Mathematics for Economists: Lecture 9

Juuso Välimäki

Aalto University School of Business

Spring 2020

This lecture covers

- 1. Utility maximization problem (UMP): generalities
- 2. UMP: Constant elasticity of substitution
- 3. UMP: Cobb-Douglas and Stone-Geary
- 4. UMP: Quasilinear utility
- 5. Expenditure minimization
- 6. Cost minimization

- ▶ A consumer allocates her budget of w > 0 to n goods.
- ► Her consumption vector is an element of the positive orthant of the n Euclidean space $X = \{x \in \mathbb{R}^n_+\}$.
- We assume that the consumer has a continuous utility function u(x) defined on X.
- Economic scarcity is present through the budget constraint:

$$p \cdot x \leq w \text{ or } \sum_{i=1}^{n} p_i x_i \leq w,$$

where $p = (p_1, ..., p_n) > 0$ is the vector of strictly positive prices for the goods.

Maximize

$$u(x_1, ..., x_n)$$

subject to

$$\sum_{i=1}^{n} p_i x_i \le w,$$

$$x_i \ge 0 \text{ for all } i.$$

Alternatively. subject to

$$\sum_{i=1}^{n} p_i x_i - w \le 0,$$
$$-x_i \le 0 \text{ for all } i,$$

- ▶ To see that the feasible set is bounded, let $p^{min} = \min_j p_j$ (i.e. one of the smallest prices p_i).
- Then we know that for all feasible x, we have $p_i x_i \le w$ for all i since $x_i \ge 0$ and $p_i > 0$ for all i.
- Therefore for all feasible x, $x_i \le \frac{w}{\rho^{min}}$ for all i so that the feasible set is bounded since $0 \le x_i \le \frac{w}{\rho^{min}}$ for all i.

- ➤ To see that the feasible set is closed, we need to show that all limit points of the feasible belong to the feasible set.
- ▶ We show this by arguing that when *y* is not in the feasible set, it is not a limit point.
- ▶ If *y* is not feasible, then either $y_i < 0$ for some *i* or $\sum_i p_i y_i > w$.
- In both cases all points in a small enough neighborhood of y in infeasible. In the first case, $B^{\varepsilon}(y)$ with $\varepsilon < -\min_{i} y_{i}$, in the second, $\varepsilon < \frac{\sum_{i} p_{i}y_{i} w}{\max_{i} p_{i}}$.
- ▶ Weiertrass' theorem guarantees that a maximum exists. The solution is called the Marshallian demand (demand as a function of prices and income).

UMP: Lagrangean

- Since the constraint functions are linear, the feasible set is convex.
- ▶ If *u* is strictly increasing (as we usually assume) and quasiconcove, then the first order Kuhn-Tucker conditions are necessary and sufficient for optimum.
- ▶ In words, whenever we find a point satisfying the K-T conditions, we have solved the problem.
- Lagrangean:

$$\mathcal{L}(x,\lambda) = u(x) - \lambda_0 \left[\sum_{i=1}^n p_i x_i - w \right] + \sum_{i=1}^n \lambda_i x_i$$

UMP: K-T conditions

The first-order K-T conditions are:

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial u(x)}{\partial x_i} - \lambda_0 p_i + \lambda_i = 0 \text{ for all } i, \tag{1}$$

$$\lambda_0 \left[\sum_{i=1}^n p_i x_i - w \right] = 0, \tag{2}$$

$$\lambda_i x_i = 0 \text{ for all } i,$$
 (3)

$$\sum_{i=1}^{n} p_i x_i - w \leq 0, \tag{4}$$

$$-x_i \le 0 \text{ for all } i,$$
 (5)

$$\lambda_i \geq 0 \ i \in \{0, 1, ..., n\}.$$
 (6)

UMP: Simplifying the K-T conditions

- If the utility function has a strictly positive partial derivative for some x_i at the optimum, then the budget constraint must bind and $\lambda_0 > 0$.
- This follows immediately from the first line of the K-T conditions.
- For the other inequality constraints, consider the partial derivatives at $x \in X$ with $x_i \to 0$ for some i.
- ► If

$$\lim_{x_i\to 0}\frac{\partial u(x)}{\partial x_i}=\infty,$$

then the first line of the K-T conditions implies that at optimum $x_i > 0$.

