A

 Aalto UniversityPhysical \& chemical treatment processes of water and waste

Lecture 283 Mass transfer, mixing \& pH, alkalinity and hardness

WAT-E2120

Anna Mikola TkT D Sc (Tech)

Lecture outline

Lecture on gas transfer

- Mass and gas transfer
- Theory
- Important equations
- Practical applications

Demo exercises
Group discussion on gas transfer

Mixing, pH, alkalinity and hardness

Mass transfer - basics

- Transfer of material from one homogenous phase to another
- Concentration increases in one phase and decreases in the other
- Driving force is pressure or concentration gradient
- Transfer stops at equilibrium
- No conversion reactions!!
- Basic mass transfer equation (Fick's first law)

$$
r=-D m \frac{\partial C}{\partial x}
$$

- $r=$ mass transfer rate
- Dm = diffusion coefficient
- $\quad \mathbf{C}=$ concentration of constituent being transferred
- $\quad x=$ distance

Mass transfer between different phases

Phase equilibria	Type of process	Examples of processes
Gas \rightarrow solid Liquid \rightarrow solid	Adsorption Ion exchange	Activated carbon Selective removal of compounds
Gas \rightarrow liquid	Absorption	Addition of gases to water, NH_{3} scrubbing in acid
Solid \rightarrow liquid Solid \rightarrow gas	Desorption	Sediment scrubbing Reactivation of GAC
Liquid \rightarrow gas	Evaporation Gas stripping	Drying Removal of gases

Quite familiar phenomena..

A
Aalto University
School of Engineering
Laitoksen nimi

Mass transfer basics

Diffusion

- Caused by chemical potential difference (= gradients), often concentration
- Mainly caused by Brownian motion of molecules
- Fick's law = substances move from more concentrated area to less concentrated area

Convection

- Due to bulk motion of the fluid
- Can work in favour of or against diffusion

Diffusion coefficient

- Increases when particle size decreases
- Increases when viscosity of the liquid decreases
- Increases when temperature increases
- In turbulent flow regime replaced by coefficient of dispersion

$$
D_{m}=\frac{R T}{6 \pi \gamma r_{P} N}
$$

R universal gas law constant
T temperature
y dynamic viscosity
r_{p} radius of particle
N Avogadro's number

Liquid - gas equilibrium - Henry's law

The amount of gas dissolved in liquid is directly proportional to the pressure of the gas in the solution.

$$
\mathrm{p}_{\mathrm{g}}=\frac{H}{P_{T}} \mathrm{x}_{\mathrm{g}}
$$

$\mathbf{p}_{\mathrm{g}}=$ mole fraction of gas in air
The equilibrium or saturation concentration (presented by Henry's contant) is different for different gases.
The equilibrium concentration depends also on temperature and on liquid.

H = Henry's law constant
$\mathrm{P}_{\mathrm{T}}=$ total pressure
$\mathbf{X}_{\mathrm{g}}=$ mole fraction of gas in water

