KIG-C1010 Introduction to geoinformatics

Lecture 1: introduction

Jussi Nikander

11.1.2023

Individual study arrangements

Do you need individual study arrangements? Please send email to Jussi.Nikander@aalto.fi

Or come to my office at room 311 (K1-building)

Explain your situation briefly

Individual study arrangements

- Some students may require individual study arrangements on the course
- Those students are asked to contact me as soon as possible
- Those who have an Aalto certificate for individual study arrangements are asked to provide it
- Those who do not have such, are asked to briefly describe the reason

- Individual arrangements provided by the course include
 - Flexible deadlines for the exercises
 - Alternative methods of doing the course exam
 - Other arrangements (eg. material in dyslexic-friendly fonts) if necessary
- Remember that individual study arrangements do not change the course requirements the same course work is required to pass the course.

Welcome to Introduction to geoinformatics!

- Topics for today's lecture
- Introduction and practicalities
 - What this course is about
 - What is the outline of the course
 - What you need to do in order to pass the course

- The basics of the course
 - What is geoinformatics and what it is good for

What's geoinformation? And what's geoinformatics?

- Geoinformation is:
 - information (data) with location relative to the Earth's surface
- Geoinformatics is the science (with a smidgen of art mixed in) of managing and exploiting geoinformation
- In geoinformatics uses geoinformation in the following ways:
 - Measure acquire data
 - Model formally represent data
 - Analyze gain new information from data
 - Visualise represent the information to users

Course practicalities

KIG-C1010 and your studies at Aalto

- In case you're interested in learning more about geoinformatics
 - KIG-C1030 Management of spatial data
 - KIG-C1040 Acquisition of geospatial data
 - Master's programmes in
 - Geoinformatics
 - Real Estate Economics
 - Water and Environmental Engineering
 - Spatial Planning and Transportation Engineering

- In case you're more interested in other types of engineering
 - Often, location is important in engineering
 - Therefore, be aware that in many cases it is beneficial for the project to have geoinformatics expertise on the team
 - Understand the basics of how location can be taken into account

Practical work on the course

• 2 lectures per week

- Wed at 10-12 and Fri at 12-14
- Lecture hall C (Y205)
- 5 weekly assignments
 - Exercise sessions on Mon at 10-12&14-16 and Thu at 12-14 & 14-16
 - Can be done alone or in pairs
 - Available at MyCourses
 - Deadline on every Sunday at 23.55

- 2 Group work assignments
 - Groups of 4
 - Deadlines on Thursdays at 23.55
- Exam, which is voluntary
- Groups for group work will be registered through MyCourses
 - See the "Assignments information" page in MyCourses for further details

Course grading

- Each weekly assignment is worth a maximum of 6 points (total 30)
- Each group work assignment is worth a maximum of 5 points (total 10)
- Maximum points from the exam is 30
 - Minimum of 13 points required to pass the exam (failed exam will not be taken into account when calculating the grade)
 - Failed exam will **not** mean you'll fail the course
 - The exam will be held **<u>on-campus</u>**
- Points will be added together
- Maximum grade without exam is 3

To pass the course

- Return every weekly and group work assignment
- Get sufficient total points (weekly + group) to pass the course
- A total of **27 points** will guarantee a passing grade for the course

The Course Schedule and Staff: Lectures

Week	Lectures	Lecturers
9-15.1	L1 – Introduction (you are here) L2 – Geodesy and georeferencing	Jussi Nikander Maaria Nordman
16-22.1	L3 – Spatial data modelling L4 – Introduction to vector analysis	Jussi Nikander Jussi Nikander
23-29.1	L5 – Introduction to grid data analysis L6 – Laser Scanning	Jussi Nikander Matti Vaaja, Petri Rönnholm
30.1-5.2	L7 – Photogrammetry L8 – Remote sensing	Matti Vaaja, Petri Rönnholm Miina Rautiainen
6-12.2	L9 – Visual communication by maps L10 – Introduction to spatial statistics	Jussi Nikander Henrikki Tenkanen
13-19.2	L11 – Geospatial data issues L12 – In reserve	Jussi Nikander

