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This lecture covers
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Utility maximization problem (UMP): generalities
UMP: Constant elasticity of substitution

UMP: Cobb-Douglas and Stone-Geary

UMP: Quasilinear utility

Expenditure minimization

Cost minimization



Utility maximization problem (UMP)

» A consumer allocates her budget of w > 0 to n goods.

» Her consumption vector is an element of the positive orthant of the n
Euclidean space X = {x € R }.

» We assume that the consumer has a continuous utility function u(x) defined
on X.

» Economic scarcity is present through the budget constraint:

n
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where p = (py, ..., Pn) > 0 is the vector of strictly positive prices for the goods.



Utility maximization problem (UMP)

Maximize
u(Xq, ..., Xn)

subject to

n
> pixi < w,
i=1

x; > 0 for all /.

Alternatively. subject to

n
ZP/X/' -w <0,
i—1

—x; < 0forall i,



Utility maximization problem (UMP)

> To see that the feasible set is bounded, let p™" = min; p; (i.e. one of the
smallest prices p).

» Then we know that for all feasible x, we have p;x; < w for all i since x; > 0
and p; > 0 for all /.

» Therefore for all feasible x, x; < pTWm for all / so that the feasible set is bounded
since 0 < x; < pTW,n for all J.



Utility maximization problem (UMP)

> To see that the feasible set is closed, we need to show that all limit points of
the feasible belong to the feasible set.

» We show this by arguing that when y is not in the feasible set, it is not a limit
point.

» If y is not feasible, then either y; < 0 for some ior ), piy; > w.

» In both cases all points in a small enough neighborhood of y in infeasible. In
the first case, B*(y) with ¢ < —min; y;, in the second, ¢ < %{’;"V.

> Weiertrass’ theorem guarantees that a maximum exists. The solution is called
the Marshallian demand (demand as a function of prices and income).



UMP: Lagrangean

» Since the constraint functions are linear, the feasible set is convex.

» If uis strictly increasing (as we usually assume) and quasiconcove, then the
first order Kuhn-Tucker conditions are necessary and sufficient for optimum.

> In words, whenever we find a point satisfying the K-T conditions, we have
solved the problem.

» Lagrangean:

n

n
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UMP: K-T conditions

» The first-order K-T conditions are:

oc _
ox

ou(x)
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— Xopi+ Aj=0forall
n
Ao [ZP/X/' - W] =0,
i=1
Aix; = 0 for all j,

n
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—x; < 0forall i,

A >0 ie{0,1,..
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UMP: Simplifying the K-T conditions

» If the utility function has a strictly positive partial derivative for some x; at the
optimum, then the budget constraint must bind and Ay > 0.

» This follows immediately from the first line of the K-T conditions.
» For the other inequality constraints, consider the partial derivatives at
x € Xwith x; — 0 for some i.
> If
ou(x)

xi—0  OX; ’

then the first line of the K-T conditions implies that at optimum x; > 0.

> [f this is true for all /, then we can ignore the non-negativity constraints and we
are effectively back to a problem with a single equality constraint.

> |f 3gfjl_() < oo for x = (x;, x_;) = (0, x_;), then we must also consider corner

solutions where x; = 0 at optimum.



UMP: Interior solutions to K-T conditions

» For interior solutions x; > 0 for all /, we get from the first equation by
eliminating A the familiar condition:

ou(x) D
OX; i
= (7)
0
T

» This is of course the familiar requirement that MRSy, x, = ;% that we saw in
Principles of Economics 1.

> Now we see that the same condition extends for many goods and the
economic intuition is exactly the same.

» The price ratio gives the marginal rate of transformation between the different
goods and at an interior optimum, that rate must coincide with the marginal
rate of substitution.



UMP: Interior solutions to K-T conditions

» By multiplying these equations by py agf(x), we can write the first order

conditions for an interior solution as:

au(x) au(x) L
- =0 forall k Xi—w =0.
Py, ~P1 gy —Ofora ,;p,x, w=0 (8)
> In this equation system, we have n endogenous variables xi, ..., x, and n + 1
exogenous variables py, ..., pn, W

» We want to examine the comparative statics of x(p, w), for example

8X,(p,W) aX/(p,W) aX,(p,W)
96, 0 9p, and

» In words, what happens to the demand for one good when its own price
changes, when other goods prices change and when income changes.