Principle of Henry's law

Aqueous-phase activity, \&

Aalto University

Henry's constants for different gases

Compound	H^{a}		Compound	$H^{\prime \prime}$	
	$\begin{gathered} H_{\mathrm{pa}} \\ \left(\mathrm{~atm} /\left(\mathrm{mol} / \mathrm{L}_{2}\right)\right) \end{gathered}$	$\begin{gathered} H_{\mathrm{cc}} \text { or } H_{\mathrm{mam}} \\ \left(\mathrm{~L}_{4} / \mathrm{L}_{\sigma}\right)^{b} \end{gathered}$		$\begin{gathered} H_{\mathrm{pm}} \\ \left(\mathrm{~atm} /\left(\mathrm{mol} / \mathrm{L}_{\mathrm{L}}\right)\right) \end{gathered}$	$\begin{aligned} & H_{\mathrm{cc}} \text { or } H_{\mathrm{mam}} \\ & \left(\mathrm{~L}_{\mathrm{L}} / \mathrm{L}_{\mathrm{o}}\right)^{b} \end{aligned}$
Nitrogen	1590	65.0	o-Xylene	4.55	0.186
Hydrogen	1280	52.3	Chloroform	4.00	0.163
Carbon monoxide	1050	42.9	Chlorine dioxide	1.00	0.0409
Oxygen	769	31.4	Sulfur dioxide	0.833	0.0340
Methane	769	31.4	Bromoform	0.556	0.0227
Cyclohexane	182	7.44	2,2',5,5'-Tetrachlorobiphenyl	0.250	0.0102
Radon	108	4.41	Ethyl acetate	0.143	5.84×10^{-3}
Ozone	90.9	3.72	Hydrogen cyanide	0.100	4.09×10^{-3}
Carbon dioxide	29.4	1.20	Acetone	0.040	1.64×10^{-3}
Carbon tetrachloride	29.4	1.20	Ammonia	0.017	6.95×10^{-4}
Tetrachloroethylene (PCE)	17.5	0.715	Methanol	4.6×10^{-3}	1.88×10^{-4}
Chlorine	10.8	0.441	Phenol	5.0×10^{-4}	2.04×10^{-5}
Hydrogen sulfide Trichloroethylene (TCE)	10.0 10.0	0.409 0.409	Acetic acid	2.0×10^{-4}	8.17×10^{-6}
Trichloroethylene (TCE) Ethylbenzene	10.0 8.33	0.409 0.340	${ }^{\text {a }}$ Values are for $25^{\circ} \mathrm{C}$ and are based on compilation by Sander (1999). "Values in this column are valid for any units of concentration, provided that the same units are used for both the liquid and gas phases.		
Toluene	6.67	0.273			
Benzene	5.56	0.227			

Aalto University

Application of Henry's law

Aalto University

Example of saturation concentration of oxygen in water

What is the saturation concentration (mg/l) of oxygen in water at $25^{\circ} \mathrm{C}$ and 1 atm ?
From Henry's law
$\boldsymbol{x}_{\boldsymbol{g}}=\frac{\boldsymbol{P}_{r}}{\boldsymbol{H}} \mathbf{p}_{\mathrm{g}}$
Wesill needthepatid pressuref oygen inar
Air contains 21% of oxygen \rightarrow
$\mathrm{pg}=\mathbf{0 , 2 1}$
From Henry's law

$$
x_{g}=\frac{P_{r}}{H} p_{g}=2,73 \times 10^{-4} \mathrm{~mole} / \mathrm{I}
$$

Le'schekHeryscantat
$\mathrm{H}_{\mathrm{pc}}=769 \mathrm{I} \mathrm{atm} / \mathrm{mol}_{\mathrm{O} 2}$
Presreisgiven
1 atm
Saturation concentration =
$\left(2,73 \times 10^{-4} \mathrm{~mole} / \mathrm{I}\right)(32 \mathrm{~g} / \mathrm{mol})=$ $8,74 \mathrm{mg} / \mathrm{l}$

Example of saturation concentration of oxygen in water

What is the saturation concentration of oxygen in water at $20^{\circ} \mathrm{C}$ and 1 atm ?
Henry's constant $\mathrm{H}_{\mathrm{px}}=41100$ atm is given.
Air contains 21% of oxygen \rightarrow $\mathrm{pg}=0,21 \mathrm{~mole}_{2} /$ mole air
From Henry's law
$x_{g}=\frac{P_{T}}{H} \mathbf{p}_{\mathrm{g}}=5,11 \times 10^{-6} \mathrm{~mole}$ gas
/ mole water
One liter of water contains 55,6 mole
$\frac{n_{a}}{n_{g}+n_{w}}=\mathrm{X}_{\mathrm{g}}=5,11 \times 10^{-6}$
$\mathrm{n}_{\mathrm{g}}+\mathrm{n}_{\mathrm{w}} \approx 55,6 \rightarrow \mathrm{n}_{\mathrm{g}} \approx 2,84 \times 10^{-}$ ${ }^{4}$ mole / I
Saturation concentration $=$ $\left(2,84 \times 10^{-4} \mathrm{~mole} / \mathrm{I}\right)(32 \mathrm{~g} / \mathrm{mol})=$ $9,09 \mathrm{mg} / \mathrm{I}$

