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Constrained Optimization

1 Analysis

We start by considering the notions of distance, convergence and continu-
ity in a bit more detail. This will help us understand when optimization
problems are well posed in the sense that they have optimal solutions.

1.1 Length and Distance in Rn

The only spaces that we will be interested in these notes are the various
Cartesian products of the real line R denoted by Rn. The exponent n is also
called the dimension of the Euclidean space. Hence an element x ∈ Rn is
an ordered n-tuple (x1, ..., xn) where each xi ∈ R.

Distance d(x, y) between two vectors x, y ∈ Rn is usually based on the
Euclidean norm or the length of a vector in x ∈ Rn defined by

‖x‖ =

√√√√ n∑
i=1

x2i . (1)

This is just the generalization of the Pythagorean theorem to an arbitrary
dimension. A distance for Rn can be derived from this norm as

d (x, y) = ‖x− y‖ .

Proposition 1. Let x and y denote points in Rn. Then we have:
(a) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x= 0,
(b) ‖ax‖ = a ‖x‖ for every real a,
(c) ‖x−y‖ = ‖y−x‖ ,
(d) x · y ≤ ‖x‖ ‖y‖ (Cauchy-Schwarz inequality) ,
(e) ‖x+y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality) .

Remark 1. To see why the Cauchy-Schwarz inequality is true, consider the
sum of squares

n∑
i=1

(xi + tyi)
2.

This is a quadratic polynomial in t, and as a sum of squares, it is also non-
negative. Hence its discriminant is non-positive, i.e.
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Constrained Optimization

(2
n∑
i=1

xiyi)
2 ≤ 4(

n∑
i=1

x2i

n∑
i=1

y2i ).

Dividing both sides by 4 and taking square roots on both sides gives
Cauchy-Schwarz inequality.

This simple result is one of the most important results in all of mathe-
matics. Equality holds in the result if and only if x = λy, i.e. x is propor-
tional to y. We have used this observation to argue that the gradient∇f(x̂)
gives the direction of steepest ascent for a function f at point x̂.

From Cauchy-Schwarz, we get easily the triangle inequality:

‖x+ y‖2 = (x+ y) · (x+ y) = ‖x‖2 + ‖y‖2 + 2x · y

≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2.
The triangle inequality follows by taking square roots on both sides of
the inequality. The inequality in the above expression results from the
Cauchy-Schwarz inequality.

Exercise In general, any function d̂(x, y) satisfying (a), (c) and (e) in
the above list is a distance. It is a good exercise to show that d̂(x, y) :=
maxi |xi − yi| is a distance in this sense. Are all the other properties above
also satisfied by this distance?

By the segment (a, b) we mean the set of all real number x such that
a < x < b. By the interval [a, b], we mean the set of all real numbers such
that a ≤ x ≤ b. If ai < bi for i = 1, ..., n, the set of all points x = (x1, ..., xn)
in Rn whose coordinates satisfy ai ≤ xi ≤ bi for (1 ≤ i ≤ n), is called an
n-cell. If x ∈ Rn and ε > 0, the open (or closed) neighborhood Bε(x) with
center at x and radius ε is defined to be the set of all y ∈ Rn, such that
‖y − x‖ < (≤) r.

1.2 Open and closed sets

In this subsection, we give some basic definitions on sets in Rn.

Definition 1. A point x is a limit point of the set E ⊂ Rn if every neighbor-
hood of x contains a point y ∈ E with y 6= x.

We say that E is closed if every limit point of E is an element of E. A
point x is an interior point of E if there is a neighborhood Bε(x) of x such
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Constrained Optimization

that Bε(x) ⊂ E. We say that E is open if every point of E is an interior
point.

The complement of E, denoted by Ec is the set of all points x ∈ Rn such
that x /∈ E.

The set E is bounded if there is a real number M such that ‖x‖ < M for
all x ∈ E.

Exercise Is the empty set open or closed? Show that A = {x : a < x <
b} is an open set and that A = {x : a ≤ x ≤ b} is a closed set. Show that
the set {1, 1

2
, 1
3
, ...} is neither open nor closed (hint: is 0 a limit point? Is it

in the set?)

Proposition 2. A setE ⊂ Rn is open if and only if its complement is closed.
A set F ⊂ Rn is closed if and only if its complement is open.

