
Databases :: Lecture 5

Unified Modeling Language (UML)
Part II

CS-A1153: Databases

Prof. Nitin Sawhney

Databases :: Lecture 5

Acknowledgements

These slides are based in part on presentation
materials created by Kerttu Pollari-Malmi and
Juha Puustjärvi in previous years and on the
course text book: A First Course in Database
Systems, Third Edition. Pearson by Jeffery D.
Ullman and Jennifer Widom.

Thanks to Etna Lindy & Ville Vuorenmaa for
translating prior lecture slides for this course.

Databases :: Lecture 5

Learning Goals
► Creating a relational model based on UML

diagrams, i.e. from UML define the relations and
what attributes these relations should have (for a
database schema).

► Explaining why one database schema may be better
than another schema describing the same database.

► Understanding some concepts and techniques
needed to improve the database schema, for
instance:
► Functional Dependency
► how the key of the relation is connected to

functional dependencies

Databases :: Lecture 5

Changing UML Diagram to Database Schema

What relations would you define based on this diagram?

Product

number PK
prodName
description
price

Manufacturer

ID PK
name
phone

Order

orderNo PK
deliver
status

Customer

custNo PK
name
born
bonus
address
email

0..1

*

* * * 1..1

Made-by

Belongs-to

Ordered-by

Countinfo

count

Databases :: Lecture 5

Basics:
► Each class gets its own relation, which has the same

attributes as the class.

► For each many-many association we create a
relation, whose attributes are the keys from both of
the relations the association connects, and the
attributes of the association class, if there is one.

► For each many-one association we can either create a
relation in the same manner as with many-many
associations or we can add attributes to the relation
that are on the many-side of the association.

► Rename the attributes in the relations, if needed, to
make them clear and distinct.

Changing UML Diagram to Database Schema

Databases :: Lecture 5

Example: Defining Relations for UML Classes

► For the classses in the UML diagram of the online store
we can define relations:
Customers(custNo, name, born, bonus, address, email)
Products(number, name, description, price)
Manufacturers(ID, name, phone)
Orders(orderNo, deliver, status)

Product

number PK
prodName
description
price

Manufacturer

ID PK
name
phone

Order

orderNo PK
deliver
status

Customer

custNo PK
name
born
bonus
address
email

0..1

*

* * * 1..1

Made-by

Belongs-to

Ordered-by

Databases :: Lecture 5

Example: Defining Relations for Associations

► For the associations we define relations: (later we will
introduce another approach)
MadeBy(number, ID)
OrderedBy(orderNo, custNo)
BelongsTo(orderNo, number, count)

Product

number PK
prodName
description
price

Order

orderNo PK
deliver
status

* *Belongs-to

Countinfo

count

Note: No relation needs to be created for
the Countinfo class.

Databases :: Lecture 5

Special cases (that cannot be handled in a straight-forward
manner with the basic approaches):

► Classes, with attributes inherited from other classes, and
associations with such classes, must be handled differently.

► Subclasses need to be handled in a different manner.

► Consider whether or not a many-one association should have
its own relation, or should the relation be replaced by simply
adding the key from the one-side class to the attribute list of
the many-side class.

Changing UML Diagram to Database Schema

Databases :: Lecture 5

About Keys of Relations

► A relation defined based on a class has the same key
attributes as the class.

► Relations based on many-many associations inherit the
key attributes from both of the classes connected by the
association.

► Relations based on many-one associations only inherit the
key attributes from the class in the many-side.

For example, OrderedBy(orderNo, custNo)

Order

orderNo PK
deliver
status

Customer

custNo PK
name
born
bonus
address
email

* 1..1

Ordered-by

Databases :: Lecture 5

About Keys of Relations, Continued

► It’s important not to define too many key attributes, as
with the key attributes we make sure, that two tuples with
the same values in the key attributes cannot be added.

Product

number PK
prodName
description
price

Manufacturer

ID PK
name
phone

0..1

*

Made-by

For instance, if the relation
MadeBy would also have
ID as its key attribute, we
could add multiple tuples
with the same product
number, but with a
different manufacturer.

E.g. MadeBy(number, ID)

Databases :: Lecture 5

Example: Relations for Self-Associations

► Here the same class occurs in the association twice:

Employee

ID PK
first_name
last_name
born
address
position

0..1 Immediate superior

0..20 Subordinate

The key attributes will be added twice to describe
both sides of the association.

