Aalto University School of Science Department of Mathematics and Systems Analysis

Kinnunen

MS-E1281 Real analysis, spring 2020

Homework assignment 3

Topic: The Hardy-Littlewood maximal function.

Deadline 23 March 2020 at 16:00.

- 1. Assume that $f, g \in L^1_{loc}(\mathbb{R}^n)$. Prove the following claims:
 - (a) (Sublinearity) $M(f+g)(x) \le Mf(x) + Mg(x)$.
 - (b) (Homogeneity) $M(af)(x) = |a|Mf(x), a \in \mathbb{R}$.
 - (c) (Translation invariance) $M(\tau_y f)(x) = (\tau_y M f)(x), y \in \mathbb{R}^n$, where $\tau_y f(x) = f(x+y)$.
 - (d) (Scaling invariance) $M(\delta_a f)(x) = (\delta_a M f)(x)$, where $\delta_a f(x) = f(ax)$ with a > 0.
- 2. Assume that $f \in L^1_{loc}(\mathbb{R}^n)$. Show that for each fixed $0 < r < \infty$, the mapping

$$x \mapsto \frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) \, dy, \quad x \in \mathbb{R}^n,$$

is continuous in \mathbb{R}^n . How can this fact be used to conclude that the Hardy-Littlewood maximal function is lower semicontinuous?

3. Assume that $f \in L^1_{\text{loc}}(\mathbb{R}^n)$. Show that for each fixed $x \in \mathbb{R}^n$ the mapping

$$r \mapsto \frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) \, dy, \quad 0 < r < \infty,$$

is continuous in \mathbb{R}_+ .

- 4. Show that if $Mf(x_0) = 0$ for some $x_0 \in \mathbb{R}^n$, then Mf(x) = 0 for every $x \in \mathbb{R}^n$.
- 5. Show that if $Mf(x_0) < \infty$ for some $x_0 \in \mathbb{R}^n$, then $Mf(x) < \infty$ for almost every $x \in \mathbb{R}^n$.
- 6. Let r > 0. Show that there are constants $c_1 = c_1(n)$ and $c_2 = c_2(n)$ such that

$$\frac{c_1 r^n}{(|x|+r)^n} \le M(\chi_{B(0,r)})(x) \le \frac{c_2 r^n}{(|x|+r)^n}$$

for every $x \in \mathbb{R}^n$. How can this be used to show that the Hardy-Littlewood maximal operator does not map $L^1(\mathbb{R}^n)$ to $L^1(\mathbb{R}^n)$?