Example

There is a styrene-based ion exchange resin for removal of chlorate (ClO_3^{-}) from water. The selectivity coefficients for nitrate (NO_3^{-}) and chlorate over chloride (Cl^{-}) on the given resin are 2 and 125, respectively.

Determine the adsorption densities of nitrate and chlorate in equivalents per gram (eq/g) on the resin with a total site density of 1.7 meq/g , when the resin reaches equilibrium with water containing 31 mg/L NO_3^- , 199 µg/L CLO_3^- and negligible Cl⁻.

 $K NO_3/CI = 2$

 $K ClO_{3}/Cl = 125$

Example

There is a styrene-based ion exchange resin for removal of chlorate (ClO_3^{-}) from water. The selectivity coefficients for nitrate (NO_3^{-}) and chlorate over chloride (Cl^{-}) on the given resin are 2 and 125, respectively.

Determine the adsorption densities of nitrate and chlorate in equivalents per gram (eq/g) on the resin with a total site density of 1.7 meq/g , when the resin reaches equilibrium with water containing 31 mg/L NO_3^- , $199 \mu \text{g/L CLO}_3^-$ and negligible Cl⁻.

C NO₃= 31 mg/L C ClO₃= 199 microg/L

qmax= 1.7 meq/g

adsorption density equation for nitrate:

 $q_{NO3} = (K_{NO3/CI} \times C_{NO3}) / ((K_{NO3/CI} \times C_{NO3}) + K_{CIO3/CI} \times C_{CIO3}) \times q_{max}$

 $K NO_3/CI = 2$ $K CIO_3/CI = 125$

Considering the units:

 $C_{NO3} = 31 \text{ mg/L} / 62 \text{ mg/meq} = 0.5 \text{ meq/L}$ $C_{CIO3} = 199 \mu \text{g/L} / (99.45 \times 1000000 \mu \text{g/meq}) = 0.002 \text{ meq/L}$

qmax= 1.7 meq/g

Inserting the values in the equation with the correct units:

----> $q_{NO3} = (2 \times 0.5 \text{ meq/L}) / (2 \times 0.5 \text{ meq/L} + 125 \times 0.002 \text{ meq/L}) \times 1.7 \text{ meq/g}$

----> q_{NO3} = 1.36 meq/g