### Role of Interaction Design & Data Science in Crisis Response

### Karri-Pekka Laakso

Lead Designer (Interaction), Reaktor

### Antti Honkela

Associate Professor at the Department of Computer Science, University of Helsinki and Coordinator of Research Programme in Privacy-preserving and Secure AI, Finnish Center for Artificial Intelligence (FCAI)



June 11, 2020

CS-E4002: Human-Centred Research and Design in Crisis

**Aalto University** 

# Ketju

Designing the Ketju Contact Tracing App: Interaction Design, Technology and Privacy Implications

11.6.2020

Karri-Pekka Laakso, Reaktor



## Reaktor

### futurice



### **FRAKTAL**

In cooperation with







### ketjusovellus.fi

- Officially started on Mon 23rd March, 2020
- 6 designers
  - 3 from Reaktor (UX, graphic, UX) <= me</li>
  - 3 from Futurice (UX, graphic, UX)



Karri-Pekka Laakso M.Sc. (eng), Helsinki University of Technology

#UX #interaction\_design #field\_studies #visualizations
#scala #js #java #html\_css #node #bash
#public\_speaking #teaching
#family #gymnastics #acrobatics #orienteering #piano

# **Social Distance**









## Who can Susan recall / name?









### Who would Susan share with?









# Who knows Susan by name?









Location



- Location
- Bluetooth contacts



- Location
- Bluetooth contacts
- Anonymous Bluetooth contacts



- Location
- Bluetooth contacts
- Anonymous Bluetooth contacts
- Anonymous Bluetooth contacts changing in time (DP^3T, Google Apple Exposure Notification API)





| "0x00a78" | "0x81eaa"                           |
|-----------|-------------------------------------|
| "0xb2312" | "0xa292f"                           |
| "0x9124a" | "0x93d51"                           |
|           | "0x00a78"<br>"0xb2312"<br>"0x9124a" |



## Centralized model

- Authorities know the exposed immediately
- Gather names & phone numbers=> call, interview, quarantine
- Privacy?



### **Distributed model**







1) Citizens load the Ketju app from the App Store and put it on every time they leave home.



2) When users A and B meet, their phones register a contact when are close enough for time long enough (for example <5 m, >15 min).

C is too far away to register a contact.



3) The app stores the contact totally anonymously: no personal or location information is stored.



4) A has symptoms and the doctor order a test.



5) The doctor calls to tell that the test result is positive and asks, if A uses the Ketju App.



6) The doctor gives A a PIN code, which A enters to the Ketju app. The app informs the central server that A has been infected.



7) The app of B notices that one of its contacts has reported a positive test result. The app tells B about the exposure and that she should contact the local health center.

C has had no contact with A and thus nothing happens.



8) Only the user knows about the possible infection, since the data at the server and at the phone in anonymous.

## Distributed model

- Susan tells the system that she is sick (voluntary)
- Lisa gets a notification
  - => take a test (voluntary)
  - => self-quarantine (voluntary)
- Verification of exposure?
- Granularity of exposure time?
- Contact tracing?





### Distributed model

Authorities can only give the release code

- => no help for contact tracing
- => no official quarantine (≠ self quanrantine)





# Hybrid models

- People voluntarily release information to authorities, e.g.
  - contacts with a sick person
  - exposures of a sick person
  - their contact info
  - ...
- Legal issues
- Privacy issues
- Gapple API issues



# **Iterations**







# Chaotic surroundings

contract tracing

doctors

politics

infectious diseases

communications

law

media

design

bluetooth

users

protocols

databases

visualizations

## Do what is needed

#### How to manipulate DBs from pilot users

- 1. Collect new DBs to a directory
- Convert them, so that they don't produce cache files, and tools/convert-dbs.sh Ketju\*
- 3. Move the files to the iterations/pilot/all directory
- Rebuild the iterations/pilot/latest directory to contain tests dir) => only the files with the latest timestamps are
- Merge the data into one db: ../../tools/merge-dbs.sh al contacts.sqlite
- 6. (optional step at this point) anonymize the data with .../.
- Create a JS file of all the data and update the html files you
  updated device-data.js and the data updated to the htm
  timelines.html

