
Databases :: Review

Database Course Summary Review

CS-A1153: Databases

Prof. Nitin Sawhney and Dr. Lukas Ahrenberg



Databases :: Review

Unified Modeling Language (UML) 
Review

CS-A1153: Databases

Prof. Nitin Sawhney



Databases :: Review

Final Exam: September 3, 2020, 09:00-12:00
Expected to Understand:
• Most concepts introduced in the lectures and textbook 

(chapters 4.9-4.10, 5.3-5.6, 8.5, and 9-12).
• Constructing UML Diagrams with Relations & Attributes.
• Writing SQL Queries for a Database Schema.
• Functional Dependencies and Decomposition into BCNF. 
• Transactions and ACID properties of transactions.
• Principle of Triggers and the distinction between row 

level and statement level triggers.
• Estimate which Indexes the database should have. 

Not Expected to demonstrate in exam:
• How to decompose relations to Fourth Normal Form.
• Writing embedded SQL or using SQL queries in Python.
• How to write triggers.



Databases :: Review

Review

► Creating a UML Diagram
► Class and Attributes
► Associations and Multiplicity
► Self-Associations and Association Class
► Attributes as Keys

► Converting a UML diagram into Relations



Databases :: Review

UML Modeling

► How can one start UML modeling?

► Simple, but often a good working approach:
1. Write a description of the database being modeled.
2. Underline all the nouns.
3. From nouns, find candidates for classes and attributes.
4. Some nouns won’t become either.
5. When the classes and attributes are done, think, what 

kind of relations there might be between the objects of 
the classes. Make them the associations.



Databases :: Review

Example: Description of a Web Store

► Create a database for a web store that has products and 
customers. Customers can make orders which can 
include multiple products. Products have product 
number, name, description, price and manufacturer. 
Manufacturers have ID, name and phone number. 
Customers have customer ID, name, year of birth, bonus 
points, address and email address. Every order has 
unique order number. Orders also have shipping 
method, state, products included in the order and the 
customer who made the order.



Databases :: Review

Example: underline classes and attributes

► Create a database for a web store that has products and 
customers. Customers can make orders which can 
include multiple products. Products have product 
number, name, description, price and manufacturer. 
Manufacturers have ID, name and phone number. 
Customers have customer ID, name, year of birth, bonus 
points, address and email address. Every order has 
unique order number. Orders also have shipping 
method, state, products included in the order and the 
customer who made the order.



Databases :: Review

Creating a UML Diagram for the Web Store

Product

number PK
prodName
description
price

Manufacturer

ID  PK
name  
phone

Order
orderNo PK
deliver  
status

Customer

custNo PK
name  
born  
bonus  
address  
email

0..1

*
* * * 1..1

Made-by

Belongs-to

Ordered-by



Databases :: Review

Associations and Multiplicity

► Associations create a connection between two classes 
(no more than two in UML diagrams).

► In this example, there can be 0 or 1 Manufacturer-
objects for each Product-object.

► Each Manufacturer-object can connect to arbitrarily
many Product-objects.

► Pay attention to which ends the labels are on!

Product Manufacturer
number PK ID PK

prodName * 0..1 name

description
Made-by

phone

price



Databases :: Review

Multiplicity of Association: Precise Notations

► In an association between classes A and B, above or 
below the line, the label m..n at class B’s end means, 
that for each object in the class A we have at least m and 
at most n objects of class B connected to it.

► Examples:
► 0..1 at most 1, but possibly none
► 0..5 at most 5, but possibly none
► 1..2 at least 1, at most 2
► 1..1 exactly 1 (can be labeled with 1)
► 1..* at least one 1, but otherwise arbitrarily many
► 0..* arbitrary amount (can be labeled simply with *).

► When it comes to database modeling, a missing 
label is equivalent to 1..1.



Databases :: Review

Marking the Attributes as Keys

Product Manufacturer
number PK ID PK

prodName * 0..1 name

description
Made-by

phone

price

► A product is identified by its product number (attribute
number), and a manufacturer by its ID (attribute ID).



Databases :: Review

Another Example of Keys

► In the textbook, the keys for the class Movie are the 
name of the movie and the year, together. 

The idea is, that no film studio wants to produce a movie 
with the same name as another movie from a competing 
studio in the same year. However, it’s possible that later 
someone wants to create a new version of the movie with 
the same name.

