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I

Geometry lies at the core of the architectural design process. It is omnipresent, 
from initial form-fi nding stages to actual construction. It also underlies the main 
communication medium; namely, graphical representations obtained by precise 
geometric rules. Whereas the variety of shapes that could be treated by traditional 
geometric methods has been rather limited, modern computing technologies have led 
to a real geometry revolution.

Th ese days we are facing dramatic changes, the tools at our disposal becoming 
seemingly unlimited. However, the increase in possibilities did not go along with an 
increase in the depth of geometry education. In fact, the opposite is true. Th us, it is the 
most important task of this book to close the gap between the technical possibilities 
and an eff ective working knowledge of the new methods of geometric design. 

Modern architecture takes advantage of the greatly increasing design possibilities, yet 
architects are not just a new group of CAD users. Scale and construction technologies 
pose new challenges to engineering and design. We are convinced that such challenges 
can be met more eff ectively with a solid understanding of geometry. 

Geometric computing is a broad area with many branches. An interdisciplinary fi eld 
such as architecture benefi ts from such variety. We have tried to provide views into this 
larger scientifi c context. In fact, we believe that a new research area—which might be 
termed architectural geometry—is currently evolving and we hope that our book will 
help to promote its future development. 

To advance this emerging fi eld, a close cooperation between geometers and architects 
is of highest importance. Th is book may be seen as an example. Th e stimulating 
cooperation of three geometers and an architect (Axel Kilian) developed the book’s 
geometric content, the discussion of its marriage with modern architecture, and the 
presentation of both. Moreover, it led to the identifi cation of challenging research 
problems—some of which are described in the later chapters of the book.  

Intended Use 

Our book has been written as a textbook for students of architecture or industrial 
design. It comprises material for a basic course in geometry at the undergraduate 
level. Roughly starting with parts of Chapter 11, there is plenty of material for a more 
advanced geometry course at the undergraduate or graduate level. Th is fi nally leads 
us to the cutting edge of research in architectural geometry, which starts to appear in 
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Chapter 15 and leads to a presentation of our own most recent research on discrete 
freeform structures in the fi nal chapter.

Traditionally, the constructive geometry curriculum has been largely based on descriptive 
geometry. Computers are now changing geometry education in many ways. Th is book 
may also provide a path to constructive geometry education in the digital era beyond the 
specifi c application toward architecture. 

Th is book is also intended as a geometry consultant for architects, construction engineers, 
and industrial designers. Hopefully, scientists interested in geometry processing with 
applications in architecture and art may benefi t from it and derive some inspiration. Th ere 
is a lot of room for exciting research in architectural geometry. We hope that this book 
stimulates research in this challenging and largely unexplored direction. 

Prerequisites

Our target audience is generally not well trained mathematically, and we therefore 
only assume some basic high school knowledge of mathematics and geometry. In later 
chapters, knowledge of basic linear algebra and calculus is of great advantage, but 
not absolutely necessary. We have collected some high school geometry in Appendix 
A: Geometry Primer, but are aware of the fact that it is both incomplete and a very 
subjective collection of some essential background material.

Th roughout the text, some math is collected whose reading is recommended but may 
not be necessary to further proceed with the study of the book. Sections marked by an 
asterix * are more advanced and may be skipped in a fi rst reading. 

Features

Th is book is intended to fi ll a gap in the geometry literature. Geometry books written 
for architecture mainly discuss elementary material or classical descriptive geometry. 
We explain concepts of descriptive geometry only very briefl y. Instead, we focus on 
effi  cient CAD construction methods and use CAD to support geometry teaching and 
understanding.
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Most books about the geometric aspects of CAD require a reasonably high level of 
math knowledge, which most students of architecture will not have. Th erefore, we 
have tried to explain new geometries available in CAD systems (such as freeform 
curves and surfaces) without much math. We explain the material via geometric 
considerations and support those with numerous fi gures.

Wherever possible, we replace the use of calculus with discrete models and then obtain 
properties of smooth analogues by a limiting process. For example, when studying 
curves we fi rst investigate the geometry of polygons. Th e transition to curves is 
performed by a refi nement process that generates in the limit a smooth curve. Th is 
is not a new approach, but it receives increasing interest due to the fact that many 
computations are actually based on discrete representations. 

Fortunately, the math used in the limiting process can be omitted without a signifi cant loss 
of insight. As pointed out by the modern fi eld of discrete diff erential geometry, this approach 
can actually be benefi cial in showing which elementary geometric facts serve as kernels of 
certain geometric results about curves or surfaces. Calculus may hide such an insight. 

Th ere are many threads from basics to research. An example is depicted in the following 
fi gure: polyhedra and polyhedral surfaces (Chapter 3) → subdivision curves (Chapter 8) 
→ subdivision surfaces and meshes (Chapter 11) → planar quad strips as models of 
developable surfaces (Chapter 15) →  discrete freeform structures (Chapter 19). 

Chapter 3 Chapter 8 Chapter 11Discrete concepts appear frequently in 
this book because they are easier to 
grasp than methods from mathematical 
analysis. They are even more powerful 
than mathematical methods, especially 
in view of applications in architecture. 
This illustration shows an example of a 
thread of discrete ideas from basics to 
research.

Chapter 15 Chapter 19
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Of course, our presentation of geometry is accompanied by examples of built architecture, 
architectural projects, and artwork. However, the selections are for purposes of example, are 
very subjective, and are not the main intent of the book. We even included some interesting 
and hopefully inspiring geometric insights that may not yet have been used in architecture 
but may carry some potential of being useful in the future. 

Teaching Support and Feedback

A web site located at www.architecturalgeometry.at will serve as a discussion forum for 
anyone interested in architectural geometry. Your feedback will help us tailor our work even 
more toward the actual needs in geometry teaching and architectural design. Th e web page 
currently contains some teaching material, exercises and solutions to lab sessions, and results 
of student projects.We hope that this material will see a signifi cant growth in the near future. 
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Chapter 1
Creating a Digital 
3D Model





We have all seen digital architectural models of great complexity in various forms of 
visualization. But how do we get started? How do we communicate our ideas with 
the help of a computer? What are the geometric fundamentals that enable us to create 
digital three-dimensional (3D) models? Many tools and procedures are provided to 
us by modern computer-aided design (CAD) systems for creating such models. To 
effi  ciently employ the existing soft ware—and to go beyond—a good knowledge of 
geometry is essential. 

It goes without saying that the architect’s design work starts before geometric mod-
eling. According to Frank O. Gehry, his inspiration for the Winton guest house in 
Wayzata, Minnesota, came from the still-life paintings by Giorgio Morandi. When 
asked to build a guest house for a client in the 1980s, he set a counterpoint to the main 
house—designed by Philip Johnson in 1952.

Modeling the 
Winton Guest House
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Gehry conceived the guest house as a large outdoor sculpture in which each room 
would constitute its own mini-building (Figure 1.1). Based on sketches, scaled physical 
3D models and plan drawings were created manually. In this chapter we learn how to 
create a digital 3D model of this structure.

Fig. 1.1 
The Winton guest house by Frank O. 
Gehry. Sketches (top), scaled physical 
models (bottom left), photo of the 
building (bottom right).
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Cartesian coordinates. Geometric objects can be described as a collection of points 
that delineate the shape of the object. To describe the position of a point p in 3D 
space, we use an ordered triplet of numbers called coordinates. Th ese coordinates are 
measured with respect to a chosen coordinate system. A Cartesian coordinate system 
(Figure 1.2) is given by three mutually perpendicular oriented axes called the x-, y-, 
and z-axis.

Th e three axes are labeled x, y, and z and pass through a common point o called the 
origin. On each coordinate axis we use the same unit length. With respect to a chosen 
system, a point p in 3D space has the three Cartesian coordinates (xp,yp,zp). Th ey are 
called the x-coordinate xp, y-coordinate yp, and z-coordinate zp. Th e positive coordinates 
always lie on the ray starting at the origin and pointing in axis direction. 

To get from the origin o with coordinates (0,0,0) to a point p with coordinates 
(xp,yp,zp) there are six diff erent coordinate paths—all of which lie on a coordinate 
cuboid of length xp, width yp, and height zp. Th e eight vertices of the coordinate cuboid 
have respectively the coordinates (0,0,0), (xp,0,0), (0,yp,0), (0,0,zp), (xp,yp,0), (xp,0,zp), 
(0,yp,zp),and (xp,yp,zp). Each pair of coordinate axes spans a plane called a coordinate 
plane. We have the xy-plane, the yz-plane, and the zx-plane. Note that in each coordi-
nate plane we have a 2D Cartesian coordinate system given by the two coordinate axes 
that span the respective plane.

Right- and left -handed coordinate system. Let us use a Cartesian coordinate system 
(Figure 1.3). When we look along negative z-direction into the xy-plane, a counter-
clockwise turn of 90 degrees aligns the x-axis with the y-axis. Such a right-handed 
Cartesian coordinate system can easily be visualized with the fi rst three fi ngers of the 
right hand.

Starting with the right hand as a fi st, we open the thumb in the direction of the x-axis 
and the forefi nger in direction of the y-axis. Th en we can open the middle fi nger such 
that it points in the direction of the z-axis of a right-handed Cartesian coordinate 

Fig. 1.2 
A Cartesian coordinate system with the 
three coordinates (xp,yp,zp) of a point 
p in 3D space. A coordinate path that 
connects the origin o to the point p lies 
on a coordinate cuboid with length xp, 
width yp, and height zp.

Fig. 1.3 
Right-handed Cartesian coordinate 
system. 



system. If we change the direction of the z-axis, we get a left -handed Cartesian coordinate 
system that can be modeled using the thumb, forefi nger and middle fi nger of the left  
hand. Th us there are two possible orientations of a 3D Cartesian coordinate system.

Th roughout this book we will use a right-handed coordinate system because this is 
common practice in geometry. For data exchange between diff erent CAD systems, it 
is important that the handedness of the coordinate system be the same. Otherwise, all 
objects will be mirrored about the xy-plane. 

Cuboids. A cuboid generalizes the shape of a cube. Whereas a cube has six congruent 
square faces, a cuboid consists of three pairs of congruent rectangles that are mutually 
orthogonal to one another. Th e geometric entities of a cuboid are its 8 vertices, 12 
edges, and 6 planar faces. Let us create the fi replace alcove of the Winton guest house. 
Th e alcove consists of two cuboids.

For modeling purposes, we choose the xy-plane as a horizontal plane—with the z-axis 
pointing upward. We place the fi rst cuboid such that one of its corners is aligned 
with the coordinate planes. Th is corner coincides with the origin of the Cartesian 
coordinate system (Figure 1.4, left ). We pick the origin as one corner and defi ne the 
length and width of the base rectangle in the direction of the x- and y-axes. Finally, we 
input the height h1 of the fi rst cuboid. To obtain a cube, we would choose length equal 
to width equal to height.

One CAD design principle is that digitally we always work at full scale. Th us, we use 
the actual measurements of the cuboid. Th e second cuboid we will construct is the 
chimney, which we will place on top of the fi rst cuboid. We draw the square base onto 
the top face of the fi rst cuboid by entering the coordinates of three of its vertices: p2, p3, 
and p4 (Figure 1.4, right). Th en we defi ne the height h2 of the chimney and we obtain 
the second cuboid. 

Fig. 1.4 
Modeling two cuboids that appear in 
the fi replace alcove of the Winton guest 
house. 
(left) The bottom part is almost a cube, 
(right) and the chimney is a cuboid 
with a square base. The square is 
defi ned by three vertices p2, p3, and p4.
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Surface and solid models. A geometric model with the same boundary surface can 
be either a surface (skin-like) model or a solid (volumetric) model, as shown in Figure 
1.5 for a cuboid. To understand the diff erence between a surface and a solid model, we 
draw a comparison to the arts and to fashion design. In the arts, a sculptor starts with 
a block of stone or wood (a solid model) and removes material to obtain the desired 
sculpture. On the contrary, a fashion designer uses pieces of fabric (a surface model) to 
form a garment.

We are currently working on an abstract geometric level, creating only the base shapes 
while neglecting wall and slab thicknesses and openings such as windows and doors. 
In Chapter 4, we will encounter a fi rst set of tools that allows us to further modify our 
geometric models. For the moment, we will continue to work solely with the basic 
geometric shapes associated for the most part with solid models.

Extrusion. Th e bottom part of the living room of the Winton guest house is not 
a cuboid. However, it still has vertical walls—even though the base is no longer a 
rectangle. With the Parallel Extrusion tool we create a prism by extruding a polygon 
to a desired height (see Chapter 3). Whereas a polygon is a closed object, a polyline 
is “open” in the sense that two endpoints are connected by a sequence of straight line 
segments. Parallel extrusion of a polyline P derives a prism surface (Figure 1.6, left ).

Fig. 1.5
Surface and solid models illustrated 
by means of a cuboid with a part cut 
away.

Fig. 1.6
(left) Parallel extrusion of a polygon 
generates a prism.
(right) Central extrusion of a polygon 
generates a pyramid.

surface model solid model
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A related tool is Central Extrusion. Th ereby, the polygon P is extruded toward a single 
point v in space and we generate a pyramid (see Chapter 3). If we use a polyline, we 
generate a pyramid surface (Figure 1.6, right). To create the bottom part of the living 
room of the Winton guest house as a prism, we draw the base quadrangle in the xy-
plane via the four vertices p5, p6, p7, and p8 and then extrude it to the desired height h3 
in the z-direction (Figure 1.7).

Global and local coordinate systems. So far we have worked in a global (world, 
absolute) coordinate system. Th is global system is usually a right-handed Cartesian 
coordinate system. For geometric design, it is oft en desirable to employ local (user-
defi ned, auxiliary, relative) coordinate systems to simplify modeling tasks. If we enter 
local coordinates in a CAD system, they are automatically transformed into global 
coordinates. 

Fig. 1.8a 
The four planar quadrangles of the 
living room roof are constructed using 
local coordinate systems (visually 
represented as “lcs”). We show the 
construction for one of the four roof 
planes. 

Fig. 1.7 
The bottom part of the living room 
in the Winton guest house is a prism 
generated with the parallel extrusion 
tool. 
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Fig. 1.9 
A local coordinate system with origin 
p17 (x-axis is parallel to p6p7, y-axis is 
vertical) is used to generate the fi rst 
bedroom via parallel extrusion.

Th e top part of the living room in the Winton guest house is not a truncated pyramid 
(discussed in Chapter 3). Th us, the Central Extrusion tool is inappropriate because 
we require a diff erent modeling approach. Each of the four sides of the roof is a planar 
quadrangle that can be drawn using a local coordinate system (LCS; sometimes 
represented visually as lcs), as shown in Figure 1.8. Together, the four quadrangles form 
a surface model of the living room’s roof. 

Th e fi rst bedroom of the Winton guest house has a prismatic shape that we generate 
by parallel extrusion. For this purpose we defi ne a local Cartesian coordinate system 
using one wall of the living room as the local xy-plane (Figure 1.9). Th en we draw the 
base polygon in that local xy-plane and extrude it in the local z-direction to generate 
the desired prism.