#### How to generate screenshots for pilot use

- Create the timelines (in iterations/pilot) ../../tools/c 2020-05-22.html
- 2. Generate the screenshots (in calibration-tests ) node t



```
<script type= text/javascript >
  google.charts.load('current', {'packages':['timeline']})
      google.charts.setOnLoadCallback(initialize)
//--START-DEVICE-DATA
const deviceData = [...]
//--END-DEVICE-DATA
//--START-MANUAL-DATA
const manualData = [...]
//--ΕΝΩ-ΜΔΝΙΙΔΙ -ΠΔΤΔ
      const data = deviceData.concat(manualData)
      const firstDay = '2020-05-18'
      const lastDay = '2020-06-07
      const pairs = () => Object.values(data
          .map(([a, b]) \Rightarrow ((a < b) ? [a, b] : [b, a]))
          .reduce((acc, [a, b]) => { acc[a+'-'+b] = [a, b]; return acc }
         .sort((a, b) => a.toString().localeCompare(b.toString(), undef
      function initialize() {
        const dayRange = (isoStart, isoEnd) => {
         const start = new Date(isoStart + ' 12:00')
          constrend = new Date(isoEnd + ' 12:00')
          let range = []
          ·let ·day ·= ·start
          while (day <= end) {
            range.push(new Date(day))
            day.setDate(day.getDate() + 1)
         return range
        const daySelector = $('#startDay')
        const fiFmt = Intl.DateTimeFormat('fi', {year: 'numeric', month:
        dayRange(firstDay, lastDay).forEach(day => (
         $(`<option value="${day.toISOString().substring(0,10)}">${fiFm
             appendTo(daySelector)
        daySelector.change(drawCharts)
        drawCharts()
      function drawCharts() {
       $('#timelines').empty()
        const dataTable = new google.visualization.DataTable()
        dataTable.addColumn({ type: 'string', id: 'Origin' })
```

### organize 250 database files

produce 330 screenshots for users participate in writing the report

# The power of realistic cases



Everything is easier: talking, deducing, ...

# Cost / benefit

```
x% install

* y% use

* z% contact noticed

* i% user notices

* j% contacts the authority

* ...
```

vs. cost of implementation & maintenance?

### Ketju

# Questions?

karri@reaktor.fi

@kplaakso

### Privacy-preserving contact statistics collection using COVID-19 contact tracing apps

Antti Honkela<sup>1</sup> and Tejas Kulkarni<sup>2</sup>

Finnish Center for Artificial Intelligence FCAI

1 University of Helsinki

2 Aalto University

Human-Centred Research and Design in Crisis
11 June 2020



#### Outline

A cartoon of an epidemic

Contact tracing apps

Privacy-preserving collection of contact statistics

Disclaimer: while I talk about mathematical epidemic models, I am not an epidemiologist. Listeners beware.



- ▶ Population divided to classes of individuals based on infection status
- ▶ Infection spreads when S has sufficiently strong contact with I
- Current growth rate of the epidemic measured by reproductive number  $R_e \approx$  ratio of new infections over recoveries





- Modelling by fitting the curve to observed confirmed cases / hospitalisations / deaths / ...
- ► Estimation delay: changes in infection rate only show in tests and hospitalisations after a week or more



- Modelling by fitting the curve to observed confirmed cases / hospitalisations / deaths / ...
- ► Estimation delay: changes in infection rate only show in tests and hospitalisations after a week or more

### Managing an epidemic



- ▶ Epidemic management activities aim at limiting contacts between S and I
  - Social distancing limits all contacts
  - ► Contact tracing aims to quarantine exposed individuals before they become infective

### Managing an epidemic



- ▶ Epidemic management activities aim at limiting contacts between S and I
  - Social distancing limits all contacts
  - ▶ Contact tracing aims to quarantine exposed individuals before they become infective

### Contact tracing and mobile apps

- ► Classical contact tracing works remarkably well, but is very labour intensive
- Many countries are developing mobile apps to assist the activity
- Privacy is an absolute requirement
- ► Typical mode of operation (e.g. DP-3T, Google/Apple):
  - No location data gathered (low utility, bad privacy)
  - Use Bluetooth to record random identifiers broadcast by nearby devices
  - Identifiers change relatively frequently
  - Recorded recent contacts shared only when user is diagnosed positive
- ▶ Discussion to decide between decentralised vs. centralised mode of operation

