
Databases :: Lecture 4

Unified Modeling Language (UML)

CS-A1153: Databases

Prof. Nitin Sawhney

Databases :: Lecture 4

Acknowledgements

These slides are based in part on presentation
materials created by Kerttu Pollari-Malmi and
Juha Puustjärvi in previous years and on the
course text book: A First Course in Database
Systems, Third Edition. Pearson by Jeffery D.
Ullman and Jennifer Widom.

Thanks to Etna Lindy & Ville Vuorenmaa for
translating prior lecture slides for this course.

Databases :: Lecture 4

Learning Goals

► Describing databases with the Unified Modeling
Language (UML)

► Familiarity with fundamental concepts of UML-
modeling:
► class and attribute
► association
► association class
► subclass
► composition and aggregation

Databases :: Lecture 4

UML Modeling

► Problem: what relations should we define for our
database?

► Often it is easier to start planning from a higher
abstraction level than to dive into a relational model.

► Here we introduce one way of represent things on a
higher abstraction level using UML diagrams.

► UML was originally created for designing object-oriented
programs. For database design we only use a small
portion of the properties and features of UML.

► Other commonly used methods to represent
high-level database designs:
► E/R diagrams (Entity-Relationship)
► ODL (Object Description Language)

Databases :: Lecture 4

Differences with object-oriented UML modeling

► Unlike object-oriented UML modeling, in database design
► The classes have no methods
► Key attributes need to be marked on the diagram
► Those attributes, that can be retrieved through an

association, and won’t be written inside the class
► Types of the attributes are atomic
► We need to indicate the multiplicity of the association,

unless it is 1..1
► Lines representing associations often don’t have

arrowheads

Databases :: Lecture 4

Class in UML

► A class in a UML diagram is roughly equivalent to a class
in object-oriented programming – except here classes
don’t have methods

► Attributes describe the properties of the object

Databases :: Lecture 4

Example of a Class
► The class Product describes products in an online

store.
Product

number
prodName
description
price

► For each product available in the store there exists one
Product-object.

► The attributes of the class are listed under the name
of the class. Types of the attributes need to be
atomic. Each Product-object has its own values for
attributes number, prodName, description and price.

► When modeling databases with UML diagrams, we
don’t include any possible actions (methods) for the
objects of the class.

Databases :: Lecture 4

Associations
► Associations create a connection between two classes

(in a UML diagram no more than two).
► For example between the classes Product and

Manufacturer we might define an association Made-by.
If a manufacturer m has manufactured the product p,
the object p from the class Product will be connected to
the object m of the class Manufacturer with association
Made-by.

► The name of the association is usually written below the
line representing the association.

Product Manufacturer
number ID

prodName name

description
Made-by

phone

price

Databases :: Lecture 4

Multiplicity of Association

► On both ends of the line representing the association,
it’s indicated, how many objects from one class can
connect to some other class through an association.

► In this example, there can be 0 or 1 Manufacturer-
objects for each Product-object.

► Each Manufacturer-object can connect to arbitrarily
many Product-objects.

► Pay attention to which ends the labels are on!

Product Manufacturer
number PK ID PK

prodName * 0..1 name

description
Made-by

phone

price

Databases :: Lecture 4

Multiplicity of Association: Precise Notations

► In an association between classes A and B, above or
below the line, the label m..n at class B’s end means,
that for each object in the class A we have at least m and
at most n objects of class B connected to it.

► Examples:
► 0..1 at most 1, but possibly none
► 0..5 at most 5, but possibly none
► 1..2 at least 1, at most 2
► 1..1 exactly 1 (can be labeled with 1)
► 1..* at least one 1, but otherwise arbitrarily many
► 0..* arbitrary amount (can be labeled simply with *).

► When it comes to database modeling, a missing
label is equivalent to 1..1.

Databases :: Lecture 4

Multiplicity of Association: Terminology

► Many-many association: each object from both classes can
have arbitrarily many objects of the other class associated
with it.

► Many-one association: each object from the first class has
at most one object of the other class associated with it.

► Many-exactly one association: each object from the first
class has exactly one object of the other class associated
with it.

Databases :: Lecture 4

Exercise 1

► Which of the following claims hold for the UML
diagram of teachers and courses below?

Course Teacher
codePK
name

0..1 *
ssNoPk
name

credits Teaches position
semester department

a. One teacher can teach arbitrarily many courses, and one
course can have arbitrarily many teachers.

b. One teacher can teach at most one course, but one
course can have arbitrarily many teachers.

c. One teacher can teach arbitrarily many courses, but one
course can have at most one teacher.

d. One teacher can teach at most one course, and one
course can have at most one teacher.

Databases :: Lecture 4

Answer

► In the diagram, at the end of the class Teacher we have a
star. This means, that each Course-object can be
associated with arbitrarily many Teacher-objects. In other
words, each course can have arbitrarily many teachers.