Fig. 1.8b 
We show the construction for another 
one of the four roof planes. The other 
two are modeled analogously. Local 
coordinates are given in a different 
color and are always measured with 
respect to the shown local system.
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Polar coordinates. In addition to planar Cartesian coordinates, there is another useful 
way of defi ning planar coordinates. Polar coordinates (r,ϕ) of a point p measure the 
radial distance r of the point p to the origin o, and the angle 0 ≤ ϕ < 360° to the polar 
axis (Figure 1.10, left ). Th e polar axis is usually chosen as the positive ray of the x-axis. 
Whereas planar Cartesian coordinates measure the distance to two orthogonal axes, 
polar coordinates measure the radial distance r to the origin and the angle between the 
ray op and the polar axis.

Polar coordinates are very useful, especially for local operations when designing with 
a CAD system. Th e Cartesian coordinates of the points of a circle with the center at 
the origin and radius r are (r∙cosϕ, r∙sinϕ). As shown in Figure 1.10 (right), we use this 
fact to convert from polar coordinates (r,ϕ) to Cartesian coordinates (x,y) by

x = r∙cosϕ,

y = r∙sinϕ.

Th e kitchen and the garage of the Winton guest house together form another prism. 
We know the degree of an angle formed between a wall of the living room and a wall 
of the kitchen. We also know the length of the building. Th us, the base polygon is 
best drawn using local polar coordinates (Figure 1.11). We employ this local polar 
coordinate system in the global xy-plane. Th e local polar axis points in the direction 
of one of the living room edges. By parallel extrusion of the base polygon in the global 
z-direction to the desired height, we obtain another prism. 

Fig. 1.10 
Planar polar coordinates and their 
conversion to planar Cartesian 
coordinates.

Fig. 1.11 
The base polygon P = (p21,p22,p23,p34) 
of the kitchen and garage is drawn 
using local polar coordinates. Parallel 
extrusion of P in the z-direction to a 
height h5 generates the prism.
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Cylindrical coordinates. Related to planar polar coordinates are the spatial cylindri-
cal coordinates (r,ϕ, z). Th ey are simply polar coordinates in the xy-plane augmented 
with the z-coordinate (Figure 1.12). Th us, the diff erence between this system and a 
3D Cartesian coordinate system is that we replace the Cartesian x- and y-coordinates 
with the polar r- and ϕ-coordinates. Th e conversion of cylindrical coordinates into 
Cartesian coordinates follows from the previously cited conversion of polar coordi-
nates and is given by

x = r∙cosϕ, 

y = r∙sinϕ, 

z = z.

Using cylindrical coordinates, we can easily specify positions on rotational cylinders.

Rotational cylinder. A rotational cylinder is the set of all points in 3D space that are 
equidistant from a straight line (called its axis). A rotational cylinder can be generated 
by extruding a circle c that lies in a plane P (Figure 1.13, left ). Th ereby, the extrusion 
direction is orthogonal to P. All straight lines lying on a rotational cylinder are called 
generators. An alternative generation of a rotational cylinder is by rotating a straight 
line g around an axis A parallel to g (Figure 1.13, right).

Fig. 1.12 
Cylindrical coordinates (r,ϕ,z) are polar 
coordinates (r,ϕ) augmented with the 
Cartesian z-coordinate.

Fig. 1.13
(left) A rotational cylinder can be 
generated by extrusion of a circle c 
lying in a plane P.
(right) The extrusion direction is 
orthogonal to P. An alternative 
generation is performed by rotating 
a straight line g around an axis A 
parallel to g.
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Rotational cylinders are fundamental shapes contained in CAD systems. Th ey are 
usually defi ned by a base circle and a height. In the Winton guest house, a rotational 
cylinder appears as a column that supports the loft  above the kitchen (Figure 1.14). 
We use the global Cartesian coordinates of the base circle’s center p25 to correctly 
position the cylinder. 

Snapping. Snapping is one of the convenient CAD modeling techniques. Whenever 
we work with a CAD system, it is not enough to roughly click with our input device 
(e.g., a mouse) on the point we intend. Instead, it is essential to tell the CAD system to 
snap to the specifi c point. Th is technique makes our constructions accurate. A variety 
of snap functions is usually provided. Available choices for points include snapping to 
endpoints, midpoints, intersection points, arbitrary curve points, and centers of vari-
ous shapes.

Of course, there are also snap functions associated with other geometric entities such 
as lines, circles, and so forth. Let us use a snap function to position the loft  (a cuboid) 
so that it rests on top of the kitchen and is supported by the cylindrical column 
(Figure 1.15). We will use a local coordinate system whose origin is at the center p26 of 
the top circle c of the rotational cylinder. We snap the center with the applicable tool 
and make it the origin of a local xy-plane that contains the circle c.

Th e angle between the directions of the global and local x-axis is indicated on the 
fl oor plan. Now we can draw the base polygon of the cuboid (Figure 1.15) and then 
enter its height. An advanced form of snapping is to store the association created by 
this modeling step. Th is preserves the relationships among the various parts if we later 
modify, for example, their size or position (see the section on feature-based modeling 
in Chapter 4).

Fig. 1.14 
A rotational cylinder is used as a 
column to support the loft above the 
kitchen.
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Handles. Geometric objects in a CAD system usually have some associated handles. 
Th ese allow easy and straightforward basic object manipulation. Using handles 
together with snapping, we can drag and drop geometry and perform some simple 
readjustments of the design. Handles are usually those special points that help defi ne 
the shape under consideration.

Typical handles of a cuboid are its corners and the centroid. If we click on one of the 
corners, we can modify the size of the cuboid interactively. By clicking on the centroid, 
we can move the entire cuboid to a diff erent position in space. Typical handles of a 
rotational cylinder are two points that defi ne the axis and another point that defi nes 
the radius.

Fig. 1.15 
We use the Snap to Center tool 
to position the origin p26 of a local 
coordinate system at the center of the 
top circle of the rotational cylinder. The 
angle between the global x-axis and 
the local x-axis is –32 degrees. With 
the help of this local system, we can 
generate the cuboid that represents 
the loft above the kitchen.
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Modeling the second bedroom. Now we will model the curvilinear second bedroom 
of the Winton guest house (Figure 1.16). A geometric analysis reveals that two 
diff erent rotational cylinders are involved. Part of the fi rst cylinder is a vertical wall, 
and part of the second is the roof. We generate the second bedroom as the intersection 
of two solids. In the xy-plane, we draw the base shape of the fi rst solid and extrude it to 
a certain height.

Th en we use a vertical local coordinate system with the local xy-plane positioned in 
the back wall of the bedroom. Th e local origin is the point p29. Th e local x-axis points 
in negative global y-direction and the local y-axis is parallel to the global z-axis. In the 
local xy-plane, we draw the base shape of the second solid—which we then extrude in 
the local z-direction.

Th e intersection of the solids (see Chapter 4, on Boolean operations) gives us the de-
sired geometric model of the second bedroom. Th us, we created all of the basic shapes 
of the Winton guest house above ground. 

Fig. 1.16 
We generate the second bedroom using 
parallel extrusion twice and intersection 
of the resulting solids. 
The base shape of the fi rst solid has 
vertices p29, p30, p32, and p33. Thereby, 
the circular arc starting at p30 and 
ending at p32 has center p31 and 
radius r. We extrude to a height of 500 
units. 

The base shape of the second solid has 
vertices p29, p30, p34, p35, and p36, and 
the last three vertices form a circular 
arc. We extrude in the local z-direction 
to a height of 400 units. Intersection of 
both solids yields a solid model of the 
curvilinear second bedroom.

Fig. 1.17
We use a different layer to model the 
windows and doors of the Winton guest 
house.
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Layers. Layers are a further fundamental CAD technique we employ. A single sheet 
of paper can be seen as a single layer to work on. By overlaying sheets of transparent 
paper, we create several layers—each layer carrying diff erent information. In a CAD 
system, each layer is a 3D copy of space lying at the exact same position in the global 
coordinate system.

Each layer can carry diff erent parts of a design and we can easily turn them on and 
off . Th is allows us to display only the currently relevant information. Th e user simply 
has to place each piece of geometry on the applicable layer. If we were to continue to 
model the Winton guest house, we might (for example) save a copy of the base shapes 
on one layer. Th en we might model the windows and doors and place them on a 
separate layer (Figure 1.17).

Th e pipe system and electricity installations might be placed on a further layer. If the 
3D CAD model is used for maintenance, a layered structure also simplifi es facility 
management aft er the building has been erected.

Color, texture, and material. In the initial design stages, we oft en work with a wirefr ame 
representation of a geometric shape. It simply shows us some straight lines or curves of 
the shape (Figure 1.18, left ). Th ereby, we see through the object like an X-ray machine 
and need mental spatial visualization abilities to create a more complete image in our 
mind. A hidden line rendering gives us an improved impression by removing the hidden 
parts of the object and only showing those vertices, edges, and faces of the objects in the 
scene that are visible from the current point of view (Figure 1.18, middle).

An alternative is to draw visible lines as solid lines, draw hidden lines as dashed lines, 
and color the visible faces (Figure 1.18, right). To better distinguish the various shapes 
we assign diff erent colors to them. To make them look more realistic, we want to 
apply digital plaster or paint or say that we have a brick wall here and a concrete wall 
there. Th is can be achieved by applying textures or correspondingly applicable defi ning 
materials (Figure 1.19). Th e creation of a realistic or artistic image is oft en referred to 
as rendering.

In this book, in regard to rendering we discuss only geometric issues. Rendering methods 
are developed in the fi eld of computer graphics. To produce a good rendering, we require 
knowledge about color, texture, material, lighting, and several other factors. Light 
sources are necessary because without light a rendered image would be black. In Chapter 
2 you will learn the geometric background of various lighting models. 

Fig. 1.18

(left) Different representations of the 
same geometric shape: wireframe,

(middle) hidden line rendering,

(right) and visible lines solid, hidden 
lines dashed, and visible faces colored.



Fig. 1.19 
A rendering of the Winton guest house.
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Sphere. A sphere with center c and radius r is the set of all points in 3D space that are 
at a distance r from the center c (Figure 1.20). A ball with center c and radius r is the set 
of all points in 3D space that have a distance less than or equal to r from the center c. 
What is the diff erence between a sphere and a ball? A sphere is the bounding surface 
of a ball.

Whereas a sphere is a surface model a ball is a solid model (as stated previously). If the 
radius equals r = 1, we speak of a unit sphere or of a unit ball. Every planar curve on a 
sphere is a circle. We speak of a great circle if the center of the circle coincides with the 
center of the sphere, and of a small circle otherwise (Figure 1.20).

Spheres, Spherical 
Coordinates and 
Extrusion Surfaces

Fig. 1.20 
A sphere is the bounding surface of 
a ball and is defi ned by center c and 
radius r. All planar curves on a sphere 

are circles. Those with center c are 
great circles. All others are small 
circles. 
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Spherical coordinates. In addition to Cartesian and cylindrical coordinates, spherical 
coordinates (r,ϕ,θ) are another possibility in describing 3D space (Figure 1.21). Th ey 
consist of one positive number r and two angles ϕ and θ. Spherical coordinates are 
defi ned as follows. We fi x a plane P (think of the xy-plane of a Cartesian coordinate 
system). Th en we choose an origin o in P and a ray in the direction of the x-axis.

Th e fi rst spherical coordinate r is a positive real number that gives the distance of the 
point p to the origin o. Th e second spherical coordinate is an oriented angle ϕ (–180° 
< ϕ ≤ 180°) that is measured between the x-axis and a horizontal ray through the 
origin and the point p'. Th e point p' is obtained by orthogonal projection of p into the 
plane P. Th e third spherical coordinate is the oriented angle θ (–90° < ϕ ≤ 90°) meas-
ured between the rays op' and op. 

To convert spherical coordinates (r,ϕ,θ) into Cartesian coordinates (x,y,z), we proceed 
as in the case of polar coordinates. Th e length of the straight line segment op is r. Using 
trigonometry, we fi nd the lengths of the straight line segments op' and pp' to be r · cosθ 
and z = r · sinθ. Again using trigonometry, we also derive the x- and y-coordinates:

x = r · cosϕ · cosθ,

y = r · sinϕ · cosθ,

z = r · sinθ.

Spherical coordinates defi ned in such a way correspond to geographic coordinates. 

Fig. 1.21 
Spherical coordinates (r,ϕ,θ) of a point 
and their conversion to Cartesian 
coordinates (xp,yp,zp) illustrated by 
means of the point p.
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Geographic coordinate system. Th e surface of our planet Earth is roughly a sphere 
with a radius r = 6370 km. To describe a global position p on our planet, geographic 
coordinates can be used (Figure 1.22). Th ese are a special case of spherical coordinates 
for which r is fi xed and only longitude ϕ and latitude θ vary. Latitude is the angle 
between the equator plane and the ray op, and longitude is the angle between the plane 
of the prime meridian passing through Greenwich (UK) and the plane of the meridian 
through p.

To completely defi ne the position p on the surface of the earth, we need a third 
coordinate called elevation. Elevation is measured as the vertical signed distance of p 
to a reference surface, usually at mean sea level. Using the Global Positioning System 
of satellites it is possible to determine longitude, latitude, and elevation of a given 
geographic position with high accuracy.

Th e geographic coordinates of Wayzata, Minnesota—where the Winton guest house 
is located—are N44°58’, W93°30’. Th e N stands for north of the equator and the W 
stands for west of Greenwich. Th e elevation of Wayzata is 287 m above sea level.

Extrusion revisited: cylinder and cone surfaces. Parallel extrusion of a smooth curve 
generates a cylinder surface (Figure 1.23, left ). Central extrusion of a smooth curve gen-
erates a cone surface (Figure 1.23, right). Both surface classes carry straight lines called 
generators. For a cylinder surface, these lines are all parallel. For a cone surface, they 
all pass through a common point v (the apex). We already encountered the rotational 
cylinders as a special case of cylinder surfaces. Rotational cones are generated by central 
extrusion of a circle toward a point on the axis of the circle.

Fig. 1.22 
Geographic coordinates of the Winton 
guest house.

Fig. 1.23
(left) Cylinder surface generated by 
parallel extrusion.
(right) Cone surface generated by 
central extrusion.



Th e axis of a circle is the line through the center of the circle orthogonal to the plane 
that contains the circle. A rotational cone can also be generated by revolving a line g 
around an intersecting axis A (Figure 1.24, left ). Th is intersection point is the apex of 
the cone. If g is parallel to A, we have a rotational cylinder. If g is not orthogonal to A, 
the rotational cone is actually a double cone—which consists of two parts: an upper 
and a lower cone (with the same axis, connected at their common apex). Usually when 
we speak of a cone we refer to only one part of a double cone.

Oft en a double cone is additionally bounded by a circle in a plane orthogonal to the 
axis. Such a rotational cone is defi ned by center m and radius r of the base circle and its 
height h, which is the distance of m to the apex v (Figure 1.24, right). Note that we can 
generate solid or surface models of cones and cylinders. Figures 25 and 26 illustrate 
cones and cylinders in architecture.

Fig. 1.24 
(left) A rotational cone is obtained 
by revolving a line g around an 
intersecting axis A.

(right) We defi ne a rotational cone by 
the center m and radius r of the base 
circle and the height h.

Fig. 1.25 
A tilted rotational cone in the Tacoma 
Museum of Glass (1998-2002) by 
Arthur Erickson.



Fig. 1.26 
The IKMZ (1998–2004) in Cottbus by 
Herzog & de Meuron has the shape of a 
general cylinder.

Outlook. Cones have a natural connection to pyramids. By refi ning the 
base polygon of a pyramid, we obtain a smooth curve (and the refi ned 
surface is a cone surface). Pyramids are explored in Chapter 3, and the 
connection between discrete and smooth surfaces is a topic in Chapter 
11. Planar sections of rotational cones lead to the conic sections; namely, 
ellipse, parabola, and hyperbola.