Aalto University School of Engineering

Also, Jenni Korvala gives English module LC-1117 in connection with the course (full)

The Course Schedule and Staff: Assignments

Week	Weekly assignment	Group work assignment
9-15.1	Find yourself a pair, if you want one	
16-22.1	WA-1 Georeferencing	Find yourself a group
23-29.1	WA-2 Map Overlay	Find yourself a group GW-1 Laser scanning
30.1-5.2	WA-3 Vector analysis	GW-1 Laser scanning GW-1 DL on 2.2
6-12.2	WA-4 Photogrammetry and 3D modeling	GW-2 Map Visualization
13-19.2	WA-5 Raster analysis with satellite data	GW-2 Map Visualization GW-2 DL on 16.2

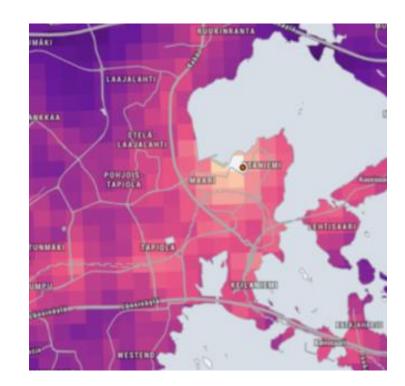
Help and guidance for the weekly and group work assignments is given by our course assistants: Hilla Aho, Eljas Almusa, Sinna Andsten, Hang Li, Alarik Kuusela and Havu Pellikka

Software for the Assignments

- In order to solve the assignments you need to be able to work with the following tools
 - Smartphone / GPS Device
 - WA-1
 - QGIS
 - Weekly assignments (and GW-2)
 - 3DF Zephyr Free
 - WA-4

- You should reserve some time for getting familiar with these tools
- Training material available at the Assignments information page in MyCourses

Help for the weekly assignments


- We have five 2-hour exercise sessions per week
 - Mon at 10-12 & 14-16, Tue at 10-12, and Thu at 12-14 & 14-16
- All are in classroom Maari C-D
- In the sessions you can get assistance from our teaching assistants

- To ask for assistance, put your name on the queue for assistance, and an assistant will call you when it's your turn
- Outside sessions, you can ask for assistance in the course Teams channel

Course Teams

- The course has a MS Team. You can join the team with the code cn5uh0g
 - Code can be found in MyCourses
- In Teams you can ask for help on the exercises, or on the course in general

Learning materials

- Lecture slides, assignment instructions and materials
- We recommend the following book for the course: Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographic information science and systems. John Wiley & Sons
- The book is available as ebook in the Learning Centre
 - There are also a number of paper copies available
- The book covers spatial data management and analysis
- Data acquisition is not covered in detail in the book
 - Other learning material is recommended

Introduction to geoinformatics: Outline of the course

Geoinformation uses environmental

Information (data) with location relative to the Earth's surface - ISO 19100 series

In **digital form** for management and processing

In **visual form** for human users to perceive

Environment:

Concrete ↔ Abstract Physical ↔ Sosio-economic Natural ↔ Man-made

Objects <table-cell-rows> Phenomena

Various scales, levels of detail

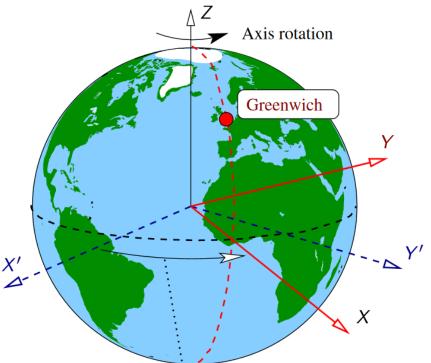
Changing over time - timestamp needed

modelling

Model:

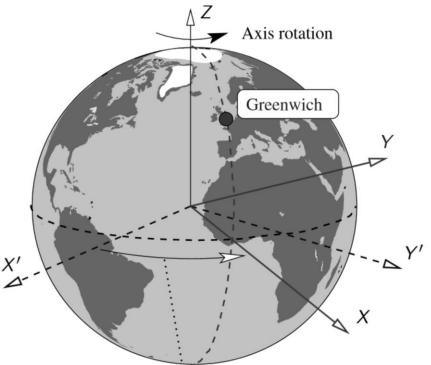
a representation that captures meaningful features for a purpose

or purposes, such as: management, explanation, prediction, planning...

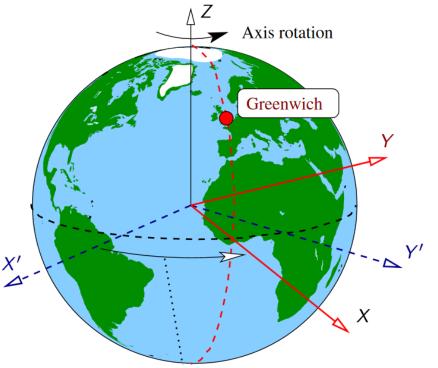

Static or dynamic

Objects 🕶 Phenomena

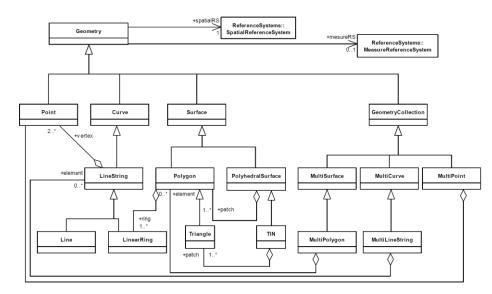
Establishing the location (Details in L2 and WA-1)


- Location is the most elementary part of spatial data modeling
 - Planar (Cartesian) coordinates (x,y)
 - Geographic coordinates (lat, lon)
- Location separates spatial data from other types of data
- Location requires specialized methods for efficient modeling and handling

Establishing the location (Details in L2 and WA-1)


- Location is the most elementary part of spatial data modeling
 - Planar (Cartesian) coordinates (x,y)
 - Geographic coordinates (lat, lon)
- Location separates spatial data from other types of data
- Location requires specialized methods for efficient modeling and handling

Establishing the location (Details in L2 and WA-1)


- Spatial data is data that contains locations (coordinates) and attributes that describe the relevant phenomena in those locations
 - Location + attributes creates a static model
 - Location + attributes + time creates a dynamic model

Spatial data modeling approaches (L3, WA-2,3,5)

- Spatial data models the real world
 - The model can be conceptual
 - Models can be visual (e.g. maps)
- In geoinformatics, the models are digital
 - Spatial data on a computer
 - Formally, precisely defined

Picture source: OGC Simple Features Definition https://www.opengeospatial.org/standards/sfa

Spatial data modeling approaches (L3, WA-2,3,5)

- There are two conceptually distinct approaches how to model the world
- The world can be modelled as empty space populated by discrete objects
- The world can be modelled as containing continuous phenomena that vary by location

Aalto University School of Engineering

Image source: wikimedia

Image source: yle.fi (Seppo Savolainen)

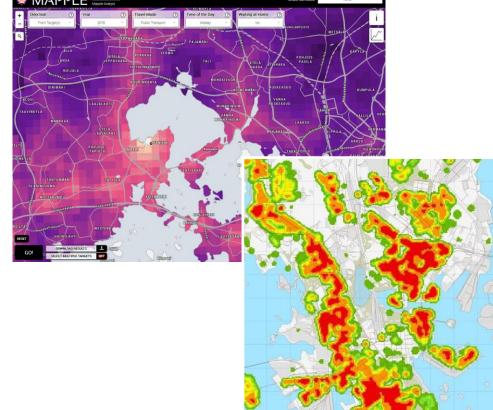
Spatial data modeling: data gathering (L5-7, GW-1, WA-4&5)