Saturation concentration of oxygen in clean water

T, C	mg / L	T, C	mg / L
0	14,62	21	8,91
1	14,22	22	8,74
2	13,83	23	8,58
3	13,46	24	8,42
4	13,11	25	8,26
5	12,77	26	8,11
6	12,45	27	7,97
7	12,14	28	7,83
8	11,84	29	7,69
9	11,56	30	7,56
10	11,29	31	7,43
11	11,03	32	7,31
12	10,78	33	7,18
13	10,54	34	7,07
14	10,31	35	6,95
15	10,08	36	6,84
16	9,87	37	6,73
17	9,67	38	6,62
18	9,47	39	6,52
19	9,28	40	6,41
20	9,09		

Note: Henry's constants are presented in many different forms!!

Note: Henry's constants are presented in many different forms!!

TABLE 5-1. Units Commonly Used for Henry's Law Constants ${ }^{a}$

Dimensions Used for Gas-Phase Concentration	Dimensions Used for Aqueous-Phase Concentration	Symbol	Units of H
Mass concentration ($\mu \mathrm{g} i / \mathrm{L}$ of gas)	Mass concentration ($\mu \mathrm{g} i / \mathrm{L}$ of solution)	$H_{\text {cc }}{ }^{\text {b }}$	$\frac{\text { L liquid }}{\text { Lgas }}\left(\frac{\mathrm{L}_{\mathrm{L}}}{\mathrm{~L}_{\mathrm{G}}}\right)$
Molar concentration (mol i/L of gas)	Molar concentration ($\mathrm{mol} i / \mathrm{L}$ of solution)	$H_{\text {mm }}{ }^{\text {b }}$	$\frac{\text { L liquid }}{\text { Lgas }}\left(\frac{\mathrm{L}_{\mathrm{L}}}{\mathrm{~L}_{\mathrm{G}}}\right)$
Partial pressure (atm)	Mass concentration (mg i/L of solution)	$H_{\text {pc }}$	$\frac{\mathrm{atm}-\mathrm{L}_{L}}{\mathrm{mg} i}$
Partial pressure (atm)	Molar concentration (mol i / L of solution)	$H_{\text {pm }}$	$\frac{\mathrm{atm}-\mathrm{L}_{\mathrm{L}}}{\mathrm{~mol} i}$
Partial pressure (atm)	Mole fraction (mol $i /$ total moles of solution)	$H_{\text {px }}$	atm
Mole fraction ${ }^{\text {c }}$ (moles of $i /$ total moles of gas)	Molar concentration ($\mathrm{mol} i / \mathrm{L}$ of solution)	$H_{y m}$	$\frac{L_{L}}{\mathrm{~mol} \text { of gas }}$
Mole fraction ${ }^{c}$ (moles of $i /$ total moles of gas)	Mole fraction (mol $i /$ total moles of solution)	$H_{y x}$	$\frac{\mathrm{mol} \text { of solution }}{\mathrm{mol} \text { of gas }}$

Note: Henry's constants are presented in many different forms!!
 R. Sander: Compilation of Henry's law constants

Table 1. Conversion factors between several Henry's law solubility constants H (at $T^{\ominus}=298.15 \mathrm{~K}$ and $\varrho^{\ominus}=997 \mathrm{~kg} \mathrm{~m}^{-3}$).