- ▶ If this is true for all *i*, then we can ignore the non-negativity constraints and we are effectively back to a problem with a single equality constraint.
- If $\frac{\partial u(x)}{\partial x_i} < \infty$ for $x = (x_i, x_{-i}) = (0, x_{-i})$, then we must also consider corner solutions where $x_i = 0$ at optimum.

UMP: Interior solutions to K-T conditions

For interior solutions $x_i > 0$ for all i, we get from the first equation by eliminating λ the familiar condition:

$$\frac{\frac{\partial u(x)}{\partial x_i}}{\frac{\partial u(x)}{\partial x_k}} = \frac{p_i}{p_k}.$$
 (7)

- This is of course the familiar requirement that $MRS_{x_i,x_k} = \frac{\rho_i}{\rho_k}$ that we saw in Principles of Economics 1.
- Now we see that the same condition extends for many goods and the economic intuition is exactly the same.
- ► The price ratio gives the marginal rate of transformation between the different goods and at an interior optimum, that rate must coincide with the marginal rate of substitution.

UMP: Interior solutions to K-T conditions

▶ By multiplying these equations by $p_k \frac{\partial u(x)}{\partial x_k}$, we can write the first order conditions for an interior solution as:

$$p_k \frac{\partial u(x)}{\partial x_1} - p_1 \frac{\partial u(x)}{\partial x_k} = 0 \text{ for all } k, \sum_{i=1}^n p_i x_i - w = 0.$$
 (8)

- In this equation system, we have n endogenous variables $x_1, ..., x_n$ and n + 1 exogenous variables $p_1, ..., p_n, w$.
- We want to examine the comparative statics of x(p, w), for example $\frac{\partial x_i(p,w)}{\partial p_i}$, $\frac{\partial x_i(p,w)}{\partial p_i}$ and $\frac{\partial x_i(p,w)}{\partial w}$.
- ► In words, what happens to the demand for one good when its own price changes, when other goods prices change and when income changes.
- ▶ In the next lecture, we'll do this via duality between UMP and expenditure minimization. Here, tackle easy cases where the optimum can be solved explicitly.

- ▶ In some cases, the functional form allows for explicit solution.
- ▶ We start with the constant elasticity of substitution utility function with two goods $x, y \in \mathbb{R}$.

$$u(x,y)=(a_xx^\rho+a_yy^\rho)^{\frac{1}{\rho}},$$

for $\rho < 1\rho \neq 0$ and $a_x, a_y > 0$.

- You have already shown in problem sets that functions of this type are quasiconcave for $\rho > 0$.
- Please show that the function is quasiconcave also for ρ < 0. Be careful here since raising to a negative power is not an increasing function.

Compute the marginal utility for each x_i:

$$\frac{\partial u(x,y)}{\partial x} = \rho a_x x^{\rho-1} \frac{1}{\rho} (a_x x^{\rho} + a_y y^{\rho})^{\frac{1}{\rho}-1}.$$
$$\frac{\partial u(x,y)}{\partial y} = \rho a_y y^{\rho-1} \frac{1}{\rho} (a_x x^{\rho} + a_y y^{\rho})^{\frac{1}{\rho}-1}.$$

$$\frac{\partial y}{\partial x} = \frac{\partial u(x,y)}{\partial x} = 0 \quad \text{and} \quad \frac{\partial u(x,y)}{\partial$$

▶ Note that since ρ < 1, we have $\frac{\partial u(x,y)}{\partial x}$ > 0, $\frac{\partial u(x,y)}{\partial y}$ > 0, and

$$\lim_{x\to 0}\frac{\partial u(x,y)}{\partial x}=\lim_{y\to 0}\frac{\partial u(x,y)}{\partial y}=\infty.$$

