ARK-A3001 Design of Structures_Basics Force Distribution

Toni Kotnik

Professor of Design of Structures

Aalto University Department of Architecture Department of Civil Engineering

Poisson-effect

and the second of the second second

stress

stress-strain diagram

beam

cantilever

bending

structure & architectural concept

OPENINE M

ARK-A3001 Design of Structures_Basics Tension & Compression

Toni Kotnik

Professor of Design of Structures

Aalto University Department of Architecture Department of Civil Engineering

Bending

3

Post-Tensioned Beam

Bracing

compression and tension in the same section results in **bending**

separate tension and compression

5

Bracing

Norman Foster: Renault Distribution Centre, Swindon, UK, 1982

Bracing

compression and tension in the same section results in **bending**

keep inner forces small to save material

separate tension and compression

Toni Kotnik, Professor of Design of Structures

Olaf Hoff: Whirlpool Rapids Railroad Bridge Niagara Falls, Canada/USA, 1925

18

principle of distribution not dependent on linear truss shape

Norman Foster: Centre for Visual Arts Sainsbury, UK, 1978

Toni Kotnik, Professor of Design of Structures

28

How does a plate distribute load to the columns?

each distribution of inner forces can provoke a different design solution

Frank Lloyd Wright: Kaufman House Bear Run, USA, 1935

How does a plate distribute load to the columns?

How does a plate distribute load to the columns?

33

How does a plate distribute load to the columns?

How does a plate distribute load to the columns?

this is not so much a technical question but rather a **question of design**!

How does a plate distribute load to the columns?

or

How does a column attract forces from the plate?

How do inner forces flow?

What does this mean for design?

structural design is primarily a question of **design thinking**, it is a creative & intellectual process!

What means efficiency here?

Lecture 5 ARK-A3001 24.11.2020

Toni Kotnik, Professor of Design of Structures

What means efficiency here?

least amount of material to transfer loads from a surface to a point

54

What means efficiency here?

least amount of material to transfer loads from a surface to a point

material efficiency: economic use of material if maximal allowable stresses are distributed uniformly at available material

What means efficiency here?

least amount of material to transfer loads from a surface to a point

Efficient Design Solution efficient flow from surface to point

truss

distribution of forces in space

773.12

relation column-plate

structural design thinking

ARK-A3001 Design of Structures_Basics Force Distribution

Toni Kotnik

Professor of Design of Structures

Aalto University Department of Architecture Department of Civil Engineering

Toni Kotnik, Professor of Design of Structures

After its renovation in 2005, the Santa Caterina Market in Barcelona is covered by a wavy roof designed by Enric Miralles and Benedetta Talgiabue (EMBT). It consists of a combination arches, cables and beams and spans an area of about 60 x 50 m without any support. Sketch the structural system of the roof.

EMBT: Renovation, Santa Caterina Market Barcelona, Spain, 1997 - 2005