Movie

title PK
year PK  
length  
genre



Databases :: Review

Example Diagram
► This model allows us to add products with no 

manufacturer in the database. On the contrary we 
can’t add orders with no customer.

Product

number PK
prodName
description
price

Manufacturer

ID  PK
name  
phone

Order
orderNo PK
deliver  
status

Customer

custNo PK
name  
born  
bonus  
address  
email

0..1

*
* * * 1..1

Made-by

Belongs-to

Ordered-by



Databases :: Review

Self-Association

► Problem: How can we represent associations where the 
same class occurs twice?

► Example: let’s define, that one employee can be an 
immediate superior for another employee.

Employee

ID  PK
first_name  
last_name  
born  
address  
position

0..1  Immediate superior

0..20 Subordinate

► Both roles are written in the diagram. The multiplicity of 
the association is indicated at the end corresponding to 
the roles (here one employee can have at most one 
immediate superior, and 0–20 subordinates).



Databases :: Review

Association Class
► Example: a customer can add many items of the same 

product to one order.
► Where should information about number of items

be attached?
► Add to association Belongs-to an association class, and to 

it’s attribute we’ll add information about number of items.

Product

number PK
prodName
description
price

Order

orderNo PK
deliver  
status

* *Belongs-to

Countinfo

count

► An association class has no key attributes and multiplicity is 
never indicated on the line leading to the association class.



Databases :: Review

Web Store Example with Association Class

Product

number PK
prodName
description
price

Manufacturer

ID  PK
name  
phone

Order
orderNo PK
deliver  
status

Customer

custNo PK
name  
born  
bonus  
address  
email

0..1

*
* * * 1..1

Made-by

Belongs-to
Ordered-by

Countinfo

count



Databases :: Review

When Attributes are not enough for the Key

Product

number PK
prodName
description
price

Version

size PK

color PK
PK

* 1..1

► Assume that products can have different versions, e.g. 
the same clothing in different colors and sizes.

► Define a class Version with size and color as 
attributes. Even together they are not enough to 
uniquely identify an object of Version (therefore 
they don’t form a key).

► Solution: form a key of class Version by using attributes 
of class Version and the key attribute of class Product.
The class Version is marked with only it’s own attributes.



Databases :: Review

Design Principles

What should be considered when making a UML model 
of a real-life system?

► Faithfulness
► Avoiding Redundancy
► Simplicity Counts
► Choosing the Right Relationships
► Picking the Right Kind of Element



Databases :: Review

Using the Right Elements

► When should some element be described with a class or 
with an attribute?

► Let’s examine the model below. Could class Manufacturer 
and association Made-by be replaced by adding all its
attributes to the class Products?

► But then the name and phone number of a certain 
manufacturer would be repeated in different products.

Product

number PK
prodName  
description  
price

Manufacturer

ID  PK
name  
phone

* 0..1

Made-by



Databases :: Review

Using the Right Elements, Continued

► When to use a regular class vs. an association class? 
Association class is good for situations where the 
information being described is related exactly to a pair 
formed by two objects and it does not have its own key.

► In the web store example Order couldn’t be an 
association class, but is has to be regular class, because:

1. Order is not necessarily a relation between exactly one 
product and one customer, but one order can include 
several products.

2. The class Order has it’s own key attribute.

Only one of these reasonings would be enough.



Databases :: Review

Complete Web Store Example

Product

number PK
prodName
description
price

Manufacturer

ID  PK
name  
phone

Order
orderNo PK
deliver  
status

Customer

custNo PK
name  
born  
bonus  
address  
email

0..1

*
* * * 1..1

Made-by

Belongs-to
Ordered-by

Countinfo

count

Version

size PK

color PK
PK * 1..1



Databases :: Review

Basics:
► Each class gets its own relation, which has the same 

attributes as the class.

► For each many-many association we create a 
relation, whose attributes are the keys from both of 
the relations the association connects, and the 
attributes of the association class, if there is one.

► For each many-one association we can either create a 
relation in the same manner as with many-many 
associations or we can add attributes to the relation 
that are on the many-side of the association.

► Rename the attributes in the relations, if needed, to 
make them clear and distinct.

