1 and n2 are positive
integers. Now n1 = (n11)(n21), so by assumption (n11)(n21) = 0. However, D has no zero
divisors so at least one of the factors must be 0, let us say n11 = 0. But now by minimality of
n, we have n1 = n. The only factorization of n is thus n = n · 1, and therefore n is prime.
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Example 4.62. The binomial coefficients
(p

k

)
are divisible by p when p is a prime number and

1 ≤ k ≤ p since (
p

k

)
= p(p − 1) · · · (p − k + 1)

k · · · 1

and
(p

0
)

=
(p

p

)
= 1. From this we deduce that if char(D) = p, then

(a + b)p = ap + bp ∀ a, b ∈ D.

Now let us solve the equation x3 + y3 = 0 in an integral domain D of characteristic 3. By
the above deduction, we have x3 +y3 = (x+y)3 = 0 which implies that x+y = 0. Thus x = −y
since D has no zero divisors.

Exercises
1. Prove that Z

[√
2
]

= {a + b
√

2
∣∣ a, b ∈ Z} is an integral domain.

2. Prove that M2(Z) is not an integral domain.

3. Solve the equation x2 = x in an integral domain.

4. How many solutions does the equation x5 − 5x + 6 = 0 have in Z7? What about in Z8?

5. Suppose that D and E are integral domains and f : D → E is a ring homomorphism.
Suppose that D has a nonzero characteristic. Prove that D and E have the same charac-
teristic.

78



Chapter 5

Fields and polynomials

5.1 Fields
In this chapter we will consider algebraic objects called fields, which are modelled after the
rational numbers, that is, a set of numbers equipped with four “basic” operations. This type of
object is more algebraically advanced than groups or rings, and thus has many desired properties.
Below we present the basic classification of fields and study how fields can be constructed.

Definition 5.1. A set F together with two operations + and ·, denoted by (F, +, ·), is called
a field if

(F1) (F, +, ·) is a commutative ring (̸= zero ring) and

(F2) Every nonzero element of F has a multiplicative inverse in F , that is, the unit group of
F is F ∗ = F \ {0}.

According to this definition, a 3-tuple (F, +, ·) is a field if and only if it fulfils

F1’: (F, +) is an Abelian group (the additive group of the field),

F2’: (F \ {0}, ·) is an Abelian group (the multiplicative group of the field),

F3’: a(b + c) = ab + ac and (a + b)c = ac + bc ∀ a, b, c ∈ F .

If we exclude the commutativity condition for multiplication, we get a so-called skew field
or a division ring, which we shall omit from this course.
Example 5.2. Q,R and C are (number) fields. Z is not a field.
Example 5.3. The set of all rational functions is defined as follows:

R(x) =
{

p(x)
q(x)

∣∣∣∣ p(x), q(x) ∈ R [x] , q(x) ̸= zero polynomial
}

.

R(x) is a field under pointwise addition and multiplication of functions.

Theorem 5.4. (i) Every field is an integral domain.

(ii) Every finite integral domain is a field. (Compare with Example 5.2: Z is an infinite
integral domain.)

Proof. (i) Compare the condition (F1) of a field with the definition of an integral domain.
It needs only be proven that no zero divisors exist in a field F . Suppose that ab = 0
where a, b ∈ F, a ̸= 0. Then a has an inverse element a−1 ∈ F , and this equation gives
b = a−1 · 0 = 0. This proves the statement.
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(ii) Let D be a finite integral domain. Now it needs to be proven that each element a ∈ D\{0}
has an inverse element in D.
Let us form a subset D0 = {ax

∣∣ x ∈ D} of D. By applying the cancellation law in the
integral domain D, we see that ax1 ̸= ax2 whenever x1 ̸= x2. Because D is finite, it
follows that there are as many elements in D0 as in D, and hence D0 = D. In particular,
the identity of D is in D0, that is,

∃ x′ ∈ D : ax′ = 1.

Observe that D is commutative. This implies that x′ = a−1.

Example 5.5. From the previous theorem and by Example 4.56 it follows that the residue class
ring Zm is a field if and only if m is a prime number. The residue class field Zp = {0, 1, . . . , p − 1}
is an example of a finite field.

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Addition table of Z5

· 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Multiplication table of Z5

Remark 5.6. A finite field of order pk, where p is a prime, is denoted by GF (pk). The notation
GF originates from the German term Galois-Feld (Galois field in English) which has fallen
out of use. We can prove that for each prime power there exists a unique field GF (pk) up to
isomorphy and no other such finite fields exist.

Later in this course, we will present how fields like GF (pk) can be constructed.

Because a field is a ring, addition, subtraction and multiplication are defined in the field.
Division is now defined as usual by setting

a

b
= ab−1, in particular 1

b
= b−1 (b ̸= 0).

Applying the usual rules of computation of commutative rings, we observe that

a

b
· c

d
= ac

bd
,

a

b
+ c

d
= ad + bc

bd
(b ̸= 0, d ̸= 0).

Thus we can calculate with quotients in the same way as fractions. Note as well that a
1 = a.

Example 5.7. Let us compute the sums 1
2 + 1

4 and 1
2 + 3

4 in the field Z5.

1
2 + 1

4 = 1 · 4 + 1 · 2
2 · 4 = 4 + 2

3 = 1
3 = 1 ·

(
3
)−1 = 1 · 2 = 2

1
2 + 3

4 = 1 · 4 + 3 · 2
2 · 4 = 4 + 6

3 = 10
3 = 0

When there is no chance of ambiguity, the elements of a field F are often denoted by

1 + 1 = 2, 1 + 1 + 1 = 3, . . . , in general n · 1 = n ∀ n ∈ Z.
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Since a field is an integral domain, the characteristic char(F ) is defined and it is either 0 or
a prime by Theorem 4.61. In particular, note that

If char(F ) = 0 then F is infinite. The characteristic of a finite field is thus prime.
If char(F ) = p (prime), then

n = 0 ⇐⇒ p | n.

Example 5.8. Let us determine the characteristics of the fields in Examples 5.2–5.5. The fields
Q,R and C in Example 5.2 have characteristic 0 since no integer n exists such that n · 1 = 0.
The field of rational functions R(x) in Example 5.3 is infinite and also has characteristic 0. The
fields Zp in Example 5.5 are finite and have characteristic p.
Example 5.9. Let us solve the second degree equation x2 + ax + b = 0 in a field F with
char(F ) ̸= 2.

In this case the characteristic is at least three, and thus 2 · a ̸= 0 for any nonzero a ∈ F .
Therefore we can use the usual solution formula for second degree equations.

x2 + ax + b = 0
x2 + ax = −b

x2 + ax +
(

a

2

)2
= −b +

(
a

2

)2

(
x + a

2

)2
= a2 − 4b

2

x + a

2 = ±

√
a2 − 4b

4

x = −a ±
√

a2 − 4b

2
Where the square root is taken if it exists in F .
Example 5.10. Any number field, a field whose elements are complex numbers, contains the
field Q, that is, Q is the smallest number field. Number fields are fields contained in C. Let F
be some field contained by C. Firstly, 1 ∈ F so all elements of the form 1 + · · · + 1 belong to
F . This implies that Z≥0 ⊂ F . Since a field has additive closure, we clearly have Z ⊂ F . Since
(F \ {0}, ·) is a group, all inverses of the natural numbers { 1

n}n≥1 belong to F . Subsequently,
any rational number is of the form m · 1

n with m, n ∈ Z, n ≥ 1, and hence Q ⊂ F . Therefore
any number field contains Q, and thus Q is the smallest number field.

Because a field is a ring, we can study its ideals. The next theorem discusses them exhaus-
tively.