- Spatial data can be acquired with a large number of different methods
- The methods work at different resolutions, scales, and for different purposes
- Laser scanning and photogrammetry can provide detailed, high-resolution information

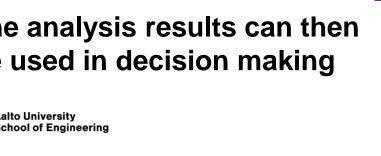
Aalto University School of Engineering

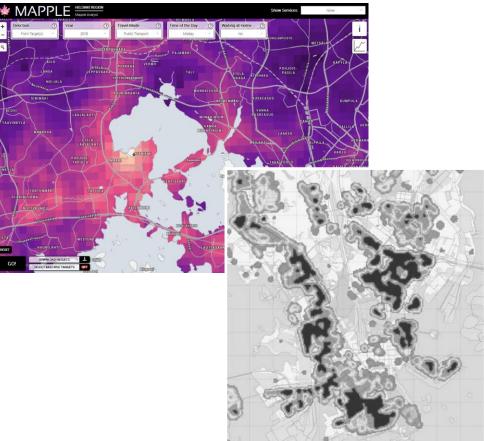
Spatial data modeling: data gathering (L5-7, GW-1, WA-4&5)

- Spatial data is gathered over large areas using various means of environmental monitoring
- Global coverage is acquired with satellite Earth observation
- The acquired data is then stored and analyzed for further use



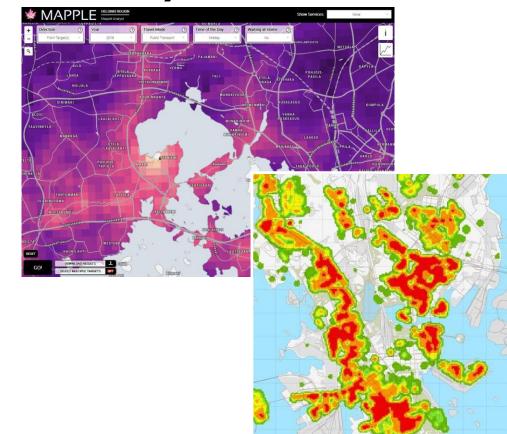
Spatial data modeling: analysis (L3, 9-11 WA-1,2,3&5)


- Typically, spatial data is not immediately useful for a given purpose
- Spatial analysis refines data into a format that provides information required for a specific situation
- The analysis results can then be used in decision making


alto University chool of Engineering

Spatial data modeling: analysis (L3, 9-11 WA-1,2,3&5)

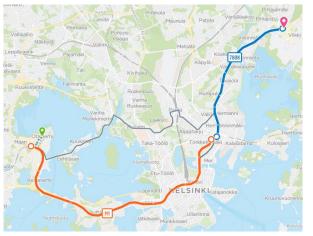
- Typically, spatial data is not immediately useful for a given purpose
- Spatial analysis refines data into a format that provides information required for a specific situation
- The analysis results can then be used in decision making



Spatial data modeling: visualization (L8, GW-2)

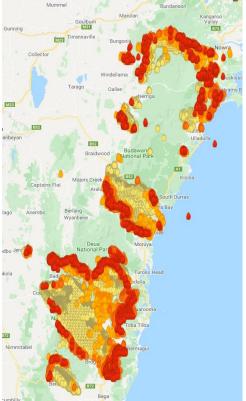
- The analysis results can be used in decision making
- The analysis results need to be communicated to users
- The primary means of communicating spatial data is through visualizations
- Maps are a common spatial data visualization method

Spatial data modeling: management and sharing (L11)

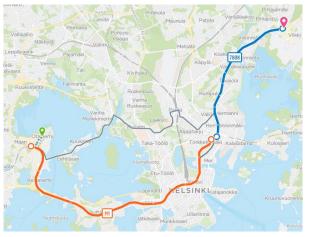

- Value of spatial data is in reusability and sharing the data
- There are tremendous amounts
 of spatial data available
 - As open data
 - As commercial services
- Widely adopted standards and open data policies are needed to enable data sharing
 - At the same time we need to be aware of the consequences of opening the data sets

Basics of spatial data modeling

Why geoinformation is important?