| | $H^{c p}=\ldots \frac{\mathrm{mol}}{\mathrm{m}^{3} \mathrm{~Pa}}$ | $H^{c p}=\ldots \frac{\mathrm{M}}{\mathrm{atm}}$ | $H^{c c}=\ldots$ | $H^{b p}=\ldots \frac{\mathrm{mol}}{\mathrm{kg} \mathrm{Pa}}$ | $H^{b p}=\ldots \frac{\mathrm{mol}}{\mathrm{kg} \mathrm{atm}}$ | $H^{x p}=\ldots \frac{1}{\mathrm{~atm}}$ | $\alpha=\ldots$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $H^{c p}=1 \frac{\mathrm{~mol}}{\mathrm{~m}^{3} \mathrm{~Pa}}$ | 1.00000 | 101.325 | 2478.96 | 1.00301×10^{-3} | 101.630 | 1.83089 | 2271.10 |
| $H^{c p}=1 \frac{\mathrm{M}}{\mathrm{atm}}$ | 9.86923×10^{-3} | 1.00000 | 24.4654 | 9.89893×10^{-6} | 1.00301 | 0.0180695 | 22.4140 |
| $H^{c c}=1$ | 4.03395×10^{-4} | 0.0408740 | 1.00000 | 4.04609×10^{-7} | 0.0409970 | 7.38573×10^{-4} | 0.916150 |
| $H^{b p}=1 \frac{\mathrm{~mol}}{\mathrm{~kg} \mathrm{~Pa}}$ | 997.000 | 1.01021×10^{5} | 2.47152×10^{6} | 1.00000 | 1.01325×10^{5} | 1825.40 | 2.26428×10^{6} |
| $H^{b p}=1 \frac{\mathrm{~mol}}{\mathrm{~kg} \mathrm{~atm}}$ | 9.83962×10^{-3} | 0.997000 | 24.3920 | 9.86923×10^{-6} | 1.00000 | 0.0180153 | 22.3467 |
| $H^{x p}=1 \frac{1}{\mathrm{~atm}}$ | 0.546182 | 55.3419 | 1353.96 | 5.47826×10^{-4} | 55.5084 | 1.00000 | 1240.43 |
| $\alpha=1$ | 4.40316×10^{-4} | 0.0446150 | 1.09152 | 4.41641×10^{-7} | 0.0447493 | 8.06171×10^{-4} | 1.00000 |

Aalto University

Example: Badly filled sample bottle

You have taken a sample in a sealed bottle of water and you are supposed to analyze ammonia concentration. The volume of the sample bottle is 100 ml and the temperature is $25^{\circ} \mathrm{C}$. In the lab you notice that the bottle contains an air bubble with a volume of $2,5 \mathrm{ml}$.

- If the sample originally contained $10^{-5} \mathrm{~mol} / \mathrm{l}$ of ammonia, what concentration will you measure in the solution, assuming that it has equilibrated with the air bubble?
- How would the ratio of concentrations change if you were analyzing radon in the water?

Total number of moles of ammonia in the bottle is $0.0975 \mathrm{I}^{*} 10^{-5} \mathrm{~mol} / \mathrm{l}$, so $0.0975{ }^{*} 10^{-5}$ moles.

$$
n_{\mathrm{tot}}=n_{\mathrm{G}}+n_{\mathrm{L}}=c_{\mathrm{G}} V_{\mathrm{G}}+c_{\mathrm{L}} V_{\mathrm{L}}=\frac{P_{i}}{R T} V_{\mathrm{G}}+\frac{P_{i}}{H_{\mathrm{pm}}} V_{\mathrm{L}}
$$

We will now calculate the partial pressure of ammonia in the gas phase:

$$
\begin{aligned}
& \text { Pi }=\frac{n_{t o t, i}}{\left(\frac{V_{g}}{R T}\right)+\left(\frac{V_{L}}{H m p}\right)}=\frac{9.75 * 10^{-7}}{\left(\frac{0.0025}{0.082 * 298}\right)+\left(\frac{0.0975}{0,017}\right)}=\frac{9.75 * 10^{-7}}{\left(1.02 * 10^{-4}\right)+(5,74)} \\
& =\frac{97.5 * 10^{-8}}{5,740102}=16.99 * 10^{-8} \mathrm{~atm}
\end{aligned}
$$

Now we could find the equilibrium concentration of ammonia in solution:
$C_{L}=\frac{P i}{H p m}=\frac{16.99 * 10^{-8}}{1.7 * 10^{-2}}=9.99 * 10^{-6} \mathrm{~mol} / \mathrm{L}-$ this is the concentration that will be measured in the solution.
This is 99.9% of the total concentration of ammonia in the bottle, so
0.1% of ammonia is in the air bubble.