Theorem 5.11. The only ideals of a field F are F and {0}.

Proof. If I is a proper ideal of F , then I ∩ F ∗ = ∅, see Section 4.3. However, F ∗ = F \ {0}, and
therefore I = {0}.

If F and F are fields, then a ring homomorphism F → F ′ is called a field homomorphism
and a ring isomorphism F → F ′ is called a field isomorphism as well.

Theorem 5.12. Every field homomorphims f : F → F ′ is an injection.

Proof. Because the kernel Ker(f) is an ideal of F , by Theorem 5.11 it is either F or {0}. In the
former, f(a) = 0 ∀ a ∈ F . However, this is impossible because f(1) = 1 by Postulate (RH3).
Hence Ker(f) = {0} and thus f is an injection.

It follows that all homomorphic images of F are isomorphic to F .
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Example 5.13. Let us show by Example 4.62 that the map

fp : F → F, fp(x) = xp,

is a field homomorphism when char(F ) = p.
Firstly, by Example 4.62 we know that for any a, b ∈ F

f(a + b) = (a + b)p = ap + bp = f(a) + f(b).

Multiplication is commutative in a field, hence

f(ab) = (ab)p = apbp = f(a)f(b).

Finally we have f(1) = 1p = 1. Now f is a ring homomorphism by Definition 4.39 and thus a
field homomorphism.

Then it follows from Theorem 5.12 that F ≃ Im(fp). If F is moreover a finite field, Im(fp)
contains at least as many elements as F , and thus is F . In this case fp is an automorphism of
the field F . The most simple case of a field that satisfies these conditions is F = Zp. Then the
previous result is trivial: fp is the identity map of the field, see Euler’s theorem in Example 2.68.

Exercises
1. Let R = {010, 210, 410, 610, 810} ⊂ Z10. Prove that R is a field.

2. Give an example of a finite field with elements a, b ̸= 0 that satisfy the equation a2+b2 = 0.

3. Solve the following pair of equations in Z7:{
−3x + 2y = 1

x + 3y = −2.
.

4. Let R be a commutative ring. Show that R is a field precisely when the only ideals of R
are the trivial ideals {0} and R.

5. Compute the inverse element of 31173 in the field Z173 and determine all solutions to the
congruence 31x ≡ 5 (mod 173).

6. Prove that the matrices
(

a b
−b a

)
form a field which is isomorphic to the field of complex

numbers C. Which matrix corresponds to the imaginary unit i?

7. Show that the multiplication operation

(a, b)(c, d) = (ac + bd, ad + bc + bd)

makes the product group (Z2 × Z2, +) a field with four elements.

8. Let K be a field, R a ring and f : K → R is a ring homomorphism. Show that f is an
injection.

9. Show that Z
[√

3
]

is not a field.

10. Show that if f is an element of the function ring R = RR, f ̸= 0R, then f is a zero divisor
or a unit.
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5.2 Subfields; prime fields
Definition 5.14. A subset K of a field (F, +, ·) is called a subfield of F if K is a field under
the operations + and ·.

If K is a subfield of a field F , then (K, +) is a subgroup of (F, +), and (K \ {0}, ·) is
a subgroup of (F \ {0}, ·). In particular, it follows that the additive identities coincide and
likewise the units.

Theorem 5.15 (Subfield criterion). A subset K of a field F is a subfield of F if and only if it
satisfies

(SF1) K has at least two elements,

(SF2) a − b ∈ K ∀ a, b, ∈ K,

(SF3) a
b ∈ K ∀ a, b ∈ K, b ̸= 0.

Proof. If K is a subfield of F , it trivially satisfies the conditions (SF1)–(SF3). Conversely, if
these conditions hold, then it follows from (SF1) and (SF2) that (K, +) is a group, namely a
subgroup of (F, +). Similarly, it follows from (SF1) and (SF3) that (K \ {0}, ·) is a group since
(SF1) ensures that neither K nor K \ {0} is empty. In addition K inherits distributivity from
the field F , thus K is a field.

Example 5.16. The set

Q(
√

n) = {a + b
√

n
∣∣ a, b ∈ Q} (n is a square free integer ̸= 0, 1)

is a subfield of C, and a subfield of R if n > 0, that contains the ring Z [
√

n].
Example 5.17. If char(F ) = 2, then F has {0, 1} as a subfield. Let us check the field postulates.
The set {0, 1} has (exactly) two elements and thus (SF1) holds. Since the characteristic of the
field is two, we have 1 + 1 = 0. This implies that 0 − 1 = −1 = 1. Hence (SF2) holds. We have
0
1 = 0 and 1

1 = 1 and (SF3) holds. Thus we conclude that {0, 1} is a subfield.

Theorem 5.18. The intersection of subfields of a field F is a subfield of F .

Proof. Follows directly from the Subfield criterion.

Lemma 5.19. Every field homomorphism f : F → F ′ induces a field isomorphism F → Im(f).

Proof. This follows from Theorem 5.12.

What kinds of subfields can a field F have? Because every subfield contains the identity of
F , it also contains its multiples n1. This leads to the following observation.

Lemma 5.20. Every field F contains an integral domain

D = {n1
∣∣ n ∈ Z} ≃

{
Zp, if char(F ) = p,

Z, if char(F ) = 0.

Proof. We form the map
f : Z → F, f(n) = n1.

This is a ring homomorphism (check), so by the Homomorphism theorem we have Z/Ker(f) ≃
Im(f) ⊂ F . Here Im(f) = {n1

∣∣ n ∈ Z} and

Ker(f) = {n ∈ Z
∣∣ n1 = 0} =

{
pZ, if char(F ) = p,

{0}, if char(F ) = 0.

The isomorphisms can now be obtained by noting that Z/pZ = Zp and Z/{0} ≃ Z. Since Zp

and Z are moreover integral domains, the statement follows.
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Let us return to the original question on the subfields of a field. Of the following theorems,
the first is associated with an important basic concept in field theory, the quotient field, which
will be introduced later. The second theorem results from this theorem and Lemma 5.20.

Theorem 5.21. If a field F contains an integral domain D, then F contains the subfield

FD = {a

b

∣∣ a, b ∈ D, b ̸= 0}.

Furthermore, FD is contained in every subdomain K of F that satisfies D ⊂ K.

Proof. We use the Subfield criterion. Firstly we see that D ⊂ FD, so the set FD contains at
least the elements 0 and 1. If a

b ∈ FD and c
d ∈ FD, then their difference ad−bc

bd ∈ FD and their
quotient ad

bc ∈ FD, presuming that c
d ̸= 0. Note that here c ̸= 0 The latter statement is obvious

because every field K contains the quotient a
b of elements a, b of D with b ̸= 0.

Example 5.22. If F is a number field, it contains the integral domain Z. All number fields have
characteristic 0, and thus it follows from Lemma 5.20 that F contains the integral domain Z.

Alternatively, we know that 1 ∈ F and since (F, +) is a commutative group, so all 1+· · ·+1 ∈
F . Hence Z ⊂ F . Then the field in Theorem 5.21 is FZ = Q.

Theorem 5.23. Every field F contains the following field as a subfield:

P ≃
{
Zp, if char(F ) = p,

Q, if char(F ) = 0.

Proof. We prove that we can choose the field P as the field FD by Theorem 5.21 where D is an
integral domain given by Lemma 5.20.

If char(F ) = p, then D ≃ Zp. Then D is a field itself, so it also contains the quotients of its
elements. Thus FD = D and F thus has a subfield FD ≃ Zp.

Suppose that char(F ) = 0, in which case

D = {n1
∣∣ n ∈ Z} ≃ Z.

Now FD = { n1
m1

∣∣ n, m ∈ Z, m ̸= 0} and from this we see that FD ≃ Q.

