% MS-E2170 Simulation % Exercise 2.1: Simulate delays in queue for single server queuing model % (M/M/1) % % Fill the '' with your own input. % % Created: 2018-02-21 Heikki Puustinen %% Initialization % Number of independent replications M = ; % Number of customers N = ; % Mean time between customer arrivals lambda = ; % Mean service time mu = ; % Significance level alpha = ; %% Simulation % Initialize vector where mean delay times are saved D_mean = zeros(M,1); % Loop through replications for ii = 1:M % Call the queueing model (queue.m) D = ; % Recall that D holds all the delays. We need the mean: D_mean(ii) = ; end % Calculate 1-alpha confidence interval. Use the Student's t-distribution % with M-1 degrees of freedom. Hint: 'tinv' Ci = ; %% Results fprintf('Results:\n') fprintf('Estimate of the average delay: %.3f %s %.3f \n', ... mean(D_mean), 177, Ci) %% Plotting % Calculate convergence and confidence intervals D_convergence = zeros(M,1); Ci = zeros(M,1); for ii = 1:M % Calculate average of samples 1 to ii. D_convergence(ii) = mean(D_mean(1:ii)); % Calculate confidence interval Ci(ii) = tinv(1-alpha/2,ii-1) * sqrt(var(D_mean(1:ii))/ii); end % Open new window etc. f1 = figure('Name','MS-E20170, Exercise 2.1: Convergence of mean delay'); ax1 = axes('Parent',f1); hold(ax1,'on') title(ax1,'Convergence') xlabel(ax1,'Replications') ylabel(ax1,'Average delay') % Plot convergence plot(ax1,1:M,D_convergence,'r'); % Annotation text(M,D_convergence(end),num2str(D_convergence(end)) ,'Parent',ax1,'Color','r') % Plot Confidence intervals plot(ax1,1:M,D_convergence + Ci,'b') plot(ax1,1:M,D_convergence - Ci,'b') legend(ax1,'Average delay','Ci')