
INTRODUCTION TO SQLINTRODUCTION TO SQL
CS-A1153 - Databases (Summer 2020)

LUKAS AHRENBERGLUKAS AHRENBERG

DATABASE OPERATIONS & SQLDATABASE OPERATIONS & SQL
Defining new tables
Adding rows (a.k.a records) to tables
Query (retrieving information from) the database tables
SQL is a language to express such operations

SQLSQL
Structured Query Language

Sometimes pronounced 'sequel'
Roots in work on relational data models at IBM & Relational So�ware Inc in
the 1970's
Declarative (we say what we want, not exactly how to do it)
First commercialized and standardized in the 1980's

New standards released since
Many different 'dialects'
Understood by most major DB systems

Oracle DB
MariaDB
sqlite
PostgreSQL
… And many more

COURSE SPECIFICSCOURSE SPECIFICS
[U&W 6:1-6:2]
Try the examples!

You can use (free & open source)
The database can be created using from A+

 how to use it with SQLiteStudio

SQLiteStudio
this file

Instructions

https://sqlitestudio.pl/
http://www.cse.hut.fi/fi/opinnot/CS-A1150/K2020/exercises/create-exampledatabase.sql
http://www.cse.hut.fi/fi/opinnot/CS-A1150/K2020/exercises/studio.html

SELECT - MAKING SQL QUERIESSELECT - MAKING SQL QUERIES
Basic form:

Attributes
is one or more columns

Relations
is one or more tables

Condition
is a predicate expression controlling tuple selection

(Don't forget the semicolon ; !)

SELECT <Attributes> FROM <Relations> WHERE <Conditions>;

SELECT EXAMPLES : MOVIESTAR RELATIONSELECT EXAMPLES : MOVIESTAR RELATION

name address gender brirthdate

Kate Capshaw 56 Main St., Beverly Hills F 1953-11-03

Harrison Ford 789 Palm Dr., Beverly Hills M 1942-07-13

Calista Flockhart 789 Palm Dr., Beverly Hills F 1964-11-11

Richard Attenborough Harley St., London M 1923-08-29

Julia Roberts Oddstreet 1 F 1967-10-28

Richard Gere Oddstreet 2 M 1939-08-31

Mike Myers Oddstreet 12 M 1963-05-25

Sofia Coppola 28 Some St. F 1971-05-14

Carrie Fisher 123 Maple St., Hollywood F 1956-10-21

Mark Hamill 456 Oak Rd., Brentwood M 1951-09-25

Clint Eastwood 4 Maple St., Hollywood M 1930-05-31

Audrey Hepburn Tolochenaz F 1929-05-04

MovieStar(,address,gender,birthdate)name
– ––––

SELECT EXAMPLE 1SELECT EXAMPLE 1
Get name and address of all male movie stars in table:

name address

Harrison Ford 789 Palm Dr., Beverly Hills

Richard Attenborough Harley St., London

Richard Gere Oddstreet 2

Mike Myers Oddstreet 12

Mark Hamill 456 Oak Rd., Brentwood

Clint Eastwood 4 Maple St., Hollywood

SELECT name,address FROM MovieStar WHERE gender = 'M';

SELECT EXAMPLE 2SELECT EXAMPLE 2
Can leave out WHERE if we want all rows:

Get name and address of all movie stars in table.

name address

Kate Capshaw 56 Main St., Beverly Hills

Harrison Ford 789 Palm Dr., Beverly Hills

Calista Flockhart 789 Palm Dr., Beverly Hills

Richard Attenborough Harley St., London

Julia Roberts Oddstreet 1

Richard Gere Oddstreet 2

Mike Myers Oddstreet 12

Sofia Coppola 28 Some St.

