Financial Statement Analysis (22E00100)

Profitability AnalysisRatio Analysis

Aalto-yliopisto Aalto-universitetet Aalto University

Learning objectives

After studying this topic, you will understand:

- The important role ratio analysis serves in profitability analysis
- To acknowledge underlying assumptions and technical issues in ratio analysis
- How profitability ratios provide valuable information regarding a firm's performance and asset utilization
- How return on assets (ROA) can be used to analyze a company's profitability, and what insights are gained from disaggregating ROA into its profit margin and asset turnover components
- The difference between ROA and return on equity (ROE)
- The interrelatedness of ROIC, ROE and WACC

Why ratios?

Why ratios?

- Financial data are usually summarized in a ratio form
- Financial statement numbers are divided by other financial statement numbers
- Financial ratios **control for the effect of firm size** across firms and over time
- Financial statement numbers are combarable across firms and years

Why ratios?

• Consider following example of summarizing financial data in the ratio form:

	Firm A	Firm B
Earnings:	10 milj.	2 milj.
Sales:	100 milj.	8 milj.
Profit margin		
(Earnings/Sales):	10%	25%

- Earnings of Firm A are higher than those of Firm B
- However, Profit margin reveals the true profitability

Proportionality

Proportionality

- An important assumption in using financial ratios is the socalled proportionality between the numerator and denominator
- Strict proportionality implicates that
 - 1. there should exist a **linear** relationship between the numerator and denominator of the ratio
 - 2. this relationship should not contain any **constant term**
- Empirical evidence indicates that the proportionality assumption is usually fulfilled

Strict proportionality

• *E* = Earnings, *S* = Sales and *r* is the ratio of Earnins-to-Sales:

$$\frac{E}{S} = r$$
$$\Rightarrow E = r \times S$$

 Under strict proportionality assumption, the relationship between the numerator and denominator is linear and there is no constant term in the relationship

Deviations from strict proportionality assumption

Technical issues in calculating financial ratios

Technical issues in calculating financial ratios: Small or zero denominators

- Small or zero denominators
 - If the denominator of the financial ratio is equal to zero, the ratio cannot be calculated
 - If the value of the denominator is close to zero, the ratio is close to infinity
 - If the denominator fluctuates a lot across years or firms, the values of ratio fluctuate a lot, too
- Following example of P/E- and E/P-ratios illustrates the problem of small or zero denominators

Example: Small or zero denominators

Technical issues in calculating financial ratios: Outliers

- **Outliers** refer to the extreme values of a given financial ratio
 - Outliers are inconsistent with the remaining data
- There may be several reasons for outlier observations
 - Data recording errors
 - Technical issues such as close to zero denominators
 - True indication of the extreme state of the underlying firm characteristic (e.g. bankcuptcy firms)
- Outlier observations are usually deleted from the data, but one should be **very** careful when doing so
 - Important information may be lost, if the outlier reflects the true economic state of the firm

Ratio analysis: ROA, ROCE, ROIC, ROE and profit margins

Analysts do not always use the reported earnings, sales and asset figures. Instead, they often consider three types of adjustments to the reported numbers:

- 1. Remove non-operating and nonrecurring items to isolate <u>sustainable operating</u> <u>profits</u>.
- 2. Eliminate after-tax interest expense to avoid <u>financial structure distortions</u>.
- 3. Eliminate any <u>accounting quality distortions</u> (e.g., off-balance operating leases).

How can ROA be increased?

There are just two ways:

- 1. Increase the operating profit margin, or
- 2. Increase the intensity of asset utilization (turnover rate).

ROA and competitive advantage: Four hypothetical restaurant firms

- Competition works to drive down ROA toward the competitive floor.
- Companies that consistently earn an ROA above the floor are said to have a competitive advantage.
- However, a high ROA attracts more competition which can lead to an erosion of profitability and advantage.
- Firm A and B earn the same ROA, but Firm A follows a differentiation strategy while Firm B is a low-cost leader.
- Differences in business strategies give rise to economic differences that are reflected in differences in operating margin, asset utilization, and profitability (ROA).