Definition 5.24. A field is called prime field if it has no proper subfields.

Theorem 5.25. (i) All prime fields are Zp, where p is a prime, or Q up to isomorphism.

(ii) Every field F has a unique prime field as its subfield; this is isomorphic to the field Zp or
Q depending on whether char(F ) = p or 0.

Proof. (i) The field of rational numbers Q is a prime field because is the smallest number
field, see Example 5.10. The residue class field Zp is deduced as a prime field as follows:
If K is a subfield of Zp, then by considering their additive groups, we get by Lagrange’s
Theorem that #F divides the prime p. Since #F > 1, it thus must be equal to p. That
no other prime fields exist follows from part (ii).

(ii) The existence of the claimed field P was proven in Theorem 5.23. We prove uniqueness.
If P1 and P2 are prime fields contained in F , then by Theorem 5.18 P1 ∩ P2 is also a field.
Because this is a subfield of P1 and P2, by the definition of a prime field it is equal to
both P1 and P2. Thus P1 = P2.

This theorem showed that the characteristic of a field F is crucial when determining its
type. From Theorem 5.25 it follows that a field and its subfields contain the same prime field.
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Example 5.26. The prime field P contained in the finite field GF (pk) is P ≃ Zp. Any subfield
K of the finite field GF (pK) is also a subset of GF (pK). Therefore, by Lagrange’s theorem we
must have #K | pk. This implies that #P = pm for some 1 ≤ m ≤ k. Moreover, since a prime
field has no proper subfields by definition, Lagrange’s theorem further implies that #P = p.
Therefore P ≃ Zp.
Example 5.27. The prime field contained by the field of functions R(x), see Example 5.3, is
Q. An example of an infinite field of prime characteristic p with prime field Zp is presented in
Section 5.6.

Exercises
1. Suppose that the characteristic of a field K is 3. Study whether the set {a9 ∣∣ a ∈ K} is a

subfield of K.

5.3 Quotient fields
We often encounter the following problem in algebra: we have a given algebraic object A but
it lacks some desired property. Can we construct an object B that has this property and
contains A? Because isomorphic objects can be equated in algebra, the containment need not
be verbatim; it is enough that B contains some object A′ isomorphic to A.
Example 5.28. A classical example of the previous is the extension of number sets: N → Z →
Q → R → C.

Let us consider the step Z → Q in more depth. Recall that the main points of the contruction
of the rational numbers are the following:

• Form the set of all integer pairs (a, b), b ̸= 0.

• Decide that the pairs (a, b) and (c, d) are equivalent if and only if ad = bc.

• Introduce the notation a
b to represent the pair (a, b) and all equivalent pairs.

• Denote the set of elements a
b by Q, and name them the rational numbers.

• Define addition and multiplication in the set Q.

• Equate the elements a
1 with the integers a.

The algebraic treatment of this construction includes proving that the obtained set Q is a
field. The last point in the construction implies that the subset {a

1
∣∣ a ∈ Z} of Q is an integral

domain and isomorphic to Z.
It is important in algebra that every integral domain D can be extended in a similar con-

struction as above to a certain field Q(D), the so-called quotient field or field of fractions of
D.

Let D be an integral domain. We form the set

X = {(a, b)
∣∣ a, b ∈ D, b ̸= 0}
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and define a relation on this set as follows:

(a, b) ∼ (c, d) ⇐⇒ ad = bc.

This is an equivalence relation. You should check the conditions (E1)–(E3), and note that we
need the law of cancellation. Thus we get a partition of X into equivalency classes [(a, b)], which
are called formal quotients and denoted by a

b :

a

b
= {(x, y)

∣∣ (x, y) ∼ (a, b)} = {(x, y)
∣∣ x, y ∈ D, y ̸= 0, xb = ya}.

In particular, note
a

b
= c

d
⇐⇒ ad = bc.

We denote the set of all formal quotients by Q(D):

Q(D) =
{

a

b

∣∣ a, b ∈ D, b ̸= 0
}

.

We define addition and multiplication in the set Q(D):

a

b
+ c

d
= ad + bc

bd
,

a

b
· c

d
= ac

bd
.

Firstly note that bd ̸= 0. Furthermore, we have to make sure that these operations are well
defined. We prove this for addition as multiplication is similar: Let a

b = a′

b′ and c
d = c′

d′ , where
ab′ = ba′ and cd′ = dc′. We argue that

ad + bc

bd
= a′d′ + b′c′

b′d′ ,

that is, (ad + bc)b′d′ = bd(a′d′ + b′c′). This is shown easily:

ad + bc

bd
= (ab′)dd′ + bb′(cd′) = (ba′)dd′ + bb′(dc′) = a′d′ + b′c′

b′d′ .

Theorem 5.29. The set Q(D) is a field. Its subset

D′ =
{

a

1
∣∣ a ∈ D

}
is a subring of Q(D); it is an integral domain and isomorphic to D.

Proof. Q(D) is a commutative ring, the additive identity is 0
1 , the identity is 1

1 , and the additive
inverse of the element a

b is −a
b ; checking the ring postulates is straightforward, go through

distributivity for example.
If a

b ̸= 0
1 , then a · 1 ̸= b · 0 so a ̸= 0. Hence Q(D) contains the element b

a . This is the inverse
of a

b since a
b · b

a = ab
ab = 1

1 . Thus the ring Q(D) is a field.
We form the map

j : D → Q(D), j(a) = a

1 .

This is a ring homomorphism; check the Postulates (RH1)–(RH3). Furthermore, j is an injection
because it follows from equation a

1 = b
1 that a · 1 = 1 · b and a = b. Thus we get that

D ≃ Im(j) =
{a

1
∣∣ a ∈ D

}
.

This proves the latter statement.
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It is natural to equate D and D′ by denoting the element a
1 simply by a. We also say that

the map j embeds D into the field Q(D). Then the field Q(D) has

ab−1 = a

1 ·
(

b

1

)−1
= a

1 · 1
b

= a · 1
1 · b

= a

b
,

thus the notation a
b also denotes the real quotient of the elements a and b of the field.

Definition 5.30. The field Q(D) constructed above is called the quotient field, or field of
fractions, of an integral domain D.

Example 5.31. The polynomial ring R[x] is an integral domain. Firstly, we know that R is an
integral domain. Let f(x) and g(x) be two nonzero polynomials in R[x], and af , bg be their
respective leading coefficients. Then by definition ab ̸= 0 and bg ̸= 0. Further, because R has no
zero divisors, we have af bg ̸= 0. But the product af bg is the leading coefficient of f(x)g(x), and
so f(x)g(x) cannot be the zero polynomial. Consequently, R[x] has no zero divisors and is thus
an integral domain. Its quotient field is the field of rational functions R(x), see Example 5.3.

If we construct the quotient field Q(D) for an integral domain D which is contained in some
field F , then Q(D) is isomorphic to the field

FD =
{

a

b

∣∣ a, b ∈ D, b ̸= 0
}

(5.1)

in Theorem 5.21. It is natural to equate Q(D) and FD, and call FD the quotient field of the
integral domain D as well. Consider Z in the field of rational numbers R: then the quotient
field Q is equal to FZ.

Hence we see that the concept of quotient fields is simple: Because D is contained in field
F = Q(D) anyhow, we can always consider the quotient field in the form (5.1). The construction
itself usually need not be considered after it has been done once!