According to Henry's law we could now calculate the partial pressure of radon in the gas phase:

$$
\begin{aligned}
& P i=\frac{n_{\text {tot }, i}}{\left(\frac{V g}{R T}\right)+\left(\frac{V_{L}}{H m p}\right)}=\frac{9.75 * 10^{-7}}{\left(\frac{0.0025}{0.082 * 298}\right)+\left(\frac{0.0975}{108}\right)} \\
& =\frac{9.75 * 10^{-7}}{\left(1.02 * 10^{-4}\right)+\left(9.04 * 10^{-4}\right)}=\frac{97.5 * 10^{-8}}{10.06 * 10^{-4}}=9.69 * 10^{-4} \mathrm{~atm}
\end{aligned}
$$

Now we will find the equilibrium concentration of radon in solution:
$C_{L}=\frac{P i}{H p m}=\frac{9.69 * 10^{-4}}{108}=8.97 * 10^{-6} \mathrm{~mol} / \mathrm{L}$ - this is the concentration that will be measured in the solution.
This is 89.7% of the total concentration of radon in the bottle, so 10.3\% of radon is in the air bubble.

There will be more radon in gas phase, compared to ammonia due to their very different Henry's constants.

Gas-liquid mass transfer

Often described with two-film theory

- Assumes gas film and liquid film on both sides of the interface
- Assumes that the bulkliquid and bulk-gas are perfectly mixed
- Under steady-state conditions the rate of mass transfer in gas film must be equal to liquid film

Optionally surface-renewal model

- surface is randomly replaced
Or penetration model
- unsteady mass transfer during the contact time of gas/liquid

The two-film theory

Absorption of gases to liquid 1/2

From Fick's first law

$$
r=k_{G}\left(P_{G}-P_{i}\right)=k_{L}\left(C_{i}-C_{L}\right)
$$

k_{G} gas film mass transfer coeff
k_{L} liquid film mass transfer coeff

From Henry's law

$$
r=K_{L}\left(C_{s}-C_{t}\right)
$$

C_{s} saturation concentration
C_{t} concentration at time t

Usually overall coefficients K_{L} and K_{G} are used
K_{L} is used if liquid film resistance controls (= the case e.g. for water and oxygen)

Mass transfer rate per unit volume is obtained by multiplying by area A and dividing by the volume V

$$
r_{V}=K_{L} \frac{A}{V}\left(\mathrm{C}_{\mathrm{s}}-\mathrm{C}_{\mathrm{t}}\right)=\mathrm{K}_{\mathrm{L}} \mathrm{a}\left(\mathrm{C}_{\mathrm{s}}-\mathrm{C}_{\mathrm{t}}\right)
$$

Absorption of gases 2/2

A mass balance for an open basin:
Accumulation = rate of mass transfer + inflow - outflow

From $\frac{\partial C}{\partial t}=\mathrm{K}_{\mathrm{L}} \mathrm{a}\left(\mathrm{C}_{\mathrm{s}}-\mathrm{C}_{\mathrm{t}}\right)$

In case of desorption of gases:
$\frac{\boldsymbol{C t}-\boldsymbol{C} \boldsymbol{s}}{\boldsymbol{C 0}-\boldsymbol{C} \boldsymbol{s}}=e^{-\left(\boldsymbol{k}_{L} \boldsymbol{a}\right) t}$

Note: Initial state is supersaturation $\left(C_{0}-C_{s}\right)$

In case of absorption:
$\frac{\boldsymbol{C s}-\boldsymbol{C} \boldsymbol{t}}{\boldsymbol{C s}-\boldsymbol{C} \mathbf{0}}=e^{-\left(\boldsymbol{k}_{L} a\right) t}$

Demo exercise - Desorption of benzene

A quantity of benzene was spilled into a water storage basin. Estimate the time required for the concentration to drop by $\mathbf{5 0 \%}$ due to volatilization. $\mathrm{K}_{\mathrm{l}} \mathrm{a}$ in this case for benzene $0,144 \mathrm{~m} / \mathrm{h}$.
It can be assumed that the concentration of benzene in the atmosphere is $0 \rightarrow$
$\frac{c_{t}}{c_{0}}=e^{-(\boldsymbol{K L a}) t}$

