CS-E4510
Distributed
Algorithms

Jukka Suomela

Aalto University
Autumn 2019

iki.fi/suo/da

WIiIN |- WIiIN |-

WI(N |- WIN |-

http://iki.fi/suo/da

Distributed Algorithms

Algorithms for computer networks

AN -
O ANy
SN

Distributed Algorithms

Identical computers in an unknown network,
all running the same algorithm

| —

A\ U
AR
\ / /_\ \g

Distributed Algorithms

Initially each computer is only aware of
its immediate neighbourhood

N

a

Distributed Algorithms

Nodes can exchange messages
with their neighbours to learn more...

SN
w N =

Distributed Algorithms

Finally, each computer has to stop and
produce its own local output

1\2\1
AR A
\ / A
1\2\1\2/ \1

\

2
~4

Distributed Algorithms

Focus on graph problems:
network topology = input graph

FAVAY *E\ _
\ /O e

Distributed Algorithms

Focus on graph problems:
local outputs = solution (here: graph colouring)

1\2\1
AR A
\ / A
1\2\1\2/ \1

\

2
~4

Distributed Algorithms

Typical research question:
“How fast can we solve graph problem X?”

Time = number of communication rounds

Why?

1. Applicationsin large-scale real-world
communication networks

Why?

1. Applications in large-scale real-world
communication networks

2. New perspective to theory of computation

New perspective to
theory of computing

 New kinds of computational resources:

e old: time & space
« new: distance & bandwidth

 New kinds of algorithm design challenges:

e parallelism & coordination

Why?
o
1. Applications in large-scale real-world

communication networks

2. New perspective to theory of computation

3. Understanding nature

Understanding nature:
Algorithmic lens

 Distributed systems in different areas:

 sociology: collaboration networks
» economy: job markets, auctions

» ecology: animal populations
 biology: organs, tissues

« chemistry: chemical reactions...

Understanding nature:
Algorithmic lens

 Natural science perspective:

» fix a process and analyse it

« Computational perspective:

» fix a goal (“computational problem”)

o ask if there is any process (“algorithm”) that
reaches the goal efficiently

Understanding nature:
Algorithmic lens

 Model nature as a distributed system

e Proving that something cannot be done
efficiently with distributed algorithms:
discovering fundamental limitations of nature

» producing hypotheses: “this process is slow
(or our model of nature is wrong)”

Why?
o
1. Applications in large-scale real-world

communication networks

2. New perspective to theory of computation

3. Understanding nature

e Weeks 1-2: informal introduction

. network=path ™ —m—%__ -

o« Week 3: graph theory

o Weeks 4-7: models of computing

« what can be computed (efficiently)?

e Weeks 8-11: lower bounds

« what cannot be computed (efficiently)?

e Week 12: recap

Practicalities

o All practical information in MyCourses

e Textbook:

» freely available online

o Exercises:

» every week, starting this week!

Weekly exercises

e Tuesday at noon: quiz (2 points)
« Wednesday at midnight: 1 exercise (2 points)
« Friday at midnight: 2 exercises (2+2 points)

« Whenever you want: challenging exercises
(4 points each)

Grading

« Two midterm exams: pass/fail
« Weekly exercises: max 96 points (+ extra)

e Grading:
 grade 1/5: pass exams
» grade 5/5: pass exams + at least 80 points

Learning objectives

« Models of distributed computing
o Algorithm design and analysis
« Computability and computational complexity

e Graph theory

WARNING:
THEORY

100% mathematics
(definitions, theorems, proofs...)

0% practice
(programming, hardware, protocols...)