From the previous, we also see that the quotient field of an integral domain D is the smallest
field that contains D. Namely if D ⊂ F for a field F , then D ⊂ FD ⊂ F . Finally, let us return
to the general question presented at the start of this section. Suppose that the object A can be
extended in the way explained above into an object B. Then B is algebraically satisfactory only
if it is unique in the following sense: if A is isomorphic to an object A0, then their respective
extensions B and B0 are also isomorphic. It is easy to prove (although omitted here) that the
quotient field of an integral domain has this property.
Example 5.32. Let Z[i] = {a + bi

∣∣ a, b ∈ Z}. The quotient field of Z[i] is isomorphic to field
Q(i) = {r + si

∣∣ r, s ∈ Q}, which is read as Q adjoin i.
Suppose F is some field such that Q ⊂ F and i ∈ F . Then since F \ {0} is a commutative

multiplicative group, bi ∈ F for any b ∈ Q. Also, (F, +) is a group, so a + bi ∈ F for any
a, b ∈ Q. Thus Q(i) ⊂ F .

The quotient field of Z[i] is {a
b

∣∣ a, b ∈ Z[i], b ̸= 0}. For any a, b, c, d ∈ Z we have (a+bi)(c+
di) = (ac − bd) + (ad + bc)i ∈ Q(i). Thus Z[i] ⊂ Q(i). The quotient field of an integral domain
is the smallest field that contains it, therefore F = Q(i).

5.4 Field extensions
Definition 5.33. If F is a subfield of a field L, we say that L is a field extension or an extension
field of F .
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In particular, every field L is a field extension of their prime field P . The subfield F generated
by a subset S of a field L is defined similarly as prior concepts:

F =
⋂

S⊂F

K

where K is a subfield of L.
In this form, the definition is not that practical since no simple rule exists for determining

the elements of F when S is, say, an arbitrary finite set in L.
Remember that a subfield K of a field L always contains the prime field P of L. Thus it

is natural to include P in the generator set S, that is, to choose S = P ∪ S1 where S1 is some
subset of L. In fact, it has proven useful to accept other subfields of L as well and establish the
following definition.

Definition 5.34. Let F be a subfield of a field L and S some subset of L. Then the set D ∩ S
generates, in the above sense, a subfield of L which is denoted F (S):

F ⊂ F (S) ⊂ L.

The field F (S) is said to be the field extension of F generated by the set S, or the field that we
obtain by adjoining the set S to the field F .

It follows from the definition that F (S) is the smallest subfield that contains F and S.
Observe that F (S) is also the smallest extension field of the field F in L that contains the set
S. In fact, only those elements of S outside F are relevant.

If S is finite, S = {a1, . . . , an}, we denote F (S) = F (a1, . . . , an) and we say that F (S)
is the finitely generated field extension of F . An extension generated by a single element is
called simple. It is easy to prove that every finitely generated extension can be constructed by
consecutive simple extensions.

To summarise, if F and L are fields, F ⊂ L and a ∈ L, then F (a) is the smallest subfield of
L that contains F and a. It is a field extension of F that is obtained by adjoining the element
a to the field F .
Example 5.35. If we adjoin the number

√
2 to the field of rational numbers Q, we get a subfield

of R:
Q
(√

2
)

= {a + b
√

2
∣∣ a, b ∈ Q},

compare with Example 5.16.
Example 5.36. If we adjoin the imaginary unit i to the field of real numbers, we get the whole
field of complex numbers: R(i) = C.

Above we discussed extending a field F within some larger field L. The theory of field
extensions gets even more interesting when no such field L exists. Then we are in the situation
described as a general question in the previous section.

For example, the field of complex numbers C can be constructed by starting from the field of
real numbers R and the root of the polynomial x2 +1 that we denote by i. The thus constructed
field is not a field extension of R as such; it is formed of “new” elements that can be written in
the form (a, b) or a + bi where a, b ∈ R, and in addition to the rules of operation, i2 = −1 holds.
Nonetheless, it contains a subfield R0 isomorphic to R, which comprises all elements of form
(a, 0), or a + 0i. As in the previous section, it is natural to equate R and R0, that is, denote
a = a + 0i.

With the same principle, we can construct the extension F (a) for any given field F in general.
The properties of the extension then depend on the polynomial in F whose root is adjoined to
the field F . Polynomials are fundamentally related to the theory of field extensions.
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In this course we only present certain basic results in forming field extensions with the
mentioned method and apply them to contruct finite fields. Before that we will discuss some
essential theory of polynomials.

5.5 Maximal ideals
In the following, we present how we can form fields from a commutative ring via maximal ideals.

Definition 5.37. An ideal M of a ring R is called maximal if it is proper and if no other ideal
I of R exists such that M ⊊ I ⊊ R.

The latter condition of the definition is often convenient rewritten as

I is an ideal of R and M ⊊ I =⇒ I = R.

Example 5.38. In the ring Z8, the ideal ⟨2⟩ = {0, 2, 4, 6} is maximal because the index of its
additive group in the group (Z8, +) is 2.
Example 5.39. The maximal ideals of the ring Z are the ideals pZ where p is a prime. Recall
that Z is a PIR, so all its ideals are of the form mZ, m ≥ 0, and

m1Z ⊊ m2Z ⇐⇒ m1 | m2 and m2 < m1.

Compare this example with the knowledge that a residue class ring Z/mZ is a field if and
only if m = p is a prime. The next theorem generalises this result.

Theorem 5.40. Let I be an ideal of a commutative ring R. Then

R/I is a field ⇐⇒ I is a maximal ideal of R.

Proof. (=⇒) Assume that R/I is a field. Because a field has at least two elements, we know
I ̸= R. Thus to prove maximality of I, we need to take another ideal J of R that contains I
properly and prove that J = R.

Because I is a proper subset of J , there exists a ∈ J \ I. Then a + I ̸= I, that is, a + I is
not the additive identity of the field R/I. Thus it has an inverse b + I:

(a + I)(b + I) = 1 + I.

It follows that 1 = ab+i where i ∈ I. But now 1 ∈ J since a ∈ J and i ∈ J ; recall Definition 4.24.
The statement follows.

(⇐=) Assume now that I is a maximal ideal. The quotient ring R/I is anyhow a com-
mutative ring. Thus it needs only be proven that any arbitrary element a + I ̸= I has an
inverse.

Because a ̸∈ I, the sum of the ideals I and Ra contains properly I; see Theorem 4.28. It
follows from the maximality of I that I + Ra = R. In particular, we have 1 ∈ I + Ra so
1 = i + ra, where i ∈ I and r ∈ R. Now we get

1 + I = ra + I = (r + I)(a + I).

The element r + I is thus the inverse of the element a + I in the ring R/I.
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One objective of the final part of the course is to construct fields via the previous theorem.
Polynomial rings have proven to be appropriate: maximality of an ideal returns to divisibility
of polynomials.

Nonetheless, the remaining part of this section forms its own whole that does not aim at
constructing fields. Its purpose is to connect the concept of maximal ideals to more general
mathematics.

Recall the definition of an ordered set and its basic properties, see Section 1.8.

Definition 5.41. In a partially ordered set A, an element m is said to be maximal if m is not
a predecessor of any other element in A, that is, if

m ≤ a, a ∈ A =⇒ m = a.

Example 5.42. The set {1, 2, . . . , 9} ordered with respect to divisibility has maximal elements
5, 6, 7, 8, 9. Small enough ordered sets such as this are conveniently represented with a Hasse
diagram. Drawn below is the Hasse diagram for the partially ordered set {1, 2, . . . , 9}.

1

2 3 5 7

4

8

9
6

Example 5.43. This example connects the concept of maximal ideals to the first part of this
section: In the set of all proper ideals of a ring R ordered with respect to the inclusion relation
⊂, the maximal elements are the maximal ideals of R.

The question, when does a ring have (at least) one maximal ideal, leads to a more general
question: When does a partially ordered set A have maximal elements?

