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‘ Big Data: A growing torrent

60 to buy a disk drive that can
storeall of the world’s music
5 b - I I - mobile phones
I |On inruse in 2010

3 O b : I I : pieces of content shared
I IO n on Facebook every month
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The data deluge 4 O (y projected growth in
NI 0. global data generated

per year vs. 5 %

growth in global
IT spending

Source: McKinsey Global Institute, “Big Data: The next frontier for innovation, competition,
and productivity,” May 2011.



‘ Big Data: Capturing its value

$300 billion

potential annual value to US health care —more than
double the total annual health care spending in Spain

€250 Dbillion

potential annual value to Europe’s public sector
administration—more than GDP of Greece

$600 billion

potential annual consumer surplus from
using personal location data globally

60 (y potential increase in oy
O retailers’ operating margins

possible with big data

Source: McKinsey Global Institute, “Big Data: The next frontier for innovation, competition, and
productivity,” May 2011. 3



‘ Big Data and NetSci analytics

Online social media | Clean energy and grid analytics

 Desiderata: Process, analyze, and learn from large pools of network data




Challenges

[ Sheer volume of data

» Decentralized and parallel processing U

» Security and privacy measures

1 Modern massive datasets involve many attributes

» Parsimonious models to ease interpretability
» Enhanced predictive performance

d Real-time streaming data
» Online processing

» Quick-rough answer vs. slow-accurate answer?

d Outliers and misses

» Robust imputation algorithms

J Good news: Ample research opportunities arise!
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K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and optimization for big data analytics,” IEEE Signal
Processing Magazine, vol. 31, no. 5, pp. 18-31, Sep. 2014.




Opportunities

Big tensor data models and factorizations

High-dimensional statistical SP Network data visualization

Theoretical and Statistical Foundations

of Big Data Analytics Resource tradeoffs

Pursuit of low-dimensional structure Analysis of multi-relational data

Common principles across networks

Scalable online, decentralized optimization
Information processing over graphs
Algorithms and Implementation Platforms
to Learn from Massive Datasets

Convergence and performance guarantees Graph SP

Randomized algorithms

Novel architectures for large-scale data analytics

Robustness to outliers and missing data




Encompassing model
Patterns, innovations,

Background (low rank) (co-)clusters, outliers

\ /

Observed data e R”*T —— Y = L + DS + V+<—— Noise

Dictionary € RP*¢ Sparse matrix € Re*"

S

Q Subset Q C {1,...,D} x {1,...,T} of observations and projection operator

[Pa(Y)lij = {mij, if (i, ) € 0

0, 0.W.
allow for misses

O Large-scale data D > and/or T' > Q Anyof {L,D,S} unknown




‘Subsumed paradigms

O Structure leveraging criterion

) 1
Cmin Y H
rank(L
@ Nuclear norm: | L||« := ijl( )Uj(L) @ {1-norm
{Uj(L)};-a;nlk(L): singular val. of L ISl1 2= 224 [5q.
(With or without misses)

> L =0,D known = Compressive sampling (CS) [candes-Tao ‘05]
» L = 0 = Dictionary learning (DL) [0Ishausen-Field '97]
> L =0,|D|;; >0,[S]i;; > 0= Non-negative matrix factorization (NMF)

[Lee-Seung "99]
» D = Ip = Principal component pursuit (PCP) [candes etal ‘11]

> S = 0,rank(L) < p = Principal component analysis (PCA) [pearson 1901]
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LINEAR AND MATRIX ALGEBRA

Vector signal description

Let the signal is represented by its values x1,...,z . Then, in vector

notation:

X1

€T

X = 2

LN

Vector transpose:
T
X =[r1,2z2,...,TN]

Aalto University 10
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Sometimes, it is convenient to consider sets of vectors, for example:

r(n—1)

x(n) =

r(n—N+1)

Vector Euclidean norm:

N )
2
[ =D |l p
i=1 )
Introducing Hermitian transpose

xH = (XT)>k = |27, 235, ..., 2]

1/2

Aalto University 11
Dept. Signal Processing and Acoustics
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we rewrite the norm as

x]| = Vx''x

The scalar (inner) product of two complex vectors a = |ay, ...

b=[b,...,on5]"

N
allb = Z a;b;
1=1
Cauchy-Schwarz inequality
H
a”’b| < [la] - [[bl]
Orthogonal vectors:

a'b=b"a=0
Aalto University
Dept. Signal Processing and Acoustics

2014
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Example: consider the output of an LTI system (filter)

E:h — h'x(n)

where
- h(0) _ x(n) _
n=| MU =] T
AN -1) x(n—N+1)