Thus $\frac{\mathbf{0 , 5 C _ { 0 }}}{\boldsymbol{C}_{\mathbf{0}}}=e^{-(\boldsymbol{K L a}) t}$
Solving for time
$\mathrm{K}_{\mathrm{L}} \mathrm{t}=\ln 2$
$t=0,69 / K_{L} a$
K_{L} a for benzene $\mathbf{0 , 1 4 4 \mathrm { m } / \mathrm { h }}$
$\rightarrow \mathrm{T}=4,8 \mathrm{~h}$

Air bubbles in a reactor basin - a researcher approach

Concentrations
Pressure
Bubble size

Temperature
Flow pattern
Viscosity
Resistance due to surfactants etc.

Air bubbles in a reactor basin - an engineer approach

In practice the oxygen transfer rate is calculated e.g.
$\mathrm{r}=\alpha \mathrm{K}_{\mathrm{L}} \mathrm{a}^{\boldsymbol{T - 2 0}}\left(\beta C_{s}-C t\right)$
α is the correction factor for K_{L} taking into account the difference between clean water and process water (e.g. wastewater)
B is the correction factor for the saturation concentration in process water
Note: here a is the surface area of bubbles per unit volume.
Note: Temperature correction using Arrhenius equation θ^{T-20}

Group discussion

Based on the gas transfer theories what could be a good technical solution for a efficient reactor?

Discuss different ideas in small groups (15 min)

Discussion together to
compare the ideas (10 min)

Examples of gas liquid transfer applications

Stripping of gases - packed towers

VOC removal
From water: stripping, activated carbon adsorption
From soil: soil vapor extraction

Aalto University
School of Engineerin
Fliteway technologies

Examples of gas liquid transfer applications

Aeration

Aalto University
School of Engineering

CO2 stripping

Aalto University

Examples of gas liquid transfer applications

Ozone diffusion

Scrubbers - towers, plates, venturis

Aalto University
School of Engineering

What is affecting the aeration efficiency with bottom diffused air

- Water depth
- Aerator type
- Bubble size
- Aerator density and coverage (flow conditions)

Standard oxygen transfer efficiency, SOTE

Ammonia absortion and stripping

Nitrogen and phosphorus harvesting from different concentrated liquid waste streams (Post doc Surendra Pradhan)

Aalto University
School of Engineering

GHG emission studies from advanced nutrient removal processes

Comprehensive inventory of $\mathrm{N}_{2} \mathrm{O}$ emissions from an advanced WWTP and implementation of $\mathrm{N}_{2} \mathrm{O}$ in the plant wide process model

Total greenhouse gas emissions from the Viikinmäki wastewater treatment process （ CO_{2} equivalents）

Nitrous Oxide Production at a Fully Covered Wastewater－Treatment Plant：Results of a Long－Term Online Monitoring Campaign
${ }_{3}$ Heta Kosonen，${ }^{\dagger}$ Mari Heinonen，${ }^{*+⿳ 亠 丷 厂 小}$ Anna Mikola，${ }^{\dagger}$ Henri Haimi，${ }^{\dagger}$ Michela Mulas，${ }^{\dagger, \|}$ Francesco Corona，${ }^{\dagger+\perp}$ ${ }^{3}$ Heta Kosonen，${ }^{4}$ and Riku Vahala ${ }^{\text { }}$

Mixing

Velocity gradient G

> Mixing is important in different reactions and processes The mixing intensity is expressed as velocity gradient or G-value. $G_{c}=\sqrt{\frac{P}{\mu \cdot V}}$ in which: $G_{c}=$ velocity gradient for rapid mixing $P=$ dissipated power $\mu=$ dynamicwater viscosity $V=$ volume of mixing tank

Mixing systems can be:

- Mechanical
- Static

In case of mechanical mixing, thed dissipated power is evaluated by the power consumed.

