Class exercises for Week 1. To be done in class. These exercises do not need to be returned, and they are not marked.

- 1. Find the equation of the line passing though the points (1, 0, 2) and (5, 4, 1). Sketch the line.
- 2. Sketch the curves
 - (a) $x(t) = 3\cos(t), y(t) = 5\sin(t)$ for $0 \le t < 2\pi$. What is this curve called?
 - (b) $x(t) = t \cos(t), y(t) = t \sin(t), z(t) = t$ for $0 \le t \le 7\pi$
- 3. Consider the parametric curve $x(t) = \cos(t), y(t) = \cos^2(t)$ for $-\infty < t < \infty$.
 - (a) Sketch the curve and carefully describe the motion. Think carefully about the range of x(t) and y(t).
 - (b) Find the tangent vectors at the point (1/2, 1/4). Make a sketch and relate your answers to the direction of motion.
 - (c) Find the "tangent vector" at the point (1, 1). Does your answer make sense? Is the curve smooth at this point?
 - (d) Find the length of the curve.
- 4. Consider the curve of intersection of the plane z = y and the parabolic cylinder $y = 4 x^2$.
 - (a) Find a parametric equation r(t) = (x(t), y(t), z(t)) of the curve.
 - (b) Find the arc length of the part of the curve that lies above the xy-plane.
- 5. Consider the curve with parametric equations $r(t) = (\cos(t), \sin(t), t^2)$ for $0 \le t \le 6\pi$.
 - (a) Sketch the curve and the tangent vector to the curve when $t = \pi/4$.
 - (b) Compute the tangent vector at $t = \pi/4$. Does your sketch match the computation?
 - (c) Compute the arc length of the curve.
- 6. Consider the function $f(x, y) = x^2 + 2y^2$.
 - (a) Sketch the graph of f(x, y). That is, the surface determined by z = f(x, y).
 - (b) Find and sketch the level surfaces f = -1, f = 0, f = 1, f = 2 and f = 10.
- 7. Consider the function $f(x, y) = x^2 2y^2$.
 - (a) Sketch the graph of f(x, y). That is, the surface determined by z = f(x, y).
 - (b) Find and sketch the level curves f = -2, f = 0, f = 2 and f = 10.
- 8. Below are two sets of level curves. One is for a cone, one is for a paraboloid. Which is which? Explain.

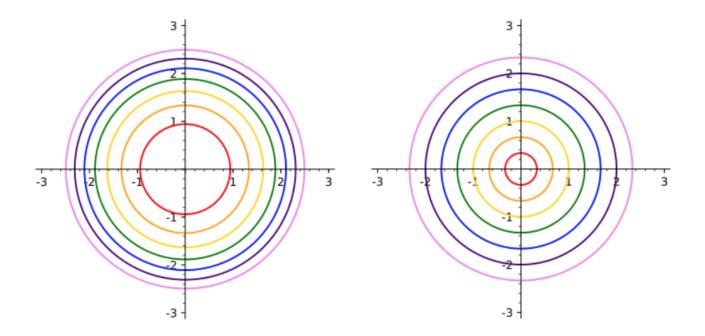


Figure 1: exercise 14.1.7 in Guichard's Calculus text.