Dept. Signal Processing and Acoustics
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The set of vectors x1,X9,...,Xy is said to be linearly independent it
a1X] + aoxX9 + - -+ apXxy =0 (%)

implies that a; = O for all . If any set of nonzero a; can be found so that

(%) holds, then the vectors are linearly dependent. For example, for

nonzero o,

X1 = B9xo + - -+ + BnXn

Example of linearly independent vector set:

1 1

X1 =

Aalto University 14
Dept. Signal Processing and Acoustics
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Adding to this linearly independent vector set a new vector X3, we obtain

that the new set

1 1 0
X1 = | 2 , Xo= |0 , o x3= |1
1 1 0

becomes linearly dependent because

X1 = X9 + 2x3

Aalto University

Dept. Signal Processing and Acoustics b
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Given N vectors X1,X9,...,X, consider the set of all vectors that may

be formed as a linear combination of the vectors x;,

N
X = Z a,; X,
1=1

This set forms a vector space and the vectors X; are said to span this
space. If the vectors x; are linearly independent, they are said to form a
basis for this space and the number of basis vectors IV is referred to as the

space dimension. The basis for a vector space is not unique!

Aalto University 16
Dept. Signal Processing and Acoustics
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n X m matrix:

A ={a;} =

Symmetric square matrix:

Hermitian square matrix:

Aalto University
Dept. Signal Processing and Acoustics

Matrices

all
a21
asi

ai2
a22
a32

An?2

a13
a23
a33

an3

A1m
a2m
A3m

2014

17
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Some properties (apply to transpose (-) as well):
(A+BYT=A" 1 B7 (AHHYH =A, (AB)” =B7A"

Column and row representations of an n X m matrix:

-
o
ry

A =|cq,co,...,cpn] = _ (%)

n

The rank of A is defined as a number of linearly independent columns in

(%), or, equivalently, the number of linearly independent row vectors in ().
Important property:

rank{A} = rank{AAY} = rank{A7 A}

Aalto University

Dept. Signal Processing and Acoustics 1
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For any n X m matrix:
rank{A} < min{m,n}
The matrix A is said to be of full rank if
rank{A} = min{m,n}

f the square matrix A is of full rank, then there exists a unique matrix
AL called the inverse of A

A TA=AAT1 =1

Aalto University
Dept. Signal Processing and Acoustics

2014

19
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The matrix I is the so-called identity matrix:

10 0 --- 0
01 0 --- 0
I=|00 1 0
00 -+ 0 1

The n X n matrix A is called singular if its inverse does not exist (i.e., if
rank{A} < n).

Some properties of inverse:

(AB>—1 _ B—IA—I 7 (AH)—l _ (A—I)H

Aalto University 20
Dept. Signal Processing and Acoustics
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Determinant of a square m X m matrix (for any 7):
n .
detA =) (—1)"Fa;detAyy
k=1

where A is the (n — 1) X (n — 1) matrix formed by deleting the ith
row and the kth column of A.

Example:
ailp ai2 ais
A = | a9 agy a9z
| a31 a3z a33 |
aso a as1 a as1 a
det A — ai 22 23 — a19 21 23 4 a13 21 22
azz2 as3 a3l ass a3l az2
Aalto University 21

Dept. Signal Processing and Acoustics
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Property: an m X m matrix A is invertible (nonsingular) if and only if its

determinant is nonzero
detA # 0

Some additional important properties of determinant:

det{AB} = detA detB, det{aA} = a'"" detA

detA~1 = detA! = detA

~ detA’

Another important function of matrix is trace:

n
trace{A} = Z Qi
1=1

Aalto University 29
Dept. Signal Processing and Acoustics
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Linear equations

Many practical DSP problems (such as signal modeling, Wiener filtering,

etc.) require the solution to a set of linear equations:
a1121 + 1222 + - + a1pTm = b1
2121 + 2272 + -+ + A2mTm = b2
anl1T1 + ap2xr2 + -+ + apmTm = by

In matrix notation

Aalto University 23
Dept. Signal Processing and Acoustics .
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Case 1: square matrix A (m = n). The nature of solution depends upon

whether or not A is singular. In the nonsingular case

x=A"1b

It A is singular, there may be no solution or many solutions.

Example:

1

2 no solution

1+ X9

Tl + T2
However, if we modify the equations:
r1+x9y = 1

x1+x9 = 1 many solutions

Aalto University
Dept. Signal Processing and Acoustics

24
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Case 2: rectangular matrix A (m < n). More equations than unknowns

and, in general, no solution exist. The system is called overdetermined.
In the case when A is a full rank matrix, and, therefore, AZA s
nonsingular, the common approach is to find least squares solution by

minimizing the norm of the error vector

le|l” = |/b— Ax]||?
(b — Ax)" (b — Ax)
— bib - xHAHb - be—IAX 1+ xHAHAX
— |x- (AHA)_lAHb} (AHA) [x - (AHA)_lAHb}
+ |bflb - bHA(AHA)_lAHb}