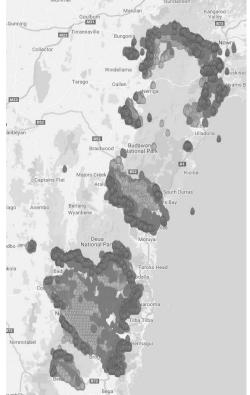
HSL route planner: what is the fastest route from Otaniemi to Viikki? (Colors represent movement type) https://reittiopas.hsl.fi/


Where potato is grown in Finland? (colors represent amount of field area per square km) https://biomassa-atlas.luke.fi/

How Australian wildfires have spread? (colors represent time; retrieved on Jan 2nd, 2020)

https://myfirewatch.landgate.wa.gov.au/

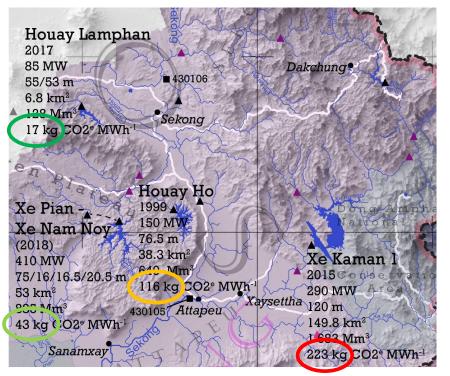
Why geoinformation is important?



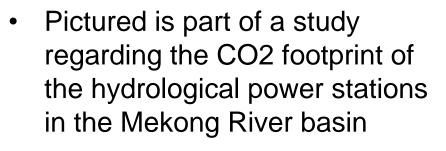
HSL route planner: what is the fastest route from Otaniemi to Viikki? (Colors represent movement type) https://reittiopas.hsl.fi/

Where potato is grown in Finland? (colors represent amount of field area per square km) https://biomassa-atlas.luke.fi/

How Australian wildfires have spread? (colors represent time; retrieved on Jan 2nd, 2020)


https://myfirewatch.landgate.wa.gov.au/

Geoinformation (spatial) analysis: a simple example



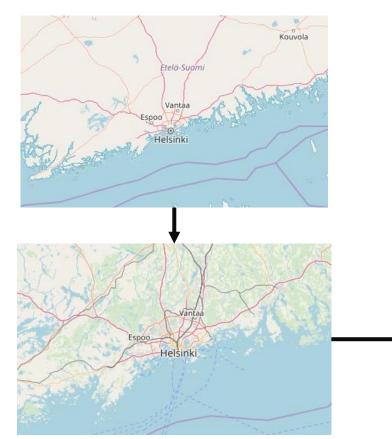
- The two pictures show a field parcel in Northern Savonia on different years
 - Growing silage in the first picture and cereals in the second
- There is a fishbone-shaped drainage pipe in the field
- The pipe can be difficult to make out in the picture, but its effect is clear to the farmer when they see the pictures
- => the drainage pipe has effect on withinfield growth potential which needs to be taken into account in farm planning