Carrie Fisher 123 Maple St., Hollywood

Mark Hamill 456 Oak Rd., Brentwood

Clint Eastwood 4 Maple St., Hollywood

Audrey Hepburn Tolochenaz

SELECT name,address FROM MovieStar;

SELECT EXAMPLE 3SELECT EXAMPLE 3
The wild-card * may be used if all columns are wanted. The following basically

shows the whole table:
Get all columns of all records.

name address gender birthdate

Kate Capshaw 56 Main St., Beverly Hills F 1953-11-03

Harrison Ford 789 Palm Dr., Beverly Hills M 1942-07-13

Calista Flockhart 789 Palm Dr., Beverly Hills F 1964-11-11

Richard Attenborough Harley St., London M 1923-08-29

Julia Roberts Oddstreet 1 F 1967-10-28

Richard Gere Oddstreet 2 M 1939-08-31

Mike Myers Oddstreet 12 M 1963-05-25

Sofia Coppola 28 Some St. F 1971-05-14

Carrie Fisher 123 Maple St., Hollywood F 1956-10-21

Mark Hamill 456 Oak Rd., Brentwood M 1951-09-25

Clint Eastwood 4 Maple St., Hollywood M 1930-05-31

Audrey Hepburn Tolochenaz F 1929-05-04

SELECT * FROM MovieStar;

SELECTING FROM MULTIPLE TABLESSELECTING FROM MULTIPLE TABLES
Multiple tables may be listed a�er FROM

Comma separated
This allows columns to be selected from the table product

Emulating Cartesian product and selection

EXAMPLE - NAME AND ADDRESS OF STAR WARS ACTORSEXAMPLE - NAME AND ADDRESS OF STAR WARS ACTORS

(Query name and address of Star Wars actors on record. The effect is a Cartesian product of the two relations,
followed by selection and projection.)

starName address

Harrison Ford 789 Palm Dr., Beverly Hills

Carrie Fisher 123 Maple St., Hollywood

Mark Hamill 456 Oak Rd., Brentwood

Note: This is a Cartesian product, not a join, so it will produce all parings unless you write the proper WHERE
condition. E.g. Leave out name = starName: 36 tuples; Leave out conditions completely: 156 tuples. Try it!

MovieStar(,address,gender,birthdate)name
– ––––

StarsIn(, ,)movieTitle
– –––––––––––

movieYear
– ––––––––––

starName
– –––––––––

 SELECT starName,address FROM MovieStar,StarsIn

 WHERE movieTitle = 'Star Wars' AND name = starName;

A WORD ON SQL STYLEA WORD ON SQL STYLE
SQL keywords are not sensitive to case, but by convention:

use ALL CAPS for KEYWORDS
Comments

Multi-line comments using C-style /* This is a comment. */
Single line comments prefixed by --

Statements can be broken up over several lines (ended by ;)

/*

Movie star records for:

+ males

+ born latest 1950.

*/

SELECT name,birthdate -- Only need name and birthdate

 FROM MovieStar

 WHERE gender='M' AND birthdate <= 1950

 ; -- Always end with a semicolon!

WRITING A QUERYWRITING A QUERY
Answer the following questions:

1. What tables do you need to get the answer?
List them a�er FROM
Now imagine that you have every possible combination of rows in
these

2. Which combinations will contain the answer?
Think of constraints for these combinations and encode them in the
WHERE clause

3. Which columns are relevant to the answer?
Enter them a�er SELECT

WRITING WHERE PREDICATESWRITING WHERE PREDICATES
Compare values

=, < , <=, > , >=, <>
<> (Not equal to.)

(Note some dialects also allow for the more familiar !=)
Arithmetic expressions

+, -, *, /.
E.g. PC.price/2 < Laptop.price

Logical operators
AND, OR, NOT

EXAMPLE - GET SUBSET OF LAPTOPSEXAMPLE - GET SUBSET OF LAPTOPS

(Get Laptop's with screen larger than 15" and either speed > 2.5 GHz or ram >= 8192.)

model speed ram hd screen price

2001 2.5 8192 750 17.3 3534

2002 2.3 8192 128 17.3 949

2003 2.3 8192 128 15.6 599

2005 2.6 16384 1000 17.3 2499

2006 2.2 16384 256 15.4 2199

2008 2.5 8192 192 15.6 949

2010 2.5 8192 256 15.6 2352

Laptop(,speed,ram,hd,screen,price)model
– –––––

 SELECT * FROM Laptop

 WHERE (speed > 2.5 OR ram >= 8192) AND screen > 15;

COMPARING STRINGSCOMPARING STRINGS
Strings can also be compared, but when using <, <=, >, >= lexicographic
order is imposed
For more complicated expressions the command LIKE can be used when
comparing strings
Basic format <string attribute> LIKE <pattern string>

