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This lecture covers

1. Utility maximization problem (UMP): generalities
2. UMP: Constant elasticity of substitution
3. UMP: Cobb-Douglas and Stone-Geary
4. UMP: Quasilinear utility
5. Expenditure minimization
6. Cost minimization



Utility maximization problem (UMP)

I A consumer allocates her budget of w > 0 to n goods.
I Her consumption vector is an element of the positive orthant of the n

Euclidean space X = {x ∈ Rn
+}.

I We assume that the consumer has a continuous utility function u(x) defined
on X .

I Economic scarcity is present through the budget constraint:

p · x ≤ w or
n∑

i=1

pixi ≤ w ,

where p = (p1, ...,pn) > 0 is the vector of strictly positive prices for the goods.



Utility maximization problem (UMP)
Maximize

u(x1, ..., xn)

subject to
n∑

i=1

pixi ≤ w ,

xi ≥ 0 for all i .

Alternatively. subject to
n∑

i=1

pixi − w ≤ 0,

−xi ≤ 0 for all i ,



Utility maximization problem (UMP)

II To see that the feasible set is bounded, let pmin = minj pj (i.e. one of the
smallest prices pj ).

I Then we know that for all feasible x , we have pixi ≤ w for all i since xi ≥ 0
and pi > 0 for all i .

I Therefore for all feasible x , xi ≤ w
pmin for all i so that the feasible set is bounded

since 0 ≤ xi ≤ w
pmin for all i .



Utility maximization problem (UMP)

I To see that the feasible set is closed, we need to show that all limit points of
the feasible belong to the feasible set.

I We show this by arguing that when y is not in the feasible set, it is not a limit
point.

I If y is not feasible, then either yi < 0 for some i or
∑

i piyi > w .
I In both cases all points in a small enough neighborhood of y in infeasible. In

the first case, Bε(y) with ε < −mini yi , in the second, ε <
∑

i pi yi−w
maxi pi

.
I Weiertrass’ theorem guarantees that a maximum exists. The solution is called

the Marshallian demand (demand as a function of prices and income).



UMP: Lagrangean

I Since the constraint functions are linear, the feasible set is convex.
I If u is strictly increasing (as we usually assume) and quasiconcove, then the

first order Kuhn-Tucker conditions are necessary and sufficient for optimum.
I In words, whenever we find a point satisfying the K-T conditions, we have

solved the problem.
I Lagrangean:

L(x , λ) = u(x)− λ0

[
n∑

i=1

pixi − w

]
+

n∑
i=1

λixi



UMP: K-T conditions

I The first-order K-T conditions are:

∂L
∂x

=
∂u(x)
∂xi

− λ0pi + λi = 0 for all i , (1)

λ0

[
n∑

i=1

pixi − w

]
= 0, (2)

λixi = 0 for all i , (3)
n∑

i=1

pixi − w ≤ 0, (4)

−xi ≤ 0 for all i , (5)
λi ≥ 0 i ∈ {0,1, ...,n}. (6)



UMP: Simplifying the K-T conditions
I If the utility function has a strictly positive partial derivative for some xi at the

optimum, then the budget constraint must bind and λ0 > 0.
I This follows immediately from the first line of the K-T conditions.
I For the other inequality constraints, consider the partial derivatives at

x ∈ Xwith xi → 0 for some i .
I If

lim
xi→0

∂u(x)
∂xi

=∞,

then the first line of the K-T conditions implies that at optimum xi > 0.
I If this is true for all i , then we can ignore the non-negativity constraints and we

are effectively back to a problem with a single equality constraint.
I If ∂u(x)

∂xi
<∞ for x = (xi , x−i) = (0, x−i), then we must also consider corner

solutions where xi = 0 at optimum.



UMP: Interior solutions to K-T conditions

I For interior solutions xi > 0 for all i , we get from the first equation by
eliminating λ the familiar condition:

∂u(x)
∂xi
∂u(x)
∂xk

=
pi

pk
. (7)

I This is of course the familiar requirement that MRSxi ,xk = pi
pk

that we saw in
Principles of Economics 1.

I Now we see that the same condition extends for many goods and the
economic intuition is exactly the same.

I The price ratio gives the marginal rate of transformation between the different
goods and at an interior optimum, that rate must coincide with the marginal
rate of substitution.



UMP: Interior solutions to K-T conditions
I By multiplying these equations by pk

∂u(x)
∂xk

, we can write the first order
conditions for an interior solution as:

pk
∂u(x)
∂x1

− p1
∂u(x)
∂xk

= 0 for all k ,
n∑

i=1

pixi − w = 0. (8)

I In this equation system, we have n endogenous variables x1, ..., xn and n + 1
exogenous variables p1, ...,pn,w .

I We want to examine the comparative statics of x(p,w), for example
∂xi (p,w)
∂pi

, ∂xi (p,w)
∂pj

and ∂xi (p,w)
∂w .

I In words, what happens to the demand for one good when its own price
changes, when other goods prices change and when income changes.

I In the next lecture, we’ll do this via duality between UMP and expenditure
minimization. Here, tackle easy cases where the optimum can be solved
explicitly.