By considering different examples, we observe that there is no simple answer to this question,
consider infinite groups for example. A certain sufficient condition for existence of a maximal
element is given by the next so-called Zorn’s lemma. It can be proven with the famous Axiom
of choice in group theory. However, we will not present its proof. In fact, the Axiom of choice
can conversely be proven from Zorn’s lemma, so these two can be considered equivalent axioms
in group theory.

To present Zorn’s lemma, we need the following concept in a partially ordered set (A, ≤):
we say that an element y ∈ A is an upper bound of a subset S of A if s ≤ y ∀ s ∈ S.
Example 5.44. In the set Z+ ordered with respect to the division relation, an upper bound for
the subset S = {1, 2, . . . , 9} is 9!. Find another smaller upper bound.

Lemma 5.45 (Zorn’s lemma). Let A be a partially ordered set. If every totally ordered subset
of A has an upper bound in A, then A has at least one maximal element.

Corollary 5.46. Let P be some nonempty collection of subsets of a set X partially ordered
with respect to the inclusion relation. Assume that the union

⋃
α∈T Aα of all sets in any totally

ordered subcollection {Aα

∣∣ α ∈ T} of P belongs to P. Then P has at least one maximal set,
that is, a set M ⊂ X such that

M ⊂ A, A ∈ P =⇒ M = A.

90



Here T is an index set that can be uncountable. What does the assumption that {Aα

∣∣ α ∈ T}
is totally ordered imply? Consider the simpler case where T is finite or countable, for example,
T = {1, 2, . . .}. Then this collection is a sequence of increasing sets: A1 ⊂ A2 ⊂ . . ..

Proof. Because each set Aα is contained in the union ⋃α Aα, this union is an upper bound of
the collection {Aα

∣∣ α ∈ T}. The statement follows by applying Zorn’s lemma on the collection
P.

Theorem 5.47. Every ring has at least one maximal ideal. More precisely: every proper ideal
I of a ring R is contained in at least one maximal ideal of R.

Proof. The former statement follows from the latter since R has at least {0} as a proper ideal.
To prove the latter statement we apply Corollary 5.46 to the collection

P = {J
∣∣ I ⊂ J, J is a proper ideal of R }.

P is nonempty because it contains I. Let {Jα

∣∣ α ∈ T} be some totally ordered collection of
sets of P. We need to show that the union ⋃α Jα is also contained in P; then P contains a
maximal set M and this is the required maximal ideal.

Firstly, ⋃α Jα contains I because each Jα contains I. Secondly, ⋃α Jα is an ideal of the ring
R as we observe by the Ideal criterion. Let a, b ∈

⋃
α Jα. Then for example, α ∈ Jα and β ∈ Jβ

where α, β ∈ T . Because the collection P is totally ordered, we have Jα ⊂ Jβ or Jβ ⊂ Jα; we
can assume that Jα ⊂ Jβ. Now α and β both belong to the ideal Jβ, thus a − b ∈ Jβ. Hence
we have a − b ∈

⋃
α Jα. Reason out yourself why both elements ra and ar belong to this union

whenever r ∈ R.
Thirdly we need to make sure that the ideal ⋃α Jα is proper, that is, ̸= R. This follows

from the fact that the identity element 1 of the ring does not belong to any ideal Jα and thus
neither to their union.

Exercises
1. Find all maximal ideals of the following rings:

(a) Z8,
(b) Z10,
(c) Z12,
(d) Zn.

2. Let R = {f : R → R
∣∣ f is continous }. Prove that A = {f ∈ R

∣∣ f(0) = 0} is a maximal
ideal of R.

3. Consider the points in the plane R2 ordered with respect to a product order J :

(x1, x2)J(y1, y2) ⇐⇒ (x1J1yi) and (x2J2y2) (xi, yi ∈ R).

Find all maximal elements of the subset

A = {(x, y) ∈ R2 ∣∣ x, y ∈ Z, x2 + y2 ≤ 2}.
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4. A proper ideal P of a ring R is called a prime ideal if P satisfies the condition

a, b ∈ R, ab ∈ P =⇒ a ∈ P or b ∈ P.

Prove that a maximal ideal of a commutative ring is a prime ideal. (Hint: Consider the
quotient ring R/P .)

5.6 Polynomial rings
In many examples so far we have considered real polynomials a0 + a1x + · · · + anxn and the
ring they form. Now we generalise the concept by replacing the real numbers a0, a1, . . . , an with
elements of a given commutative ring R. Then addition and multiplication of polynomials can
be computed exactly as in the case of real numbers by applying the ring operations of R on the
coefficients.

The set of all such polynomials is denoted R[x], that is,

R[x] = {a0 + a1x + · · · + anxn
∣∣ n ≥ 0, ak ∈ R (k = 0, . . . , n)}.

The elements of this set are called polynomials over the ring R, more precisely, polynomials in
one indeterminant x over the ring R.

How do we define equality of two polynomials

f(x) = a0 + a1x + · · · + anxn, (5.2)

g(x) = b0 + b1x + · · · + bmxm? (5.3)

We considered real polynomials as functions R → R so their equality reverted to the equality
of functions: polynomials f(x), g(x) ∈ R[x] are equal if their evaluated values are equal for all
real numbers x.

In the general case, this functional outlook needs to be replaced with an algebraic approach.
In this approach a polynomial a0 + a1x + · · · + anxn is simply an expression that is determined
by the elements a0, . . . , an of R. Thus it is natural to say that the polynomials (5.2) and (5.3)
are equal if they have the same coefficients, that is,

f(x) = g(x) ⇐⇒ n = m and ak = bk (k = 0, . . . , n), an ̸= 0.

This equivalence holds even when f(x), g(x) ∈ R[x], so no contradiction arises. Consider the
real polynomials in the view of linear algebra: {1, x, . . . , xn} is the basis of a polynomial space
Pn+1 formed by the polynomials of at most nth degree. In general the values of polynomials do
not always define a polynomial uniquely, compare with Exercise 4.
Remark 5.48. Defining a polynomial as an expression a0 + a1x + · · · + anxn is not quite precise.
For a rigorous definition, consider the polynomial as an infinite sequence

(a0, a1, . . . , an, 0, 0, . . .),

whose elements are 0 starting from some point. So that such sequences are easier to work
with, including utilising familiar polynomial computation methods, we introduce the notation
a0 + a1x + · · · + anxn where the symbol xk indicates that ak is the (k + 1)-th element in the
sequence ,k ≥ 0, and the symbol x0 is often not written.

For example,
4 + 2x3 − x4 = (4, 0, 0, 2, −1, 0, 0, . . .).
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Theorem 5.49. If R is a commutative ring, then the polynomials over R form a commutative
ring (R[x], +, ·) under addition and multiplication defined as usual. The polynomials ax0 =
a, a ∈ R form a subring of R[x] that can be equated in a natural way with the ring R.

The ring R[x] is called a polynomial ring (over R). For completeness, the addition and
multiplication rules of polynomials are displayed; the polynomials f(x) and g(x) are as in (5.2)
and (5.3), n ≤ m:

f(x) + g(x) = (a0 + b0) + (a1 + b1)x + · · · + (an + bn)xn + bn+1xn−1 + · · · + bmxm,

f(x)g(x) = a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 + · · · + anbmxn+m.

The polynomials axa = a are called constant polynomials.

Proof. We need to verify that addition and multiplication of polynomials obey the postulates of
commutative rings. For most of the postulates, this can be observed directly: for example, the
additive identity is the constant polynomial 0, the zero polynomial, the identity is the constant
polynomial 1, and the additive inverse of the polynomial f(x) is −f(x). Checking certain
postulates requires more manual work, consider associativity of multiplication.