► At the end of class Course we have the label 0..1. This
means, that there can be 0 or 1 Course-objects for
each Teacher-objects. In other words, each teacher
can teach at most one course.

► Option b is correct.

Databases :: Lecture 4

Multiplicity of the association: more terminology

► If the association is many-one with respect to both
classes, it’s a one-one association.

► Example: in a company, each department has at most
one manager, and each manager can lead at most one
department.

Departm ent Em polyee

departmentID PK

nam e
0..1 0..1

ID PK

first_name

last_name

born

address

position

location
M anages

► One-one association is a special case of many-one
association. Hence everything that holds for many-one
associations, also holds for one-one associations.

Databases :: Lecture 4

Keys
► When designing object-oriented programs, there is no

need for keys as in object-oriented programming each
object has its own unique identity. However, in
databases keys are essential to identify the rows (tuples)
of the table. For this reason, the key attributes of the
relation should be marked in the UML diagram.

► The key of the class E is such an attribute or a set of
attributes, that no two distinct objects in class E share the
values for the attribute, or the value combination for the
set of attributes.

► Key attributes are marked with label PK.
► There can be multiple choices for a key, but only one is

chosen and marked. If multiple attributes are marked
with the PK-label, they together form the set of attributes
that is the key of the class.

Databases :: Lecture 4

Example of Marking the Attributes

Product Manufacturer
number PK ID PK

prodName * 0..1 name

description
Made-by

phone

price

► A product is identified by its product number (attribute
number), and a manufacturer by its ID (attribute ID).

Databases :: Lecture 4

Another Example of Keys

► In the textbook, the keys for the class Movie are the
name of the movie and the year, together.

The idea is, that no film studio wants to produce a movie
with the same name as another movie from a competing
studio in the same year. However, it’s possible that later
someone wants to create a new version of the movie with
the same name.

Movie

title PK
year PK
length
genre

Databases :: Lecture 4

Example Diagram
► We have added the entities Orders and Customers

and the associations Ordered-by and Belongs-to to
our example database for the online store.

► This model allows us to add products with no
manufacturer in the database. On the contrary we can’t
add orders with no customer.

Product

number PK
prodName
descriptio
n price

Manufacturer

ID PK
name
phone

Order

orderNo PK
delive
r
status

Customer

custNo PK
name
born
bonus
address
email

0..1

*
* * * 1..1

Made-by

Belongs-to Ordered-
by

Databases :: Lecture 4

Self-Association

► Problem: How can we represent associations where the
same class occurs twice?

► Example: let’s define, that one employee can be an
immediate superior for another employee.

Empolyee

ID PK
first_name
last_name
born
address
position

0..1 Immediate superior

0..20 Subordinate

► Both roles are written in the diagram. The multiplicity of
the association is indicated at the end corresponding to
the roles (here one employee can have at most one
immediate superior, and 0–20 subordinates).

Databases :: Lecture 4

Association Class
► Example: in the web store example, let’s specify that a

customer can add many items of the same product to one
order.

► Where should information about number of items
be attached?

► Let’s add to association a Belongs-to association class, and
to it’s attribute we’ll add information about number of
items. Product

number PK
prodName
description
price

Order

orderNo PK
deliver
status

* *Belongs-to

Countinfo

count

► An association class has no key attributes and multiplicity is
never indicated on the line leading to the association class.

Databases :: Lecture 4

Web Store Example with Association Class

Product

number PK
prodName
description
price

Manufacturer

ID PK
name
phone

Order

orderNo PK
deliver
status

Customer

custNo PK
name
born
bonus
address
email

0..1

*
* * * 1..1

Made-by

Belongs-to

Ordered-by

Countinfo

count

Databases :: Lecture 4

Inheritance and Subclasses
► Only some objects of the class have certain features. For

these instances we can define a subclass.
► Object of subclass have all the attributes and

associations of it’s superclass and also the attributes
and associations of the subclass.

► Relation from subclass to superclass is marked with
a little triangle (pointing to the superclass)

Product

number PK
prodName
description
price

CD

artist

length

Databases :: Lecture 4

Subclasses in UML-modeling: Example

► In this example the class Product has subclasses for
different products: CD, Book and Computer.

Product

number PK
prodName
description
price

Book

author

pages

CD

artist

length

Computer

ram
speed
harddisk

► Subclasses may have their own associations that other
classes of the inheritance hierarchy do not have. For
example, class CD could have association to class Track,
which describes one track of the album.

Inheritance and Keys

► Subclass never has it’s own key attributes, but all the
attributes needed for the key have to be attributes of
the superclass.

Databases :: Lecture 4

When Attributes are not enough for the Key

► Let’s assume that products of web store can have
different versions, for example the same clothing can
come in different colors and sizes.

► Let’s define a class Version to describe different
versions of product.

► Attributes of the class are size and color. Even together
they are not enough to uniquely identify an object of
Version (therefore they don’t form a key).

► Solution: let’s form a key of class Version by using
attributes of class Version and the key attribute of class
Product.