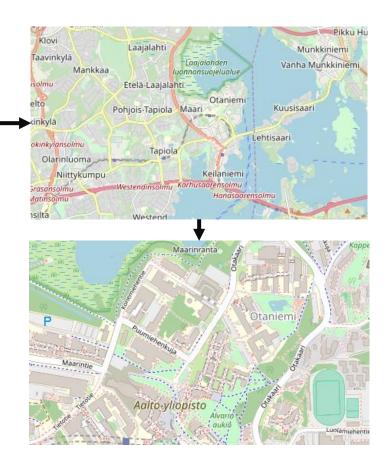
Geoinformation (spatial) analysis: a more complex example

alto University chool of Engineering

- As can be seen from the map, the footprint of different power stations are extremely different
 - Source: Räsänen et al.: Greenhouse gas emissions of hydropower in the Mekong River Basin

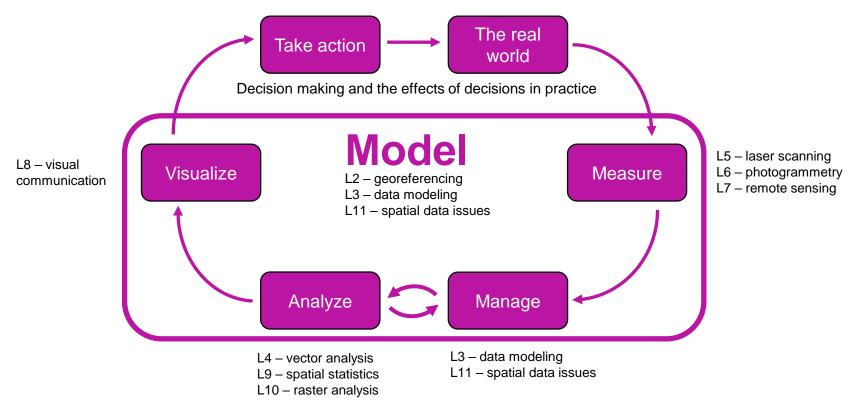
Map by Marko Kallio, Aalto University

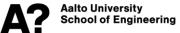

Geoinformation: location, location, location,


- When the location matters, geoinformatics provides tools and techniques
 - Management, planning, analysis, simulation
 - Locations, distributions, patterns, events, etc.
 - Distance, direction, topology, etc.

- Geoinformatics can be applied to any phenomenon, where the location of activity is important
 - Environmental, water, energy, geotechnical engineering
 - Transportation, socioeconomics, climate sciences, rescue services, agriculture, etc, etc, etc.

Models depend on location and scale





Aalto University School of Engineering

With increasing resolution, the model contains more details

Data processing in geoinformatics

The Course Schedule and Staff: Lectures

Week	Lectures	Lecturers
9-15.1	L1 – Introduction (you are here) L2 – Geodesy and georeferencing	Jussi Nikander Maaria Nordman
16-22.1	L3 – Spatial data modelling L4 – Introduction to vector analysis	Jussi Nikander Jussi Nikander
23-29.1	L5 – Introduction to grid data analysis L6 – Laser Scanning	Jussi Nikander Matti Vaaja, Petri Rönnholm
30.1-5.2	L7 – Photogrammetry L8 – Remote sensing	Matti Vaaja, Petri Rönnholm Miina Rautiainen
6-12.2	L9 – Visual communication by maps L10 – Introduction to spatial statistics	Jussi Nikander Henrikki Tenkanen
13-19.2	L11 – Geospatial data issues L12 – In reserve	Jussi Nikander

The Course Schedule and Staff: Assignments

Week	Weekly assignment	Group work assignment
9-15.1	Find yourself a pair, if you want one	
16-22.1	WA-1 Georeferencing	Find yourself a group
23-29.1	WA-2 Map Overlay	Find yourself a group GW-1 Laser scanning
30.1-5.2	WA-3 Vector analysis	GW-1 Laser scanning GW-1 DL on 2.2
6-12.2	WA-4 Photogrammetry and 3D modeling	GW-2 Map Visualization
13-19.2	WA-5 Raster analysis with satellite data	GW-2 Map Visualization GW-2 DL on 16.2

Questions?