- Hence budget constraint binds and interior solution
- Feasible set is convex, the objective function is quasiconcave with a non-vanishing derivative, the first order conditions are also sufficient

▶ Hence the K-T conditions require simply that for all *i*, *k*:

$$\frac{\frac{\partial u(x,y)}{\partial x}}{\frac{\partial u(x,y)}{\partial y}} = \frac{p_x}{p_y},$$

and the budget constraint holds as an equality:

$$p_x x + p_y y = w.$$

Hence we have that

$$\frac{a_x x^{\rho-1}}{a_y y^{\rho-1}} = \frac{p_x}{p_y},$$

or

$$\frac{x}{y}=(\frac{a_yp_x}{a_xp_y})^{\frac{1}{\rho-1}},$$

or

Substituting into the budget constraint, we get:

$$p_x x + p_y x \left(\frac{a_y p_x}{a_x p_y}\right)^{\frac{1}{1-\rho}} = w.$$

 \triangleright We can solve for x_1 to get

$$X = \frac{W}{p_X + p_Y(\frac{a_Y p_X}{a_X p_Y})^{\frac{1}{1-\rho}}}.$$

Simplifying the expression a bit, we get

$$x = \frac{w(\frac{\rho_{x}}{a_{x}})^{\frac{1}{\rho-1}}}{(a_{x})^{\frac{1}{1-\rho}}(\rho_{x})^{\frac{\rho}{\rho-1}} + (a_{y})^{\frac{1}{1-\rho}}(\rho_{y})^{\frac{\rho}{\rho-1}}}, \qquad y = \frac{w(\frac{\rho_{y}}{a_{y}})^{\frac{1}{\rho-1}}}{(a_{x})^{\frac{1}{1-\rho}}(\rho_{x})^{\frac{\rho}{\rho-1}} + (a_{y})^{\frac{1}{1-\rho}}(\rho_{y})^{\frac{\rho}{\rho-1}}}.$$

▶ Let $r = \frac{\rho}{\rho - 1}$. Then we have a bit more neatly:

$$x = \frac{w(\frac{p_x}{a_x})^{r-1}}{a_x^{1-r}p_x^r + a_y^{1-r}p_y^r}, \qquad y = \frac{w(\frac{p_y}{a_y})^{r-1}}{a_x^{1-r}p_x^r + a_y^{1-r}p_y^r}.$$

For the case where $a_x = a_y$, this simplifies further to:

$$x(p_x, p_y, w) = \frac{wp_x^{r-1}}{p_x^r + p_y^r}, \qquad y(p_x, p_y, w) = \frac{wp_y^{r-1}}{p_x^r + p_y^r}.$$

Exercise: Compute the comparative statics for $x(p_x, p_y, w), y(p_x, p_y, w)$ in the exogenous variables. What happens when $r \to 1$ and $r \to -\infty$?

You will see in further studies the case with n goods $x = (x_1, ..., x_n)$ at prices $p = (p_1, ..., p_n)$. With equal coefficients $a_i = a_j$ for all i, j, the optimal demands are:

$$x_i(p,w) = \frac{wp_x^{r-1}}{\sum_{i=1}^n p_i^r}.$$

▶ The term $\sum_{i=1}^{n} p_i^r$ is called the CES price aggregator. You will see CES functions in international trade, endogenous growth, production theory and industrial organization.

▶ To see where the name comes from, go back to

$$\frac{x}{y}=(\frac{a_yp_x}{a_xp_y})^{\frac{1}{\rho-1}}.$$

▶ If you denote $\frac{x}{y} = z, \frac{\rho_x}{\rho_y}) = q$, you have

$$z=cq^{\frac{1}{\rho-1}}.$$

▶ Hence $\frac{1}{\rho-1}$ is the elasticity of z with respect to q. The higher $\frac{1}{\rho-1}$, the more substitutable the products are.