Week 1

- Warm-up: positive results

Running example:
3-colouring a path

Given a path:

Output a proper 3-colouring, e.g.:
1—-2—1—-3—2 = @O0 0O

2—1—2—1—2 = 09009090

Model of computing;
Send, receive, update

o All nodes in parallel:

» send messages to their neighbours
o receive messages from neighbours
 update their state

« Stopping state = final output

 can send/receive, but not update any more

Challenge:
Symmetry breaking

 Identical nodes, everything deterministic and
synchronised: cannot break symmetry

g™ —M g sameinitial state
.- same messages sent
... same messages received
bes—M b same new state
1—1 same output

Challenge:
Symmetry breaking

 Identical nodes, everything deterministic and
synchronised: cannot break symmetry

o Solutions:

« assume unique identifiers
» use randomised algorithms

Algorithm P3C:
Using unique IDs

e Unique IDs = proper colouring
with large number of colours

e Goal: reduce the number of colours

13— 19—O—2)—G)—1)—13

Algorithm P3C:
Using unique IDs

e ldea: local maxima pick a new colour

) 19—O—2)—GD)—E)—13
Vs
)19~~~

Algorithm P3C:
Using unique IDs

e ldea: local maxima pick a new colour

D~V 1——2)—G)—(U—3
Vs
(O~ (V22—

Algorithm P3C:
Using unique IDs

e ldea: local maxima pick a new colour

Ve

Algorithm P3C:
Using unique IDs

e ldea: local maxima pick a new colour

Ve

Algorithm P3C:
Using unique IDs

e ldea: local maxima pick a new colour

Ve

Algorithm P3C:
Using unique IDs

» Inform neighbours of your current colour

o If your colour > colours of your neighbours:

» pick a free colour from {1, 2, 3}
that is not used by any neighbour

« Stopping states ={1, 2, 3}

Performance

e P3C: worst case O(n)

e We can do better!

Algorithm P3CRana:
Using randomness

e Initialise: state = unhappy, colour=1

e While state = unhappy:

 pick a new random colour from {1, 2, 3}
» compare colours with neighbours
o if different, set state = happy

Performance

e P3C: worst case O(n)
« P3CRand: O(log n) with high probability

e We can do better!

« and we do not even need randomness

Algorithm P3CBit:
Fast colour reduction

e Unique IDs = proper colouring
with large number of colours

e Idea: reduce the number of colours
from 24 to 2/ in one step

Algorithm P3CBit:
Fast colour reduction

e Unique IDs = proper colouring
with large number of colours

e Idea: reduce the number of colours
from 24 to 2/ in one step

e Note: we will assume a directed path!
(general case left as an exercise)

-

Algorithm P3CBit:
Fast colour reduction

« Example: 128-bit unique IDs
e 2128 5 2-128 =28 colours
e 28 5 2-8=24colours
e 24 > 2-4=23colours
e 23 5> 2-3=6colours

e From 2128 to 6 colours in 4 steps! How?

Algorithm P3CBit:
Fast colour reduction

Co = my current colour as a k-bit string
c1 = successor’s colour as a k-bit string

I = index of a bit that differs between ¢y and ¢
b =value of bitiin co

¢ =2i+b =my new colour

ie0,..,k-1}, be{0,1}, ce{0,...,2k-1}

Algorithm P3CBit:

®
Fast colour reduction
Co=123=01111011, (my colour) 9
c1= 47=00101111, (successor’s colour) 4 *
i =2 (bitsnumbered0, 1, 2, ... from right) @
b =0 (in my colour bit number i was 0)
v

c=2:2+0=4 (my new colour) "

k =8, reducing from 28 =256 to 2-8 = 16 colours

Algorithm P3CBit:
Fast colour reduction

¢o=123=01111011, (my colour) (L
c1= 47=00101111, (successor’s colour) A @
/’Y\

Successor will pick one of these colours:
14+0, 12+0, 10+1, 8+0, 6+1, 4+1, 2+1, 0+1

None of these conflict with my choice:
4+0

Algorithm P3CBit:
Fast colour reduction

i = index of a bit that differs between ¢y and ¢;
b =value of bitiin ¢y
¢ =2i+ b =my new colour

Successor picks different/ »> different ¢
Successor picks samej > different b > differentc

My new colour # my successor’s new colour

Performance

e P3C: worst case O(n)

« assuming unique IDs
« P3CRand: O(log n) with high probability

e P3CBit: O(log™* n)

« assuming unique IDs are polynomial in n

Performance

e P3CBit: O(log™ n)

 assuming unique IDs are polynomial in n

e Next week: this is optimal!

» no deterministic distributed algorithm
can 3-colour a path in time o(log* n)