Return on equity and financial leverage

- 2011: No debt, so all the earnings belong to shareholders.
- 2012: \$1 million borrowed at 10% interest, but ROCE climbs to 20%.
- 2013: Another \$1 million borrowed at 20% interest, and ROCE falls to only 15%.

Financ	ial Leverage Earnings before Interest*	Assets	Common Shareholders' Equity	Return on Assets (ROA)	Interest Charges	Net Income Available to Common Stockholders	Return on Common Equity (ROCE)
2011	\$150,000	\$1 million	\$1 million	15%	-	\$150,000	15%
2012	300,000	2 million	1 million	15	\$100,000	200,000	20
2013	450,000	3 million	1 million	15	300,000	150,000	15

* Earnings are before interest but after taxes, and they are distributed to lenders (as interest) and shareholders (as dividends) each year.

Components of ROCE (or simply ROE)

Profitability and financial leverage: Nodebt and Hidebt example

Profitability and Financial Leverage

	Total Assets	Shareholders' Equity	Earnings before Interest (EBI)*	After-Tax Interest	Available to Common Shareholders	ROA	ROCE
Good earnings year							
HiDebt	\$2 million	\$1 million	\$240,000	\$60,000	\$180,000	12.0%	18.0%
NoDebt	2 million	2 million	240,000	—	240,000	12.0	12.0
Neutral earnings year							
HiDebt	2 million	1 million	120,000	60,000	60,000	6.0	6.0
NoDebt	2 million	2 million	120,000		120,000	6.0	6.0
Bad earnings year							
HiDebt	2 million	1 million	60,000	60,000		3.0	0.0
NoDebt	2 million	2 million	60,000	—	60,000	3.0	3.0

* Earnings are before interest but after taxes. HiDebt has after-tax interest charges of \$60,000-that is, \$1 million × 10% × (1 - 40%)-each year.

Profit margins

The first level of profitability is Gross margin:

 $Gross margin = \frac{Sales - Cost of goods \ sold \ (COGS)}{Sales}$

EBITDA margin gives earnings before interest, taxes, depreciation, and amortization as a proportion of sales:

$$EBITDA margin = \frac{Sales - COGS - R\&D \ Expense - SG\&A \ Expense}{Sales}$$

Profit margins

EBIT margin provides a useful summary of operating performance:

 $EBIT margin = \frac{Earnings \ before \ interest \ and \ taxes}{Sales}$

Net operating margin:

Net operating margin = $\frac{Net \ operating \ income}{Sales}$

Return on invested capital, ROIC

- Note that **ROIC** is **very important**!
- Financial assets and liabilities are typically close to market values, but operating assets and liabilities are not

Case: Reported ROCE of Tieto, 2018

• On Page 126 of the financial report, Tieto show how they calculate Return on Capital Employed (ROCE):

Return on capital employed, = 12-month rolling, %	=	Profit before taxes and non-controlling interests + interest and other financial expenses
0,		Total assets - non-interest-bearing liabilities (12-month average)

- On Page 92, Tieto reports that ROCE = 20.9%
- This number differs slightly from our ROIC, because
 - Numerator is reported income rather than NOPAT
 - Denominator includes financial assets
- Note that financial ratios can be calculated in many ways
 - ROI, ROIC, RONA, ROCE, ROA, ROTA...
 - Sometimes ROCE even refers to Return on Common Equity!

More on interpreting ROIC

The level of ROIC

- A comparison with the required rate of return (WACC)
- A comparison with competitors (benchmarking)

The trend of ROIC over time

- Stable
- Increasing
- Decreasing
- Fluctuating

Level/trend of ROIC: ROIC vs. WACC of Carlsberg

Is Carlsberg's ROIC at a satisfactory level?