► The class Version is marked then with only it’s own
attributes.

Databases :: Lecture 4

When Attributes are not enough for the Key:
Example

Product

number PK
prodName
description
price

Version

size PK

color PK
PK

* 1..1

Databases :: Lecture 4

Aggregation

► With aggregation we can tell that an object of some
class is formed by objects of another class, for
example in the web store there are product groups,
that are formed by products.

► Aggregation is marked by an open diamond at the
end of that class whose object is formed by objects of
another class.

groupID PK
groupname

Product *
number PK
prodName
description

price

0..1 ProductGroup

Databases :: Lecture 4

Composition

► Composition is like aggregation, but is a stricter
requirement. In composition the object of one class must
belong to an object of another class.

number PK
prodName
description
price

ProductGroup

groupID PK
groupname

*
Product 1

Databases :: Lecture 4

UML Modeling

► How can one start UML modeling?
► Simple, but often a good working approach:

1. Write a description of the database being modeled.
2. Underline all the nouns.
3. From nouns, find candidates for classes and attributes.
4. Some nouns won’t become either.
5. When the classes and attributes are done, think, what

kind of relations there might be between the objects of
the classes. Make them the associations.

Example: Web Store

► Create a database for a web store that has products and
customers.

► Customers can make orders which can include multiple
products.

► Products have product number, name, description, price
and manufacturer.

► Manufacturers have ID, name and phone number.
► Customers have customer ID, name, year of birth, bonus

points, address and email address.
► Every order has a unique order number. Orders also have

shipping method, state, products included in the order
and customers who made the order.

Databases :: Lecture 4

Example continues: underline attributes

► Create a database for a web store that has products and
customers. Customers can make orders which can
include multiple products. Products have product
number, name, description, price and manufacturer.
Manufacturers have ID, name and phone number.
Customers have customer ID, name, year of birth, bonus
points, address and email address. Every order has
unique order number. Orders also have shipping
method, state, products included in the order and the
customer who made the order.

► "Database" is a common term, which is not related to
the modeled object. Therefore it won’t become a class
or attribute. "Web store" describes the whole system
that we are modeling (the whole UML model), so it
won’t either become a class or attribute either.

Databases :: Lecture 4

Design Principles

What should be considered when making a UML model
of a real-life system?

► Faithfulness
► Avoiding Redundancy
► Simplicity Counts
► Choosing the Right Relationships
► Picking the Right Kind of Element

Databases :: Lecture 4

Faithfulness

► Classes and their attributes need to correspond with
the real world they are describing.

► For example, multiplicity of association needs to be
decided by the fact that the same object in real-life can
be associated with one or more objects of other class.

► In a web store the same order can include several
products, but the order must have exactly one customer.
This is shown in the UML diagram.

Databases :: Lecture 4

Avoiding Redundancy

► One entity should be created only once.
► For example, class Product shouldn’t have

attribute of manufacturer ID, because association
Made-by already indicates the manufacturer

► Why redundancy is harmful?
► Repeating same information takes up unnecessary space.
► Repeating the information may cause problems with

database updates.
► Object-oriented programming works differently because

from the UML diagram you want to directly access what
attributes the classes of the object program have. When
designing databases, the situation is different because
the classes are not representing directly tables coming
into the database.

Databases :: Lecture 4

Striving for Simplicity

► Model should not include additional elements.
► For example, class should not be separated into two

classes and an association between them without a
good reason.

Databases :: Lecture 4

Choosing the Right Relationships

► Entities can be connected in various ways to
relationships.

► Adding to our design every possible relationship is
not a good idea.

► Doing so can lead to redundancies and anomalies.

Databases :: Lecture 4

Using the Right Elements

► When should some element be described with a class or
with an attribute?

► Let’s examine the model below. Could class Manufacturer
and association Made-by be replaced by adding
additional attributes to the class Products?

Product

number PK
prodName
description
price

Manufacturer

ID PK
name
phone

* 0..1

Made-by

Databases :: Lecture 4

Using the Right Elements, Continued

► In principle, the class Products could have attributes
manufacturerID, manufacturerName and phone, which
would replace the class Manufacturer and the
association Made-by.

► But then the name and phone number of a certain
manufacturer would be repeated in differenct products.

► Common principle: if something other than just name or
numerical value of some real-world concept is being
modeled, it should be modeled as class instead of
attribute (however, class can be association class).

► When to use a regular class vs. an association class?
Association class is good for situations where the
information being described is related exactly to a pair
formed by two objects and it does not have its own key.

Databases :: Lecture 4

Using the Right Elements, Continued

► In the web store example Order couldn’t be an
association class, but is has to be regular class, because:

1. Order is not necessarily a relation between exactly one
product and one customer, but one order can include
several products.

2. The class Order has it’s own key attribute.

Only one of these reasonings would be enough.

Databases :: Lecture 4

UML Modeling using DbSchema: Example