Th ese curves have been used in design since ancient times and are still of 
great importance. We will encounter them again in Chapters 6, 7, and 8. 
Cone and cylinder surfaces are two of the three basic types of developable 
surfaces, examined in Chapter 15. As we progress from chapter to chapter, 
we will be able to create more complicated geometric models and employ 
them for architectural purposes.





Chapter 2
Projections





Before the age of computer graphics, good knowledge of projections was needed to 
produce all constructions by hand in a reasonable amount of time (Figure 2.1). Today, 
computer-aided design (CAD) systems compute all types of classical projections in 
real time. However, some theoretical background is still necessary to make best use 
of the available parameters for visualizing geometry. Th is includes basic descriptive 
geometry for correctly sketching 3D objects and constructing perspective views. 

Projections

Fig. 2.1 
A woodcarving by Albrecht Dürer 
(1471–1528) shows a device that 
helped artists produce realistic 
drawings. Using a quadrilateral grid 
(right) to capture a fi gure as seen by 

the artist was a widespread device for 
generating perspective views. To the 
right you notice the woman as seen by 
the artist. 
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Geometric models of light and shadow are actually special cases of projections. 
Such insights lead us to a deeper understanding of how light and shadow infl uence 
the appearance of architectural scenes (Figure 2.2). Th e study of various rendering 
processes and methods (such as fl at shading, Gouraud shading, and Phong shading, as 
well as ray tracing and more recent methods such as radiosity) enables us to improve 
our visualization skills. 

We fi nish this chapter with more sophisticated projections. Artistic usage of nonlinear 
projections for presentation of architectural projects brings us in contact with the 
modern arts.

Projections. For many years, the design of 3D objects has been done by drawing on 
a 2D sheet of paper. General views have been used to visualize the objects, and with 
the help of special views details such as dimensions can be transmitted properly from 
designer to manufacturer. 

Th us, extensive use of diff erent projections and a good knowledge of the principles 
of projections have been necessary for every design process. Descriptive geometry, 
which studies the properties of projections, has become the language of designers and 
engineers. 

Today, the design of 3D objects is for the most part done using an applicable CAD 
system. Nevertheless, the ability to generate a correct sketch of a geometric model or 
a spatial situation on a sheet of paper is oft en helpful and necessary. Basic knowledge 
of the fundamentals of projections enables us to sketch correctly and thus to 
communicate our geometric ideas.

A very intuitive approach to projections is to look at shadows generated by sunrays or 
light emerging from a single point source (Figure 2.3). Th rough every point q of an 
object there exists a projection ray lq. Th e intersection of this ray with the projection 
plane P is called the projection of the point q. In the case of parallel rays (i.e., a 
geometric model of sunlight) we have parallel projection.

Fig.  2.2
(a) An auxiliary view of a space 
frame structure is used to illustrate 
the spatial situation, whereas special 
orthographic drawings show the 
dimensions of the frame structure.

(b) Today, CAD software allows for an 
even more realistic visualization. 
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Th e intersection point qp is called the parallel projection of the point q (the superscript 
p indicating parallel projection). Otherwise, when all rays are emanating from a fi xed 
point e we obtain central projection—which refers to the geometric model of illumina-
tion with a punctual light source or taking a photo with a camera. 

Before studying projections in more detail, note that from the geometrical point 
of view the term projection always means the spatial process of depicting objects. 
Nevertheless, the term projection is also commonly used to refer to the images (views) 
generated by the projection. A careful distinction tends to result in complicated 
formulations. Th us, for the sake of readability we use projection for both situations: the 
spatial process and the planar outcome.  

Parallel Projection. Obeying the properties of shadows generated by sunlight, we eas-
ily derive the following important properties of parallel projection (Figure 2.4).

(a) In general, the parallel projection of a spatial line a is a line a p. In the special 
case, when a line c is parallel to the projection rays the parallel projection 
degenerates to a point c  p.

(b) Th e parallel projections a p, b  p of parallel lines a, b (not parallel to the projec-
tion rays) are parallel.

(c) Th e ratio of distances is preserved under parallel projection. Th is means that 
if a point f divides the spatial line de in a certain ratio the point f  p divides the 
projected line d  pe  p in the same ratio. For example, the midpoint m of a line is 
projected into the midpoint m  p.

(d) Parallel line segments of equal length in space are projected onto parallel line 
segments of equal length in the plane.

Fig. 2.3 
The intersection of a light ray through 
a point q with the projection plane P is 
called the projection of the point q.
(a) Using parallel rays, we obtain the 
parallel projection qp.
(b) A projection with rays emanating 
from a single point e is called a central 
projection. Here, the superscript c 
denotes central projection.

Fig. 2.4 
Essential properties of parallel 
projection.
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Most of the illustrations in this book, made by hand or with the usage of a CAD 
soft ware, are parallel views of spatial situations. Th ey have been generated obeying the 
essential rules cited previously. Th e use of appropriate parallel views to illustrate spatial 
situations has the main advantage that the parallelism of lines is preserved in contra-
diction to perspective views.

In fact, most perspective views look more natural. However, the loss of parallelism 
can be a great disadvantage when visualizing geometric properties (Figure 2.5). 
Th us, modeling and design of an object should be done in parallel views, whereas 
photorealistic rendering is best performed in perspective views. We will study 
perspective views in the section about central projection.

Fig. 2.5 
In general, parallel views illustrate 
geometric properties much better than 
perspective views (Taipeitower (1999–
2004) in Taipei by C. Y. Lee). Note 
that the large distance at which the 
left-hand photo was taken simulates a 
parallel projection.
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Fig. 2.7 
Depending on the location of the sun, 
an object casts different shadows. 
Generally, angles are not preserved by 

parallel projection—with the exception 
of shapes lying in planes parallel to the 
projection plane.

Fig. 2.6 
Two skew lines in 3D space generating 
parallel-looking lines in the projection 
plane. This was used by 

M. C. Escher to generate images of 
seemingly impossible objects.

As we have seen, the parallel projection of parallel lines generates parallel lines. 
However, two parallel lines in a single parallel view can originate from skewed 
(not parallel and not intersecting) lines in 3D space (Figure 2.6). Th is property is 
sometimes used by artists to produce apparently impossible views. 

In most cases the parallel projection a  pb  p of a line ab is longer or shorter than the 
spatial length of ab. Th e ratio d = dist(a  p,b   p) : dist(a,b) of the two distances dist(a  p,b  p) 
and dist(a,b) is called the distortion factor of the line ab. Th is distortion factor also tells 
us whether the parallel projection of a line is longer or shorter than the spatial line.

If we consider shadows generated by sunlight, we see that the distortion factor can 
assume every positive value. Th e higher the sun stands above the horizon (at noon) the 
shorter the shadow will be. Otherwise, sunrays in the late aft ernoon (when the sun is 
near the horizon) cast very long shadows (Figure 2.7).

Th e distortion factor of lines also causes distortions of angles and areas. Th us, in 
general parallel projection does not preserve angles and areas. Only parts of objects 
that lie in planes parallel to the projection plane retain their real shape. 
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As a consequence, the parallel projection of a circle in an arbitrary plane is not a circle 
because diff erent diameters are projected with diff erent distortion factors (Figure 
2.8). Without a proof, we state that generally the parallel projections of circles and 
spheres are ellipses (see Chapters 6, 7, and 8). Th erefore, views based on general 
parallel projections oft en appear to be unnatural. Th is is because the observer wants to 
recognize the image of a sphere as a circle.

Axonometric views (also referred to as auxiliary views) are based on parallel projections 
and were used extensively before the age of CAD systems. With this relatively simple 
technique, meaningful visualizations of 3D objects and spatial situations can be 
produced by hand (Figure 2.9).

Th ese techniques are helpful in creating freehand sketches, in visualizing design ideas, 
and in generating extraordinary views of 3D objects for presentational purposes. Later 
in this chapter we will briefl y explore basic construction methods involved in creating 
such views.

Fig. 2.9 
Axonometric views based on parallel 
projection can be sketched easily by 
hand. They are sometimes used for 
presentational purposes. 

Local TV station (1968–1972) in 
Salzburg by G. Peichl (left). Moller 
house (1927–1928) in Vienna by A. 
Loos (right).

Fig. 2.8 
In general, parallel projection of circles 
and spheres yields ellipses.
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Normal Projection: A parallel projection whose projection rays are perpendicular to 
the projection plane is called a normal projection (Figure 2.10). Normal projections 
are special cases of parallel projections and thus inherit all properties of parallel 
projections. In addition, the normal projection of a sphere is always a circle.

All projection rays touch the sphere along a circle c, which lies in a plane perpendicular 
to the direction of the projection. Th us, the circle c lies parallel to the projection plane. 
It is depicted as a circle cp, which has the same radius as the sphere. Th is is one reason 
views based on normal projections look more realistic than views based on general 
parallel projections. 

Auxiliary views based on parallel projections are a good means of illustrating spatial 
situations or of visualizing design ideas. However, to communicate dimensions of 
objects we use normal projection and orthographic views.

Fig. 2.10 
The projection rays of a normal 
projection are perpendicular to the 
projection plane. Compared to parallel 
projection, the normal projection of a 
sphere is a circle. Note that for

illustration purposes this fi gure is an 
image (projection) of a spatial situation 
and thus the circle in the projection 
plane appears as an ellipse.
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All lines and objects in planes perpendicular to the projection rays lie parallel to the 
projection plane. Th erefore, the normal projection of these lines and objects shows 
their original dimensions. Given a 3D Cartesian coordinate system with a vertical 
z-axis we recognize three normal projections that are linked to it in a very natural way 
(Figure 2.11).

• Th e vertical normal projection with projection rays r1 in direction opposite 
that of the z-axis shows the top view of the object. 

• Th e horizontal normal projections with projection rays r2 and r3 show 
respectively the fr ont view and the (right hand) side view of the object. 

If we additionally consider the normal projections along the coordinate axis, we have 
three more main views of the object. Th ese projections (Figure 2.12) show the bottom 
view (projection ray -r1), the rear view (-r2), and the left  side view (-r3). Technical 
drawings usually include only the top, front, and side views because together they are 
considered suffi  cient to completely describe an object’s shape. 

Fig. 2.12 
Three additional main views of an 
object.

Fig. 2.11 
Three normal projections are linked to 
every Cartesian coordinate frame.
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In technical drawings, oft en the main views are positioned so that the relative position 
of the views allows for a transfer of information between the views. Depending on 
the “historical evolution of Descriptive Geometry”, there are two commonly used 
positioning schemes. 

• Th e front view is located directly above the top view, and the right side view 
is directly to the left  of the front view (Figure 2.13, bottom). Th is scheme 
(infl uenced by Figure 2.11) is familiar in Europe.

• Th e use of a type of “projection cuboid” (Figure 2.13, top), which contains 
the object, suggests locating the top view directly over the front view and the 
right side view directly to the right side of the front view.

Fig. 2.13 
Two different positioning schemes for 
the main views are commonly used.

American positioning scheme

European positioning scheme



Most CAD systems allow the user to arrange the main views arbitrarily. Nevertheless, 
when distributing offi  cial blueprints one has to follow the standard arrangement of 
main views.

Remember that the primary purpose of these multiview drawings is to obtain views 
of an object on which actual measurements can be shown. Th erefore, it is important 
to fi t the coordinate frame to the object such that the major parts of the object are 
positioned parallel to the coordinate planes. 

In recent high-profi le projects involving more free-form geometries, this blueprint-
based approach has begun to change in favor of digital-model–based formats. Here, 
digital fi les containing geometry information for fabrication of parts are directly sent 
to manufacturers or transferred directly to sites via laser positioning devices.

One such example is the Stata Center (at MIT), designed by Frank Gehry (Figure 2.14). 
It was one of the fi rst cases in which the 3D model served as the legal basis for all 
contractors regarding proof of measurements.

Fig. 2.14 
Stata Center of MIT 
(1999–2003) in Cambridge by F. Gehry.
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So far we have dealt with parallel and normal projections as eff ective tools for 
visualization of design ideas, assessment of the geometric properties of objects, 
and communication of spatial dimensions. To produce natural-looking images, 
perspective projection is necessary.

Th e fi rst approaches to central perspective were made in the fi ft eenth century, when 
Italian architects and artists such as Filippo Brunellesci, Leon Battista Alberti, and 
Piero della Francesca tried to develop some basic rules and methods for the genera-
tion of realistic-looking images.

Th e old masters sometimes used a wooden frame and a stretched thread (Figure 2.1) 
to produce perspective drawings. Th e thread realized the projection ray, whereas the 
wooden frame served as projection plane. Th e transfer of points from the projection 
plane onto a sheet of paper was done by means of a thread grid. 

Perspective Projection 
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By abstracting this very practicable idea, we deduce a very simple method of generating 
perspective views. In Figure 2.15 we substitute for the wooden frame a vertical 
projection plane P and for the stretched thread a projection ray r through a fi xed eye 
point e. Points p of the object are projected into the projection plane P by intersecting 
the projection ray r with the plane P. Note that the perspective views of points p are 
usually labeled with pc, where the c refers to central projection. 

Fig. 2.15
Perspective projection of a table.
We see the 3D situation during the 
construction (top). The fi nal image 
as seen from position e looking in 
direction of the optical axis (bottom).
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Th ere is one projection ray through the eye point e, which is perpendicular to the 
projection plane. Th is ray specifi es the optical axis of the perspective projection and 
intersects the projection plane P in the principal point m. A horizontal plane through 
the eye point e intersects the projection plane P along a line h.

Now we position the observer’s eye in the eye point e and let him or her look in the 
direction of the optical axis. Th en the perspective drawing gives the same impression as 
in reality (Figure 2.15, bottom). Th e horizontal line h would then be the horizon—the 
border between “the horizontal earth” and the sky. Th us, h is called the horizon line. 

Th e same situation appears when we photograph a scene in reality (Figure 2.16). 
Th e camera is located at point e, and the camera’s optical axis is orientated toward the 
principal point m. Th erefore, we oft en refer to the eye point e as camera position and to 
the principal point m as camera target.

Aft er taking the picture, the principal point m becomes the midpoint of the 
produced image. In Figure 2.16, we can recognize another well-known eff ect of 
perspective images: perspective views of parallel and horizontal lines apparently 
intersect at the horizon line. 

Fig. 2.16 
3D situations and 2D results when 
photographing a house. 



38

Figure 2.17 illustrates the proof of this fact. To obtain the projection lc of an 
arbitrary straight line l, we have to intersect plane E (which contains eye point e and 
the line l) with the projection plane P (Figure 2.17, left ). Now we take two arbitrary 
parallel and horizontal lines l1 and l2 (Figure 2.17, middle). 

To construct their perspective views l1
c and l2

c, we connect both lines with the eye 
point and get two planes E1 and E2. Th e intersection line lv of these planes contains 
the eye point e and is parallel to l1 and l2. Th e intersection point vl  of lv with the 
projection plane P lies on the horizon line h. It is called the vanishing point vl of all 
lines parallel to lv. 

Th ese points are crucial when sketching perspective views by hand. Generally, the 
perspective views of arbitrary parallel lines k1 and k2 intersect each other in the 
vanishing point vk of the lines k1 and k2. Th e vanishing point vk is the intersection 
point of kv with the projection plane, where kv is the straight line through the 
eye point e parallel to k1 and k2. Th us, we see that contrary to parallel projection 
perspective projection generally does not preserve parallelism and ratios.