In static mixing the dissipated power is calculated from the head loss in the mixing tank using equation:

```
P}=\rho\cdotg\cdotQ\cdot\Delta
in which:
\rho = density of water
g = gravity constant
(m/s}\mp@subsup{}{}{2}
Q = flow
(m/s)
|H= head loss over mixing tank

\section*{pH, alkalinity, hardness}

\section*{pH - basics}

\section*{Water dissociates on \(\mathrm{H}^{+}\)and \(\mathrm{OH}^{-}\)}

For pure water
\(\{\mathrm{H}+\}\{\mathrm{OH}-\}=\mathrm{Kw}=10^{-7} \times 10^{-7}=\) 10-14
\(\mathrm{pH}=-\log \{\mathrm{H}+\}\)
At pH \(2 \rightarrow\{\mathrm{H}+\}=10^{-\mathbf{2}}\)
At pH \(10 \rightarrow\{\mathrm{H}+\}=10^{-10}\)

When acid is added to water, it ionizes and \(\mathrm{H}^{+}\)increases and consequently \(\mathrm{OH}^{-}\)must decrease in order to keep the ionization equilibrium

Strong acids/bases are strongly ionized, week acids / bases are poorly ionized

\section*{Alkalinity - basics}

Alkalinity is the acid neutralization capacity
Mainly due to salts of weak acids and strong bases
Most important:
Hydroxide OH-
Carbonate \(\mathrm{CO}_{3}{ }^{2-}\)
Bicarbonate \(\mathrm{HCO}_{3}^{-}\)
Less important: phosphates, silicates...

Hydroxide alkalinity can be calculated from pH
Hydroxide alkalinity = \(\mathbf{1 0}^{(p H-p K w)}\)
[ OH ] 1 mole/l \(=50000 \mathrm{mg} / \mathrm{l}\) of \(\mathrm{CaCO}_{3}\)

\section*{Calculation and measurement of alkalinity}
\(\left[\mathrm{H}^{+}\right]+\)alkalinity \((\mathrm{mol} / \mathrm{I})=\left[\mathrm{HCO}_{3}-\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{OH}^{-}\right]\)

Alkalinity is measured by titration with sulfuric acid Usually given as mmol/l (= meq/l) Other units of alkalinity: equivalent \(\mathrm{CaCO}_{3}\)

Acidity: usually caused by \(\mathrm{CO}_{2}\) in the water, also mineral acidity
\(\mathrm{CO}_{2}\) from the atmosphere and from biological processes

\section*{Carbonate equilibrium}


\section*{Relevance of pH in treatment processes}
pH control
- Removal of \(\mathrm{CO}_{2}\) by aeration
- The most commonly used alkaline reagents are \(\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)\), ( NaOH ), \(\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)\) e.g. pH control for nitrification
- Sulphuric and hydrochloric acids \(\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HCl}\right)\) are used to increase the acidity of the water, i.e.decrease the pH, e.g.in coagulation, neutralisation


\section*{Application of alkalinity in treatment processes}
- Chemical coagulation sufficient alkalinity needed
- Water softening
- Corrosion control
- Langelier saturation index
- Aggressive index
- Buffer capacity, especially in biological processes
\(\mathrm{CO}_{2}\) - alkalinity - pH - interactions

Example: removal of \(\mathrm{CO}_{2}\) to increase pH - what is the effect on alkalinity?

\section*{Hardness - basics}

Reflects the nature of
geological formations
Caused by multivalent metallic cations mainly \(\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}\)
Expressed as mmol/l, German hardness ( dH ) or equivalents \(\mathrm{CaCO}_{3}\)
\(\mathrm{mmol} / \mathrm{I}=100 \mathrm{xmg} / \mathrm{CaCO}_{3}\)
\[
\begin{aligned}
& \text { Hardness }\left(\frac{m g}{l} \text { of CaCo3 }\right) \\
& =M^{2+} \frac{50}{E W \text { of } M}
\end{aligned}
\]

EW = equivalent weight In this case atomic weight divided by the usual valence

\section*{Consequences and removal of hardness}
- Ineffectiveness of soap
- Scale formation especially in warm environments (boilers, heating system pipes...)
- Causes clogging, material damages and heat losses
- Protects against corrosion

Hardness can be removed by removing Ca and Mg
Methods:
- Precipitation and filtration
- Ion exchange```

