ARK-A3001 Design of Structures_Basics Form & Force

Toni Kotnik

Professor of Design of Structures

Aalto University Department of Architecture Department of Civil Engineering

Load cases

dead load

live load

TP & West at

TRANSFORD

IIVE IOUU

environmental load

distributed load

point load

equilibrium

location plan

force plan

resultant force

lever principle

ARK-A3001 Design of Structures_Basics Equilibrium

Toni Kotnik

Professor of Design of Structures

Aalto University Department of Architecture Department of Civil Engineering

Basic Operation with Forces

forces in space according to design interest

4

the line of action of the forces intersect in one point

For a building structure to be in equilibrium means that every part of the structure is in equilibrium

Inner Force

tension force pulling away from subsystem

Inner Force

compression force pushing towards the subsystem

A

Toni Kotnik, Professor of Design of Structures

The form of a building structure is closely tight to the magnitude and direction of forces in the structure.

- **Step 3**: construct inner forces in force plan
- Step 4: use this inner forces to construct inflection points
- Step 5: use inflection points to construct cable

A"DS Aalto University Design of Structures

Equilibrium

cable

form of cable and forces at support

A"DS Aalto University Design of Structures

Lecture 2 ARK-A3001 3.11.2020

Toni Kotnik, Professor of Design of Structures

Antoni Gaudi: hanging model Sagrada Familia, Barcelona, Spain around 1889

Heinz Isler: New Shapes of Shells IASS Conference, Madrid, 1955

Heinz Isler: experimental setup for form-finding of hanging forms

Heinz Isler: Wyss Garden Center Solothurn, Switzerland, 1962

1323 50

NUM NUTS

1.30

Heinz Isler: Gasstation Deitingen, Switzerland, 1968

38 1

123

-

THE R. P.

Inner Forces

CONTRACTOR AND AND AND A CONTRACTOR AND A CONTRACTOR

tension

compression

inner forces act upon material

form & inner forces are coupled

7 TOGOLAGY

cable as tension-only structure

arch as compression-only structure

principle of duality

ARK-A3001 Design of Structures_Basics Form & Force

Toni Kotnik

Professor of Design of Structures

Aalto University Department of Architecture Department of Civil Engineering

Exercise 2.1

Construct a cable (a) and an arch (b) as equilibrium solution for the given three forces F_1 , F_2 and F_3 . How is the form changing if F_1 is doubled?