UMP: Constant elasticity of substitution

I In some cases, the functional form allows for explicit solution.
I We start with the constant elasticity of substitution utility function with two

goods x , y ∈ R.

u(x , y) = (axxρ + ayyρ)
1
ρ ,

for ρ < 1ρ 6= 0 and ax ,ay > 0.
I You have already shown in problem sets that functions of this type are

quasiconcave for ρ > 0.
I Please show that the function is quasiconcave also for ρ < 0. Be careful here

since raising to a negative power is not an increasing function.



UMP: Constant elasticity of substitution

I Compute the marginal utility for each xi :

∂u(x , y)
∂x

= ρaxxρ−1 1
ρ
(axxρ + ayyρ)

1
ρ
−1
.

∂u(x , y)
∂y

= ρayyρ−1 1
ρ
(axxρ + ayyρ)

1
ρ
−1
.

I Note that since ρ < 1, we have ∂u(x ,y)
∂x > 0, ∂u(x ,y)

∂y > 0, and

lim
x→0

∂u(x , y)
∂x

= lim
y→0

∂u(x , y)
∂y

=∞.

I Hence budget constraint binds and interior solution
I Feasible set is convex, the objective function is quasiconcave with a

non-vanishing derivative, the first order conditions are also sufficient



UMP: Constant elasticity of substitution
I Hence the K-T conditions require simply that for all i , k :

∂u(x ,y)
∂x

∂u(x ,y)
∂y

=
px

py
,

and the budget constraint holds as an equality:

pxx + pyy = w .
I Hence we have that

axxρ−1

ayyρ−1 =
px

py
,

or

x
y
= (

aypx

axpy
)

1
ρ−1 ,

or

y = x(
aypx

axpy
)

1
1−ρ . (9)



UMP: Constant elasticity of substitution

I Substituting into the budget constraint, we get:

pxx + pyx(
aypx

axpy
)

1
1−ρ = w .

I We can solve for x1 to get

x =
w

px + py (
ay px
ax py

)
1

1−ρ

.

I Simplifying the expression a bit, we get

x =
w(px

ax
)

1
ρ−1

(ax)
1

1−ρ (px)
ρ

ρ−1 + (ay )
1

1−ρ (py )
ρ

ρ−1

, y =
w(

py
ay
)

1
ρ−1

(ax)
1

1−ρ (px)
ρ

ρ−1 + (ay )
1

1−ρ (py )
ρ

ρ−1

.



UMP: Constant elasticity of substitution

I Let r = ρ
ρ−1 . Then we have a bit more neatly:

x =
w(px

ax
)r−1

a1−r
x pr

x + a1−r
y pr

y
, y =

w(
py
ay
)r−1

a1−r
x pr

x + a1−r
y pr

y
.

I For the case where ax = ay , this simplifies further to:

x(px ,py ,w) =
wpr−1

x

pr
x + pr

y
, y(px ,py ,w) =

wpr−1
y

pr
x + pr

y
.

I Exercise: Compute the comparative statics for x(px ,py ,w), y(px ,py ,w) in the
exogenous variables. What happens when r → 1 and r → −∞?



UMP: Constant elasticity of substitution

I You will see in further studies the case with n goods x = (x1, ..., xn) at prices
p = (p1, ...,pn). With equal coefficients ai = aj for all i , j , the optimal demands
are:

xi(p,w) =
wpr−1

x∑n
i=1 pr

i
.

I The term
∑n

i=1 pr
i is called the CES price aggregator. You will see CES

functions in international trade, endogenous growth, production theory and
industrial organization.



UMP: Constant elasticity of substitution

I To see where the name comes from, go back to

x
y
= (

aypx

axpy
)

1
ρ−1 .

I If you denote x
y = z, px

py
) = q, you have

z = cq
1

ρ−1 .

I Hence 1
ρ−1 is the elasticity of z with respect to q. The higher 1

ρ−1 , the more
substitutable the products are.



UMP: Cobb-Douglas utility function

I In Problem set 1, you showed that as ρ→ 0, the CES -function converges to
the Cobb-Douglas utility function u(x) = xax yay .

I We can take ax + ay = 1 and denote ax = α,ay = 1− α since raising to the
power of ax + ay is a strictly increasing function.

I Both marginal utilities are strictly positive and

lim
x→0

∂u(x , y)
∂x

= lim
y→0

∂u(x , y)
∂y

=∞.



UMP: Cobb-Douglas utility function

I Hence interior solution and budget constraint binds.
I The requirement that MRSx ,y = px

py
is the same as in (9) with ρ = 0.

I Therefore we can use the formulas for Marshallian demands for the CES
-case to get:

x(px ,py ,w) =
αw
px

, y(px ,py ,w) =
(1− α)w

py
.



UMP: Cobb-Douglas utility function

I For the Cobb-Douglas utility function, you get the result that the expenditure
share px x

w = α and py y
w = 1− α.

