CS-E4510 Distributed Algorithms

Jukka Suomela

Aalto University Autumn 2019

iki.fi/suo/da

Algorithms for computer networks

Identical computers in an unknown network, all running the same algorithm

Initially each computer is only aware of its immediate neighbourhood

Nodes can exchange messages with their neighbours to learn more...

Finally, each computer has to stop and produce its own local output

Focus on graph problems: network topology = input graph

Focus on graph problems: local outputs = solution (here: graph colouring)

Typical research question:

"How fast can we solve graph problem X?"

Time = number of communication rounds

1. Applications in large-scale real-world communication networks

- 1. Applications in large-scale real-world communication networks
- 2. New perspective to theory of computation

New perspective to theory of computing

- New kinds of computational resources:
 - old: time & space
 - new: distance & bandwidth
- New kinds of algorithm design challenges:
 - parallelism & coordination

- 1. Applications in large-scale real-world communication networks
- 2. New perspective to theory of computation
- 3. Understanding nature

Understanding nature: Algorithmic lens

- Distributed systems in different areas:
 - **sociology**: collaboration networks
 - economy: job markets, auctions
 - ecology: animal populations
 - **biology**: organs, tissues
 - **chemistry**: chemical reactions ...

Understanding nature: Algorithmic lens

- Natural science perspective:
 - fix a process and analyse it
- Computational perspective:
 - fix a goal ("computational problem")
 - ask if there is any process ("algorithm") that reaches the goal efficiently

Understanding nature: Algorithmic lens

- Model nature as a distributed system
- Proving that something cannot be done efficiently with distributed algorithms: discovering fundamental limitations of nature
 - producing hypotheses: "this process is slow (or our model of nature is wrong)"

- 1. Applications in large-scale real-world communication networks
- 2. New perspective to theory of computation
- 3. Understanding nature

- Weeks 1–2: informal introduction
 - network = path
- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap

Practicalities

- All practical information in MyCourses
- Textbook:
 - freely available online
- Exercises:
 - every week, starting this week!

Weekly exercises

- Tuesday at noon: quiz (2 points)
- Wednesday at midnight: 1 exercise (2 points)
- Friday at midnight: 2 exercises (2+2 points)
- Whenever you want: challenging exercises
 (4 points each)

Grading

- Two midterm exams: pass/fail
- Weekly exercises: max 96 points (+ extra)
- Grading:
 - grade 1/5: pass exams
 - grade 5/5: pass exams + at least 80 points

Learning objectives

- Models of distributed computing
- Algorithm design and analysis
- Computability and computational complexity
- Graph theory

WARNING: THEORY

100% mathematics

(definitions, theorems, proofs...)

0% practice

(programming, hardware, protocols...)

Week 1

– Warm-up: positive results

Running example: 3-colouring a path

Given a path:

Output a proper 3-colouring, e.g.:

Model of computing: Send, receive, update

- All nodes in parallel:
 - send messages to their neighbours
 - receive messages from neighbours
 - update their state
- Stopping state = final output
 - can send/receive, but not update any more

Challenge: Symmetry breaking

 Identical nodes, everything deterministic and synchronised: cannot break symmetry

- same initial state same messages sent same messages received same new state
- same output

Challenge: Symmetry breaking

- Identical nodes, everything deterministic and synchronised: cannot break symmetry
- Solutions:
 - assume unique identifiers
 - use randomised algorithms

- Unique IDs = proper colouring with large number of colours
- Goal: reduce the number of colours

- Inform neighbours of your current colour
- If your colour > colours of your neighbours:
 - pick a free colour from {1, 2, 3}
 that is not used by any neighbour
- Stopping states = {1, 2, 3}

Performance

- P3C: worst case O(n)
- We can do better!

Algorithm P3CRand: Using randomness

- Initialise: state = unhappy, colour = 1
- While state = unhappy:
 - pick a new random colour from {1, 2, 3}
 - compare colours with neighbours
 - if different, set state = happy

Performance

- P3C: worst case O(n)
- P3CRand: O(log n) with high probability
- We can do better!
 - and we do not even need randomness

- Unique IDs = proper colouring with large number of colours
- Idea: reduce the number of colours from 2^k to 2^k in one step

- Unique IDs = proper colouring with large number of colours
- Idea: reduce the number of colours from 2^k to 2^k in one step
- Note: we will assume a directed path! (general case left as an exercise)

- Example: 128-bit unique IDs
 - $2^{128} \rightarrow 2 \cdot 128 = 2^8$ colours
 - $2^8 \rightarrow 2 \cdot 8 = 2^4$ colours
 - $2^4 \rightarrow 2 \cdot 4 = 2^3$ colours
 - $2^3 \rightarrow 2 \cdot 3 = 6$ colours
- From 2¹²⁸ to 6 colours in 4 steps! How?

- c₀ = my current colour as a k-bit string
- c₁ = successor's colour as a k-bit string
- *i* = index of a bit that differs between *c*₀ and *c*₁ *b* = value of bit *i* in *c*₀

c = 2i + b = my new colour

 $i \in \{0, ..., k-1\}, b \in \{0, 1\}, c \in \{0, ..., 2k-1\}$

- **c**₀ = **123** = **01111**0**11**₂ (my colour)
- **c**₁ = **47** = **00101111**₂ (successor's colour)
 - *i* = 2 (bits numbered 0, 1, 2, ... from right)
 - **b** = 0 (in my colour bit number *i* was 0)
 - **c** = 2·2 + 0 = 4 (my new colour)

k = 8, reducing from 2⁸ = 256 to 2·8 = 16 colours

. 47

c_0 = 123 = 01111011_2 (my colour)
c_1 = 47 = 00101111_2 (successor's colour)

Successor will pick one of these colours: 14+0, 12+0, 10+1, 8+0, 6+1, 4+1, 2+1, 0+1

None of these conflict with my choice: 4+0

i = index of a bit that differs between c₀ and c₁
b = value of bit i in c₀
c = 2i + b = my new colour

Successor picks different $i \rightarrow different c$ Successor picks same $i \rightarrow different b \rightarrow different c$

My new colour ≠ my successor's new colour

Performance

- P3C: worst case O(n)
 - assuming unique IDs
- P3CRand: O(log n) with high probability
- P3CBit: *O*(*log** *n*)
 - assuming unique IDs are polynomial in *n*

Performance

- P3CBit: *O*(log* *n*)
 - assuming unique IDs are polynomial in *n*
- Next week: this is optimal!
 - no deterministic distributed algorithm can 3-colour a path in time o(log* n)