Level/trend of ROIC: Carlsberg's ROIC vs. Heineken's ROIC

Decomposing ROIC

ROIC as such does not explain whether profitability (and value creation) is driven by

- High margins or
- An effective use of invested capital

We can address this issue by decomposing ROIC into the profit margin and the turnover rate of invested capital:

Decomposing ROIC: Profit margin

NOPAT/Sales known as a profit margin

High profit margin indicates

- Strong pricing power and/or
- Good cost control

Other profit margins can also be calculated in a similar way

- Net income/Sales
- EBIT/Sales

Interpretations are similar to NOPAT/Sales, but different levels in I/S allow focusing on different cost items

Profit margins globally, September 2019

Decomposing ROIC: Turnover of rate of invested capital

Sales/Invested Capital is known as a turnover rate of invested capital

• Also known as 'Asset turnover rate' (ATO)

High turnover rate of invested capital implies an effective use of capital received from both equity and debt holders

Example: Components of ROIC

Example: Components of ROIC

Our competitor is more profitable than we are (and can therefore create more value), but why?

Our profit margin (15%) is actually greater than that of our competitor (11%)

• We are good at marketing/pricing/production etc.

The problem is that our Invested capital turnover rate is low, if compared to the competitor (1.5 vs. 1.8)

- We have poor working capital management, and/or
- We do not use wisely long-term capital obtained from investors

Example: Cargotec, Interim report Q2/2015 Return on capital (ROCE) improved towards

Decomposing ROIC to identify differentiation vs. cost leadership strategy

Example: ROIC decomposition of US firms

Decomposing ROIC

Case: Components of ROIC of Tieto

ROIC2018 = Profit margin2018 × Invested capital turnover rate 2018

$$= \frac{\text{NOPAT}_{2018}}{\text{Sales}_{2018}} \times \frac{\text{SALES}_{2018}}{(\text{Invested capital}_{2018} + \text{Invested capital}_{2017})/2}$$

$$=\frac{124.7}{1599.5}\times\frac{1599.5}{625.2}$$

= 0.07796 × 2.55838

= 0.19945

= 19.9%

Profit margins

EBIT margin provides a useful summary of operating performance:

 $EBIT margin = \frac{Earnings \ before \ interest \ and \ taxes}{Sales}$

Net operating margin:

Net operating margin = $\frac{Net \ operating \ income}{Sales}$

Profit margin decomposition

- Profit margin can be decomposed to extract information on the cost structure of the firm
- Here is an example on how to do it:

Profit margin = $\frac{\text{NOPAT}}{\text{Sales}}$ = $\frac{\text{Sales} - \text{Costs}}{\text{Sales}}$ = $\frac{\text{Sales} - \text{Materials and services} - \text{Employee expenses} - \text{Sales}}{\text{Sales}}$

Case: Profit margin decomposition, Tieto

Kemira's variable cost split and top raw materials

Kemira JULY 20. 2018

8 Q2 2018 RESULTS

TOP 10 RAW MATERIALS BY SPEND

- 1. Sodium hydroxide (caustic soda)
- 2. Acrylonitrile (OD)
- 3. Colloidal silica dispersion
- 4. Amines (OD)
- 5. Aluminum hydrate
- 6. Petroleum solvents
- 7. Acrylic acid (OD)
- 8. Acrylic ester (OD)
- 9. Alpha olefin (OD)
- 10. Sodium chloride (salt)

Top 10 account for 45% of Kemira's raw material spend

OD = Oil & gas derivative

Cash and cash flow in Q2 2018

Nokia change in net cash and current financial investments (EUR billion)

Return on equity (ROE)

- ROIC measures operating profitability
- Return on equity (ROE) measures the profitability taking into account returns earned on operations and the effect of financial leverage:

$$ROE_{t} = \frac{NOPAT_{t} - Net \text{ financial costs adjusted for taxes}_{t}}{(Equity_{t} + Equity_{t-1})/2}$$
Remember that NOPAT =
$$\frac{Net \text{ income}_{t}}{(Equity_{t} + Equity_{t-1})/2}$$