> In the next lecture, we’ll do this via duality between UMP and expenditure
minimization. Here, tackle easy cases where the optimum can be solved
explicitly.




UMP: Constant elasticity of substitution

» In some cases, the functional form allows for explicit solution.

» We start with the constant elasticity of substitution utility function with two
goods x,y € R.

1
u(x,y) = (axx” + ayy”)»,
forp <1p #0and ayx,a, > 0.

» You have already shown in problem sets that functions of this type are
quasiconcave for p > 0.

» Please show that the function is quasiconcave also for p < 0. Be careful here
since raising to a negative power is not an increasing function.



UMP: Constant elasticity of substitution

» Compute the marginal utility for each x;:

ou(x, 11 1_

(axy):paxxp 1;(axxp+ayyp)p 1.

8U(X,y) _ p— 11 0 o\ —1
dy = payy p(axx +ayy) )

» Note that since p < 1, we have a”(x ) 50, d“(" Y) < 0, and

i QU Y) | ou(xy)
x—0 ox y—0 oy

» Hence budget constraint binds and interior solution

> Feasible set is convex, the objective function is quasiconcave with a
non-vanishing derivative, the first order conditions are also sufficient



UMP: Constant elasticity of substitution
» Hence the K-T conditions require simply that for all i, k:

8 ’.

ug)(( y) px

uxy)  p,’
ay ) Py

and the budget constraint holds as an equality:

PxX + pyy = w.
» Hence we have that
axx’~ px
ayr~'  py’
or
{ — (a,VpX)p%7
y axPy

or



UMP: Constant elasticity of substitution

» Substituting into the budget constraint, we get:

ayPx

)11? = w.
axpy

PxX + Py X(

» We can solve for xq to get

w
X =

1

Px + Py (5p) ="

» Simplifying the expression a bit, we get

(py)”f .



UMP: Constant elasticity of substitution

> Letr= p%‘l' Then we have a bit more neatly:

-1 Py \r—1

o WE) y— w(z,)
P 1—r o = i-r 1—r
a 'pi+ay "oy a 'pk+ay oy

» For the case where ay = ay, this simplifies further to:

_owpy ! _wpy!
px + Py’ Pk + Py

» Exercise: Compute the comparative statics for x(px, py, w), y(px, py, w) in the
exogenous variables. What happens when r — 1 and r — —o0?

x(Px, Py, W) ¥(px, py, w)



UMP: Constant elasticity of substitution

» You will see in further studies the case with n goods x = (xi, ..., Xp) at prices

p = (p1,..., Pn). With equal coefficients a; = a; for all /, j, the optimal demands
are:

_ wp!
pIy. p;
> The term >, p/ is called the CES price aggregator. You will see CES

functions in international trade, endogenous growth, production theory and
industrial organization.

Xi(p7 W)



UMP: Constant elasticity of substitution

» To see where the name comes from, go back to

X _ (aypx);j.
y axPy
> If you denote § = z, gx) g, you have
z= cqﬂ1j

» Hence p—1 is the elasticity of z with respect to q. The hlgher
substitutable the products are.

—1-, the more



UMP: Cobb-Douglas utility function

» In Problem set 1, you showed that as p — 0, the CES -function converges to
the Cobb-Douglas utility function u(x) = x&y%.

» We can take ay + a, = 1 and denote ay = a,a, = 1 — a since raising to the
power of ay + ay is a strictly increasing function.

» Both marginal utilities are strictly positive and

ou(x.y) _ | ou(x.y)

)I(To ox y—=0 Oy



UMP: Cobb-Douglas utility function

» Hence interior solution and budget constraint binds.

» The requirement that MRS, , = %; is the same as in (9) with p = 0.

» Therefore we can use the formulas for Marshallian demands for the CES
-case to get:

aw 1—a)w
X(pXHD,Vv W) = ) Y(px7py7 W) = ( ) .
Px Py



UMP: Cobb-Douglas utility function

» For the Cobb-Douglas utility function, you get the result that the expenditure
share 2* =g and 2 =1 — a.
> This extends easily to the case with n goods and u(x) = x{"' ... x5" with

aj >0, ;a;=1atprices p = (p1, ..., Pn). Then you have:

ajw
pi
» Expenditure shares do not depend on prices and on income.

» In equation (9), you can see that for general CES -functions, expenditure
shares depend on prices, but not on income.