Fig. 2.17 
Construction of vanishing points.
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Th e distance between the eye point e and the principal point m on the horizon line 
controls the distance between the eye point and the projection plane. We call it the 
distance of the perspective view. Changing the distance only causes a magnifi cation 
or shrinkage of the perspective image. It does not aff ect the image’s impression 
(Figure 2.18, top row). Otherwise, moving the camera along the optical axis can cause 
dramatic changes of the image (Figure 2.18, bottom row).

Fig. 2.18 
Perspective views of a model showing 
the “Endless Staircase” 
(1991, Ludwigshafen) of Max Bill. 

With fi xed eye point and changing 
distance (top row). 
With moving eye point and fi xed 
projection plane (bottom row).

image 1 image 2 image 3

image 4 image 5 image 6



40

Example: 

Constructing a perspective view of a 
house by hand. To generate perspective 
images by hand, we arrange top and front 
views of the spatial situation as shown 
in Figure 19. We construct the top and 
front views of a point p c by intersecting 
the projection ray ep with the projec-

tion plane P. To generate the true image 
of the objects lying in P, we transfer the 
points obeying the horizontal distance 
dh and the vertical distance dv of pc to the 
principal point m.
Th e horizontal distance dh is seen in the 
top view as the distance between m' and 

Fig. 2.19 
Constructing a perspective view of a 
simple house model. 
The construction is performed in two 
different positioning schemes on a 
scale of 1:600 (top). 
The result is sketched on a scale of 
1:300 (bottom).

pc ', whereas the vertical distance dv can be 
found in the front view as the distance 
of pc˝ from the horizon line h. Th us, the 
perspective view of all object points can 
be found and the perspective view of the 
object can be generated.

American positioning schemeEuropean positioning scheme

result on a scale of 1:300
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Example: 

Creation of perspective views 
using vanishing points. A pointwise 
construction can be improved by using 
vanishing points (Figure 2.20). We fi nd 
top and front views of the vanishing 
point vl of an arbitrary straight line l 
as the intersection point of lv with the 
projection plane P, where lv is a straight 
line through eye point e parallel to l. Th e 
perspective view of vl is then constructed 
by transferring the distances dv and dh as 
described previously. 

Using vanishing points improves the 
accuracy of the construction and decreases 
the amount of construction lines. For 
example, to fi nd the perspective view of 
the points q and r lying on a y-parallel line 
through an already constructed point p, we 

Fig. 2.20
Construction of a perspective view 
with the help of vanishing points. 
The construction is performed in two 
different positioning schemes (top).

use the vanishing point vy and have only to 
determine the horizontal distances dh. Th is 
can be done involving just the top view. 
Analogously, we construct the perspective 
views of points lying on x-parallel edges 
using the vanishing point vx.

American positioning scheme European positioning scheme

result in double size
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Note that these construction techniques are best suited to projecting objects with only 
planar faces. Application of these methods for the generation of perspective views of 
cylinders, spheres, or objects with nonplanar faces is much more complicated and time 
consuming.

Th e latter has been a main topic of traditional descriptive geometry and we will not 
describe it here. However, it is very helpful to be able to sketch the perspective image 
of simple objects with planar faces (as described previously). Understanding the basics 
of perspective projections also improves our ability to fi nd appropriate perspective 
views when using a CAD system.

Fig. 2.21 
Different heights of camera position 
and camera target generate aberrant 
z lines.

Fig. 2.22 
The visual cone and the visual pyramid 
limit the area depicted.

visual area visual area
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Hints for creating realistic images. Perspective views are practical for presentational 
purposes because they simulate the one-eyed vision of the modeled scene. To obtain 
realistic images, the following tips can be useful (Figures 2.21 and 2.22).

• Recall that the camera position is the location where the observer’s eyes are. 
We represent it by a single eye point whose position should be between 1.5 
and 2 m above the fl at terrain. 

• Selecting a horizontal optical axis e1m1 leads to perspective images, where 
z-parallel lines appear as vertical parallel lines. Th us, camera position and 
camera target should have the same z-coordinate.

• If the camera target is higher than the camera position, the direction of the 
optical axis e2m2 points upward. Th e vanishing point vz is lying above the 
horizon line. Th us, we have convergent z lines.

• A camera position e3, which is higher than the camera target, also results in 
convergent z lines wherein the vanishing point vz is positioned below the 
horizon line.

• Th e visual area, which normally can be absorbed by a human’s eye without 
moving the head, is limited approximately to a visual cone wherein the angle 
α of the cone to its axis is about 30 degrees (Figure 2.22). When we use a 
CAD system or a camera to generate perspective views, this visual cone is 
replaced by a visual pyramid. Most CAD systems provide tools for manipu-
lating this visual cone to adjust the perspective view. As shown in Figure 
2.23, the angle α should not exceed 30 degrees in order to obtain realistic 
renderings. 

Fig. 2.23 
Renderings of a scene with different 
visual pyramids: an angle α of less 
than 30 degrees generates realistic 

pictures, whereas images with larger 
angles lack realism. Otherwise, this 
effect can be used for artistic purposes.
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History: During the last centuries this possibility was 

extensively used by architects and painters to simulate 

3D objects on fl at walls or domes. An impressive example 

can be seen in the Church of St. Ignazio, Rome. Th ere, 

over the years 1684 and 1685 Andrea Pozzo succeeded in 

painting a fl at ceiling that as appears to be a perfect 3D 

dome (Figure 2.24).

Generation of optical illusions.  So far we have dealt with perspective projection as 
a means of generating views that represent the surrounding 3D space in a realistic way. 
However, taking advantage of the properties of perspective projection, one can also 
deceive the observer’s senses. 

Th ose deceiving aspects have also been applied successfully to the generation of optical 
illusions, as illustrated in Figure 2.24. Th e underlying geometric idea is the knowledge 
that all points lying on the same projection ray r have the same perspective image. 
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Fig. 2.24 
Artistic use of perspective projection 
can be found in architecture, stage 
architecture, and street graffi ti. The 
ceiling of the church of St. Ignazio in 
Rome by Andrea Pozzo (1621–1685) 
features a fake cupola painted on a fl at 
ceiling (left). 
In stage architecture, perspective is 
used to fake larger stage settings on 
small stages. Two views of such a 
model are shown here (top). 
The artist Julian Beever uses properties 
of perspective projection in a creative 
way in street painting (bottom). 
(Pavement art copyright Julian Beever).
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Fig. 2.25 
How to deceive human vision. An 
observer in point e looking at the 
polyhedron would think he or she is 
seeing a cube (left). 

The polyhedron as seen by the 
observer (middle). 
The geometry behind Julian Beever’s 
street paintings (right).

Let us take a cube and a polyhedron (polyhedra are discussed in Chapter 3) such 
that each pair of corresponding vertices of these two shapes is located on the same 
projection ray. In Figure 2.25 (left ) we illustrate this by means of rays passing through 
the vertices p1, p2, and p3 of the polyhedron and vertices q1, q2, and q3 of the cube. Th en 
both 3D objects possess exactly the same perspective image.

For psychological reasons, humans naturally recognize regular objects (such as a cube) 
instead of irregular ones. Th erefore, a person looking from point e orthogonally to 
the projection plane P would assume to see a cube (when looking at the polyhedron). 
Note that the images p1

c p2
c and q1

c q2
c of the corresponding lines p1p2 and q1q2 of the two 

objects pass through the vanishing point vx, whereas the images of p2p3 and q2q3 pass 
through vy.



In Figure 2.25 (right) we have two diff erent projection planes: a vertical plane P 
(which contains a picture of the fi nal scene) and a horizontal plane P1 (which serves 
as a drawing board). Every point r on a projection ray ep has the same image rc = pc in 
the vertical projection plane P. Th us, the intersection point p1 of the ray ep with the 
horizontal drawing board P1 generates the same image pc as the point p on a real object.

From the geometric point of view, to reproduce such street paintings we only have to 
project all points of the desired fi nal scene in P into another projection plane P1. Th en, 
aft er removing the vertical plane P an observer positioned at point e would believe he 
or she is seeing the original scene while looking at a distorted image (blue lines) on the 
pavement.  

r

e

e’

q

p

q1

P

P1

c c
q =q1

c c c
p =p =r1

p1
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Fig. 2.26 
Lighting with distant light, point light, 
or spotlight casts sharp shadows.

distant light point light spot light
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Fig. 2.27
Spotlight. 

A proper application of perspective projection is one key for presenting architecture 
and design in a realistically looking way. But without appropriate lighting our modeled 
objects would appear “fl at” instead of spatial. To get the best visualization results, we 
now deal with various light sources and rendering methods. 

Light sources. From the geometric point of view, we have lighting with distant 
light and point light as companion pieces to parallel projection and perspective 
projection. Th ese lighting methods have the same properties as their corresponding 
projections.

In addition to these geometric properties, we have to obey the principle that distant 
light is considered of constant luminance, whereas point light is fading (Figure 2.26). 
Th e farther away the point light is the less light is received by the object. Rendering 
soft ware normally assume that light is fading reciprocally to the squared distance. 

Lighting with a spotlight is a special form of lighting with a point light. Contrary to 
point light, only a limited area within a cone is lighted. Th erefore, this light type is 
very useful for lighting specifi c areas of an object. In addition, a second coaxial cone 
is available. Th is cone controls the width of the falloff  zone from the illuminated 
cone to the spotlight edge (Figure 2.27). Within this area, the spotlight slowly fades 
away to no light. 

Light, Shadow, and 
Rendering. 



Boundaries of shadows—cast by a single distant light, a point light or a spotlight—are 
very sharp and therefore not too realistic. To obtain a smooth transition between 
illuminated and shadowed areas, we can bring into play a bunch of point lights or 
spotlights and position them within a small area. 

Th ese lights cast realistic-looking shadows, but with the disadvantage of increasing 
computing time. Th erefore, rendering soft ware provides more sophisticated lighting 
methods such as those provided by linear and area lights. Linear light can be con-
sidered a set of point lights positioned along a line. Such point lights send out light 
equally in all directions (Figure 2.28).

Fig. 2.28 
Linear and area lights can be 
considered sets of point lights located 
on a line or within a polygon.



area light

By placing light sources within a fl at polygon, we obtain an area light. Th ese light 
sources send out light rays with the same luminance. Point and area lights are great for 
indoor lighting, when fl uorescent lamps or fl at light panels are used (Figure 2.29).

Two other important lights provided by most rendering systems are ambient light and 
fl ash light. Ambient light controls the brightness of the entire scene, whereas fl ash 
light is a special point light located at the camera’s position. Changing the luminance 
of the fl ash light brightens all faces seen from the camera position. Note that ambient 
light and fl ash light do not cast visible shadows. Th eir only purpose is to regulate the 
brightness of the scene.

Fig. 2.29
Linear and area lights are largely used 
for the rendering of indoor scenes 
(images courtesy of Benjamin Schneider, 
Georg Wieshofer, Gerhard Schmid).
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Rendering methods. To achieve high-quality images, we additionally assign textures 
and materials to our objects. To ensure realistic-looking textures, there are various 
lighting models that try to describe the interaction between surfaces and lights. 
Lighting models combine numerous factors that specify the color of an object.

For best simulation of the behavior of light, physical eff ects such as refl ection, 
transparency, or even refraction are also integrated into the mathematical description 
of lighting models. Th ese mathematical models are designed to produce a good 
approximation of real-world lighting in a feasible computing time. A deeper exploration 
of these methods is far beyond the scope of this book. Th erefore, we only deal with some 
basic aspects. We distinguish between local and global lighting models (Figure 2.30). 

• Local lighting models include only the interaction of the light source with 
the object. Th ey are rough but good approximations of real-world lighting 
and are therefore used for fast rendering methods such as fl at or Phong 
shading (explained in material following).

• Global lighting models are more accurate approximations of reality. Th ey 
take into consideration physical properties and the interaction between 
light and objects as well as the interaction between objects. Th erefore, 
these models also allow the representation of mirror and refraction eff ects. 
Th ey integrate all objects of a modeled scene to calculate the color of every 
object point. Typical rendering methods based on global lighting models 
are ray tracing and radiosity. Because of the complexity of the underlying 
mathematical models, these rendering methods are more time consuming 
than local lighting models.

To understand the various rendering methods, we consider the local interaction 
between the light and a single face of an object (Figure 2.31). We study the refl ection 
of a single ray r at a plane P. Let n be a line perpendicular to the plane P. Th e physical 
law of refl ection says that the incoming light ray ri, the outgoing light ray ro, and n are 
lying in a plane.

Fig. 2.30 
Local lighting models (such as Phong 
shading) versus global lighting models, 
such as ray tracing.

Fig. 2.31 
The wave angle determines the 
interaction between light and an 
object’s face.

Phong shading ray tracing
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In addition, the angle between ri and n is equal to the angle n and ro. Let o be a ray 
pointing toward the observer’s eye or the camera position. Th en, the angle between 
ro and o defi nes the intensity of the light refl ected in the direction of the camera. If 
o and ro coincide, a maximum of light is refl ected toward the observer. Obeying this 
principle and other specifi cations of the attached material, a specifi c color is calculated. 
Th is color is then associated with point p. 

To simplify the calculation process, we assume that all 3D objects are represented as 
polyhedral models with planar faces (Figure 2.32). As we have seen, the position of 
the normal n is crucial to the appearance of the plane P. Th erefore, in a fi rst step the 
normal of every planar facet is calculated.

By means of Figure 2.33, we recognize that at diff erent points of the same facet the 
angle between the incoming ray and the normal can change its magnitude, although 
the normals are parallel in all of these points. As a consequence, every point of this 
facet refl ects the light ray in another direction. Th is means that every point appears to 
have another color.

Fig. 2.32 
Polyhedral model of a sphere and the 
normals of the polygons.

Fig. 2.33 
When applying point light, we have 
different angles in each point of a 
plane. 
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Computing the color of each point (pixel) in the entire scene is very complex and 
time consuming. Th us, various simplifi cations are made to obtain good results in a 
reasonable amount of time. Depending on the type of simplifi cation, we distinguish 
among the following rendering methods. 

• Flat shading: Only one color is assigned to all points of the same polygon. 
Th is algorithm is very fast, but the quality of the image is poor. Th e 
boundaries of the polygons are clearly visible.

• Gouraud shading (Figure 2.34): Th e luminance is calculated in the vertices of 
the polygon to associate specifi c colors with these points. With the help of a 
linear interpolation process (see Geometry Primer), the color of every point 
(pixel) of the facet is approximated. First, the color is linearly interpolated 
along the edges. Th us, for example, the color changes from blue to green 
along the edge da and from blue to red along the other edge db. Th en, using 
a linear interpolation along a scan line ef we obtain the color for point p. Th is 
algorithm is more time consuming than fl at shading, but the quality increases 
enormously. In addition, we need to calculate the normal in a vertex of a 
facet. To explain the calculation procedure, let’s take another look at Figure 
2.34. In vertex d, four facets with diff erent normals meet. To obtain a smooth 
transition between these facets we take the mean vector n = 1/4(n1  + n2 + n3 

+ n4) of all adjacent facets. 

Fig. 2.34 
Gouraud shading: knowing the 
luminance of the vertices, the color 
of each point is calculated via linear 
interpolation. Phong shading: starting 

with the normals of the vertices, fi rst the 
normal at a point p is calculated using the 
same linear interpolation process. Then 
the color of the point p is evaluated.