► Hence, we define the relation:
Manages(subordinateID, superiorID)

Databases :: Lecture 5

Combining Relations

► In the first example we defined the following relations
based on the UML diagram:
Products(number, name, description, price)
Manufacturers(ID, name, phone)
MadeBy(number, ID)

► The relation MadeBy was defined based on a
many-one association.

► The relations Products and MadeBy can be combined
into one relation by adding the information about
manufacturer’s ID to the relation Products.
Products(number, name, description, price, ID)
Here, the relation Manufacturers stays as it is.

Databases :: Lecture 5

► In a similar manner we may combine the relations Orders
and OrderedBy.

► On the contrary, we can’t combine BelongsTo to
any other relation, as it has been created based on
a many-many association.

► The final relations (some names of the attributes
have been changed for clarity):
Customers(custNo, name, born, bonus, address, email)
Products(number, prodName, description, price, manufID)
Manufacturers(ID, manufName, phone)
Orders(orderNo, deliver, status, custNo)
BelongsTo(orderNo, prodNo, count)

Combining Relations, Part II

Databases :: Lecture 5

► If an association is a many-many association,
it cannot be combined.

► Combining it would lead to repetitive information.
► If BelongsTo-relation would be combined with the relation

Orders, we would end up with an association:
Orders(orderNo, deliver, status, custNo, prodNo, count)

► Here, the information about the shipping method,
status of the delivery and customer number of the
order would be stored to the database multiple
times, which is redundant.

Combining Relations, Part III

Databases :: Lecture 5

Exercise

Which of the following relations (see next slide) are correct,
when creating a database based on this UML diagram?

Course Teacher
codePK
name

0..1 *
ssNoPk
name

credits Teaches position
semester department

Databases :: Lecture 5

Options:
a. Teachers(ssNo, name, position, department)

Courses(code, name, credits, semester)
Teaches(ssNo, code)

b. Teachers(ssNo, name, position, department)
Courses(code, name, credits, semester)
Teaches(code, ssNo)

c. Teachers(ssNo, name, position, department, coursecode)
Courses(code, name, credits, semester)

d. Teachers(ssNo, name, position, department)
Courses(code, name, credits, semester, teacherSsNo)

Exercise Continues

Databases :: Lecture 5

Answers
Based on the UML diagram, one teacher can teach at most
one course, but one course can have multiple teachers.

► Option a is correct, as the relation Teaches has the ID of the
teacher as its key attribute.

► Option b is incorrect, as the key attribute of the relation
Teaches is the course code, but this doesn’t work, as the
same course can have multiple teachers (for each
course–teacher-combination we create one tuple).

► Option c is correct, as we have added the information about
the course the teacher is teaching to the relation of the
teacher (each teacher can have at most one course).

► Option d is incorrect, as we have added the information
about the teacher to the relation of the course, which doesn’t
work since a course can have multiple teachers.

Correct answers are a and c.

Databases :: Lecture 5

When should we combine two relations?

► Relations that have been created based on a
many-one association can be combined. When
should we do this?

► Combining relations results in less relations for the
schema. This makes the relational schema simpler,
which is desirable and more efficient for databases.

Databases :: Lecture 5

► If only a small number of objects of the class are
associated with the other class, combining the relations
leads to a situation, where many tuples have NULL-values
on the attributes inherited through the association.

► In these cases combining the relations is not necessarily a
good idea, since:
► Storing the extra attributes reserves extra space, if

almost all of the tuples have NULL values for the
attributes in question.

► If we perform a lot of queries on the information of the
association, it might be quicker to do the queries on the
relation created for the association, if its size is
significantly smaller than the size of the relation created
based on the class. (However, this depends on what other
relations we need in this query).

When should we combine two relations? Part II

Databases :: Lecture 5

Example 1

► Almost all products in the database have information
on their manufacturer.

► We want to combine the relations MadeBy and Products,
as the database schema becomes more simple and the
tuples of the relation Products rarely have NULL values
for the attribute manufID.
Products(number, name, description, price, ID)

Product

number PK
prodName
description
price

Manufacturer

ID PK
name
phone

0..1

*

Made-by

Databases :: Lecture 5

► Let’s assume, that the workplace has a mentor program,
where some of the employees have been assigned a
mentor outside the workplace.

► One employee can have at most one mentor, but
more than 90 % of the employees don’t have a mentor

Mentor

ID PK

name

firm
M entoredBy

0..1

Em ployee

num ber PK

nam e

occupation

address

*

► As only a small number of employees have a mentor,
we probably want to create a relation MentoredBy
instead of combining it to the relation Employees.