A very important property for sets in mathematical analysis is called
compactness. we give here a definition of compactness for sets in Rn that
should really be derived as a theorem starting from a more fundamental
notion, but for practical matters, this is all we need.

Definition 2 (Compact sets). A set E ⊂ Rn is called compact if it is closed
and bounded.

1.3 Sequences

Definition 3. If S is any set, a sequence in S is a function on the set N =
{1, 2, 3, ...} of natural numbers and whose range is in S.

Definition 4. A sequence {xn} in Rn is said to converge if there is a point
x ∈ Rn with the following property: For every ε > 0, there is an integer N
such that n ≥ N implies that d (xn, x) < ε.

We say that xn converges to x, x is the limit of {xn} and we write xn →
x,

lim
n→∞

xn = x.

Theorem 1. Let {xn} be a sequence in Rn.
(i) {xn} converges to x ∈ Rn if and only if every neighborhood of x

contains all but finitely many of the terms of {xn} .
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(ii) If x ∈ Rn, x′ ∈ Rn, and if {xn} converges to x and to x′, then x = x′.
(iii) If {xn} converges, then {xn} is bounded.
(iv) If E ⊂ Rn and x is a limit point of E, then there is a sequence {xn}

in E such that x = limn→∞ xn.
(v) xn = (x1,n, ..., xk,n) → x = (x1, ..., xk) ⇔ xi,n → xi for all i ∈

{1, ..., k}.
The last part of the proposition claims that a sequence of vectors con-

verges if and only if all of its coordinates converge.

Definition 5. Given a sequence {xn}, consider an infinite sequence {nk} of
positive integers, such that n1 < n2 < · · ·. Then the sequence {xni

} is called
a subsequence of {xn}. If {xni

} converges, its limit is called a subsequential
limit of {xn} .

Exercise Show that if {xn} converges to x, then all of its subsequences
also converge to x.

Definition 6. A sequence {xn} is said to be a Cauchy sequence if for every
ε > 0 there is an integer N such that d (xn, xm) < ε, if n ≥ N and m ≥ N .

Real numbers are constructed in such a way that Cauchy sequences in
R converge, i.e. have limits in R. By part (v) of the previous theorem, the
same is true for real vectors.

Theorem 2 (Weierstrass). Every bounded subset E ⊂ Rn with infinitely
many elements has a limit point in Rn.

Idea of proof for R: Since E is bounded, it is contained in an interval
[−M,M ] of length 2M for some M < ∞. Since E has infinitely many
elements, either [−M, 0] or [0,M ] or both have infinitely many elements.
Hence some interval of lengthM also contains infinitely many elements of
E. Continue this process of halving the interval to show that you can come
up with a sequence of intervals of length 2−kM containing infinitely many
elements of E. The midpoints of the sequences form a Cauchy sequence
and hence they converge to a point x ∈ R. This x is a limit point of E. The
same construction generalizes easily to Rn

An immediate consequence of this is the following theorem.

Theorem 3. (Bolzano-Weierstrass Theorem)
Every bounded sequence in Rn contains a convergent subsequence and

every sequence in a compact set E ∈ Rn has a convergent subsequence
whose limit is in E.
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1.4 Continuous Functions

Definition 7. Consider a function f : Rn → Rm. We write f (x) → ŷ as
x→ x̂, or

lim
x→x̂

f (x) = ŷ, (2)

if there is a point y ∈ Rm with the following property: For every ε > 0
there exists a δ > 0 such that

x ∈ Bδ(x̂)⇒ f(x) ∈ Bε(ŷ).

We say that f is continuous at x̂ if for all ε > 0 there exists a δ > 0 such that

x ∈ Bδ(x̂)⇒ f(x) ∈ Bε(f(x̂)).

Another way of writing this is given in the following simple proposi-
tion.

Proposition 3. A function f : Rn → Rm is continuous at x̂ if for every se-
quence {xn} that converges to x̂, the sequence {f (xn)} converges to f(x̂);
in symbols,

lim
n→∞

f (xn) = f
(

lim
n→∞

xn

)
.

A function is said to be continuous if it is continuous at all points in its
domain. Continuity of a function f at a point x̂ is called a local property of
f because it depends on the behavior of f only in the immediate vicinity
of x̂. A property of f which concerns the whole domain of f is called a
global property. Thus, continuity of f on its domain is a global property.