UMP: Cobb-Douglas utility function

- ▶ In Problem set 1, you showed that as $\rho \to 0$, the CES -function converges to the Cobb-Douglas utility function $u(x) = x^{a_x} y^{a_y}$.
- We can take $a_x + a_y = 1$ and denote $a_x = \alpha$, $a_y = 1 \alpha$ since raising to the power of $a_x + a_y$ is a strictly increasing function.
- Both marginal utilities are strictly positive and

$$\lim_{x\to 0}\frac{\partial u(x,y)}{\partial x}=\lim_{y\to 0}\frac{\partial u(x,y)}{\partial y}=\infty.$$

UMP: Cobb-Douglas utility function

- Hence interior solution and budget constraint binds.
- ▶ The requirement that $MRS_{x,y} = \frac{p_x}{p_y}$ is the same as in (9) with $\rho = 0$.
- Therefore we can use the formulas for Marshallian demands for the CES -case to get:

$$x(p_x, p_y, w) = \frac{\alpha w}{p_x}, \qquad y(p_x, p_y, w) = \frac{(1-\alpha)w}{p_y}.$$

UMP: Cobb-Douglas utility function

- For the Cobb-Douglas utility function, you get the result that the expenditure share $\frac{p_x x}{w} = \alpha$ and $\frac{p_y y}{w} = 1 \alpha$.
- ► This extends easily to the case with n goods and $u(x) = x_1^{\alpha_1} \dots x_n^{\alpha_n}$ with $\alpha_i > 0, \sum_i \alpha_i = 1$ at prices $p = (p_1, ..., p_n)$. Then you have:

$$x_i(p, w) = \frac{\alpha_i w}{p_i}.$$

- Expenditure shares do not depend on prices and on income.
- ▶ In equation (9), you can see that for general CES -functions, expenditure shares depend on prices, but not on income.
- ► This is not very realistic

UMP: Stone-Geary utility function

- One way to get more realistic consumption patters is to define the utility function for consumptions above a level needed for subsistence.
- Let $\underline{x} = (\underline{x_1}, ..., \underline{x_n})$ be the levels of each good needed for survival and assume that $w \ge p \cdot \underline{x}$.
- ▶ The utility function for $x \in \mathbb{R}^n$ such that $x_i \ge \underline{x_i}$ is of Cobb-Douglas -like form:

$$u(x)=(x_1-\underline{x_1})^{\alpha_1}\ldots(x_n-\underline{x_n})^{\alpha_n},$$

where $0 < \alpha_i < 1$ for all i and $\sum_{i=1}^n \alpha_i = 1$.

- Notice that the marginal utility for good i is infinite if $x_i = \underline{x_i}$ and that the utility function is strictly increasing in all of its components.
- Hence we still have an interior solution and the budget constraint binds.

UMP: Stone-Geary utility function

▶ We get as above:

$$\frac{\frac{\partial u}{\partial x_i}}{\frac{\partial u}{\partial x_k}} = \frac{\alpha_i(x_k - \underline{x_k})}{\alpha_k(x_i - \underline{x_i})} = \frac{p_i}{p_k} \text{ for all } i, k,$$

$$\sum_{k=1}^{n} p_i x_i = w.$$

ightharpoonup Taking k = 1, we get that

$$x_i - \underline{x_i} = \frac{\alpha_i p_1}{\alpha_1 p_i} (x_1 - \underline{x_1}) \text{ for all } i.$$
 (10)

▶ Multiplying both sides by p_i and summing over i gives:

$$\sum_{i=1}^n p_i(x_i-\underline{x_i})=\frac{p_1\sum_{i=1}^n \alpha_i}{\alpha_1}(x_1-\underline{x_1}).$$

UMP: Stone-Geary utility function

So we can solve:

$$x_1 - \underline{x_1} = \frac{\alpha_1(w - \sum_{i=1}^n p_i \underline{x_i})}{p_1},$$

where we used the budget constraint $\sum_{i=1}^{n} p_i x_i = w$ and $\sum_{i=1}^{n} \alpha_i = 1$

► By (10), we see that

$$x_i - \underline{x_i} = \frac{\alpha_i(w - \sum_{j=1}^n p_j \underline{x_j})}{p_i}.$$

- The consumer uses a constant fraction of her excess income (above what is needed for the necessities \underline{x}) in constant shares given by the α_i .
- ▶ Since the poor have less excess wealth, their consumption fractions are closer to the ones given by the subsistence levels $\beta_i := \frac{\chi_i}{\sum_i \chi_i}$.

