

Toni Kotnik, Professor of Design of Structures

1

5

Gravitational Load

6

Isaac Newton

all forces between two objects exist in equal magnitude and opposite direction

"actio est reactio"

equilibrium

two potential sources of violation of rule for equilibrium

not equal magnitude not opposite direction

translation

9

rotation

Toni Kotnik, Professor of Design of Structures

Why is the figure always bouncing back? Why does the figure always come to rest?

11

Equilibrium

A"DS Aalto University Design of Structures

Isaac Newton

all forces between two objects exist in equal magnitude and opposite direction

"actio est reactio"

two potential sources of violation of rule for equilibrium

Equilibrium Condition

geometric description

the forces add up to zero the line of action of the forces intersect in one point

both conditions are checked geometrically with

- location plan (line of action)
- force plan (forces add up)

Resultant

R is the resultant of G & W

R has the same effect as G & W together

 $\mathbf{R} = \mathbf{G} + \mathbf{W}$

15

construction of resultant

construction of resultant

where is the resultant R located when the forces are parallel?

Lever Principle

27.10.2020

Lever Principle

 $\frac{F_2}{F_1} = \frac{a}{b}$

A³³DS Aalto University Design of Structures

Toni Kotnik, Professor of Design of Structures

Lecture 1 ARK-A3001 27.10.2020

Lever Principle

geometric construction of resultant

force plan

Step 1: construct R in force plan
Step 2: pick P in force plan & construct rays
Step 3: move rays into location plan (parallel shift)
Step 4: locate R in location plan at intersection point

construction of resultant

22

Load cases	
dead load	
live load	
environmental load	
distributed load	
point load	
equilibrium	
location plan	ARK-A3001 Design of Structures_Basics
force plan	Equilibrium
resultant force	Toni Kotnik
lever principle	Professor of Design of Structures
	Department of Civil Engineering

Exercise 1.1

Construct the resultant of the four forces given in the location plan.

Exercise 1.2

Separate the force R into two parallel forces F_1 and F_2 in such a way that R is the resultant of these two forces and the magnitude of the forces F_1 : F_2 = 3:1.

R

Exercise 1.3

The sculpture consists of three steel plates of size $160 \times 160 \times 7.6 \text{ cm}$ (plate 1) respectively $160 \times 213 \times 5 \text{ cm}$ (plate 2 & 3). The plates are stacked onto each other but neither screwed nor welded. Together they form a stable configuration in equilibrium. Why?

Toni Kotnik, Professor of Design of Structures

27