MS-E1281 Real analysis, spring 2020

Homework assignment 6

Topic: Duals and weak convergence.

Deadline 20 April 2020 at 16:00.

- 1. Let μ and ν be finite Radon measures on \mathbb{R}^n .
 - (a) If $\nu \ll \mu$ and f is a nonnegative μ -measurable function, show that

$$\int_A f \, d\nu = \int_A f D_\mu \nu \, d\mu$$

for every Borel set $A \subset \mathbb{R}^n$.

- (b) Prove the corresponding claim for $f \in L^1(\mathbb{R}^n; \nu)$.
- 2. Assume that $f \in L^p(\mathbb{R}^n)$ with 1 .
 - (a) Show that

$$\left| \int_{\mathbb{R}^n} fg \, dx \right| \le ||f||_p$$

for every $g \in L^{p'}(\mathbb{R}^n)$ with $||g||_{p'} \leq 1$.

(b) Show that

$$||f||_p = \sup \left\{ \left| \int_{\mathbb{R}^n} fg \, dx \right| : ||g||_{p'} \le 1 \right\}.$$

Hint:

$$g = \frac{|f|^{p/p'} \operatorname{sgn} f}{\|f\|_p^{p/p'}}.$$

- 3. Assume that $f \in L^1(\mathbb{R}^n)$.
 - (a) Show that

$$\left| \int_{\mathbb{R}^n} fg \, dx \right| \le ||f||_1$$

for every $g \in L^{\infty}(\mathbb{R}^n)$ with $||g||_{\infty} \leq 1$.

(b) Show that

$$||f||_1 = \sup \left\{ \left| \int_{\mathbb{R}^n} fg \, dx \right| : ||g||_{\infty} \le 1 \right\}.$$

- 4. Let $\mu_i = \delta_{1+1/i}$, $i = 1, 2, \ldots$, be Dirac's measures on \mathbb{R} .
 - (a) Show that μ_i converges weakly as $i \to \infty$ and determine the weak limit μ .
 - (b) Give an an example of a Borel set $A \subset \mathbb{R}$ such that

$$\lim_{i \to \infty} \mu_i(A) \neq \mu(A).$$

- 5. Let $f_i:(0,2\pi)\to\mathbb{R}, f_i(x)=\sin(ix), i=1,2,\ldots$
 - (a) Show that f_i converges weakly to 0 in $L^p((0, 2\pi))$.
 - (b) Show that f_i does not converge to 0 in $L^p((0, 2\pi))$.
- 6. Assume that μ_i , $i=1,2,\ldots$, are Radon measures on \mathbb{R}^n with $\mu_i \rightharpoonup \mu$ as $i \to \infty$. Show that

$$\lim_{i \to \infty} \mu_i(A) = \mu(A)$$

for every bounded Borel set $A \subset \mathbb{R}^n$ with $\mu(\partial A) = 0$.