Converting UML Diagram to Database Schema



Databases :: Review

Example: Defining Relations for UML Classes

► For the classses in the UML diagram of the online store 
we can define relations:
Customers(custNo, name, born, bonus, address, email)  
Products(number, name, description, price)  
Manufacturers(ID, name, phone)
Orders(orderNo, deliver, status)

Product

number PK
prodName
description
price

Manufacturer

ID  PK
name  
phone

Order

orderNo PK
deliver  
status

Customer

custNo PK
name  
born  
bonus  
address  
email

0..1

*
* * * 1..1

Made-by

Belongs-to
Ordered-by



Databases :: Review

Example: Defining Relations for Associations

► For the associations we define relations:
MadeBy(number, ID) 
OrderedBy(orderNo, custNo)
BelongsTo(orderNo, number, count)

Product

number PK
prodName
description
price

Order

orderNo PK
deliver  
status

* *Belongs-to

Countinfo

count

Note: No relation needs to be created for the Countinfo class.



Databases :: Review

About Keys of Relations

► A relation defined based on a class has the same key 
attributes as the class.

► Relations based on many-many associations inherit the 
key attributes from both of the classes connected by the 
association.

► Relations based on many-one associations only inherit the 
key attributes from the class in the many-side.

For example, OrderedBy(orderNo, custNo)

Order

orderNo PK
deliver  
status

Customer

custNo PK
name  
born  
bonus  
address  
email

* 1..1
Ordered-by



Databases :: Review

About Keys of Relations, Continued

► It’s important not to define too many key attributes, as 
with the key attributes we make sure, that two tuples with 
the same values in the key attributes cannot be added.

Product

number PK
prodName
description
price

Manufacturer

ID  PK
name  
phone

0..1

*

Made-by

For instance, if the relation 
MadeBy would also have 
ID as its key attribute, we 
could add multiple tuples 
with the same product 
number, but with a 
different manufacturer.

E.g. MadeBy(number, ID)



Databases :: Review

Example: Relations for Self-Associations

► Here the same class occurs in the association twice:

Employee

ID  PK
first_name  
last_name  
born  
address  
position

0..1  Immediate superior

0..20 Subordinate

The key attributes will be added twice to describe 
both sides of the association.

► Hence, we define the relation:
Manages(subordinateID, superiorID)



Databases :: Review

Product

number PK
prodName
description
price

Version

size PK

color PK
PK

* 1..1

► In addition to the key attributes of the class Version, we 
add the key attributes from the class Product.

► We should never create a relation for the association 
between Version and Product.

► If the class Version is part of some other association, 
the relation created based on this association should 
include the key attributes from both of the classes 
Version and Product.

► Relations:
Products(number, name, description, price)  
Versions(prodNo, size, color)

Attributes of the class not sufficient for a key



REVIEWREVIEW
CS-A1153 - Databases (Summer 2020)

LUKAS AHRENBERGLUKAS AHRENBERG



BCNFBCNF
Always show the steps you take to reach BCNF
Compute the closure at each step to show if FDs are in BCNF or not
Also when you have reached the point of no BCNF violation (show that
there is none)



BCNF PROCEDURE (REPETITION)BCNF PROCEDURE (REPETITION)
1. Pick any non-trivial FD violating BCNF for 

(If none is found  is on BCNF)
Here: Show closures, and note violations (even if you are sure)
This is the only point at which you can terminate the procedure

2. Use it to create two (partially overlapping) sets of attributes
Set 1 : The closure of the determinants (the le� side) of the violating
FD
Set 2 : The union of the set of determinants with any attributes in 
not already in Set 1.
Here: Show how you get the two sets

3. These two sets are the attributes of two new relations: 
Here: Remember to note which FDs are valid in the new relation

4. Apply the same procedure to  and .

R

R

R

R1, R2

R1 R2



BCNFBCNF

Schema: 

Functional Dependencies:

Is this in BCNF?

Always show closures (If it is a complicated case, also show how you have
gotten them.

[OK]

[Violation]
 [Violation]

M(title,year,studioName,president,presAddr)

{title, year, studioName, president, presAddr}

title year → studioName
studioName → president
president → presAddr

= {title, year, studioName, president, presAddr}{title, year}+

= {studioName, president, presAddr}{studioName}+

= {president, presAddr}{president}+



BCNFBCNF

Schema: 

1. Pick non-trivial violating

2. Set 1: The closure

3. Set 2: The union of the determinants and attributes not in Set 1

4. Create two new relations

Need to check these!