Case: ROE of Tieto, 2018

 $ROE_{2018} = \frac{NOPAT_{2018} - Net \text{ financial costs adjusted for taxes}_{2018}}{(Equity_{2018} + Equity_{2017})/2}$ 124.7 - 1.5 $=\frac{1}{(482.5+476.1)/2}$ 123.2 $=\frac{1}{479.3}$ = 0.257= 26%

Case: Reported ROE of Tieto, 2018

 On Page 92 of its financial report, Tieto reports that its ROE based on the **reported Net Income** is 25,7%, calculated as follows:

Return on equity, 12-month rolling, % Profit before taxes and non-controlling interests – income taxes
 Total equity (12-month average)

• We can recalculate it as follows:

Net financial costs <u>are</u> <u>deducted</u> from Profit before taxes

$$\text{ROE}_{2018, Reported} = \frac{152.8 - 29.6}{(482.5 + 476.1)/2} = \frac{123.2}{479.3}$$

$$= 0.257$$

How are ROIC, ROE and WACC interrelated?

- Importantly, ROIC, ROE and WACC are related
- Lets start from the definition of ROIC:

$$ROIC = \frac{NOPAT}{Invested capital} = \frac{NI + NFC}{D + E},$$

where:

NI = Net income (profit)

NFC = Net financial costs adjusted for taxes

D = Net interest bearing debt

E = Equity

Analysis of ROIC, ROE and cost of capital • It follows that:

$$ROIC = \frac{NI + NFC}{D + E}$$
$$= \frac{NI}{D + E} + \frac{NFC}{D + E}$$
$$= \frac{NI}{E} \times \frac{E}{D + E} + \frac{NFC}{D} \times \frac{D}{D + E}$$

- Note that NI/Equity is ROE
- We can define NFC/Debt as a Net borrowing rate NBR

• Note the similarity between ROIC and WACC!

ROIC =
$$\frac{E}{D+E} \times ROE + \frac{D}{D+E} \times NBR$$

WACC =
$$\frac{E}{D+E} \times R_E + \frac{D}{D+E} \times R_D$$

- ROIC, ROE and NBR are accounting rate of returns
 - ROIC is a weighted average of ROE and NBR
- WACC, R_E and R_D are market rate of returns
 - + WACC is a weighted average of $R_{\rm E}$ and $R_{\rm D}$
- Weights can be based on book or market values

We can express ROE as a function of ROIC, NBR and capital structure

This is called a spread analysis

And we can do the same for R_E, which again shows similarities between accounting and market rate of returns...

Recall that

- Accounting rate of returns show **a firm's actual performance**
- Market rate of returns show **a firm's required performance**, as required by investors

Note that

WACC =
$$\frac{E}{(E+D)} \times R_E + \frac{D}{(E+D)} \times R_D$$

 $\rightarrow R_E = WACC + (WACC - R_D) \times \frac{D}{E}$ The famous Modigliani and Miller proposition

• In a similar way, we can derive ROE from ROIC:

$$ROIC = \frac{E}{(E+D)} \times ROE + \frac{D}{(E+D)} \times NBR$$
$$\rightarrow ROE = ROIC + (ROIC - NBR) \times \frac{D}{E}$$

• We can now see the similarity between R_E and ROE:

Market rate of returns

$$R_E = WACC + (WACC - R_D) \times \frac{D}{E}$$

 $ROE = ROIC + (ROIC - NBR) \times \frac{D}{E}$

Accounting rate of returns

Impact of financial leverage on ROE

Case: ROE, ROIC and leverage of Tieto

More on interpreting ROIC

- We can decompose ROE like we decomposed ROIC
- This decomposition is known as **the DuPont identity** (time subscripts omitted):

The big picture of profitability analysis