Wildcards may be used
_ matches any single character
% matches any number of any character

EXAMPLE 1 - COMPARING STRINGS WITH EXAMPLE 1 - COMPARING STRINGS WITH LIKELIKE
(Get titles and studio for all Movies made by a studio beginning with the letter 'D'.)

title studioName

Pretty Woman Disney

Mary Poppins Disney

Prince Caspian Disney

Letters from Iwo Jima DreamWorks

SELECT title,studioName FROM Movies

 WHERE studioName LIKE 'D%';

EXAMPLE 2 - COMPARING STRINGS WITH EXAMPLE 2 - COMPARING STRINGS WITH LIKELIKE
(Get titles and studio for all Movies made by a studio having the letter 'a' second in name.)

title studioName

Gone with the Wind Warner

Waynes World Paramount

Sabrina Paramount

Love Story Paramount

The Godfather, Part III Paramount

The Colour Purple Warner

Sabrina Paramount

Raiders of the Lost Ark Paramount

Million Dollar Baby Warner

SELECT title,studioName FROM Movies

 WHERE studioName LIKE '_a%';

SELECTING DISTINCT ROWSSELECTING DISTINCT ROWS
The result of a query can contain multiple copies of a tuple

This is because SELECT returns all rows which matches the query
To get only unique rows add DISTINCT

SELECT DISTINCT <Attributes>

 FROM <Relations>

 WHERE <Conditions>;

EXAMPLE - SELECT DISTINCTEXAMPLE - SELECT DISTINCT

(Query available clock speed and RAM combinations in Laptop.)

speed ram

2.5 8192

2.3 8192

2.3 8192

2.7 8192

2.6 16384

2.2 16384

1.6 2048

2.5 8192

2.5 8192

2.5 8192

2.0 4096

2.0 4096

speed ram

2.5 8192

2.3 8192

2.7 8192

2.6 16384

2.2 16384

1.6 2048

2.0 4096

Laptop(,speed,ram,hd,screen,price)model
– –––––

SELECT speed,ram

 FROM Laptop;

SELECT DISTINCT speed,ram

 FROM Laptop;

DUPLICATE ATTRIBUTE NAMESDUPLICATE ATTRIBUTE NAMES
When selecting from multiple tables it can happen that these share
attribute names
Use 'dot' notation to indicate which one you are referring to

<table>.<attribute>
E.g. Laptop.speed > PC.speed if relations PC and Laptop both
have attribute speed

EXAMPLE DOT NOTATIONEXAMPLE DOT NOTATION

(Pick out model and price for Laptop's which are faster than at least one PC while costing the same or less.
Remove duplicates.)

model price

2002 949

2003 599

2007 249

2008 949

2009 599

2011 499

2012 499

Laptop(,speed,ram,hd,screen,price)model
– –––––

PC(,speed,ram,hd,price)model
– –––––

SELECT DISTINCT Laptop.model,Laptop.price

 FROM Laptop,PC

 WHERE Laptop.speed > PC.speed

 AND Laptop.price <= PC.price;

RENAMINGRENAMING
Sometimes it is useful to list the same relation more than once (creating a
product with itself)
In those cases the tables need to be renamed for us to use the dot notation
This is done by the expression <relation> AS <newName>
Or simply by leaving out AS: <relation> <newName>

But this can sometimes be less readable

SELECT <Attributes>

 FROM <Relation1> AS <newName1>,

 <Relation2> AS <newName2>,

 ...

 <RelationN> AS <newNameN>,

 WHERE <Conditions>;

RENAMING EXAMPLERENAMING EXAMPLE

(Get a model-by-model comparison of PC's costing the same.)

model speed ram hd price model speed ram hd price

1001 2.7 8192 1000 999 1011 3.3 8192 700 999

1003 3.0 4096 500 499 1005 1.4 4096 500 499

1003 3.0 4096 500 499 1008 3.2 8192 1000 499

1004 1.6 8192 1000 1249 1009 2.8 8192 1000 1249

1005 1.4 4096 500 499 1008 3.2 8192 1000 499

PC(,speed,ram,hd,price)model
– –––––

 SELECT *

 FROM PC AS P1,

 PC AS P2

 WHERE P1.price = P2.price

 AND P1.model < P2.model ;