The latter part of the statement is evident.

When polynomial operations are thus defined, we observe that the sum and product notation
in the original polynomial expression a0+a1x+· · ·+anxk can be interpreted as these operations.
For example, a0 + a1x is the sum of the constant polynomial a0 and the polynomial a1x, and
akxk is the product of the constant polynomial ak and the polynomial (monomial) ak = 1 · xk.
Therefore the notation has no ambiguity.

Definition 5.50. If a polynomial f(x) = a0+a1x+· · ·+anxn has an ̸= 0, then the coefficient an

is called the leading coefficient of f(x) and n is called the degree of f(x), denoted by n = deg f(x).
We say that a polynomial f(x) is a monic polynomial if its leading term is 1.

We thus define a leading term and a degree ≥ 0 for every nonzero polynomial.
The convention is that the zero polynomial has degree deg(0) = −∞. One must be extremely

careful when digesting the meaning of the symbols −∞ and ∞ in mathematical formulae.
Nonetheless, −∞ as a polynomial degree is simply considered a “number” that is smaller than
all of the real numbers.
Example 5.51. Let us consider the polynomials f(x) = 1 + x and g(x) = 1 − x over an arbitrary
commutative ring R. We observe that

f(x) + g(x) = 2, f(x)g(x) = 1 − x2.

Now we have deg f(x) = deg g(x) = 1, and further, def(f(x) + g(x)) = 0, or −∞ if 2 = 0 in R,
and deg f(x)g(x) = 2.

Theorem 5.52. If R is an integral domain, then the polynomial ring R[x] is also an integral
domain and

deg f(x)g(x) = deg f(x) + deg g(x) ∀ f(x), g(x) ∈ R[x]. (5.4)

Proof. Let the leading terms of f(x) and g(x) be an and bm respectively. The term of highest
order in the product f(x)g(x) is anbmxn+m; here anbm ̸= 0 because R has no zero divisors.
Firstly we see that the degree of the product is n + m. But then the product is not the zero
polynomial, and therefore R[x] has no zero divisors either. Thus the polynomial ring R[x] is an
integral domain.

If f(x) = 0 or g(x) = 0, then the product is also equal to 0 and both sides of Equation (5.4)
are −∞.
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Example 5.53. Because Zp, p is a prime, is an integral domain, by Theorem 5.52 the polynomial
ring Zp[x] is also an integral domain and thus has quotient field

Zp(x) =
{

p(x)
q(x)

∣∣ p(x), q(x) ∈ Zp[x], q(x) ̸= zero polynomial
}

.

This is called the field of rational functions over the field Zp, compare with Example 5.3. Note
that char(Zp(x)) = p even though Zp(x) is an infinite field.

Exercises
1. Compute the polynomials a + b, ab and b5 when a = 1 + 2x + x2 and b = x2 + 2 in the

ring Z7[x].

2. Determine the degree of the product of the polynomials 1 − 4x + 6x2 and x + 2x2 + 10x3

in the polynomial rings R[x], Z4[x], Z5[x].

3. Find the inverse polynomial of 2x + 1 in Z4[x].

4. Determine what values the polynomials x4 + x and x2 + x of Z3[x] can get.

5. Which polynomials have inverses in Z[x]? (First study the constant polynomials and then
use Theorem 5.52).

6. Show that the polynomial F = 1 − 2x has an inverse in the ring Z16[x]. (Hint: Solve
G ∈ Z16[x] from the equation FG = 1.)

5.7 Divisibility of polynomials
Hereon we assume that the coefficients of a polynomial belong to a field K.

Recalling Theorem 5.52 a natural question arises: When K is a field, is the polynomial ring
K[x] a field as well? The answer is negative. A polynomial f(x) ∈ K[x] has an inverse in K[x]
only when f(x) is a nonzero constant polynomial. This is observed by inferring thusly from
Theorem 5.52:

f(x)g(x) = 1 =⇒ deg f(x) + deg g(x) = 0 =⇒ deg f(x) = deg g(x) = 0.

Thus a polynomial ring K[x] has a similar algebraic structure to the ring of integers Z: it
is an integral domain but not a field. It follows that we get a similar theory for division of
polynomials, over a field K, as for the integers. In the following, we present the main points of
this theory, many of which are already familiar from the case K = R.

Definition 5.54. Let a(x), b(x) ∈ K[x]. If there exists a polynomial c(x) ∈ K[x] such that
a(x) = b(x)c(x), we say that the polynomial a(x) is divisible by the polynomial b(x), denoted
by b(x) | a(x). We may also say that b(x) divides a(x), b(x) is a divisor or factor of a(x), a(x)
is a multiple of b(x).

Example 5.55. (1) (x − 1) | (x2 − 1) in K[x] for an arbitrary field K;

(2) (x + 1) | (x2 + 1) in Z2[x] since in this ring we have x2 + 1 = (x + 1)2;
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(3) (x + 1) ∤ (x2 + 1) in R[x].
Remark 5.56. In the following we often consider examples where K is some residue class field
Zp (p prime). As in the previous example, the coefficients of polynomials in Zp[x] are written
without the residue class mark. For example, 2 + 5x − x3 denotes polynomial 2 + 5x − x3. Note
that

2 + 5x − x3 = x − x3 = x + x3 in Z2[x],
2 + 5x − x3 = 2 − x2 = 2 + 4x3 in Z5[x].

The divisibility relation has many basic features in common with the division of integers,
for example, we always have a(x) | a(x) and

a(x) | b(x), b(x) | c(x) =⇒ a(x) | c(x),
a(x) | b(x), a(x) | c(x) =⇒ a(x) | (b(x) + c(x)).

Some properties differ slightly, for example,

a(x) | b(c), b(x) | a(x) =⇒ a(x) = k · b(x), where k ∈ K \ {0}.

If you wish to understand what causes the difference to Z, consider the unit groups Z∗ = {±1}
and K[x]∗ = K \ {0}.

When examining the divisibility of a given polynomial a(x) by another polynomial b(x), we
can use a similar division with remainder as for integers.

Theorem 5.57 (Polynomial division with remainder). If a(x), b(x) ∈ K[x] and b(x) ̸= 0, there
exists unique polynomials q(x), the dividend, and r(x), the remainder, such that

a(x) = q(x)b(x) + r(x), deg r(x) < deg b(x). (5.5)

Proof. We choose from the set S = {a(x) − k(x)b(x)
∣∣ k(x) ∈ K[x]} a polynomial

r(x) = a(x) − q(x)b(x)

whose degree is the smallest possible. If r(x) = 0 then its degree is −∞ and Equation (5.5)
holds. Otherwise, we need to show that n = deg r(x) is smaller than m = deg b(x). Let the
leading coefficients of r(x) and b(x) be rn and bm respectively. Now, if n is larger than m, we
could form a polynomial

s(x) = a(x) −
(

q(x) + rn

bn
· xn−m

)
b(x) = r(x) − rn

bm
· xn−mb(x),

that belongs to the set S and whose n-th coefficient is

rn − rn

bm
· bm = 0.

From this we see that s(x) is of smaller degree than r(x) which contradicts our choice of
r(x). Hence n < m.

Uniqueness: If we also have a(x) = q′(x)b(x) + r′(x) where deg r′(x) < deg b(x), then

r(x) − r′(x) = (q′(x) − q(x))b(x), deg(r(x) − r′(x)) < deg b(x).