The following proposition gives yet another way of looking at continu-
ity.

Proposition 4. A function f is continuous if and only if the inverse image
f−1 (V ) is open (closed) for every open (closed) set V in Y.

Proposition 5. Let f : Rn → Rm and g : Rm → Rk be continuous functions,
and let h be the composite function defined by

h (x) = g (f (x)) for x ∈ Rn.

If f is continuous at x̂ and if g is continuous at f(x̂), then h is continuous
at x̂.
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1.5 Global Properties of Continuous Functions

Definition 8. A function f : E → R is said to be bounded if there is a real
number M such that |f (x)| ≤M for all x ∈ E.

Recall the definition of the least upper bound and greatest lower bound
for a set A of real numbers. We say that a is the least upper bound of A if
for all x ∈ A, x ≤ a and for all a′ < a, there is some x ∈ A such that x > a′.
Similarly, we say that a is the greatest lower bound of A if for all x ∈ A,
x ≥ a and for all a′ > a, there is some x ∈ A such that x < a′.

We write:
a := supA, a := inf A.

Theorem 4 (Weierstrass’ Theorem). Suppose f is a continuous function on
a compact set E, and

M = sup
x∈E

f (x) , m = inf
x∈E

f (x) .

Then there exists a point x, x ∈ E such that f (x) = M and f (x) = m.

Proof. We show this for the supremum. The case for the infimum is anal-
ogous. Let M = supx∈E f (x). Let {mn} → M with mn < M for all n.
Then By the definition of supremum, there must be a sequence {xn} ∈ E
with xn ≥ mn. Since E is compact, {xn} has a convergent subsequence
{xnk
} → x ∈ E. Since {mn} → M , we also know that {mnk

} → M . By
continuity of f ,

M ≥ f(x) = lim f(xnk
) ≥ limmnk

= M.

This theorem ensures that our maximization and minimization prob-
lems have solutions as long as the objective function is continuous and the
feasible set is compact.

Remark 2. To see that E must be closed and bounded and that f has to be
continuous, consider the following examples:

1. f(x) = x and E = R.

2. f(x) = x and E = {x : 0 < x < 1}.

3. f(x) = x for 0 ≤ x < 1, f(1) = 0 and E = {x : 0 ≤ x ≤ 1}.
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2 Constrained Optimization

We start with some simple examples of constrained optimization to set up
expectations for the more general case to follow.

Example 1. Consider finding the maximum for f(x) = 3 + 2x − x2 on the
feasible set F = {x : −∞ < a ≤ x ≤ b < ∞. Since f is continuous and
the feasible set F is compact. Therefore Weierstrass’ theorem guarantees
the existence of a maximizer, i.e. an x ∈ F such that for all y ∈ F , we have
f(x) ≥ f(y).

Notice that f is strictly increasing for x < 1 and strictly decreasing for
x > 1. If a ≤ 1 ≤ b, then the function is maximized at its critical point
x = 1. We say that a direction (x− x0) is feasible from x0 ∈ F if for a small
∆, we have x0 + ∆(x − x0) ∈ F . Linear approximation by the derivative
gives:

f(x0 + ∆(x− x0))− f(x0) = f ′(x0)∆(x− x0).
If we have a maximum at x0, then for all feasible direction

f ′(x0)∆(x− x0) ≤ 0.

If a < x0 < b, then we must have f ′(x0) = 0 since both directions
x > x0, x < x0 are feasible. If f ′(x0) > 0, then x > x0 cannot be feasible if x0
is a maximum. Therefore x0 = b if x0 is the optimal choice and f ′(x0) > 0.
Similarly, if f ′(x0) < 0 and x0 is the optimum, then x0 = a.

If all directions are feasible from x0 and x0 is a maximum, then just as
in the case of unconstrained optimization, we must have f ′(x0). For the
other cases, the derivative of the objective function at optimum is closely
related to the constraint that binds (i.e. restricts the feasible directions).

In the next subsections, we will generalize our findings to multidimen-
sional optimization problems.

2.1 Optimization with a single equality constraint

We start with local considerations. Let f : Rn → R be the objective func-
tion to be maximized and suppose the constraints take the form g(x) =
g(x1, ..., xn) = 0. In other words, F = {x : g(x) = 0}. We write the maxi-
mization problem often as:
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max
x

f(x)

subject to g(x) = 0.