Aalto University

. . . 5
Dept. Signal Processing and Acoustics 2
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The second term is independent of x. Therefore, the LS solution is
xpg = (ATA)"TAHp
The best (LS) approximation of b is given by
b=Ax;s=AA"A) 'ATb =Pyb

where
Py =AA7TA)"1AH

is the so-called projection matrix with the properties

Ppra=a

Aalto University 26
Dept. Signal Processing and Acoustics
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it the vector a belongs to the column-space of A and
PAa =0

it this vector is orthogonal to the columns of A

The minimum LS error
2 2
lellmin = [/b—Axpg]

min
— |1- AATA)"LAT)p|?
— ||(1-Pa)b|2 = |[Pxb|?=bIP4b

where Pf& = 1 — P A is the projection matrix on the subspace orthogonal

to the column-space of A.

Aalto University 27
Dept. Signal Processing and Acoustics
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Alternatively, the LS solution is found from the normal equations
AHAx = Allp

Case 3: rectangular matrix A (n < m). Fewer equations than unknowns

and, provided the equations are consistent, there are many solutions. The

system is called underdetermined.

Aalto University )8
Dept. Signal Processing and Acoustics ‘



S-88.4400, Espoo 2014

Special matrix forms

Diagonal square matrix:

a1y 0O 0 - 0
0 a9 O 0
A = diag{aq1,a92,...,ann} = O O as3 --- O
0 0 0 anpn
Exchange matrix:
0 0 0 1]
0 - 0 1

Aalto University

(¢
Dept. Signal Processing and Acoustics 2
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Toeplitz matrix:

i = Aj41 k+1 for all 2,k < n

Example:
(1324
21 3 2
7213
1 7 21

Aalto University

Dept. Signal Processing and Acoustics 0
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2 4 Quadratic and Hermitian forms

Quadratic form of a real symmetric square matrix A
Q(x) = x! Ax

Similarly, Hermitian form of a Hermitian square matrix A
Q(x) = x Ax

Symmetric (Hermitian) matrices are positive semidefinite if Q(x) > 0 for
all nonzero x.
Example: the matrix A = yy* is positive semidefinite, where y is an

arbitrary complex vector:

Q(x) =x"yy"x = |x"y|* > 0

Aalto University 31
Dept. Signal Processing and Acoustics )
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Eigenvalues and eigenvectors

Consider the characteristic equation of an n X n matrix A
Au = \u
This is equivalent to the following set of homogeneous linear equations
(A —Au=0
Therefore, the matrix A — Al is singular. Hence,
p(A) =det(A —AI) =0

where

(7

Aalto University 37
Dept. Signal Processing and Acoustics .

) is the so-called characteristic polynomial with n roots \;

P(A
1,2...,n) being the eigenvalues of A.
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For each eigenvalue \;, the matrix A — \;I is singular, and, therefore,

there will be at least one nonzero eigenvector that solves the equation
All@' — )\iui

Since for any eigenvector u; any vector au; will be also an eigenvector,

the eigenvectors are often normalized.
uw;l| =1, i=1,2,...,n

Property 1: The eigenvectors uy, uog, ..., U, corresponding to distinct

eigenvalues are linearly independent.
Property 2: If rank{A} = m, then there will be n — m independent

solutions to the homogeneous equation Au; = 0. These solutions form

the so-called null-space of A.

Aalto University
Dept. Signal Processing and Acoustics
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Property 3: The eigenvalues of a Hermitian matrix are real.

Proof: From the characteristic equation Au; = A\;ju;, we have

H H
u; Au; = \u; u;

Taking the Hermitian transpose of (x), we have

HAH.. _ \x. H..
u, A% u; = Aul

Since A is Hermitian (A = AH), (xx) becomes

H ok H_
u;” Au; = Aju;

Finally, comparison of (x) and (x * x) shows that \; are

Aalto University
Dept. Signal Processing and Acoustics

(%)

(% * )

real.
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Property 4: A Hermitian matrix is positive definite if and only if the

eigenvalues of A are positive.

Similar property holds for positive semidefinite, negative definite, or

negative semidefinite matrices.

A useful relationship between matrix determinant and eigenvalues:
n
det{A} =[N
1=1

Therefore, any matrix is invertible (nonsingular) if and only if all of its

eigenvalues are nonzero.

Aalto University 35
Dept. Signal Processing and Acoustics .
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Property 5: The eigenvectors of a Hermitian matrix corresponding to

distinct eigenvalues are orthogonal, ie., it A\; # Az, then u;

Proof: Let A\; and A\ be two distinct eigenvalues of A. Then
Aui — )\iu,,; and Auk — )\kuk
Multiplying these equations by ul]g and u{l, respectively, yields
ui—[AuZ- = )\Z-ulkqui, HAuk )\ku uy.