On the other hand, Theorem 5.52 states that

deg(r(x) − r′(x)) = deg(q′(x) − q(x)) + deg b(x),

so we get deg(q′(x) − q(x)) < 0. Then, necessarily, we have q′(x) − q(x) = 0. It follows that
r(x) − r′(x) = 0 · b(x) = 0. Thus q′(x) = q(x) and r′(x) = r(x).
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Example 5.58. Applied to the polynomials a(x) = 2x3 + x2 − x − 1 and b(x) = x2 − 2 in the
ring Q[x], the polynomial division gives

2x3 + x2 − x − 1 = (2x + 1)(x2 − 2) + (3x + 1).

Thus we get dividend q(x) = 2x + 1 and remainder r(x) = 3x + 1.
What if we considered these polynomials a(x) and b(x) over some field Zp? In a field Zp,

we need to consider reductions modulo p. However, these modular reductions can be applied
at any point of the division algorithm, and therefore the formula holds.

In Z2[x] we get

2x3 + x2 − x − 1 = (2x + 1)(x2 − 2) + (3x + 1) = 1 · (x2) + (x + 1).

In Z3[x] we get

2x3 + x2 − x − 1 = (2x + 1)(x2 − 2) + (3x + 1) = (2x + 1)(x2 − 2) + (1).

Example 5.59. Applying the division algorithm to the polynomials 3x2 + 1 and 2x + 3 in Z5[x]
gives

3x2 + 1 = (4x + 4)(2x + 3) + (4).
If f(x) = a0 + a1x + · · · + anxn ∈ K[x] and c ∈ K, we denote

f(c) = a0 + a1c + · · · + ancn.

Observe that f(c) is an element of the field K; it can be read as “f evaluated at c”. Thus
we get the polynomial map familiar from analysis

K → K, c 7→ f(c).

If particularly f(x) = 0, we say that c is a zero or a root of the equation f(x) = 0.
If f(a) = f(x) + g(x) and b(x) = f(x) · g(x), where f(x), g(x) ∈ K[x], then we see that

a(c) = f(c) + g(c), b(c) = f(c) · g(c).

This result is the “substitution principle”: Every equation satisfied by polynomials in K[x] is
satisfied in the field K when we substitute x for any element c ∈ K.

Theorem 5.60. Let f(x) ∈ K[x] and c ∈ K. Then

f(c) = 0 ⇐⇒ (x − c) | f(x).

Proof. ( =⇒ ) By the division algorithm, f(x) = q(x)(x − c) + r(x) where deg r(x) < 1.
Hence r(x) is a constant polynomial, r(x) = r ∈ K. Now when we substitute x = c, we get
r = f(c) = 0. Thus f(x) is divisible by the polynomial x − c.

( ⇐= ) By assumption, f(x) = (x − c)g(x) where g(x) ∈ K[x]. Substituting again x = c, we
get f(c) = 0.

As a consequence of this theorem, an n-th degree polynomial f(x) over a field K has at
most n distinct zeros in K. Suppose that c1, . . . , ck are such zeros. Then by the theorem,
f(x) = (x − c1)g(x) where g(x) ∈ K[x]. Substituting x = c2, we get

(c2 − c1)g(c2) = 0.

Because c2 − c1 ̸= 0 and fields have no zero divisors, it follows that g(c2) = 0. Applying the
theorem again, we get g(x) = (x − c2)h(x) where h(x) ∈ K[x], and continuing in the same way
we result in

(x − c1)(x − c2) · · · (x − ck) | f(x).
Thus the polynomial f(x) has degree ≥ k.
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Example 5.61. Let p be a prime. We show that in the polynomial ring Zp[x] we have

xp−1 − 1 =
p−1∏
a=1

(x − a).

By Fermat’s little theorem, xp−1 ≡ 0 for all x ∈ Zp \ {0}. Thus all a ∈ Zp \ {0} are zeros of
the polynomial xp−1 − 1. These are all distinct and as a consequence of Theorem 5.60, xp−1 − 1
can have at most p − 1 distinct zeros in Zp. Thus these are all of its zeros. Therefore

xp−1 − 1 =
p−1∏
a=1

(x − a).

We conclude from this Wilson’s theorem from number theory: (p − 1)! ≡ −1 (mod p).
From the previous equation it also follows that the zeros of the polynomial f(x) = xp − p

in Zp[x] are all the elements of the field Zp, that is, f(x) is identically zero although it is not
the zero polynomial. This situation would be absurd in R[x]; review the general definition for
equality of polynomials in Section 5.6.
Definition 5.62. A polynomial f(x) ∈ K[x] is called irreducible if f(x) is neither a constant
polynomial nor a product of two polynomials in K[x] of positive degree. We may also say that
f(x) is irreducible over the field K.

According to this definition all first degree polynomials are irreducible. If deg f(x) > 1 and
f(x) has a zero in K, then it follows from Theorem 5.60 that f(x) is not irreducible over K.
Example 5.63. The polynomial x2 + 1 is irreducible over R because otherwise it would have a
first degree factor x − c ∈ R[x], note that ax + b = a

(
x + b

a

)
, and thus by Theorem 5.60, a zero

c ∈ R.
However, x2 + 1 is not irreducible over C: x2 + 1 = (x + i)(x − i).
By applying the reasoning in this example, we see that second and third degree polynomials

in K[x] are irreducible if and only if they have no zeros in K – consider the ways the number
3 can be written as a sum of positive integers.

If deg f(x) > 3, then f(x) can naturally be written as a product of two irreducible polyno-
mials whose degrees are greater than one; for example,

x4 + 2x2 + 1 = (x2 + 1)2 ∈ R[x].

Then f(x) is not irreducible but it also has no zeros.
Example 5.64. Let us determine whether x3 + 3x + 2 is irreducible over the fields Z3 and Z5.
The polynomial x3 + 3x + 2 has degree 3 and thus it is irreducible if and only if it has no zeros
in the field.

In Z3 the polynomial reduces to x3 + 3x + 2 = x + 2. Manually going through the field
elements

1 + 2 = 0, 2 + 2 = 1, 0 + 2 = 2,

we see that it is divisible by x − 1, and therefore it is not irreducible.
In Z5 the polynomial has no immediate modular reductions. Again, manually going through

the field elements

11 + 3 · 1 + 2 = 6 = 1,

23 + 3 · 2 + 2 = 16 = 1,

33 + 3 · 3 + 2 = 27 + 9 + 2 = 3,

43 + 3 · 4 + 2 = 64 + 12 + 2 = 3,

03 + 3 · 0 + 2 = 2

we see that the polynomial has no zeros and is thus irreducible over Z5.
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Recall the familiar method for finding the rational roots of a polynomial f(x) ∈ Q[x]. The
Fundamental theorem of algebra states that every polynomial f(x) ∈ C[x] \ C has a root in C;
thus f(x) factors into first degree terms in C[x]. The fundamental theorem of algebra is nicer
to prove using the theory of complex functions, although more elementary proofs have been
found. It also holds that every polynomial f(x) ∈ K[x] \ K can be presented as a product of
irreducible polynomials and this representation is unique up to the order of these polynomials
and constant terms. We will not prove this here.

Exercises
1. Divide the polynomial 3x4 + x3 + 2x2 + 1 by the polynomial x2 + 4x + 2 in the ring R[x].

Does the answer change when the division is computed in the ring Z5[x]?

2. What are the roots of the polynomial x2 + 3x + 2 in Z6?

3. Study the factorization of the polynomial x2 + 1 over Z5.

4. Let F be a field and a ̸= 0, a ∈ F . Prove:

a) If af(x) is irreducible over F , then f(x) is irreducible over F.

b) If f(ax) is irreducible over F , then f(x) is irreducible over F .
c) If f(x + a) is irreducible over F , then f(x) is irreducible over F .

5. Factorize the polynomial x4 − 2 into its prime factors in the rings Q[x], R[x], C[x]. (Hint:
Uniqueness of the prime factorization.)