Example 2

Databases :: Lecture 5

Product

number PK
prodName
description
price

Version

size PK

color PK
PK

* 1..1

► In addition to the key attributes of the class Version, we
add the key attributes from the class Product.

► We should never create a relation for the association
between Version and Product.

► If the class Version is part of some other association,
the relation created based on this association should
include the key attributes from both of the classes
Version and Product.

► Relations:
Products(number, name, description, price)
Versions(prodNo, size, color)

Attributes of the class not sufficient for a key

Databases :: Lecture 5

Class Version in an Ordinary Association
► Let’s assume that in the online store some of the

versions are only available for temporary campaigns.
Product

number PK
prodName
description
price

Version

size PK

color PK

PK
* 1..1

Campaign

name PK
start PK
end

* *

OfferedIn

► When defining the relation based on the association
OfferedIn, include the key attributes from Versions and
Campaigns, but also the key attribute of the relation
Products, since it’s needed for identification of the versions.

► Relations:
Products(number, name, description, price)
Versions(prodNo, size, color)
Campaigns(name, start, end)
OfferedIn(prodNo, size, color, campaignName, start)

Databases :: Lecture 5

Inheritance Hierarchy with Relations

How can we represent a superclass and its
subclasses as relations?

Product

number PK
prodName
description
price

Book

author

pages

CD

artist

length

Computer

ram
speed
harddisk

Firm

firmID PK
name
address

MaintenanceInfo

lengthOfContract

Maintains* *

Databases :: Lecture 5

► We can use three different approaches:
1. Create a relation for the superclass on each of the

subclasses. The relations of the subclasses should
inherit the key attributes of the superclass, and their
own attributes.

2. Create a relation for the superclass and each of the
subclasses. The relations of the subclasses inherit all
attributes from the superclass, and their own attributes.

3. Create one relation for the whole inheritance hierarchy.
Any attributes not par of certain objects, will have NULL
as their value.

► We use the usual approaches for creating the
relations for associations concerning the superclass
or subclasses.

Inheritance Hierarchy with Relations

Databases :: Lecture 5

Example 1: Relations of subclasses have their
own attributes and only keys of the superclass
► We create four different relations for the classes in the

diagram on slide 24:
Products(number, name, description, price)
CDs(number, artist, length)
Books(number, author, pages)
Computers(number, speed, ram, harddisk)

► In addition we need relations to represent the association
Maintains and the class Firm:

Maintains(number, firmID, lengthOfContract)
Firms(firmID, name, address)

Computer

ram
speed
harddisk

Firm

firmID PK
name
address

MaintenanceInfo

lengthOfContract

Maintains* *

Each object of the subclass will
have a tuple both in the relation
of the subclass and the relation
of the superclass.

Databases :: Lecture 5

► Now the relations of the subclasses have more attributes:
Products(number, name, description, price)
CDs(number, name, description, price, artist, length)
Books(number, name, description, price, author, pages)
Computers(number, name, description, price, speed, ram,

harddisk)
► The relations for association remain the same:

Maintains(number, firmID, lengthOfContract)
Firms(firmID, name, address)

Example 2: Relations of subclasses have their
own attributes and all attributes of superclass

Databases :: Lecture 5

► Now each object represented by some subclass is in
the database only once. In the relation Products, we
have only those objects, that don’t belong to any of
the subclasses.

► If all of the tuples belong to some of the subclasses,
the relation Products will not be needed.

Example 2: Relations of subclasses have their
own attributes and all attributes of superclass

Product

number PK
prodName
description
price

Book

author

pages

CD

artist

length

Computer

ram
speed
harddisk

Firm

firmID PK
name
address

MaintenanceInfo

lengthOfContract

Maintains* *

Databases :: Lecture 5

Example 3: Only one relation

► Let’s make the superclass and all the subclasses only
one common relation.

► In this example we would make only one relation to
represent all the products:
Products(number, name, description, price, artist, length,

author, pages, speed, ram, harddisk)
For example, products that are not books, and the values of
attributes author and pages would be NULL.

► Also, we would keep these relations:
Maintains(number, firmID, lengthOfContract)
Firms(firmID, name, address)

Databases :: Lecture 5

Comparison of Approaches
► In queries concerning all products, it is usually

convenient if there are not too many different
relations.

► In queries concerning for example only books, it
is convenient if books have their own relation.

► If all tuples belong to some subclass and the superclass
doesn’t have it’s own many-to-many or one-to-many
associations, where the superclass is "on one-side" of
the association, then approach 2 is usually the most
reasonable. In other cases approach 1 is usually better.

