OPC UA (Unified Architecture)

Jouni.Aro@prosysopc.com
10.11.2015
Contents

• 1. OPC Unified Architecture
• 2. Applications
• 3. Specification
• 4. Information Models
• 5. Communication Model
• 6. Development / Usage
1. OPC Unified Architecture

• New generation of OPC
• Replaces DCOM communication specific TCP/IP protocols
 – Enables OPC in any OS and language
 – Enables OPC in devices (embedded software)
 – Enables WAN (Secure Internet/Intranet/Extranet)
 – Improves Security Management

• Combines all previous protocols to a common (unified) data model

• Standardised 2011 as IEC 62541
2. Applications

- MES
- ERP
- Mobile Apps
- Alarm Beeper
- Custom App
- Control Center
- Device Driver
- DCS
- Historical database
- Trend Display
- Fieldbus protocols, OPC UA
- PLC, Field devices, etc.

OPC UA connections throughout the diagram.
3. Specification

- Layered design
3.1 Base Specifications

- Part 1 – Concepts
 - A short white-paper like overview of UA
- Part 2 – Security
 - A non-normative introduction to the threats and countermeasures
- Part 3 – Address Space Model
 - Building block constructs of UA (Nodes, Objects, Events …)
- Part 4 – Services
 - Service methods exposed by UA Servers and called by UA Clients
- Part 5 – Information Model
 - UA defined objects (e.g. Diagnostic Object, Audit Events)
- Part 6 – Mappings
 - Details that allow implementation on current technology (e.g. UA Binary, HTTPS)
- Part 7 – Profiles
 - Defines conformity groups for implementation and certification
3.2 Information Model Specifications

- **Part 8 – Data Access**
 - Adds OPC-DA constructs (e.g. Engineering Units, Ranges…)

- **Part 9 – Alarms and Conditions**
 - Adds stateful Alarm and Condition types

- **Part 10 – Programs**
 - Adds long running executable entities

- **Part 11 – Historical Access**
 - Adds Historical Data and Event constructs

- **Part 12 – Discovery**
 - Details about UA Discovery Servers and interaction with UA apps

- **Part 13 – Aggregates**
 - Aggregating functions for e.g. Historical Data
3.3 Companion specifications

- OPC UA For Devices (DI)
 - Common model for devices and components

- OPC UA For Analyser Devices (ADI)
 - Information model for analysers (spectrometers, chromatographs, etc)

- OPC UA For IEC 61131-3 (PLCopen)
 - Information model for PLC devices

- OPC UA For ISA95
 - Information model for MES/ERP data

- BACNet, AutomationML, AutoID, MDIS, etc.
4. Basic Information Model

OPC UA Object

- Variables
 - ___
 - ___
 - ___

- Methods
 - ___()
 - ___()
 - ___()

- Events
 - ⚡
 - ⚡
 - ⚡

OPC DA and HDA

Variable Services

OPC A&E

Event Services

OPC Commands

Method Services

OPC Subscriptions
4.1 Address Space

- Combines the old DA & AE address space information
- Network, Plant & other hierarchies available at the same time
4.2 Type Information

- Servers also declare supported data types in the address space.
- Servers may define custom data types.
- Standard information models can be defined in server address spaces:
 - FDT
 - PLCopen
 - ISA S95/88
 - MIMOSA
 - ...
5. Communication Model

- **Abstract UA Model Specification**
 - Business Model, Adaptable to Platform Independent Messaging Models (e.g. WSDL)
 - Scalable Platform Independent Messaging Model
 - Portable C/C++ Version
 - Java Version
 - .NET (WCF) Version

- **WSDL / SOAP or TCP / Binary Services Binding**

- **Proxy / Stubs**
 - Tool or Language Dependent (e.g. .NET)

- **API**

[Thomas Burke]
5.1 Protocols

- **Transport**
 - TCP/IP
 - HTTPS (New: 1.02)
 - HTTP
- **Messaging**
 - UA TCP, optimized binary protocol
 - HTTPS, binary/XML encapsulated in standard HTTP
 - SOAP, generic messaging (Deprecated: 1.03)
- **Message Security**
 - UA Security (UA TCP)
 - TLS Security (HTTPS)
 - Web Service (WS) Security
- **Message encoding**
 - UA Binary
 - UA XML
- **Open for additional protocols in future**

(IP Port numbers not fixed)
5.2 Security

• OPC Unified Architecture includes full public key based security features in OPC clients and servers
 – Authentication of client & server applications by X.509 certificates
 – Authentication of users by X.509 certificates or UserName/Password or external tokens
 – Optional message signing & encryption
• Binary and HTTPS communication via one (configurable) TCP/IP port, which can be opened in Firewalls as necessary
• Alternative security algorithms defined for signing and encryption
• HTTPS protocol enables standard TLS security applied
• OPC UA Proxy and Wrapper components can be used to “tunnel” DCOM-based OPC traffic securely
5.3 Robustness

• Keep-alive (heartbeat) messages
 – Clients can detect a connection failure

• Life-time monitoring
 – Servers can detect connection failures

• Message buffering
 – Clients can detect missing data
 – Missing messages can be re-requested

• Redundancy support
 – Can be built to both clients and servers
6.1 Server Profiles

- OPC UA Profiles defined to allow clients and servers with different capability levels
- Applications define which profiles they support, e.g.:
 - Subscriptions
 - Security
 - Redundancy
 - Data Access
 - Alarms & Conditions
 - Historical Access
- Compliance testing verifies applications against the supported profiles
- End-users can purchase products that include the functionality they need by looking at the supported and certified profiles
6.2 Development Platforms

- **AnsiC**
 - UA Binary communication
 - HTTPS communication
 - Open SSL Security
 - Platform specific parts (Windows, Linux, etc)
 - SDKs for C/C++ (Unified Automation, Softing)

- **.NET**
 - UA Binary communication
 - HTTPS communication
 - (HTTP/SOAP communication with WS Security)
 - .NET Security
 - SDKs for .NET (Unified Automation, Softing, etc.)

- **Java**
 - UA Binary communication (pure Java)
 - HTTPS communication
 - Java Security
 - SDK for Java from Prosys
6.3 Application capabilities

- Communication Stacks provide interoperable communication
- SDKs provide standard implementation of UA services
6.4 UA & DCOM

- Smooth transfer of application technology from DCOM OPC to UA should not be a problem
- UA Proxy & Wrapper components enable communications between UA and DCOM versions of OPC applications
- UA Gateway
 - commercial implementation
References, literature

Prosys PMS Ltd

Tekniikantie 14, 02150 Espoo, Finland
Phone: +358 9 420 9007

Emails

- Team: firstname.lastname@prosysopc.com
- Sales: sales@prosysopc.com
- Technical support: support@prosysopc.com
- General inquiries: info@prosysopc.com

www.prosysopc.com