Problem set 1

Deadline: Tue 17.1.2023 at 10am

During the exercise sessions you may work on the Warm-up problems, and the TAs will present solutions to those. Submit your solutions to Homework 1,2,3 and to the Fill-in-the-blanks problem on MyCourses before the deadline. Remember that the Homeworks and the Fill-in-the-blanks go to separate return boxes, and each return box accepts a single pdf file.

Warm-ups

Warm-up 1. Given a set *X*, denote $X^X := \{$ functions $X \to X \}$ and define the operation

$$\begin{array}{c} X^X \times X^X \longrightarrow X^X \\ (f,g) \longmapsto g \circ f \end{array}$$

- 1. Show that this operation is associative.
- 2. In the case of $X = \{1, 2\}$, write down the Cayley table.
- 3. Show that if the cardinality of *X* is at least 2, this operation is not commutative.

Warm-up 2. Recall that $S_{\mathbb{N}}$ is the group of *bijective* functions $\mathbb{N} \to \mathbb{N}$, equipped with composition. For all $n \in \mathbb{N}$, find an element of $S_{\mathbb{N}}$ of order n. Find an element of $S_{\mathbb{N}}$ of infinite order.

Warm-up 3. The dihedral group D_n is the group of symmetries of a regular *n*-gon.

- 1. Consider D_3 . Use the same notation as in the lecture notes for the rotation *R* and the flips F_1 , F_2 , F_3 . Write down the Cayley table for D_3 .
- 2. Find the order of all the elements of D_3 and D_4 .
- 3. List all the subgroups of D_3 .

Homework

Homework 1. Given two *subsets* A and B of a group (G, \cdot) , we denote

$$AB := \{a \cdot b \mid a \in A, b \in B\}.$$

Prove the following:

- 1. Given three subsets *A*, *B* and *C* of a group *G*, we have (AB)C = A(BC). [3 points]
- 2. For a *subgroup* $H \subseteq G$, we have HH = H. [3 points]

Homework 2. Consider $GL_2(\mathbb{Z}_2)$, the group of invertible 2×2 matrices with coefficients in \mathbb{Z}_2 , equipped with matrix multiplication.

What is the identity of this group?	[1 points]
2. Find all the elements of $GL_2(\mathbb{Z}_2)$ and their order.	[3 points]
3. Is $GL_2(\mathbb{Z}_2)$ abelian?	[2 points]

Homework 3. Recall that S_n is the group of permutations of $\{1, ..., n\}$, equipped with function composition.

- 1. Write down the Cayley table of S_3 .[1.5 points]
- 2. Show that S_n is not abelian for $n \ge 3$. [2.5 points]
- 3. Compute the order of all the elements of S_3 . [2 points]

Fill-in-the-blanks. Complete the proof of the following claim:

Claim. Let (G, \cdot) be a group with identity *e*. If $a \cdot a = e$ for all $a \in G$, then *G* is abelian.

Proof. By definition of abelian group, we have to show that, for all $x, y \in G$, ______. Indeed, for all $x, y \in G$,

$$x \cdot y \stackrel{(*)}{=} (y \cdot \underline{)} \cdot \underline{)} \cdot \underline{(x \cdot x)} \stackrel{(**)}{=} y \cdot \underline{(y \cdot \underline{)}} \cdot x \stackrel{(***)}{=} y \cdot e \cdot x = y \cdot x,$$

where in equality (*) we used the given hypothesis both with a = x and with a = y, in equality (**) we used the associativity of \cdot , and in equality (***) we used the hypothesis with a =_____.

[3 points]