Gouraud shading principle Phong shading pricinple
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• Phong shading: Th is method applies a linear interpolation to the vertices’ 
normals. Th is interpolation process is the same as that applied to Gouraud 
shading, with the diff erence that we obtain an interpolated normal vector 
np in point p. With the help of np the point’s color is fi nally evaluated. Th is 
algorithm demands more computer power but produces results with better 
quality. Especially when using glossy materials, Phong shading should be 
applied to obtain the best results in a reasonable length of time. 

Using a simple geometric object, the diff erences and limits of these local rendering 
methods are illustrated in Figure 2.35. Th ese methods are acceptable approximations 
of reality, but not with regard to physical eff ects such as refl ection or refraction. To 
achieve photorealistic renderings, we have to use global methods such as ray tracing 
and radiosity. 

Ray tracing is based on the scanning of the pixels of the screen. Rays emitted from the 
eye point are sent through every pixel of the screen. Th en each ray r is tracked back 
through the entire scene until it has reached a light source. During its way through the 
scene the ray is refl ected or refracted at all intersection points with objects and thereby 
split into diff erent parts (Figure 2.36).

Fig. 2.35 
The image quality depends on the 
rendering method. Whereas fl at 
shading is a very fast algorithm with 

poor quality, Gouraud shading and 
Phong shading yield good quality at the 
expense of increasing rendering time. 

Fig. 2.36 
Ray tracing: a ray r is tracked back 
from the eye to the light source. 

fl at shading Gouraud shading Phong shading
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Th ese new arising rays are handled like the original rays. Th ey are in turn also tracked 
back to the light sources and can again split into further rays when striking an object. 
Th us, scenes with an extensive amount of objects generate an immense number of rays 
coming from multiple refl ections. Th e ray tracing method is more time consuming but 
supplies rather good-looking images. 

Radiosity is an even more complicated rendering method, with the disadvantage of 
enormously increasing computation time. It employs sophisticated mathematical 
methods. Especially when we use this method for indoor renderings, we are also able 
to visualize diff use refl ections. Th is leads to impressive images (Figure 2.37). 

So far we have learned only the basics about lighting models and rendering methods. 
Further important facts for sophisticated renderings can be found in specialized 
literature on rendering techniques.

Fig. 2.37 
The same scene rendered with ray 
tracing and radiosity. Using only 
a single area light illustrates the 
differences between these two 
rendering methods. Radiosity even 
calculates the diffuse light refl ections 
of all objects. (Images courtesy of 
Alexander Wilkie and Andrea Weidlich.)

raytracing radiosity
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Th e ability to create freehand sketches is an important skill of designers and architects. 
Many design concepts and ideas are diffi  cult to express verbally. Quickly created sketches 
can be a powerful aid in communicating design ideas. Th e few properties of parallel 
projection mentioned previously enable us to correctly sketch auxiliary views of objects. 

Given the distortion factors dx, dy, and dz respectively of the three axes x, y, and z of a 
Cartesian coordinate system, we can draw the images x p, y p, z p of the coordinate axes 
arbitrarily (Figure 2.38). With these specifi cations, we can draw the parallel projection 
of the unit points ux(1,0,0), uy(0,1,0), and uz(0,0,1). By drawing lines parallel to the 

Fig. 2.38 
Drawing of an auxiliary view of a point 
q(0.5|2|2). 

Fig. 2.39 
An appropriate choice of distortion 
factors and the images xp, yp, and zp 
of the coordinate axes produces more 
realistic sketches.

Orthogonal and Oblique 
Axonometric Projections 
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Example: 
Parallel projection of a canopy. Given 
are top and front views of a simplifi ed 
canopy, the parallel projections of the 
coordinate frame, and the distortion fac-
tors (Figure 2.40a). We start with sketch-
ing the octagon in the xy-plane, obeying 
the distortion factors and the parallelism 
of the lines. Th en we draw the vertical 
columns (Figure 2.40b). Connecting the 
images of the endpoints of these columns 
with point v, we obtain the parallel pro-
jection of the canopy (Figure 2.40c).

Now we are going to construct an 
additional quadratic pyramid with 
the base polygon a, b, c and d, which 
intersects the existing canopy (Figure 
2.40d). We choose an appropriate 
height (15 units) and sketch the 
image w  p of the pyramid’s apex. Th e 
intersection lines of the canopy’s faces 
and the pyramid can now be constructed 
directly in the picture.

Th e lines aw and 1v lie in the same plane. 
Th erefore, we obtain the intersection 
point e immediately. Th e pyramid’s face 
abw intersects the vertical plane through 
the edge 2v in the line f. Th us, we obtain 
the point g—the intersection point of 
the line 2v with the pyramid. Th e re-
maining intersection points and lines 
can be constructed analogously, or as 
an alternative, we take advantage of the 
symmetry of the object (Figure 2.40e).

Fig. 2.40 
Sketching of a simplifi ed model of a 
canopy. 
(a) Given are top view and front view 
of the canopy, coordinate frame, and 
distortion factors. 

(b) Construction of the octagon and the 
vertical columns. 
(c) Sketching of the canopy. 
(d) Construction of the intersection of 
the canopy with a quadratic pyramid. 
(e) Finishing the sketch. 

(b) (c)

(d) (e)

(a)

coordinate axes through the unit points, we obtain the parallel projection of a cube 
with edge length 1. Th is unit cube can be a quick visual help in determining whether the 
chosen specifi cations will generate a convenient view. 

Th e parallel projection of an arbritrary point q with coordinates xq, yq, and zq is then 
determined as shown in Figure 2.38. Th e coordinates of q are multiplied with the cor-
responding distortion factor and all necessary construction lines are parallel to the axes. 
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Assuming that we can select arbitrary distortion factors and views of x, y, and z, this 
construction ensures the correct sketching of every point q of the 3D space. Note that 
we are completely free in our choice of the distortion factors and the drawings of x p, y p, 
and z p.

Nevertheless, if we use improper values the drawing will be geometrically correct but 
practically unusable. Some proper assumptions for values of the distortion factors dx, 
dy, and dz and the parallel projections x p, y p, and z p are shown in Figure 2.39.

Visibility of objects. In most cases, we sketch our design ideas and objects so that 
we are looking onto them from above (i.e., from the upper side of the xy-plane). But 
sometimes it can be necessary to create sketches that show the bottom of the objects. 
Th us, we have to provide a view of the bottom side of the xy-plane.

Th e choice of the mutual position of the parallel projections x p, y p, and z p of the axes x, 
y, and z already determines from which side the object is seen. Th is is the case because 
we always assume a right-hand orientation of the coordinate frame. We recognize that 
by looking at the upper side of the xy-plane, the 90-degree rotation of the x-axis into 
the y-axis is always seen in counterclockwise direction (Figure 2.41a,b). Otherwise, 
when looking at the bottom side of the xy-plane, this rotation appears as a clockwise 
rotation (Figure 2.41c). 

In this way, we obtain an easy rule that helps us determine the correct view. If the 
“shorter” rotation (rotation angle smaller than 180 degrees) of the x p-axis into the 
y p-axis is counterclockwise (this rotation is called mathematically positive), a view from 
above is given. In the case of a clockwise rotation, a view from below is determined. 
Th erefore, by looking at the sketches of the coordinate axes we can easily fi nd out 
which view is given. Figure 2.42 illustrates this rule with examples.

Fig. 2.42 
Views and corresponding coordinate 
frames.

Fig. 2.41 
The mutual position of x p, y p, and z p 
determines if the object is seen from 
above (a,b) or from below (c).

top view bottom view bottom view top view top view

(a) (b) (c)
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Construction of shadows. Sometimes hand-constructed axonometric views seem to 
lack spatial expression. Th e remedy is to add shadows. Th us, when using an appropri-
ate distant light (which casts striking shadows) we can enhance the image with little 
eff ort. To construct geometrically correct shadows, we have to know some basic terms 
and rules (Figure 2.43).

We distinguish between object faces that are turned toward the light source and those 
turned away from the light source. Th e boundary between these two types of faces is 
called the shading or the shade line. Points on the shading are candidates for casting the 
shadow lines of the object. Th e shadow lines are the border between the cast shadows and 
the illuminated areas.

To construct the shadow lines, we intersect light rays passing through the shading with 
planes and surfaces that contain cast shadows. Note that all faces turned away from the 
light source are unlit and form the so-called attached shadow, sometimes also referred 
to as the shade. Th e spatial impression may be improved even further by coloring the 
shade brighter than the cast shadows.

In the case of distant light, we fi nd the cast shadow p s of a point p in the horizontal 
plane P as the intersection point of the light ray lp and its top view lp' (Figure 2.43, 
bottom right). Given the fact that all light rays are parallel, we easily fi nd the cast 
shadows of all object points contained in the shading.

Recall the properties of parallel projection introduced at the beginning of the chapter. 
Using them improves the construction of the shadow lines. Th us, a line segment pq 
parallel to P casts a shadow psqs of equal length parallel to pq. 

Fig. 2.43 
Some terminology and basic rules for 
constructing geometrically correct 
shadows. 
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Sectional views. Occasionally, important parts of internal structures are not visible 
in the principal views. In this case, sectional views can be used to expose those internal 
details. Figure 2.45 shows an object intersected by cutting planes in perspective and 
sectional view. Hatching represents those parts of the object where the cutting plane 
passes through solid material.

We recognize that sectional views do not contain hidden lines, but they include all lines 
that are directly visible. Th us, sectional views are oft en easier to understand and help to 
clarify orthographic views that would be diffi  cult to understand because of an excessive 
amount of hidden lines. In addition to standard top, front, and side orthographic views, 
sectional views are helpful in visualizing the dimensions of an object.  

Fig. 2.44 
Constructing shadows by hand.

Fig. 2.45 
Sectional views are helpful tools in 
exposing internal details of an object.

Example: 
Constructing shadows by hand. Given 
are the axonometric view of a simple 
geometric model and the direction of 
the light rays. We sketch all existing 
shadows visible in this view (Figure 
2.44). Regarding the direction of the 
given light ray, we fi nd the faces of the 
cuboid with attached shadows and the 
shading of the entire object (marked 

in green). Analogous to Figure 2.43, 
we construct the projection of the 
shading and thus the cast shadows in the 
horizontal plane P.
Th en we continue with the cast shadow 
of the vertical edge e into the inclined 
plane E. We construct the intersection 
point 1 of the vertical line e with the 
plane E. Th e cast shadow of e is defi ned 

by the points 1 and 2 and ends in the 
cast shadow p s of p. Finally, the cast 
shadow of the horizontal line pq in the 
plane E can be found by back-projecting 
the point d s1,2 , which is the cast shadow 
of the points d1 and d2. Note also that 
point 3, the intersection point of pq
with E, could be used to construct the 
cast shadow of pq in E.
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Sketching images of curves and circles. Sketching straight lines and objects with 
only planar faces is easily done obeying the few simple rules stated previously. To 
sketch curves, we draw the projections of a suffi  cient number of curve points and 
tangents (tangents are explained in Chapter 7). We join the projected curve points 
to a smooth curve. Th ereby, we respect tangency of the image curve to the projected 
tangents (Figure 2.46). 

Sketching spheres. Sketching spheres is generally trickier than sketching circles: In 
3D space, all projection rays that touch a sphere form a cylinder (Figure 2.8). Th is 
cylinder touches the sphere along a great circle c. Th e image cp of c is the image of the 
sphere.

In the case of a normal projection, the situation is simple (Figure 2.10). Th e circle c lies 
in a plane parallel to the projection plane and hence its image is also a circle. Th us, the 
image of a sphere under normal projection is a circle. In the case of an oblique projec-
tion, the situation is more diffi  cult (Figure 2.8). In general, c is not lying in a plane 
parallel to the projection plane and thus the image cp of the sphere is an ellipse. 

Fig. 2.46 
The projections of curve tangents touch 
the projected curve.
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Example: 
Sketching of a cubical clock. Th e 
parallel projection of the coordinate 
system is given as shown in Figure 2.47 
(top). For simplifi cation, all distortion 
factors are taken equal to 1. We create 
the projection of the clock’s housing—
which has the form of a truncated cube 

(see Chapter 3)—as described in the 
example “canopy” (Figure 2.40).
Th e vertices of the circumscribed octagon 
lie on the edges of the cube. Th ey can 
be found exactly by calculating their 
distances from the vertices of the cube 
(Figure 2.47, bottom right). Th e sides 

Fig. 2.47 Sketching of an axonometric 
view of a circle.

of this octagon touch the projection 
of the circle at the midpoints. Th us, we 
have eight points and tangents—which 
is suffi  cient to sketch the smooth curve 
cp. We mention here without a proof that 
the parallel projection of a circle c is an 
ellipse cp.
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Note that in general the images of the points where the circle touches the octagon are 
not the vertices of cp. As we can see, the ratio dist(a,b) : dist(c,d) = 2 : 2 + √⎯2 ≈ 4:9.666… 
which is approximately 4:10. Th is property can be used when producing a freehand 
sketch of a circle. We divide the sides of a circumscribed square with the ratio 3:4:3 to 
get a rather good approximation of the points a and b (Figure 2.48). Using lines paral-
lel to the diagonals of the square, we can easily sketch the circumscribed octagon and 
the ellipse cp. 

Fig. 2.48 Freehand sketch of a circle 
using two circumscribed squares.
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Parallel and perspective projections are good tools for producing photorealistic 
images. Both projections are based on the fact that generally straight lines in space 
appear as straight lines in the image. We call them linear projections. By generalizing 
the concept of projections, we will derive some interesting new knowledge that can be 
used for design purposes. 

Recall the introduction of perspective projection (Figure 2.15). We used a projection 
plane P and an eye point e. To construct the projection of a point p we constructed the 
intersection point of the ray r = ep with the projection plane P. Let us now exchange 
the plane P by a projection cylinder C with vertical generators (Figure 2.49).

Th e image p* of a point p is generated exactly the same way as described previously. In 
addition, the projection of a line l is created with the same instruction: we connect the 
line l with the eye point e to get a plane E, which has to be intersected with the projec-
tion cylinder C. Th us, we recognize that the images of vertical lines are straight lines, 
whereas the images l* of arbitrary lines l are curves. Th is type of projection does not 
preserve linearity. We call it a nonlinear projection. 

Nonlinear Projections 

Fig. 2.49 
Projection of a cube onto a cylinder.
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Nonlinear projections arise from perspective projection by exchanging the projection 
plane with a cylinder or a sphere. In the following we examine the projection of spatial 
points and curves onto a spatial projection surface. Subsequently, the chapter discusses 
the more diffi  cult task of deriving a planar image.

Actually, the usage of a spherical projection surface seems to be an obvious idea 
because the human eyeball is more a sphere than a simple plane. One might also 
use more complex projection surfaces to obtain even more fancy-looking images on 
nonplanar surfaces. 

Cylindrical projection. Let C be a rotational cylinder with z-parallel axis (Figure 
2.50). Th en the images of vertical straight lines in space are the vertical generators of 
C. All lines lying in the horizontal plane through the eye point e are projected into the 
horizon h, which is a horizontal circle. All other straight lines, with the exception of 
the projection rays and the lines parallel to the generators of the cylinder, have ellipses 
as images.

In contradiction to perspective projection, the images of parallel lines l1 and l2 meet 
in two vanishing points v, w assuming that e lies within the projection cylinder. Th ese 
vanishing points can be found as intersection points of the line lv with C (compare this 
fact with the construction of vanishing points in perspective projection). 