► Approach 3 is reasonable mainly when there are a lot of
objects that belong to several subclass at the same time
(not always permitted), for example an audio book in CD.

Databases :: Lecture 5

Aggregation and Composition
ProductGroup

groupID PK
groupname

Product
*

number PK
prodName
description

price

0..1 Product
*

number PK
prodName
description

price

ProductGroup
groupID PK
groupname

1

► Aggregation and composition are types of many-to-one
associations. So instead of constructing a new relation,
add the the relation for the class on the non-diamond end,
the key attribute(s) of the class on the diamond end.

► Products(number, prodName, description, price, groupID)
ProductGroups(groupID, groupname)

► In the case of aggregation, these attributes can be NULL.
► Notice: in prior examples the relation Products does not

have attribute manufID, because here the relations are
made only based on the information visible in the
corresponding UML diagram and they do not include
information outside the diagram.

Databases :: Lecture 5

Functional Dependencies and Normalization

► What relations should be defined in the database and
what attributes they should have?

► Consider principles like Normalization to improve
design by using constraints that apply to relations.

► Functional Dependencies (FD) are the most common
constraint used in relations.

► For example, an FD could make an assertion that if
two tuples have the same values for the title and year
of movie, then they would also have the same studio.

► Decomposition can be used to split relations into
smaller schemas by examining functional
dependencies among attributes in the relation.

Databases :: Lecture 5

Example

Here are two different ways to represent
products and their manufacturers:

1. All the information is stored in the same relation:
Products1(number, prodName, description, price,

manufID, manufName, phone)

2. Information can be split into two relations:
Products(number, prodName, description, price,
manufID)
Manufacturers(ID, manufName, phone)

Databases :: Lecture 5

Example: Using a Single Relation

For example, many instances of the relations could be:
Relation Products1
number prodName description price manufID manufName phone
T-33441 Galaxy A5 cellphone 250.0 S123 Samsung 020-7300
S-65221 Brasserie 24 pan 33.50 F542 Fiskars 020-43910
T-33442 NX 300 Smart camera 399.0 S123 Samsung 020-7300
T-33455 Cyber-shot camera 463.0 L711 Sony 020-6500
R-43118 Samsung LT 24 TV 169.0 S123 Samsung 020-7300
R-27113 Sony 32 KDL TV 347.0 L711 Sony 020-6500

Databases :: Lecture 5

Relation Products
number prodName description price manufID
T-33441 Galaxy A5 cellphone 250.0 S123
S-65221 Brasserie 24 pan 33.50 F542
T-33442 NX 300 Smart camera 399.0 S123
T-33455 Cyber-shot camera 463.0 L711
R-43118 Samsung LT 24 TV 169.0 S123
R-27113 Sony 32 KDL TV 347.0 L711

Relation Manufactures
ID manufName phone
S123 Samsung 020-7300
L711 Sony 020-6500
F542 Fiskars 020-43910

Example: Splitting into Two Relations

Databases :: Lecture 5

Example: Differences in Database Schemas

► In the first database schema the information about
manufacturers' names and phone numbers are stored
several times, while in the second schema only once.

► For example, if the phone number of manufacturer
changes, the first schema has to be updated in several
tuples, while in the second on only one tuple.

► In the first schema, if the product S-65221 is removed,
the information about the manufacturer Fiskars is lost. In
the second schema the manufacturer information is
retained even if this product information is removed.

► The second schema is clearly better than the first.

Databases :: Lecture 5

Anomalies
► Anomalies: abnormalities in the database behavior

caused by a poorly structured database.

► Common Anomalies:

► Redundancy: information that may be repeated unnecessarily
in several tuples in the same relation (or table).

► Update Anomalies: if the same information is stored in several
tuples, all the changes have to be made for every instance of
the information.

► Deletion Anomalies: removing tuples may have side effects.
For example, if information of the products and their
manufacturers is stored in the same relation, removing the
product may at the same time remove the information
about the manufacturer’s name and phone number.

Databases :: Lecture 5

Anomalies

► Redundancy: same values for length and genre of movies.
► Update Anomalies: updating length of movie across all tuples

in the table.
► Deletion Anomalies: removing an actor for a movie with only

one tuple in the table would remove all information, unless
made NULL (which may be another constraint).

Note: If an attribute is used to join two relations together it is not
a redundancy (e.g. studio ID key in tables Movies & Studios).