Quasilinear utility function

- ▶ We end the section on utility maximization with u(x, y) = v(x) + y, where v is a strictly increasing and strictly concave function subject to non-negativity of x, y and the budget constraint $p_x x + y \le w$.
- Now $MRS_{x,y} = v'(x)$.
- If $v'(\frac{w}{\rho_x}) > p_x$, then we have a corner solution $x(p_x, w) = \frac{w}{\rho_x}$, $y(p_x, w) = 0$. Otherwise $x(p_x, w)$ solves

$$v'(x)=p_x$$

and

$$y=(w-p_xx(p_x,w)).$$

► This utility function lies behind partial equilibrium analysis in microeconomics where *x* is sold in the market of interest and *y* is everything else.

- We cover briefly the related problem of minimizing expenditure subject to the constraint of reaching a specified level of utility.
- All the notation is exactly as in UMP and we assume that the utility function u(x) is quasiconcave.

$$\min_{x \in X} p \cdot x = \sum_{i=1}^{n} p_i x_i,$$

subject to

$$u(x) \geq \overline{u}$$
.

This means that we have a linear and thus quasiconvex objective function for our minimization problem and since the utility function is quasiconcave, the feasible set is convex.

- ► Hence we know that K-T necessary conditions are also sufficient. Notice that the feasible set is now not bounded (why?)
- A solution exists because we can take any x^* such that $u(x^*) \ge \overline{u}$ and restrict attention to x such that $p \cdot x \le p \cdot x^*$ since x^* is a feasible solution.
- But this set is convex and bounded since it is a budget set.

► The Lagrangean to the problem is:

$$\mathcal{L}(x,\lambda) = \sum_{i=1}^{n} p_i x_i - \lambda_0(\overline{u} - u(x)) + \sum_{i=1}^{n} \lambda_i x_i.$$

The first-order conditions are:

$$\frac{\partial \mathcal{L}}{\partial x} = p_i + \lambda_0 \frac{\partial u}{\partial x_i} + \lambda_i = 0 \text{ for all } i, \tag{11}$$

$$\lambda_0[u(x) - \overline{u}] = 0, \tag{12}$$

$$\lambda_i x_i = 0 \text{ for all } i, \tag{13}$$

$$\overline{u} - u(x) \le 0, \tag{14}$$

$$-x_i < 0 \text{ for all } i, \tag{15}$$

$$\lambda_i \ge 0 \ i \in \{0, 1, ..., n\}.$$
 (16)

Notice that for interior solutions (where $\lambda_1 = \lambda_2 = ... = \lambda_n = 0$, we get again (after eliminating the multiplier) from the first line of the K-T conditions that

$$\frac{\frac{\partial u}{\partial x_i}}{\frac{\partial u}{\partial x_k}} = \frac{p_i}{p_k}$$

- ▶ The solutions $x_i(p, \overline{u})$ to this minimization problem are called the Hicksian or compensated demands.
- We have exactly the same situation as before. Now the ratio of marginal utilities is really the MRT for the problem since it describes the feasible set.
- ► The price ratio is now the MRS of this new problem. We will relate these two problems in the next lecture.

Cost minimization problem for a firm

- A firm chooses its inputs k, l to minimize the cost of reaching a production target of \overline{q} at given input prices r, w.
- ▶ The production function is assumed to be a strictly increasing and quasiconcave function f(k, l).

$$\min_{(k,l)\in\mathbb{R}^2_+} rk + wl$$

subject to

$$f(k,l) \geq \overline{q}$$
.

Notice that this is the same mathematical problem as in expenditure minimization. Only the names of variables have changed. The solution to the problem is therefore also identical.