A solution to this problem finds point x̂ such that f(x̂) ≥ f(x) for all
x ∈ F . What can we say about such an x̂? At this point, we do not know if
it exists. If it exists, and f is differentiable, then for small ∆,

f(x̂+ ∆(x− x̂))− f(x̂) = Df(x̂)(x− x̂)∆ ≤ 0

for all feasible directions (x − x̂). But how do we know which direc-
tions are feasible? Assume that the function g defining the constraint is
also differentiable. To find the feasible directions, we go back to implicit
function theorem. If x̂ ∈ F and ∂g

∂xi
(x̂) 6= 0 for some i ∈ {1, ..., n}, then we

can find a write xi = h(x1, ..., xi−1, xi+1, ..., xn) =: h(x−i) in a neighborhood
of x̂−i so that

g(h(x−i), x−i) = 0.

Notice that it is not possible to use the implicit function theorem if at
a critical point of the constraint function. Therefore, we must assume that
Dg(x̂) 6= 0. We call this the constraint qualification and we will see differ-
ent versions of this in more complex situations with multiple constraints.

Since the function g is at constant value in the feasible set, we have for
all feasible directions (x− x̂) :

∇g(x̂)(x− x̂) = 0.

Notice also that if (x − x̂) is feasible, then also −(x − x̂) is feasible.
From the linear approximation above, this means immediately that for all
feasible directions,

Df(x̂)(x− x̂) = 0.

But therefore we have shown that at optimum x̂,

∇f(x̂) = µ∇g(x̂).

We have derived the following necessary condition for a constrained
optimum at x̂: the gradient of the objective function must be a scalar mul-
tiple of the gradient of the constraint function at the optimum. The second
requirement is that the choice must be feasible, i.e. g(x̂) = 0.
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2.1.1 The Lagrangean function

The previous discussion motivates the following function that incorpo-
rates the constraints into an augmented objective function called the La-
grangean function.

For a constrained optimization problem, we define the following func-
tion of n+ 1 variables:

L(x, µ) = f(x)− µg(x).

We call the new variable µ the Lagrange multiplier. We will give it a
good economic interpretation later in the course. We are interested in the
critical points of this augmented function. Therefore we look for (x̂, µ̂)
such that

∂L
∂xi

(x̂, µ̂) =
∂f

∂xi
(x̂)− µ̂ ∂g

∂xi
(x̂) = 0 for all i,

∂L
∂µ

(x̂, µ̂) = g(x̂) = 0.

As argued above, these are the first-order conditions for the constrained
optimization problem. In order to know if we have found a local maxi-
mum or a minimum, we need to look at the second-order Taylor -approximations
and the definiteness of the Hessian matrix at the critical point.

As before, write the second-order Taylor approximation to f : Rn → R
at x̂ as:

f(x) = f(x̂) +Df(x̂)(x− x̂) + (x− x̂) ·D2(x̂)(x− x̂).

If x̂ is a maximum, then for all feasible directions (x− x̂), we have

i)Df(x̂)(x− x̂) = 0,

ii)(x− x̂) ·D2(x̂)(x− x̂) ≤ 0.

Since the feasible directions are give by vectors (x− x̂) such that

∇g(x̂) · (x− x̂) = 0,

the condition for having a local maximum at x̂ is equivalent to checking
the negative definiteness of the bordered Hessian where we need

10
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1. The Lagrangean L

2. The Equality constraint h

To get the bordered Hessian, start with the derivative of the Lagrangean
with respect to the choice variables x at the critical point x̂: D2

xL(x̂) and
’border’ it with the derivative of the constraint function (to capture the
restriction to feasible directions).

D2L =

[
0 Dg(x̂)

[Dg(x̂)]T D2
xL(x̂)

]
In the special case where we have only two choice variables, I let the

variables be x, y for notational ease, we need to examine

D2L =

 0 gx gy
gx Lxx Lxy
gy Lyx Lyy


How do we determine the negative definiteness of the bordered Hes-

sian?

1. Leading principal minors must alternate in sign 1

2. detD2L(x̂) must have the same sign as (−1)n.

How many principal minors to examine?