Note that the assumption that e lies within the cylinder C is an essential one. 
Otherwise, there would be many points in space that could not be depicted by this 
projection. A further remarkable fact is that in general the images c* of circles c are 
not conics. Th ey are the intersection curves of cones with the projection cylinder 
(see Chapter 7). 

Fig. 2.50 
Cylindrical projection of a cube.
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Spherical projection. Now we exchange the projection plane P with a projection 
sphere S (Figure 2.51). We position the eye point e within the sphere to obtain images 
of all spatial points. Th e images of all straight lines, except the projection rays through 
e, are circles. Again, the images of parallel lines intersect each other in two vanishing 
points.

Th e images of circles are even more complicated curves. Th ey are obtained as the 
intersection curves of a cone with apex e and the sphere S (see Chapter 7). If we move 
the eye point into the centre of the sphere, we have a special case. Th e vanishing points 
v and w are antipodal points of the sphere and the image of a circle whose axis passes 
through e is again a circle. 

Creating a planar image. So far we have not dealt with the problem of how to transfer 
the 3D image, which lies on a curved projection surface, onto a fl at sheet of paper. 
Projection cylinders can easily be unfolded, but during this process the curved images 
l* of 3D straight lines l are distorted once more to l* d (Figure 2.52). Th is unfolding 
procedure is a more complex type of nonlinear mapping, which is examined in detail 
in Chapter 15. 

Fig. 2.51 
A spherical projection with the eye 
point at the center of the projection 
sphere.

Fig. 2.52 
A projection cylinder is unfolded into a 
plane.
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It is impossible to unfold a sphere. Th us, we introduce another nonlinear projection—
the stereographic projection (Figure 2.53). It projects the points of a sphere into a plane 
P. We select the projection center p (the new eye point) on the sphere (e.g., at the 
North Pole). Th e projection plane P has to be orthogonal to the line cp, where c is the 
center of the sphere.

Without a proof we state that circles, which lie on the sphere, are projected into circles 
or straight lines. Th us, a combination of a spherical projection and a stereographic 
projection depicts spatial straight lines as straight lines or circles—which makes it a 
perfect tool for generating interesting images. 

Note that the stereographic projection is also used to map the earth’s surface onto a 
plane because it additionally preserves the magnitude of angles. 

Nonlinear projections can also be used to enlarge the vision cone. When we have 
to project objects that are outside the vision cone or the vision pyramid, nonlinear 
projections can be used to improve the visual impression. Moreover, nonlinear 
projections are appropriate tools for approximating panoramic (fi sh-eye) views. Th ey 
have also been used by artists in paintings (Figure 2.54).

Fig. 2.53 
A stereographic projection is an 
appropriate tool for projecting points of 
a sphere into a plane.
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Fig. 2.54
(a) Pieter Neffs the Younger used a 
nonlinear projection to enlarge the 
vision cone in his 1746 painting “The 
Interior of the Cathedral in Antwerpen” 
(courtesy of Residenzgalerie Salzburg).
(b) A fi sh-eye photo and a modifi cation 
(courtesy of Georg Glaeser).





Chapter 3
Polyhedra a
Polyh   





Polyhedra and polyhedral surfaces are shapes bounded by planar faces. Th ey are 
fundamental to many modeling purposes and are oft en found in architecture (Figure 
3.1). Actually, most architecture features polyhedral surfaces because planar parts 
are easier to build than curved ones. We start our discussion with classical polyhedra 
such as pyramids and prisms that can be generated by extrusion of a polygon. To 
better understand why only a certain limited number of polyhedra can be realized 
with congruent regular faces, we study Platonic and Archimedean solids and some of 
their properties. Several of the Archimedean solids can be generated by appropriately 
cutting off  vertex pyramids of Platonic solids. One of the Platonic solids, the 
icosahedron, is also the polyhedron from which geodesic spheres are usually deduced. 

Parts of geodesic spheres are well known in architecture as geodesic domes. Geodesic 
spheres derived from an icosahedron consist of triangular faces only. Polyhedral 
surfaces are of great recent interest in architecture for the realization of freeform 
shapes (e.g., as steel-and-glass structures with planar glass panels.) 

Polyhedra and 
Polyhedral Surfaces

Fig. 3.1 
Polyhedra and polyhedral surfaces in 
architecture.
(Left) The Seattle Public Library (1998-
2004) by Rem Koolhaas and Joshua 
Ramus.
(Right) Part of the glass roof of the 
Dubai Festival Centre (2003-2007) 
by Jerde and HOK (image courtesy of 
Waagner-Biro Stahlbau AG).
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Polyhedra and Polyhedral Surfaces. A polyhedron is a 3D shape that consists of 
planar faces, straight edges and vertices. Each edge is shared by exactly two faces and at 
each vertex at least three edges and three faces meet (Figure 3.2, left ). Th e bounded 
volume enclosed by the polyhedron is sometimes considered part of the polyhedron. 
A polyhedral surface is a union of fi nitely many planar polygons (again called faces) that 
need not enclose a volume (Figure 3.2, right). A polyhedral surface can have boundary 
vertices on boundary edges. Th e latter only belong to one single face. 

Before studying polyhedra in more detail, we note that the term polyhedron is 
commonly used for solid and surface models of objects bounded by planar faces. A 
careful distinction tends to result in complicated formulations which we want to 
avoid. Th e same holds for the term polygon which we use for polygons and polylines.

Fig. 3.2 
The geometric entities of a 
(a) polyhedron and a
(b) polyhedral surface are its faces, 
edges, and vertices. 

(c) The Spittelau Apartment Houses 
(2004-2005) in Vienna by Zaha Hadid.
(d) The Booster Pump Station East
(2003-2005) in Amsterdam East by 
Bekkering and Adams.

(a)

l

(b)

l l f

(c) (d)
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Pyramids. One prominent type of polyhedron used in architecture is the pyramid. 
Th e base of an Egyptian pyramid is usually a square, and its other four faces are 
triangles. A general pyramid consists of a base polygon B in a plane P that is connected 
by triangular faces to the apex v not lying in P (Figure 3.3). Th us, the mantle M of a 
pyramid is a polyhedral surface with triangular faces. We obtain a pyramidal fr ustum 
by cutting the pyramid with a plane E parallel to P. Th e pillar of an obelisk is one 
example of a pyramidal frustum (Figure 3.3). 

Pyramids and Prisms

Fig. 3.3 
A pyramid consists of a base polygon B 
that is connected by triangular faces to 
the apex v. If we cut the pyramid with 
a plane E parallel to the base plane P 

we get a pyramidal frustum. If we 
put a pyramid on top of a pyramidal 
frustum we have an obelisk.

pyramid obeliskpyramidal frustum
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Prisms. A prism is a polyhedron whose bottom and top face are translated copies of 
each other in parallel planes (Figure 3.4). Th e vertices of the bottom and the top face 
are connected by parallel straight line segments. Th us the side faces of a prism are 
parallelograms and the mantle formed by them is a polyhedral surface. If the top face is 
obtained by a translation orthogonal to the plane containing the bottom face we have 
the special case of a right prism (all side faces are rectangles). A special right prism is 
the cuboid previously encountered in Chapter 1. 

Example: 
Modeling pyramids and prisms using 
extrusion. Special pyramids and prisms 
are oft en included as basic shapes in 
CAD systems. To model a pyramid or 
prism with a general base polygon B, we 
use the extrusion command (Figure 3.4). 
We draw the polygon B in a plane P (e.g., 
the xy-plane) and extrude it. A parallel 

extrusion takes the profi le polygon B and 
extrudes it along parallel straight lines. 
If the extrusion direction is orthogonal 
to the reference plane we generate a 
right prism. Otherwise (if the extrusion 
direction is not parallel to the reference 
plane) we generate a prism. A central 
extrusion takes the profi le polygon B in 

P and extrudes it along the connecting 
lines with a chosen extrusion center v 
(Figure 3.4). Th us a central extrusion 
generates a pyramid or pyramidal 
frustum whose shape depends on B and 
on the position of the apex v. Examples 
of pyramids and prisms in architecture 
are shown in Figures 3.5 and 3.6.

Fig. 3.4 
Prisms and pyramids can be generated 
by parallel and central extrusion of a 
planar polygon.

central extrusionparallel extrusion

pyramidsprism right prism



Fig. 3.5 
Pyramids in architecture:
(a) The ancient Egyptian pyramids of 
Giza (around 2500 B.C.).
(b) The main pyramid in front of the 
Louvre (1989) in Paris by I.M. Pei. Its 
base square has a side length of 35 
meters and it reaches a height of 20.6 
meters.
(c) The Transamerica pyramid (1969-
72) in San Franciso by William Pereira 
is a four-sided slim pyramid with 
a height of 260 meters. It has two 
wings on opposing sides containing an 
elevator shaft and a staircase.
(d) The Taipei 101 (1999-2004) in 
Taipei by C. Y. Lee. The 508 meters 
high building features upside down 
pyramidal frustums.
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Fig. 3.6 
Prisms in architecture:
(a) Castel del Monte in Bari by the Holy 
Roman Emperor Frederick II (around 
1240).
(b) The Jewish Museum Berlin (1998-
2001) by Daniel Libeskind.
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A cube is a special case of a cuboid whose faces are congruent squares. Geometrically a 
cube is a polyhedron with 6 square faces, 12 edges and 8 vertices. In each vertex of the 
cube three squares meet. All dihedral angles (i.e., the angles between faces that meet in a 
common edge) are equal to 90 degrees. A cube has several symmetries that can be used 
to refl ect and rotate it (see Chapter 6) so that it is always transformed onto itself. A cube 
also has the property to be a convex polyhedron.

Platonic Solids

A regular polygon has its vertices equally spaced on a circle such that the non-
overlapping edges are of equal length. Examples of regular polygons are the equilateral 
triangle, the square, and the regular pentagon. All regular polygons are convex. 
Pyramids and prisms whose base is a regular polygon are convex polyhedra. If the base 
polygon is non-convex the pyramid or prism is a non-convex polyhedron. 

Fig. 3.7 
Convex and non-convex domains in 2D 
and 3D. 

Math:

Convex sets. A set is convex if it contains with any pair of 

its points also the straight line segment connecting them 

(Figure 3.7). A polygon or a polyhedron is convex if it is the 

boundary of a convex set.

convex non-convex convex non-convex

2D

3D
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Now we devote ourselves to the following question: Are there any convex polyhedra 
other than the cube with congruent regular polygonal faces such that the same number 
of faces meet at each vertex? Th e answer is yes and it can be shown that there are fi ve 
such polyhedral solids. Th ey are called the Platonic solids (Figure 3.8), named aft er 
the ancient Greek philosopher Plato (circa 428–348 BC). Th e fi ve Platonic solids are 
known as the tetrahedron, the hexahedron (cube), the octahedron, the dodecahedron, 
and the icosahedron. Th e prefi x in the Greek name of a Platonic solid tells us the 
number of faces that make up the polyhedron: tettares means four, hex six, okto eight, 
dodeka twelve, and eikosi twenty. Because other polyhedra with the same number of 
faces commonly carry the same name, the Platonic solids are oft en distinguished by 
adding the word regular to the name. In this section a „tetrahedron“ always means a 
regular tetrahedron and the same applies to the other Platonic solids.  Let us begin with 
the construction of paper models of the Platonic solids.

Paper models of the Platonic solids. We can construct paper models of the Platonic 
solids by fi rst arranging their faces in a plane as shown in Figure 3.8. Th ese „unfolded“ 
polyhedra are cut out of paper or cardboard and then folded and glued together along 
the edges. For a tetrahedron, we need four equilateral triangles, for a cube, six squares, 
for an octahedron, eight equilateral triangles, for a dodecahedron, twelve regular 
pentagons, and for an icosahedron, twenty equilateral triangles. Of course, there are 
diff erent possibilities in arranging the faces of each Platonic solid on a cut-out sheet.

Fig. 3.8 
The fi ve Platonic solids are the 
tetrahedron, cube, octahedron, 
dodecahedron, and icosahedron. We 
can build them out of paper using the 
shown cut-out sheets. 

t
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How to fi nd the fi ve Platonic solids? A convex polyhedron is a Platonic solid if the 
following criteria hold. 

• All faces are congruent regular polygons.

• At each vertex, the same number of faces meet.

Th ree is the minimum number of polygons (and edges) that have to meet in a vertex v 
of a polyhedron. All faces and edges that meet in v form the vertex pyramid. Note that 
by vertex pyramid we mean the mantle of a pyramid and this pyramid may have a non-
planar base polygon (Figure 3.9). A polyhedron vertex is convex if the sum of angles 
between consecutive edges is less than 360 degrees. Th is is clearly the case for the cube 
(Figure 3.10) because we get 3∙90 = 270 degrees for the three squares joining in each 
vertex. If we put together four squares the angle is 4∙90 = 360 degrees and all four 
squares are contained in a plane. Th erefore, we do not get a spatial polyhedron. Five or 
more squares will not work either. Th us, the cube is the only Platonic solid made up of 
squares. Let us now use equilateral triangles instead of squares. 

• Th ree equilateral triangles meeting in a vertex are allowed (3∙60 = 180 
degrees). We get the tetrahedron by adding a fourth equilateral triangle as 
a pyramid base (Figure 3.10). Th e resulting polyhedron has four faces, four 
vertices, and six edges. It fulfi ls the previously cited criteria and is thus a 
Platonic solid. 

• Four equilateral triangles meeting in a corner are also allowed (4∙60 = 240 
degrees). We obtain the octahedron simply by gluing together two such 
vertex pyramids along their base squares (Fig 10). Again both criteria cited 
previously are fulfi lled and we have derived another Platonic solid. It has 8 
faces, 6 vertices, and 12 edges.

Fig. 3.9 
The vertex pyramid of the polyhedron 
vertex v is formed by all edges and 
faces joining in v. We also show the 
unfolded vertex pyramids.

vertex pyramids

vertex pyramids unfolded

convex fl at saddle shaped
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• Five equilateral triangles meeting in a corner are the most we can achieve 
(5∙60 = 300 degrees). But now we are not allowed to simply glue two such 
vertex pyramids along their pentagonal bases. Th e criterion would not be 
fulfi lled for the base vertices. It turns out that we have to connect two such 
pyramids with a band of 10 additional equilateral triangles (Figure 3.10) to 
obtain an icosahedron. Now both criteria hold again and we have found a 
fourth Platonic solid. It has 20 faces, 12 vertices, and 30 edges. Note that 
actually all vertex pyramids of the icosahedron are formed by fi ve equilateral 
triangles and are congruent.

Six equilateral triangles meeting in a vertex form a planar object (6∙60 = 360 degrees), 
and more than six cannot form a convex vertex anymore. Th us, we have derived all 
Platonic solids whose faces are made up of equilateral triangles or squares. 

Fig. 3.10
How to derive the fi ve Platonic solids 
using their vertex pyramids.

dodecahedron

icosahedron

octahedron

tetrahedron

cube
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Th e next regular planar polygon is the regular pentagon with fi ve edges and an inner 
angle of 108 degrees. Because 3∙108 = 324 < 360 degrees we can form a convex corner 
out of three congruent pentagons. Th en the dodecahedron is obtained by connecting 
four such caps consisting of three congruent pentagons (Figure 3.10). Both criteria are 
fulfi lled and we have derived the fi ft h Platonic solid. It has 12 faces, 20 vertices, and 30 
edges. If we put four pentagons together, we have 4∙108 = 432 > 360 degrees which no 
longer yields a convex corner.