CONTROLLING OUTPUT ORDER - ORDER BYCONTROLLING OUTPUT ORDER - ORDER BY
By default ordering of the resulting rows is arbitrary
Output can be sorted by adding ORDER BY and a list of columns to the
SELECT statement
By default ordering is ascending

Can be changed by appending DESC a�er the attributes which should
be ordered descending

SELECT <Attributes>

 FROM <Relations>

 WHERE <Conditions>

 ORDER BY <Attributes>;

ORDER BY EXAMPLEORDER BY EXAMPLE

name credits

Sustainable Product and Service Design 4.0

Basic Course in Programming Y1 5.0

Databases 5.0

Databases 5.0

Programming 1 5.0

Programming 1 5.0

Programming 2 5.0

Programming 2 5.0

Programming Studio 1 5.0

Business and Industrial Policy 6.0

name credits

Business and Industrial Policy 6.0

Basic Course in Programming Y1 5.0

Databases 5.0

Databases 5.0

Programming 1 5.0

Programming 1 5.0

Programming 2 5.0

Programming 2 5.0

Programming Studio 1 5.0

Sustainable Product and Service Design 4.0

Courses(,name,credits)code
– ––––

SELECT name, credits

 FROM Courses

 WHERE credits > 3

 ORDER BY credits,

 name;

SELECT name, credits

 FROM Courses

 WHERE credits > 3

 ORDER BY credits DESC,

 name;

CALCULATIONS AND RENAMES IN THE RESULTCALCULATIONS AND RENAMES IN THE RESULT
It is possible to transform the resulting values of a query

Done by inserting expressions in the attribute list a�er the SELECT
statement

It is also possible to rename the columns of the output
Done by using an AS statement a�er the attribute

EXAMPLE - CHANGING THE RESULTEXAMPLE - CHANGING THE RESULT

title hours

Gone with the Wind 3.85

Star Wars 2.06666666666667

Mary Poppins 2.31666666666667

Prince Caspian 2.31666666666667

The Godfather, Part III 2.83333333333333

Red Dragon 2.06666666666667

The Colour Purple 2.55

Tuntematon sotilas 2.81666666666667

Sabrina 2.11666666666667

Sabrina 2.11666666666667

Tuntematon sotilas 3.28333333333333

Letters from Iwo Jima 2.35

Notting Hill 2.06666666666667

Gandhi 3.13333333333333

Jurassic Park 2.11666666666667

Schindler's List 3.28333333333333

Million Dollar Baby 2.2

Apocalypse Now 2.55

SELECT title,length/60.0 AS hours

 FROM Movies WHERE length > 120;

SET OPERATIONSSET OPERATIONS
The result from two or more SELECT statements can be combined column
by column by set operations

Where <operation> is one of
UNION

The union of the two tables
INTERSECT

Only those results which occurs in both tables.
EXCEPT

Results occurring in the first result, but not in the second
Note

Tables must have the same number of columns
And the columns should have the same type

Only column order and type matters

SELECT ...

<operation>

SELECT ...

;

EXAMPLE - UNIONEXAMPLE - UNION
(Get a list of all PC models with clock speed >= 3.2 GHz, and laptops with more than 1TB of hard drive space.)

model

1006

1007

1008

1010

1011

2005

SELECT model FROM PC

 WHERE speed >= 3.2

UNION

SELECT model FROM Laptop

 WHERE hd >= 1000

;

EXAMPLE - INTERSECTEXAMPLE - INTERSECT
(Get speed/ram configurations available in both PC and Laptop computers.)

speed ram

2.7 8192

SELECT speed,ram FROM PC

INTERSECT

SELECT speed,ram FROM Laptop

;

EXAMPLE - EXCEPTEXAMPLE - EXCEPT
(Get the Laptop's with best clock speed or RAM.)

model speed ram price

2004 2.7 8192 1649

2005 2.6 16384 2499

2006 2.2 16384 2199

SELECT model,speed,ram,price FROM Laptop

EXCEPT

SELECT L1.model,L1.speed,L1.ram,L1.price

 FROM Laptop AS L1, Laptop AS L2

 WHERE L1.speed < L2.speed

 AND L1.ram < L2.ram

 AND L1.model <> L2.model

;