M(title,year,studioName,president,presAddr)

{title, year, studioName, president, presAddr}

studioName → president

{studioName, president, presAddr}

{studioName} ∪ {title, year} = {title, year, studioName}



PROJECTION OF FDS (REPETITION)PROJECTION OF FDS (REPETITION)
What happens to an FD when the relation it is defined for is decomposed?

The original FD's are not necessarily valid
New FD's may result due to the projection of the original set

Let  be a relation, decomposed into the relation  (and
some other relation).

Let  be the set of FD's for .

Then valid FD's for  can be determined as

For each possible subset of attributes  of , and some
attribute  of ,  is an FD, if the following

conditions hold

1.  is included in  (with respect to )
2.  is not included in 

R R1

S R

R1

A R1

B R1 A → B

B A
+

S

B A



BCNFBCNF
Schema: 

1. Which FDs are present in the new relation?
2. Create all possible attribute subsets:

3. Use the FDs for M and check if there are any non-trivial FDs
4. Starting with the singletons we find 
5. Take the closure : 
6. Remark that this is in BCNF and the only FD

7. Now you are done with this particular relation

Note: In complicated cases you might not be able to 'see' which FDs
project

{title, year, studioName}

{title} , {year} , {studioName} , {title, studioName} ,

{title, year} , {year, studioName}

title year → studioName

= {title, year, studioName}{title, year}+



BCNFBCNF
Schema: 

1. Which FDs are present in the new relation?
2. Create all possible attribute subsets:

3. Use the FDs for M and check if there are any non-trivial FDs
4. Starting with the singletons we find

5. And so on… (Follow the rest of the procedure.)

{studioName, president, presAddr}

{studioName} , {president} , {presAddr} ,

{studioName, presAddr} , {studioName, president} ,

{president, presAddr}

studioName → president

president → presAddr



SQL - ROUND 4, PROBLEM 11SQL - ROUND 4, PROBLEM 11

Using the database schema in Problem 1, write the
following query in SQL: For each study program, list the

number of the students who have completed at least 10.0
credits (list only those study programs which have at

least one student who has completed at least 10.0
credits).



SQL - WHERE CAN I GET THE INFORMATION?SQL - WHERE CAN I GET THE INFORMATION?

Take your time; think about what you might need:
Program names can be gotten from Students
Credits for courses from Courses
Need Grades to link these via studentID and courseCode

Need to find the programs of students with more than 10 credits
Need to count those for each program

Students(ID, name, program, year)

Courses(code, name, credits)

Grades(studentID, courseCode, date, grade)



STUDENTS WHO HAS COMPLETED 10 CREDITS - 1STUDENTS WHO HAS COMPLETED 10 CREDITS - 1
Need to involve all three tables

SELECT ID 

FROM Students, Grades, Courses 

WHERE ID = StudentID AND code = courseCode; 



STUDENTS WHO HAS COMPLETED 10 CREDITS - 2STUDENTS WHO HAS COMPLETED 10 CREDITS - 2
Need to group by ID

But still not taking credits into account

SELECT ID 

FROM Students, Grades, Courses 

WHERE ID = StudentID AND code = courseCode 

GROUP BY ID; 



STUDENTS WHO HAS COMPLETED 10 CREDITS - 3STUDENTS WHO HAS COMPLETED 10 CREDITS - 3
Need HAVING clause

ID

112233

212434

218311

224411

433511

442255

512434

512443

553311

987202

SELECT ID 

FROM Students, Grades, Courses 

WHERE ID = StudentID AND code = courseCode 

GROUP BY ID 

HAVING SUM(credits) >= 10; 



NOW WE CAN LOOK UP PROGRAMS WITHNOW WE CAN LOOK UP PROGRAMS WITH
STUDENTS IN THIS SETSTUDENTS IN THIS SET

program COUNT(ID)

AUT 2

BIZ 2

KEM 1

TFM 1

TIK 3

TUTA 1

SELECT program, COUNT(ID) 

FROM Students 

WHERE ID IN 

(SELECT ID 

FROM Students, Grades, Courses 

WHERE ID = StudentID AND code = courseCode 

GROUP BY ID 

HAVING SUM(credits) >= 10 

) 

GROUP BY program; 


	UML Review2
	BCNF_Review