» This is not very realistic

Xi(p’ W) =



UMP: Stone-Geary utility function

» One way to get more realistic consumption patters is to define the utility
function for consumptions above a level needed for subsistence.

> Let x = (x4, ..., Xp) be the levels of each good needed for survival and assume
thatw > p- x.

» The utility function for x € R" such that x; > Xx; is of Cobb-Douglas -like form:

u(x) = (x1 = x)* ... (Xn — Xn)*",
where 0 < o < 1foralliand Y7 ; aj = 1.

» Notice that the marginal utility for good i is infinite if x; = x; and that the utility
function is strictly increasing in all of its components.

» Hence we still have an interior solution and the budget constraint binds.



UMP: Stone-Geary utility function

» We get as above:

ou

ox _ ik = Xk) _ Pigo i k
- - ) b

S ok —Xx) Pk

n
Zp,-x,- = Ww.
i=1

» Taking kK = 1, we get that

Qi
Xi— Xj = iP
- P

(Xy — xq) for all /. (10)

» Multiplying both sides by p; and summing over i gives:

n n
P a‘
> pilxi—x) = [)1%'1_1'()(1 - X1).
i—



UMP: Stone-Geary utility function

>

So we can solve:

ar(w — 3Ly pix)

P1 ’
where we used the budget constraint >, pix; = wand Y7, o = 1
By (10), we see that

Xt — X1 =

ai(w =31 pix)

Pi '
The consumer uses a constant fraction of her excess income (above what is
needed for the necessities x) in constant shares given by the «;.

Since the poor have less excess wealth, their consumptlon fractions are
closer to the ones given by the subsistence levels g; := Z X

X;—ﬁ:




Quasilinear utility function

» We end the section on utility maximization with u(x, y) = v(x) + y, where v is
a strictly increasing and strictly concave function subject to non-negativity of
X, y and the budget constraint pyx + y < w.

» Now MRS, , = v/(x).
> If v’(p—"i) > px, then we have a corner solution x(px, w) = p—"‘:,y(px, w) =0.
Otherwise x(px, w) solves

V/(X) = pX7
and
y = (w — pxx(px, w)).

» This utility function lies behind partial equilibrium analysis in microeconomics
where x is sold in the market of interest and y is everything else.



Expenditure minimization problem

» We cover briefly the related problem of minimizing expenditure subject to the
constraint of reaching a specified level of utility.

» All the notation is exactly as in UMP and we assume that the utility function
u(x) is quasiconcave.

n
minp - X = iXi,
erXp ;P/ i
subject to

u(x) > u.

» This means that we have a linear and thus quasiconvex objective function for
our minimization problem and since the utility function is quasiconcave, the
feasible set is convex.



Expenditure minimization problem

» Hence we know that K-T necessary conditions are also sufficient. Notice that
the feasible set is now not bounded (why?)

» A solution exists because we can take any x* such that u(x*) > U and restrict
attention to x such that p- x < p- x* since x* is a feasible solution.

» But this set is convex and bounded since it is a budget set.



Expenditure minimization problem

» The Lagrangean to the problem is:

L(x Zp,x, Xo(T — u(x Z/\x,

i=1
» The first-order conditions are:

gf_p,Jr)\og X + A;j =0 forall j,
Ao[u(x) — U] =0,
Aix; = 0 for all /,
u—u(x) <o,
—x; < 0forall i,

A >0 i€{0,1,..

, N}



Expenditure minimization problem

» Notice that for interior solutions (where A\ = Ao = ... = A\, = 0, we get again
(after eliminating the multiplier) from the first line of the K-T conditions that
ou
o _ Pi
Sy =
Bi)i Pk

» The solutions x;(p, U) to this minimization problem are called the Hicksian or
compensated demands.

» We have exactly the same situation as before. Now the ratio of marginal
utilities is really the MRT for the problem since it describes the feasible set.

» The price ratio is now the MRS of this new problem. We will relate these two
problems in the next lecture.



Cost minimization problem for a firm

» A firm chooses its inputs k, / to minimize the cost of reaching a production
target of g at given input prices r, w.

» The production function is assumed to be a strictly increasing and
quasiconcave function f(k, /).

min rk + wl
(k,)eR?2
subject to
f(k.1) > q.

» Notice that this is the same mathematical problem as in expenditure
minimization. Only the names of variables have changed. The solution to the
problem is therefore also identical.