Are there Platonic solids with regular polygonal faces other than triangles, squares, or 
pentagons? Th e answer is no. Th e following explains why this is the case. For a regular 
hexagon the face angle is 120 degrees and thus three hexagons meeting in a corner are 
already planar (3∙120 = 360). Since the face angles of the regular 7-gon, 8-gon, and so on 
are becoming larger and larger we can no longer form convex vertex pyramids anymore. 

Fig. 3.11
Photo of a 3D image of the 600-cell at 
TU Vienna. 

History:

Platonic solids in higher dimensions. Th e mathematician 

Schläfl i proved in 1852 that there are six polyhedra that 

fulfi ll the properties of the Platonic solids in 4D space. In 

spaces of dimension n = 5 and higher there are always only 

three such polyhedra. Th e three Platonic solids that exist in 

any dimension are the hypercube (n-dimensional cube), the 

simplex (n-dimensional tetrahedron), and the cross polytope 

(n-dimensional octahedron). In dimension 3 we additionally 

have the dodecahedron and the icosahedron. In dimension 

4 there are the 24-cell, the 120-cell, and the 600-cell. We are 

all used to seeing 2D images of 3D objects. Similarly we can 

create 3D images of 4D objects. Such a 3D image of a 600-

cell is shown in Figure 3.11.
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Convex polyhedra whose faces are equilateral triangles. Note that there are actually 
eight diff erent convex polyhedra consisting of equilateral triangles. Th ree of them are 
the Platonic solids tetrahedron, octahedron, and icosahedron. Th e other fi ve are no 
longer as regular and have 6, 10, 12, 14, and 16 equilateral triangular faces (Figure 
3.12). Th ey are obtained as follows. Gluing together two tetrahedra gives the fi rst new 
object. Gluing together two pentagonal pyramids generates the second one. 

Splitting a tetrahedron into two wedges and stitching them together with a band of 
eight equilateral triangles yields the third one. Attaching three square pyramids to the 
side faces of a triangular prism generates the fourth. Finally, by attaching two square 
pyramids to a band of eight equilateral triangles we obtain the fi ft h one. Note that all 
faces that are glued together are then removed from the generated polyhedron.

Fig. 3.12 
The eight different convex polyhedra 
that are made up of equilateral 
triangles. Only three of them are 
Platonic solids.

tetrahedron

octahedron

icosahedron

4 6

8 10

12 14

16

20
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Th e faces of a Platonic solid are congruent equilateral triangles (tetrahedron, 
octahedron, icosahedron), or congruent squares (cube), or congruent regular 
pentagons (dodecahedron). Table 3.1 summarizes the number of faces ( f ), the 
number of vertices ( v ), and the number of edges ( e ) that form each Platonic solid.

Properties of      
Platonic Solids

Platonic Solid f v e
Tetrahedron 4 4 6
Cube 6 8 12
Octahedron 8 6 12
Dodecahedron 12 20 30
Icosahedron 20 12 30

Th e Euler formula. It is easy to verify that for the fi ve Platonic solids the number of 
vertices v minus the number of edges e plus the number of faces f is always equal to 2: 

v − e + f = 2.

Th is polyhedral formula, derived by the mathematician Leonhard Euler (1707-1783), 
actually holds for all polyhedra without holes. We verify it for the pyramid with a 
square base: v − e + f = 5 − 8 + 5 = 2. In Chapter 14 we will learn more about the 
Euler formula and other so-called topological properties of geometric shapes. Fig. 3.13 

Platonic solids and their duals. The 
tetrahedron is self-dual. The cube and 
the octahedron are duals of each other. 
The same holds for the icosahedron 
and the dodecahedron.

Table 3.1 Number of Faces, Vertices, and Edges Associated with Platonic Solids
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Platonic solids and their duals. Th e face midpoints of each Platonic solid are the 
vertices of another Platonic solid, called the solid’s dual (Figure 3.13). Let us fi rst 
derive the dual of a tetrahedron. Each of the four vertex pyramids consists of three 
equilateral triangles. Because of the symmetry of the tetrahedron the three face 
midpoints of each vertex pyramid form another equilateral triangle. Th us, we again 
obtain a convex polyhedron consisting of four equilateral triangles. Th us the dual of a 
tetrahedron is again a (smaller) tetrahedron contained in the original one. 

Let us now derive the dual of a cube. For each vertex pyramid of the cube (consisting 
of three congruent squares) we connect the face midpoints by an equilateral triangle. 
Th us each vertex of the cube gives rise to an equilateral triangle (a face of the dual 
polyhedron), and each face of the cube yields a vertex of the dual (which is the face 
midpoint of the square). Hence the dual of a cube consists of eight equilateral triangles 
that form an octahedron. Obviously the number of vertices of a Platonic solid 
corresponds to the number of faces of the dual and vice versa. Th e number of edges is 
the same for a Platonic solid and its dual (see Table 3.1). Note that the dodecahedron 
and the icosahedron are duals of each other. 

Spheres associated with Platonic solids. Th ere are three spheres with the same center 
naturally associated with each Platonic solid (Figure 3.14). One sphere contains all 
vertices (the circumsphere), the second touches all faces in their face-midpoints (the 
insphere), and the third touches the edges at their edge-midpoints. 

Symmetry properties. Th e vertex pyramids of a single Platonic solid are congruent 
with one another. By construction, all faces are congruent regular polygons and thus 
all edges have the same length. Th is means that if we want to construct a Platonic solid 
we have the following advantages.

• We only need one type of face.

• All edges have the same length.

• Th e dihedral angles between neighbouring faces are equal.

• All vertex pyramids are congruent.
Fig. 3.14
Each Platonic solid has three associated 
spheres with the same center. Here 
we show the circumspheres and the 
inspheres.



Th e golden section. Th e golden section (also known as golden ratio or divine 
proportion) is the number 

φ  = (1+√⎯5)/2 ≈ 1.618033989...

We obtain the exact golden section if we divide a line segment into two parts (a larger 
one of length c, and a smaller one of length d ) so that the following holds (Figure 
3.15): the ratio of c and d is the same as the ratio of c + d and c. Stated another way, 
“larger to smaller as total to larger.” Formally, we write

c : d = ( c + d ) : c.

If we use a new variable φ := c/d we have φ = 1 + 1/φ which leads to the quadratic 
equation φ2 − φ − 1 = 0. Th e positive solution (1+√⎯5)/2 is the golden section.  
Interestingly, the golden section can be approximated by the ratio of two successive 
numbers in the so-called Fibonacci series of numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, … . 
Although 3:2 = 1.5 is a rough approximation of φ, 5 : 3 = 1.666... is already a little bit 
better. Continuing in the same fashion we obtain better approximations. For example, 
the value 13:8 = 1.625 already approximates the golden ratio within 1% accuracy.

Th e golden rectangle. Th e dimensions of a golden rectangle are always in the golden 
ratio φ : 1. To construct a golden rectangle, we start with a square of side length c. As 
shown in Figure 3.15 we obtain a larger golden rectangle with dimensions (c + d ) : c 
and a smaller one with dimensions c : d. 

Th e Fibonacci spiral. Let us continue the above construction as follows. We divide 
the smaller rectangle into a square of side length d and another golden rectangle of 
dimensions d : (c − d). If we continue in the same fashion the result is a whirling square 
diagram. By connecting opposite corners of the squares with quarter circles we obtain 
the Fibonacci spiral (Figure 3.15). 

The Golden Section

87
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Fig. 3.15
The golden section, the golden 
rectangle, and the golden spiral.

Fig. 3.16 
Unité d’Habitation (1952) by 
Le Corbusier.

History:

Th e golden section in art and architecture. In art the 

golden section has been found in numerous ancient Greek 

sculptures—including those by Phidias (fi ft h century BC) 

whose name motivated the choice of φ as the symbol for the 

golden section. Th e golden section also appears in paintings 

ranging from Leonardo da Vinci’s Mona Lisa (1503) to 

Mondrian’s Composition with Red, Yellow, and Blue (1921). 

In architecture it is argued that the golden section was 

used in the Cheops pyramid (around 2590-2470 B.C.), in 

the Parthenon temple (447-432 B.C.) in Athens, in the 

Pantheon (118-125) in Rome, in various triumphal arches, 

or in the facade of the Notre Dame cathedral (1163-1345) 

in Paris. In the twentieth century, Le Corbusier developed 

the golden-section-based modular system for architectural 

proportions and applied it in his famous building Unité 
d’Habitation (1952) in Marseille (Figure 3.16).

golden section golden rectangle Fibonacci spiral
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Modeling the Platonic solids. CAD soft ware oft en provides Platonic solids as 
fundamental shapes. If this is not the case all fi ve Platonic solids can also be modeled in 
the following way. Th e most diffi  cult part here is the construction of an icosahedron and 
its dual, the dodecahedron—which exhibits a beautiful relation to the golden ratio.

• To model a cube, we can use parallel extrusion of a square with edge length s 
in a direction orthogonal to its supporting plane to a height s. 

• To model a tetrahedron, we cut it out of a cube as shown in Figure 3.17. Th e 
planar cuts generate a polyhedron whose six edges are diagonals of the cubes 
faces which are congruent squares. Th us, the new edges are of equal length. 
Th e four faces of the new polyhedron are congruent equilateral triangles. 
Hence the polyhedron is a tetrahedron.

• To model an octahedron (Figure 3.17), we select its six vertices as unit points 
on the axes of a Cartesian system: (1,0,0), (0,1,0), (−1,0,0), (0,−1,0), (0,0,1), 
(0,0,−1). Alternatively we could also model it as the dual of a cube.

Fig. 3.17
(a) Modeling a tetrahedron by cutting 
it out of a cube. 
(b) Modeling an octahedron by 
choosing its six vertices as the unit 
points on the axes of a Cartesian 
system: (1,0,0), (0,1,0), (-1,0,0), 
(0,-1,0), (0,0,1), (0,0,-1).
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• To model an icosahedron we use three congruent golden rectangles which 
we position mutually orthogonal with coinciding centers in the origin as 
shown in Figure 3.18. Th e twelve vertices of the three golden rectangles have 
Cartesian coordinates (±φ,±1,0), (0, ±φ,±1), (±1,0, ±φ) and are the vertices of 
an icosahedron of edge length s = 2. 

• We model a dodecahedron as the dual of an icosahedron (Figure 3.18). 
Th e twenty face midpoints of the icosahedron are the vertices of the 
dodecahedron.

Th e cube is the most widely used Platonic solid in architecture. One unorthodox use is 
illustrated in Figure 3.19a. Th e tetrahedron also fi nds its way into architecture (Figure 
3.19b). In material following we will learn how geodesic spheres can be derived from 
an icosahedron.

Fig. 3.18
(Left) Modeling an icosahedron of edge 
length s = 2: The vertices of three 
congruent golden rectangles of width 
2 and length 2ϕ defi ne the twelve 
vertices of an icosahedron. 
(Right) Modeling a dodecahedron as 
the dual of an icosahedron.

Fig. 3.19
(a) The Cube Houses (1984) in 
Rotterdam by Piet Blom feature cubes 
with one vertical diagonal resting on 
prisms with a hexagonal base polygon.
(b) The Art Tower (1990) in Mito by 
Arata Isozaki can be modeled as a 
stack of tetrahedra.

icosahedron with side length s=2

Next Page 
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Archimedean solids are convex polyhedra that are consisting of two or more types of 
regular polygons so that all vertex pyramids are congruent. Th ese special polyhedra 
were known to the ancient Greek genius Archimedes more than 2000 years ago. As in 
the case of Platonic solids, all edge lenghts are equal in an Archimedean solid. Th us, 
the real diff erence is that more than one type of planar face appears. Each face still has 
to be a regular polygon but not all of them have to be congruent.

Corner cutting of Platonic solids. By cutting off  the vertices of a Platonic solid we 
can generate some of the Archimedean solids. For a better understanding of possible 
cuts we fi rst discuss corner cutting (along straight lines) for regular polygons. For each 
regular polygon we can perform two diff erent corner cuts so that we again obtain a 
regular polygon (Figure 3.20):

• Type 1: Cuts that generate a regular polygon with the same number of edges.

• Type 2: Cuts that generate a regular polygon with twice as many edges.

Archimedean Solids

Fig. 3.20 
The two types of corner cuts of regular 
polygons that generate another regular 
polygon. We illustrate the cuts for the 
equilateral triangle, the square, and 
the regular pentagon. 

corner cuts type 1

corner cuts type 2

Previous Page 
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Th e fi rst type of cut passes through the edge midpoints, and the second type of cut has 
to be performed in such a way that the generated polygon with twice as many edges is 
again regular. We can perform these two types of corner cuts for a Platonic solid in an 
analogous way and thus generate Archimedean solids. In we do so we cut off  parts of 
the vertex pyramids. 

Corner cuts of type 1. Let us start with cuts through the edge midpoints (Figure 3 21).

• For a tetrahedron we chop off  four smaller regular tetrahedra and what 
remains is an octahedron, Th us, we again have a Platonic solid and not a new 
type of polyhedron. 

• For a cube, we obtain the so-called cuboctahedron consisting of six congruent 
squares (which remain from the six faces of the cube) and eight congruent 
triangles (which remain from the eight corners of the cube). 

• If we cut off  the corners of an octahedron, we obtain a polyhedron 
whose faces are eight congruent equilateral triangles (one for each of 
the octagon faces) and six congruent squares (one replacing each corner 
of the octahedron). Th is is again a cuboctahedron. Indeed, by corner 
cutting through the edge midpoints dual Platonic solids generate the 
same polyhedron. Th is also holds for the dodecahedron and its dual, the 
icosahedron.

• With planar cuts through the edge midpoints of a dodecahedron we obtain 
a polyhedron whose faces are 12 congruent regular pentagons (one for 
each of the twelve faces of the dodecahedron) and 20 congruent equilateral 
triangles (one for each of the 20 vertices of the dodecahedron). Th e derived 
polyhedron is known as the icosidodecahedron. Its name reveals the fact that 
it can also be generated from an icosahedron via corner cutting through the 
edge midpoints (Figure 3,21). 

Fig. 3.21 
New polyhedra generated by corner 
cutting of Platonic solids with cuts 
through the edge midpoints. 
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Corner cuts of type 2. With corner cuts of the second type we can generate one 
further Archimedean solid for each of the fi ve Platonic solids (Figure 3.22). Figure 
3.20 indicates by means of a single face how we have to perform the necessary cuts 
that chop off  parts of the vertex pyramids of each Platonic solid. Archimedean solids 
generated by truncation are called truncated tetrahedron, truncated cube, truncated 
octahedron, truncated dodecahedron, and truncated icosahedron. 

Th e truncated icosahedron is very likely the most recognized Archimedean solid 
because it is represented in the classic shape of a soccer ball (Figure 3.22). Th e same 
polyhedron was also named a buckyball by chemists, because it resembles the shape of 
the geodesic spheres of Buckminister Fuller which we study in the next section. It can 
be generated from the icosahedron by corner cutting so that we chop off  1/3 of each 
edge on both edge ends. We generate for each of the 12 vertices a regular pentagon, 
and for each of the 20 triangles of the icosahedron a regular hexagon. Corner cutting 
is a fundamental idea in generating new shapes from existing ones. We encounter this 
idea again in future chapters including Chapter 8 (on freeform curves) and Chapter 
11 (on freeform surfaces). 