I This extends easily to the case with n goods and u(x) = xα1
1 . . . xαn

n with
αi > 0,

∑
i αi = 1 at prices p = (p1, ...,pn). Then you have:

xi(p,w) =
αiw
pi

.

I Expenditure shares do not depend on prices and on income.
I In equation (9), you can see that for general CES -functions, expenditure

shares depend on prices, but not on income.
I This is not very realistic



UMP: Stone-Geary utility function

I One way to get more realistic consumption patters is to define the utility
function for consumptions above a level needed for subsistence.

I Let x = (x1, ..., xn) be the levels of each good needed for survival and assume
that w ≥ p · x .

I The utility function for x ∈ Rn such that xi ≥ xi is of Cobb-Douglas -like form:

u(x) = (x1 − x1)
α1 . . . (xn − xn)

αn ,

where 0 < αi < 1 for all i and
∑n

i=1 αi = 1.
I Notice that the marginal utility for good i is infinite if xi = xi and that the utility

function is strictly increasing in all of its components.
I Hence we still have an interior solution and the budget constraint binds.



UMP: Stone-Geary utility function
I We get as above:

∂u
∂xi
∂u
∂xk

=
αi(xk − xk )

αk (xi − xi)
=

pi

pk
for all i , k ,

n∑
i=1

pixi = w .

I Taking k = 1, we get that

xi − xi =
αip1

α1pi
(x1 − x1) for all i . (10)

I Multiplying both sides by pi and summing over i gives:

n∑
i=1

pi(xi − xi) =
p1

∑n
i=1 αi

α1
(x1 − x1).



UMP: Stone-Geary utility function

I So we can solve:

x1 − x1 =
α1(w −

∑n
i=1 pixi)

p1
,

where we used the budget constraint
∑n

i=1 pixi = w and
∑n

i=1 αi = 1
I By (10), we see that

xi − xi =
αi(w −

∑n
j=1 pjxj)

pi
.

I The consumer uses a constant fraction of her excess income (above what is
needed for the necessities x) in constant shares given by the αi .

I Since the poor have less excess wealth, their consumption fractions are
closer to the ones given by the subsistence levels βi :=

xi∑
i xi

.



Quasilinear utility function

I We end the section on utility maximization with u(x , y) = v(x) + y , where v is
a strictly increasing and strictly concave function subject to non-negativity of
x , y and the budget constraint pxx + y ≤ w .

I Now MRSx ,y = v ′(x).
I If v ′( w

px
) > px , then we have a corner solution x(px ,w) = w

px
, y(px ,w) = 0.

Otherwise x(px ,w) solves

v ′(x) = px ,

and
y = (w − pxx(px ,w)).

I This utility function lies behind partial equilibrium analysis in microeconomics
where x is sold in the market of interest and y is everything else.



Expenditure minimization problem

I We cover briefly the related problem of minimizing expenditure subject to the
constraint of reaching a specified level of utility.

I All the notation is exactly as in UMP and we assume that the utility function
u(x) is quasiconcave.

min
x∈X

p · x =
n∑

i=1

pixi ,

subject to
u(x) ≥ u.

I This means that we have a linear and thus quasiconvex objective function for
our minimization problem and since the utility function is quasiconcave, the
feasible set is convex.



Expenditure minimization problem

I Hence we know that K-T necessary conditions are also sufficient. Notice that
the feasible set is now not bounded (why?)

I A solution exists because we can take any x∗ such that u(x∗) ≥ u and restrict
attention to x such that p · x ≤ p · x∗ since x∗ is a feasible solution.

I But this set is convex and bounded since it is a budget set.



Expenditure minimization problem
I The Lagrangean to the problem is:

L(x , λ) =
n∑

i=1

pixi − λ0(u − u(x)) +
n∑

i=1

λixi .

I The first-order conditions are:

∂L
∂x

= pi + λ0
∂u
∂xi

+ λi = 0 for all i , (11)

λ0[u(x)− u] = 0, (12)
λixi = 0 for all i , (13)

u − u(x) ≤ 0, (14)
−xi ≤ 0 for all i , (15)
λi ≥ 0 i ∈ {0,1, ...,n}. (16)



Expenditure minimization problem

I Notice that for interior solutions (where λ1 = λ2 = ... = λn = 0, we get again
(after eliminating the multiplier) from the first line of the K-T conditions that

∂u
∂xi
∂u
∂xk

=
pi

pk
.

I The solutions xi(p,u) to this minimization problem are called the Hicksian or
compensated demands.

I We have exactly the same situation as before. Now the ratio of marginal
utilities is really the MRT for the problem since it describes the feasible set.

I The price ratio is now the MRS of this new problem. We will relate these two
problems in the next lecture.



Cost minimization problem for a firm

I A firm chooses its inputs k , l to minimize the cost of reaching a production
target of q at given input prices r ,w .

I The production function is assumed to be a strictly increasing and
quasiconcave function f (k , l).

min
(k ,l)∈R2

+

rk + wl

subject to
f (k , l) ≥ q.

I Notice that this is the same mathematical problem as in expenditure
minimization. Only the names of variables have changed. The solution to the
problem is therefore also identical.