• You need to check the sign of the last (n−1) leading principal minors

• For completeness, I state here that with more constraints, you need
to border the Hessian with the derivatives of all binding constraints.
If you have k such constraints, then you need to examine the sign of
(n− k) leading principal minors.

1Recall that a leading principal minor of kth order is obtained from a matrix A by
deleting its last k rows and columns.
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Bordered Hessians are a bit of a nightmare for me. They are tedious to
compute and they tell nothing of significance in the end. We will see later
how we can bypass them to a large extent by concentrating on a subset of
problems where first-order conditions also turn out to be sufficient.

In any case, here is eventually a concrete example:

Example 2. Find the minima and maxima of f(x, y, z) = x+ y + z2 subject
to constraints

x2 + y2 + z2 = 1

y = 0

Start by substituting the second constraint to the objective function and
the first constraint to get f(x, z) = x+ z2, and

x2 + z2 = 1

Form the Lagrangean

L(x, z, µ) = x+ z2 − µ(x2 + z2 − 1)

Differentiate to get the first-order conditions (FOC):

∂L
∂x

= 1− 2µx = 0 (3)

∂L
∂y

= 2z − 2µz = 0 (4)

∂L
∂µ

= 1− x2 − z2 = 0 (5)

The second FOC gives:

z(2− 2µ) = 0

Therefore either z = 0, or µ = 1.
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Consider first the possibility that z = 0. In that case, (5) implies that
x = ±1. We get two critical points from (3):(

x = 1, y = 0, z = 0, µ = 1
2

)
and

(
x = −1, y = 0, z = 0, µ = −1

2

)
If µ = 1, (3) implies that x = 1

2
. By substituting into (5) we get the

critical points:

(
x = 1

2
, y = 0, z =

√
3
2
, µ = 1

)
and

(
x = 1

2
, y = 0, z = −

√
3
2
, µ = 1

)
As a result, we have four critical points for the Lagrangean. Draw the

constraint set and level curves for the objective function to get a guess of
the classification of the critical points.

By examining the bordered Hessian, we see that
(
x = −1, y = 0, z = 0, µ = −1

2

)
and

(
x = 1, y = 0, z = 0, µ = 1

2

)
are local minima, and

(
x = 1

2
, y = 0, z = ±

√
3
2
, µ = 1

)
are local maxima.

Can you show the existence of a maximum? Which of the local maxima
is the global maximum?

2.2 Multiple equality constraints

Consider next the case, where we have k equality constraints g(x) = (g1(x), ..., gk(x) :
Rn → Rk. In this case, we have the problem:

max
x

f(x)

subject to g1(x) = 0,

g2(x) = 0,

...
gk(x) = 0.

Form the Lagrangean now with k constraints as a function of n + k
variables:

L(x, µ1, ..., µk) = f(x)−
k∑
j=1

µjgj(x).
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We can proceed exactly as before to use the linear approximations to
characterize the feasible directions from x̂ as {(x− x̂) : Dg(x̂)(x− x̂)} = 0.
Since the objective function cannot increase at the optimum in any feasible
direction, we have that

Df(x̂)(x− x̂) = 0 whenever Dg(x̂)(x− x̂) = 0.

If Dg(x̂) has full rank, then this is equivalent to requiring that Df(x̂)
and Dgj(x̂) must be linearly dependent. Since we assume that Dg(x̂) has
full rank, this means that there must exist (µ1, ..., µk) such that

∇f(x̂) =
k∑
j=1

µj∇gj(x̂).

Hence we can summarize the three necessary conditions for local max-
imum:

i) Gradient alignment: ∇f(x̂) =
∑k

j=1 µj∇gj(x̂),
ii) Constraint holds: g(x̂) = 0,
iii) Constraint qualification: Dg1(x̂), ..., Dgk(x̂) are linearly indepen-

dent.
The first two can be achieved by requiring that (x̂, µ̂1, ..., µ̂k) be a critical

point of the Lagrangean. The second-order conditions are based on bor-
dered Hessian matrices as explained at the end of the previous subsection.

Let’s end this section with another example

Example 3.

Consider the objective function

f(x, y, z) = xz + yz

and a maximization problem subject to:

g1(x, y, z) = y2 + z2 − 1

g2(x, y, z) = xz − 3

1. Find the critical points of f subject to constraints g1(x, y, z) = 0 and
g2(x, y, z) = 0.

14
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2. How would you determine which of the critical points are local min-
ima and which are local maxima? What is the bordered Hessian that
you would use?