) and

Taking the Hermitian transpose of the second equation of

(x
remarking that A is Hermitian (i.e., A” = A and AL = Ap), yields

u]kLIAui = )\kué{ui

Aalto University
Dept. Signal Processing and Acoustics

uk:().
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Now, subtracting () from the first equation of () leads to
0= ()‘i — )\k)ugui

Since the eigenvalues are distinct (i.e., \; # Ar), we have that

u]]gu,,; =0

which proofs the orthogonality of eigenvectors.

Remark: Although proven above for the distinct eigenvalue case, this
property can be extended to any n X n Hermitian matrix with arbitrary

(not necessarily distinct) eigenvalues.

Aalto University
Dept. Signal Processing and Acoustics
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Eigendecomposition

For an n X n matrix A, we may perform an eigendecomposition:
A =UAU"! (%)
To do this, let us write the set of equations
Au, = )\u;, 1=1,2,...,n
in the form
Alug,ug,...,uy| = [Ajug, Agus, ..., \yuy|, or, equivalentely

AU =UA with A =diag{Ai,\9,..., A\n} (k)
and nonsingular U. Multiplying (x%) on the right by U™L we get (x).

Aalto University 38
Dept. Signal Processing and Acoustics )
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For a Hermitian matrix, the following property holds because of the

orthonormality of eigenvectors:
vlu =1

Hence, U is unitary (i.e., UH = U_l), and therefore, the

eigendecomposition takes the form
A = UAUH

or, equivalently,

n
A = Z )\iuiufl
1=1

Aalto University
Dept. Signal Processing and Acoustics

2014
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Using the unitary property of U, it is easy to find matrix inverse via

eigendecomposition:

A~ = (uAauH -l
(UH)—lA—lU—l
— UA1UH

Equivalently
R
A :Zyuiui
i=1""

Hence, the inverse does not affect eigenvectors but transforms eigenvalues

A; to 1/)\7;.

Aalto University 40
Dept. Signal Processing and Acoustics
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In many applications, matrices may be very close to singular
(ill-conditioned) and, therefore, their inverse may be unstable. We may
wish to stabilize the problem by adding a constant to each term along

diagonal (the so-called diagonal loading):
A=B+al
This operation /eaves eigenvectors unchanged but changes eigenvalues:
Au; = By; + au; = (A + a)u;
where \; and u; are the eigenvalues and eigenvectors of B:

Bu@- — )\Z-uz-

Aalto University 41
Dept. Signal Processing and Acoustics
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We can reformulate the trace of A in terms of eigenvalues:

n
trace{A} = Z by (%)
1=1
Similarly,
1 |
trace{A™ "} = Z oy
i=1""

This property can be easily proven using the eigendecomposition and the
property trace{ A 4+ B} = trace{A} + trace{B}. In several
applications (such as adaptive filtering), we need some simple and close

upper bound for the maximal eigenvalue Amax. From (), we obtain that

Amax < trace{A}

Aalto University 42
Dept. Signal Processing and Acoustics
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Singular value decomposition

For a nonsquare n X m matrix A, we may perform the SVD instead of

eigendecomposition:
A =UAVH

or, equivalently
n
A = Z)\ZUZVZH if n<m
1=1
and
m
A = Z)\iuivfl it n>m
1=1

where u; and v; are the n X 1 and m X 1 left and right singular vectors,

respectively, and \; are singular values

Aalto University
Dept. Signal Processing and Acoustics



PCA formulations

Q Training data{y: € RPYL,  Cy, = (1/T) X, vey/

L Minimum reconstruction error v, . 5,
> Compression G € R¥*D — G %O—)U_)

d< D
> Reconstructlon U c RDxd

mmZ”Yt UGy;||5, sto. U'U=14
t=1

d Component analysis model y; = Uy + &

min Z”yt Uy||3, sto. U'U=1y,

U'(/J-[; ° PCA °

Solution: Tjd = d—evecs(éyy), G = IAJ : 1,bt dyt




Dual and kernel PCA

T> D
——YY' =UX?U'" e RP*XP O(TD?)

asvp: Y =UXV.I ,
DXT — YTY| =VX2VT ¢ RTXT  O(DT?)

Gram matrix

R4S Uly;: = 2;1V;YTyt —>O——> Ugtp: = Yvdﬁgllét —> Y

Inner products
Q. What if approximating low-dim space not a hyperplane?

Al. Stretch it to become linear: Kernel PCA; e.g., [Scholkopf-Smola’01]
> Maps Yt to ¢(¥t), and leverages dual PCA in high-dim spaces

A2. General (non)linear models; e.g., union of hyperplanes, or, locally linear
» Tangential hyperplanes

B. Scholkopf and A. J. Smola, “Learning with Kernels,” Cambridge, MIT Press, 2001