#### Contact tracing app theory



▶ Assuming 50% of population use the app and all detected exposed individuals are perfectly quarantined, we prevent 25% of potential future infections

#### Contact tracing app theory



- ► Assuming 50% of population use the app and all detected exposed individuals are perfectly quarantined, we prevent 25% of potential future infections
  - E.g. reduce  $R_e = 1.2 \rightarrow R_e = 0.9$

### Contact tracing app theory



- ▶ Assuming 50% of population use the app and all detected exposed individuals are perfectly quarantined, we prevent 25% of potential future infections
  - E.g. reduce  $R_e = 1.2 \rightarrow R_e = 0.9$
- ▶ Over 70% users needed for theoretical 50% efficiency
  - E.g. reduce  $R_e = 1.8 \rightarrow R_e = 0.9$

### Opportunity

- ► Contact tracing apps collect data of close contacts in the population
- ► Collecting statistical information of contact frequencies would provide data for epidemic modelling as well as monitoring and planning other interventions (e.g. school and business closures)
- ▶ While such statistical information is not very sensitive, strong privacy protection is still necessary; collection should be opt-in
- ▶ Such data likely to be useful with fewer users: even at 30% use we would expect to see 30% of contacts of each user and can correct that from known rate of users

### Asking sensitive questions: Randomised response (Warner, 1965)

Assume respondents are instructed to answer a potentially sensitive query (e.g. were you in contact with more than 10 individuals yesterday?) as follows:

- 1. Flip a coin in secret.
- 2. If tails, then respond truthfully.
- 3. If **heads**, then flip a second coin and respond "Yes" if heads and "No" if tails.
- ▶ Outcome: the answer is flipped with probability  $\frac{1}{4}$
- Everyone gets plausible deniability: "It was just the coins"
- Statistics can be estimated from population responses by compensating for the noise
- ► Probabilistic loss of privacy: "Yes" response makes it more likely your true response was "Yes"

### Differential privacy (DP; Dwork et al., 2006)



- ▶ Provides protection against adversaries with side information
- Degrades gracefully under repeated use
- Invariant to post-processing

### Proposal: Locally DP collection of contact statistics

- Using local DP (LDP) to collect population histogram of number of contacts
- Data are anonymised before they leave the user device
- Privacy guarantee: even if you see a user's report knowing it came from her, you can only guess what she answered
- ► Rapidly changing identifiers make collection of full daily statistics difficult
  - ► Collect e.g. maximum number of contacts over 30 min period each day instead
- ► Observed data fed to a Bayesian model for denoising, integrating responses from multiple days in a probabilistic model
  - Produces real-time data on behaviour changes and effects of changes to interventions and guidelines

#### Extended data collection



#### Extended data collection



### More about privacy

- Caveat: theoretical privacy guarantees will degrade over repeated data collection
  - Using fresh data for each report mitigates the impact
  - Ethical review of costs vs. benefits still needed
- Introducing secure shuffling to eliminate linking reports to individuals tightens the privacy guarantee by approximately factor  $\sqrt{n}$  for n users
  - ▶ Basically eliminates privacy concerns even after repeated collection
  - ▶ NB: even breaking the shuffler would not completely compromise the privacy

### Preliminary simulation results





Error in estimating the mean of a simulated population using LDP histogram estimation with D bins. Simulated using geometric distribution with true mean 2.0. Bars show MAE of 10 repeats, error bars show std over the repeats.

#### Conclusion



- ▶ COVID-19 pandemic has just started, still long way to vaccine or herd immunity
- Daily contact statistics observed by contact tracing apps could provide direct measures of the most important spreading mechanism, enabling more timely modelling
- ▶ Differential privacy provides the means to collect these data under strong privacy guarantees to the users

# Next Tuesday:

Why Contact Tracing is Neither Secure or Privacy-Preserving

### Janne Lindqvist,

Prof. at the Department of Computer Science, Aalto University