6. In the ring Z7[x], determine the greatest common divisor D ∈ Z7[x] of the elements
F = 2x4 + 1 and G = x5 + 2x4 + x3 + 5.

7. Show that the ideal I generated by the subset {2, x} in the ring Z[x] is not a principal
ideal. (Hint: Show that the constant term of each nonzero element of I is even, and use
an indirect proof.)

8. Find the polynomials U, V ∈ Z7[x] in Exercise 6 such that D = UF + V G.

9. Show that the quotient ring A = Z3[x]/I, where I is the principal ideal generated by the
element F = x2 + 1, is a field with nine elements. (Hint: Show that F is irreducible in
the ring Z3[x], and find the inverse elements by using the polynomial division.)

5.8 How irreducible polynomials form fields
Recall that the quotient ring R/I of a commutative ring R is a field if the ideal I is maximal,
Theorem 5.40. In the following, we choose R = K[x] where K is a given field, and we show that
the principal ideals of K[x] generated by irreducible polynomials are maximal. We can thus
form new fields.

The principal ideal generated by a polynomial f(x) ∈ K[x] is by Theorem 4.30 of the form

⟨f(x)⟩ = {k(x)f(x)
∣∣ k(x) ∈ K[x]}.

Note that ⟨f(x)⟩ = ⟨cf(x)⟩ for any nonzero element c of the field K.
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Lemma 5.65. Every ideal I of a polynomial ring K[x] is principal, that is, K[x] is PIR.

Proof. Compare this with the proofs for Theorems 3.22 and 3.23. If I = {0}, it is a principal
ideal, namely ⟨0⟩. Suppose that I ̸= {0}. Let b(x) be a nonzero polynomial in I whose order is
the smallest possible. We shall show that I = ⟨b(x)⟩.

Since b(x) ∈ I, we have ⟨b(x)⟩ ⊂ I. Conversely, if a(x) ∈ I, then the division algorithm
gives

a(x) = q(x)b(x) + r(x), deg r(x) < deg b(x).

Now r(x) = a(x) − q(x)b(x) ∈ I, hence r(x) = 0 by our choice of b(x). From this we get that
a(x) = q(x)b(x) ∈ ⟨b(x)⟩. Thus it follows that I ⊂ ⟨b(x)⟩.

Theorem 5.66. If p(x) is an irreducible polynomial over K[x], then the ideal I = ⟨p(x)⟩ is a
maximal ideal of K[x].

Proof. Because deg p(x) ≥ 1, I contains no nonzero constant polynomials. It is thus a proper
ideal. Let J be an ideal of K[x] that has I its proper subset. We need to prove that J = K[x].

By Lemma 5.65, J is a principal ideal, that is, J = ⟨b(x)⟩ for some b(x) ∈ K[x]. Because
I ⊊ J , the polynomial p(x) is of the form k(x)b(x) where k(x) ∈ K[x]. However, we assumed
p(x) to be irreducible; therefore k(x) or b(x) is a constant polynomial. If k(x) is constant, then
we see that ⟨p(x)⟩ = ⟨b(x)⟩, or I = J , which contradicts our choice of J . Therefore b(x) must
be constant, b(x) = b ∈ K \ {0}. Then we get

J = {b} = {1} = K[x] · 1 = K[x].

Corollary 5.67. If p(x) is an irreducible polynomial over K[x], the quotient ring K[x]/⟨p(x)⟩
is a field.

What kind of field is K[x]/⟨p(x)⟩? Let us denote I = ⟨p(x)⟩ and d = deg p(x). Like any
quotient ring, K[x]/I can be written as

K[x]/I = {f(x) + I
∣∣ f(x) ∈ K[x]} = {f(x) + I

∣∣ f(x) ∈ D}

where D is some collection of representatives of the cosets. Observe that f1(x) and f2(x) belong
to the same residue class if and only if f1(x) − f2(x) is divisible by p(x). It follows from the
division algorithm that

D = {r(x) ∈ K[x]
∣∣ deg r(x) < d}

is suitable as the collection of representatives. Thus

K[x]/I = {r(x) + I
∣∣ r(x) ∈ K[x], deg r(x) < d}

= {a0 + a1x + · · · + ad−1xd−1 + I
∣∣ ai ∈ K ∀ i}.

As usual, the sum and product of the residue classes r1(x) + I and r2(x) + I is formed by
computing the sum and product of their representatives. The polynomial obtained as the
product is returned to the form a0 + a1x + · · · + ad−1xd−1 by subtracting a suitable multiple of
p(x), by using, say, the division algorithm.

Theorem 5.68. The field K[x]/⟨p(x)⟩ contains a subfield K ′ that is isomorphic to the field K.
When K is equated with K ′, the field K[x]/⟨p(x)⟩ becomes an extension of K. In this extension,
the polynomial p(x) has a root.
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Proof. As we did prior, we denote I = ⟨p(x)⟩. The map

j : K → K[x]/I, j(a) = a + I,

is a field homomorphism (check). Its image K ′ = Im(j) is by Lemma 5.20 isomorphic to K:

K ≃ K ′ = {a + I
∣∣ a ∈ K}.

Equating the fields K and K ′ implies that the elements a of K are equated to the cosets a + I.
In particular, the coefficients of the polynomial p(x) ∈ K[x] can now be thought of as

elements of the field K[x]/I. Because the symbol x got a certain meaning in the notation of
the elements of this field, it is better to write the indeterminant of the polynomial as y, so
p(y) ∈ (K[x]/I) [y], for example. Which of the field elements is the root? Simply x + I because
by the rules of computation for cosets

p(x + I) = p(x) + I = 0 + I.

Example 5.69. Let us choose K = R and p(x) = x2 + 1. Above we showed that we get the
following field, now I = {x2 + 1}:

R[x]/I = {a + bx + I
∣∣ a, b ∈ R},

(a + bx + I) + (a′ + b′x + I) = (a + a′) + (b + b′)x + I,

(a + bx + I) · (a′ + b′x + I) = (aa′ − bb′) + (ab′ + a′b)x + I.

When computing the product we subtracted bb′(x2 − 1) from the coset representative. Fur-
thermore, we know that this field is an extension of R that contains a root for the equation
x2 + 1 = 0.

This thus formed field is none other than the field of complex numbers C. This can be seen
immediately if you denote a + bx + I = (a, b) or a + bx + I = a + bi.

In the proof of the theorem we obtained x + I as the root of the polynomial y2 + 1, which
is, using “better” notation, (0, 1) or 0 + 1 · i = i, as it should.
Example 5.70. The polynomial x2 + x + 1 is irreducible over the field Z2 since x2 + x + 1 ≡
x + x + 1 ≡ 1 (mod 2) and has no roots in Z2. Thus we get the field

Z2[x]/I = {a + bx + I
∣∣ a, b ∈ Z2} (I = ⟨x2 + x + 1⟩)

= {I, 1 + I, x + I, 1 + x + I}.

This is the field GF (22) with four elements. If we denote the field elements by 0 = I (additive
identity), 1 = 1 + I (identity), α = x + I and β = 1 + x + I, we get the following tables for its
additive and multiplicative groups:

+ 0 1 α β

0 0 1 α β
1 1 0 β α
α α β 0 1
β β α 1 0

· 1 α β

1 1 α β
α α β 1
β β 1 α

Here the product αβ was computed as

αβ = x(1 + x) + I = x + x2 + I = −1 + I = 1 + I = 1.

A similar construction can be created by starting from any polynomial q(x) that is irreducible
over some field Zp. The result is then a finite field GF (pd) where d = deg q(x). Compare the
previous addition table to the Klein four-group in Section 2.2.
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