1. Find first the critical points of the Lagrangean

L(x, y, z, µ1, µ2) = xz + yz − µ1(y
2 + z2 − 1)− µ2(xz − 3)

First-order conditions:

∂L
∂x

= z − µ2z = 0 (6)

∂L
∂y

= z − 2µ1y = 0 (7)

∂L
∂z

= x+ y − 2µ1z − µ2x = 0 (8)

∂L
∂µ1

= y2 + z2 − 1 = 0 (9)

∂L
∂µ2

= xz − 3 = 0 (10)

We need to solve this system of equations to find the critical points.
Start with (6), giving

z(1− µ2) = 0,⇔ z = 0 or µ2 = 1

If z = 0, then (10) is not true for any x and as a result, we must
havez 6= 0. Therefore, we can only have µ2 = 1 as a candidate solu-
tion. The second FOC (7) gives

y − 2µ1z = 0, ⇔ y =
z

2µ1

.

Plug in the solutions for y and µ2 into (8) :

15
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z

2µ1

− 2µ1z = 0 ⇔ z

(
1

2µ1

− 2µ1

)
= 0.

We already know that z 6= 0, and therefore

1

2µ1

− 2µ1 = 0 ⇔ 4µ2
1 = 1 ⇔ µ1 = ±1

2

We have now solved for possible Lagrange multipliers µ1 ja µ2, i.e.
we have:

µ1 = ±1
2

and µ2 = 1

To get the values of the choice variables, plug in the values of the
multipliers into (8) to get:

y = ±z.

Substituting into (9), we get (by squaring):

2z2 − 1 = 0 ⇔ z = ± 1√
2

The fifth FOC (10) gives:

x =
3

z
,

or x = 3
√

2 if z = 1√
2

and x = −3
√

2 if z = − 1√
2
. We have now found

all that we need for the critical points of f subject to the constraints.
If z = 1√

2
, then x = 3

√
2, y = ±z. This yields two critical points

(x, y, z):
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1 :
(

3
√

2, 1√
2
, 1√

2

)

2 :
(

3
√

2,− 1√
2
, 1√

2

)
If z = − 1√

2
, then x = −3

√
2, y = ±z. This gives also two critical

points (x, y, z):

3 :
(
−3
√

2,− 1√
2
,− 1√

2

)
4 :
(
−3
√

2, 1√
2
,− 1√

2

)
We know that for all critical points, µ2 = 1, and we can check the
sign of µ1 from FOC (7). After this, we have all the critical points of
the problem as:

Critical points for the problem (x, y, z, µ1, µ2):

1 :

(
3
√

2,
1√
2
,

1√
2
,
1

2
, 1

)
2 :

(
3
√

2,− 1√
2
,

1√
2
,−1

2
, 1

)
3 :

(
−3
√

2,− 1√
2
,− 1√

2
,
1

2
, 1

)
4 :

(
−3
√

2,
1√
2
,− 1√

2
,−1

2
, 1

)

We can plug these into the objective function to see which of the
critical points could be the true maximum. Do we know now that
the problem has a maximum?
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2. In order to determine which of the critical points are maxima or min-
ima, we need to consider the bordered Hessian by bordering the Hes-
sian of L with respect to (x, y, z), i.e. D2

xL with the derivatives of the
constraints Dxg1 and Dxg2.

D2L =

[
0 Dg(x̂)

[Dg(x̂)]T D2
xL

]

With three dimensional choice variable, we know thatD2
xL is a [3×3]

-matrix. With two constraints Dg(x̂) is a [2 × 3] -matrix. Hence we
have a (5× 5) square matrix for our bordered Hessian:

D2L =


0 0 g1x g1y h1z
0 0 g2x g2y g2z
g1x g2x Lxx Lxy Lxz
g1y g2y Lyx Lyy Lyz
g1z g2z Lzx Lzy Lzz

 ,

where we have denoted the partial derivatives by gix, and second-
order partial derivatives by of the Lagrangean by Lxx etc. As you
can imagine, it is not a pure pleasure to check the definiteness of this
bordered Hessian for the four critical points (even though you have
to compute a single determinant).
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