In total, there are 13 diff erent Archimedean solids (Figure 3.22) other than certain 
prisms and anti-prisms (discussed in material following). Th ree of the Archimedean 
solids even consist of three diff erent types of regular polygonal faces. 

Fig. 3.22 
From the 13 Archimedean solids the 
seven named in this fi gure can be 
generated from Platonic solids via 
corner cutting. The classic soccer ball 
is one of them.
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Remark. Note that the classical defi niton of an Archimedean solid is also fulfi lled by 
a 14th polyhedron. It was found 2000 years aft er Archimedes by J. C. P. Miller and V. 
G. Ashkinuze. Th is polyhedron is obtained by cutting a rhombicuboctahedron (the 
polyhedron marked by an * in Figure 3.22) in half, rotating one part by 45 degrees, and 
then gluing the two parts together.

Some Archimedean solids inherently closely resemble the shape of a sphere, with the 
further advantage that they can be made of struts of equal length. From Platonic solids 
we derive polyhedra that resemble the shape of a sphere even better. Th ese are the 
geodesic spheres and spherical caps of them are called geodesic domes.

Example: 
Prisms and anti-prisms that are 
Archimedean solids. A prism whose 
top and bottom faces are congruent 
regular polygons and whose side faces 
are squares is an Archimedean solid 
(Figure 3.23, top). Recall that for an 
Archimedean solid all edge lengths 
have to be equal. An anti-prism has 

congruent regular polygons as bottom 
and top faces. Th e top face is a rotated 
and translated copy of the bottom face 
and both are connected by a strip of 
triangles. If we use equilateral triangles 
we obtain polyhedra that fulfi ll the 
properties of an Archimedean solid 
(Figure 3.23, bottom).

cube prisms

octahedron anti-prisms

Fig. 3.23 
Examples of prisms and anti-prisms 
that are Archimedean solids.
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A geodesic sphere is a polyhedron with an almost spherical structure. Th e name is 
derived from the fact that 

• all vertices lie on a common sphere S and 

• certain sequences of vertices are arranged on great circles of S. 

Th e great circles of a sphere are the shortest paths that connect two distinct points on 
a sphere. Th ese shortest paths on a surface are called geodesics, and thus the polyhedra 
we study in this section are called geodesic spheres. All faces of a geodesic sphere are 
triangles. However, not all of them are congruent. Geodesic domes are those parts 
of geodesic spheres (Figure 3.24) that are actually used in architecture (Figure 3.25). 
Built domes range from sizes covering almost a full geodesic sphere to only half a 
geodesic sphere. Th e latter are called hemispherical domes.

Geodesic Spheres

Fig. 3.24 
A geodesic sphere and a hemispherical 
geodesic dome.

History:

In 1954 R. Buckminster Fuller fi rst displayed a geodesic 

dome at the Milan Triennale—an international exhibition 

dedicated to present innovative developments in 

architecture, design, craft s, and city planning. Th e 42-foot 

paperboard geodesic dome of Fuller gained worldwide 

attention and Fuller won the Gran Premio. Buckminster 

Fuller built several domes including a large one in Montreal 

(Figure 3.25) to house the U.S. Pavilion at Expo 1967. Fuller 

also proposed enclosing midtown Manhattan with a 2-mile-

wide dome.

hemispherical geodesic domegeodesic sphere



Fig. 3.25
(a) The Geodesic Dome (1967) in 
Montreal by Buckminster Fuller 
comprises three-quarters of a geodesic 
sphere. The outer-hull is made out of 
triangles and is linked to the inner hull 
consisting of hexagons.
(b) The Spaceship Earth geodesic 
dome (1982) in Orlando is almost a full 
geodesic sphere.
(c) The Desert Dome (1999-2002) in 
Omaha is hemispherical. 

(a)

(b)

(c)
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Starting with Platonic solids we derive diff erent forms of geodesic spheres by applying 
the following iterative process: we subdivide each face into a regular pattern of 
triangles and project the new vertices onto the circumsphere of the Platonic solid. 
From our considerations on Platonic solids it is evident that geodesic domes cannot be 
built with all triangular faces being congruent. However, we try to obtain only a small 
number of diff erent faces. 

Geodesic domes derived from an icosahedron: Alternative 1. Because the 
icosahedron closely approximates its circumsphere it is oft en used as a starting point 
for deriving geodesic spheres. We start by subdividing the triangular faces into 
smaller triangles (Figure 3.26b). An equilateral triangle can be split into four smaller 
equilateral triangles by adding the edge midpoints as new vertices. Th en three new 
edges parallel to the original edges are inserted. 

We do this subdivision for each of the 20 congruent faces of the icosahedron to 
obtain a total of 80 = 20∙4 triangles. Now we project the newly inserted 30 vertices 
(the midpoints of the 30 edges of the icosahedron) radially from the center of the 
icosahedron onto its circumsphere (Figure 3.27). From the 80 triangles of this 
geodesic sphere, 20 are still equilateral. Th e remaining 60 are only isosceles. Th us this 
geodesic sphere can be made up of two types of triangles (colored diff erently in Figure 
3.28, level 1).

Fig. 3.26 
Subdividing a triangle into smaller 
triangles: By splitting each edge into 
2, 3, 4 equal segments we get 4, 9, 16  
smaller triangles. In general, splitting 
each edge into n equal segments yields 
n2 smaller triangles.

Fig. 3.27 
Projecting the edge midpoints of an 
icosahedron onto its circumsphere 
results in a geodesic sphere.

i i  
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If we want to construct a larger geodesic sphere, it is advantageous to have more triangles. 
Let us again derive such a geodesic sphere from an icosahedron. We subdivide each 
edge of the icosahedron into three equal parts and obtain for each triangle nine smaller 
triangles (instead of four, as previously; Figure 3.26c). Th en we project the 80 new 
vertices (2 on each of the 30 edges of the icosahedron, and one for the midpoint of each 
of the 20 faces) again radially onto the circumsphere of the icosahedron. 

Th is geodesic sphere has a total of 92 vertices, 20∙9 = 180 triangles, and 270 edges 
(Figure 3.28, level 2). It follows from the construction that all triangles are isosceles. 
However, there are two diff erent types of triangles: 60 congruent ones that form the 
vertex pyramids around the 12 original vertices of the icosahedron and 120 congruent 
ones that form the 20 vertex pyramids around the displaced midpoints of the 
icosahedron’s triangles. 

Note that there are only three diff erent edge lengths involved. If we subdivide each 
triangle of the icosahedron into 16 triangles (Figure 3.26d), and then project all new 
vertices onto the circumsphere, we obtain a geodesic sphere at level 3 with 20⋅16 = 320 
triangles (Figure 3.28, level 3). If we keep subdividing the triangles of the icosahedron in 
this fashion, we generate a geodesic sphere at level k with 20∙(k+1)2 triangles. 

Geodesic domes derived from an icosahedron: Alternative 2. An alternative 
approach in generating geodesic spheres also starts with an icosahedron. However, it 
recursively splits each triangle of the geodesic sphere at the previous level into four 
smaller triangles and then projects the new vertices onto the circumsphere (Figure 
3.29). Th e fi rst subdivision level gives exactly the same geodesic sphere with 20⋅4 = 
80 triangles as before. But the second and third level already produce geodesic spheres 
with 20⋅16 = 320, and 20⋅64 = 1280 triangles respectively. Th us, by the second 
subdivision approach a geodesic sphere of level k has 20∙4k triangles. At level 1, both 
alternative constructions return the same geodesic sphere. However, at higher levels 
we obtain geometrically diff erent results because the order in which we perform the 
subdivision and projection steps is diff erent. 

Fig. 3.28 
Geodesic spheres generated by 
subdividing the triangles of an 
icosahedron and projecting the new 
vertices: 
(a) At level 1 we have 80 triangles of 
two types (20 equilateral, 60 isosceles 
in different colors).

(b) At level 2 we have 180 isosceles 
triangles of two types marked with 
different colors.
(c) At level 3 we have 320 triangles of 
fi ve different types. Only 20 of them 
are equilateral, all others are isosceles.

icosahedron geodesic sphere level 1 geodesic sphere level 2 geodesic sphere level 3
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Figure 3.30 shows a circular section and the diff erent results obtained by changing the 
order in which subdivision and projection are performed starting with a single edge. 
Th us, although the number of triangles of a geodesic sphere at level 2, 3, 4, … with the 
second approach is the same as the number of triangles of a geodesic sphere at level 
3, 7, 15, … generated with the fi rst approach, the geometry of the resulting objects is 
slightly diff erent. By varying the generation process (subdivision and projection) we 
can obtain even other variants of geodesic spheres.

Remark. Note that a geodesic sphere still contains the 12 vertices of the icosahedron 
from which it is constructed. Th ese 12 vertex pyramids consist of only 5 triangles. 
All other vertex pyramids of a geodesic sphere consist of 6 triangles which yields a 
natural relation to hexagons that can be formed around those vertices. Recent projects 
(such as “Eden” by Grimshaw and partners) are revisiting large spherical roofs using a 
hexagonal pattern (see Chapter 11 for details). 

Fig. 3.29 
Geodesic spheres generated with the 
second subdivision alternative. In each 
step the triangles of the previous step 
are split into four smaller triangles and 
the new vertices are projected again 
radially onto the circumsphere of the 
icosahedron.

icosahedron geodesic sphere level 1 geodesic sphere level 2 geodesic sphere level 3

Fig. 3.30 
The order of subdivision and projection 
steps matters. This is illustrated at 
hand of a circular section. alternative 1 alternative 2
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Obviously the cube is a space-fi lling polyhedron. Th is means that we can stack 
congruent cubes and completely fi ll 3D space with them. Actually, the cube is the only 
Platonic solid that has this property. Nevertheless, there are other polyhedra that have 
the space-fi lling property. One example is the following: If we add square pyramids 
of height s/2 to each face of a cube with edge length s, we obtain a so-called rhombic 
dodecahedron (Figure 3.31a). All faces of a rhombic dodecahedron are congruent 
rhombi which are non-regular polygons of equal edge length in the form of a sheared 
square. 

Let’s examine why the rhombic dodecahedron is also a space-fi lling polyhedron. We 
take a cube and attach six congruent cubes to its faces. Replacing these six cubes by 
rhombic dodecahedrae, the initial cube is completely fi lled by six congruent pyramidal 
parts of the adjacent rhombic dodecahedrae. Th us, if we replace in a space-fi lling 
assembly of cubes every second cube (in a 3D checkerboard manner) with a rhombic 
dodecahedron, we fi nd a space-fi lling by dodecahedra. Space-fi lling polyhedra appear 
in nature (e.g. as regular six-sided prisms that form the building blocks of honeycombs, 
Figure 3.31b).

It is of course possible to fi ll space with non-congruent polyhedra, although it becomes 
much more complicated to do this in a meaningful way. For practical applications we 
sometimes want to fi ll a certain volume with polyhedra. For simulation purposes one 

Space Filling Polyhedra

Fig. 3.32 
Volume fi lling tetrahedra (image 
courtesy of Pierre Alliez).



oft en uses tetrahedra (Figure 3.32). One recent example in architecture that employs 
space-fi lling polyhedra of varying shape is the National Swimming Center in Beijing 
(Figure 3.33). An architectural design that employs polyhedra derived from so-called 
Voronoi cells (see Chapter 17) is shown in Figure 3.34.

Fig. 3.33 
Volume fi lling polyhedra in 
architecture: National Swimming 
Center in Beijing. 

Fig. 3.34 
An architectural design based on 
irregular space fi lling polyhedra (image 
courtesy of B. Schneider). 
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If a smooth surface is approximated by a polyhedral surface we also speak of a discrete 
surface. In architecture discrete surfaces are of special interest in the realization of a design. 

Approximation of cylinders and cones by polyhedral surfaces. Th e fi rst idea is to 
take a smooth cylinder surface and replace it with a strip model (Figure 3.35a). We 
can also divide each strip into planar quadrilaterals. Th e same holds for a cone surface. 
Figure 3.35b shows a strip model and a model with planar quadrilaterals. Note that 
the quadrilaterals are planar because two opposing edges are lying in the same plane by 
construction. 

Polyhedral Surfaces

Fig. 3.35 
Approximation of cylinders and cones 
by polyhedral surfaces.
(a) Simple strip models.
(b) The strips are further subdivided 
into planar quadrilaterals.
(c) Since 1991 the Melbourne Shot 
Tower is covered by a 84m high conical 
glass roof designed by Kisho Kurokawa.

i   i   

 



Example: 
A model of the courtyard roof of the 
Abbey in Neumunster. The previous 
idea was used to cover a rectangular 
area by a curved roof with planar glass 
panels in an interesting way (Figure 
3.36a). The shape of the roof consists 
of three parts: a cylindrical section 

in the middle and two congruent 
conical sections at either side. The 
circular arc c is the base curve of two 
adjacent surfaces. Then, a parallel 
extrusion generates the cylindrical 
part—and a central extrusion with 
vertex v generates the conical one. The 
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Fig. 3.36
(a) The courtyard roof of the Abbey in 
Neumunster (2003) by Ewart-Haagen 
& Lorang Architects built by RFR.
(b) A design only using the generators 
of the cylinder and the cones.
(c) An alternative design that 
discretizes the conical parts into 
triangles.

cylinder surface is approximated by 
congruent planar quadrilaterals using 
the generators of the cylinder. 
If we approximate the conical parts by 
planar quadrilaterals using the cone 
generators, the outcome might be 
undesirable (Figure 3.36b). However, 

if we use a different decomposition 
into quadrilaterals, they are no longer 
planar. Thus, to realize this design with 
planar glass panels one has to subdivide 
each nonplanar quadrilateral into two 
triangles (Figure 3.36c).



Fig. 3.37 
The Złote Tarasy (polish for ”Golden 
Terraces”) in Warsaw by Jerde 
Partnership International opened in 
2007. The freeform shape roof is 
geometrically a polyhedral surface with 
triangular faces (images courtesy of 
Waagner-Biro Stahlbau AG).

In general, the approximation of a freeform shape by triangles is much simpler than by 
planar polygons. Th is fact is intensively used in computer graphics, in which objects 
are decomposed into triangles (e.g. for rendering purposes, recall Chapter 2). In 
architecture, freeform-shapes are enjoying increased popularity. For the design of roofs 
constructed as steel-and-glass structures with planar panels, the simplest polygons are 
triangles (Figure 3.37). 
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Fig. 3.38 
Shape approximation by polyhedral 
surfaces applied to Michelangelo’s 
David (image courtesy of Pierre Alliez).

Whereas three vertices of a triangle in space are always contained in a single plane, 
this need not be the case for four or more points. Th e design of polyhedral freeform 
surfaces with planar faces other than triangles is a diffi  cult task that is a topic of current 
research. As illustrated in Figure 3.38, computer graphics has already developed 
algorithms for the approximation of arbitrary shapes by polyhedral surfaces. However, 
these methods generate a variety of diff erently shaped planar polygons and thus may 
not be the best solution for architectural design. Th erefore, in Chapter 19 we study a 
diff erent approach that better meets the needs of architecture.





Chapter 4
Boolean Operations
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So far we have learned a lot about basic objects. Now we will explore how to 
manipulate these objects to derive more complicated shapes. To modify solids, we 
use the Boolean operations union (gluing), diff erence, and intersection. For surface 
modeling, we need the techniques trimming and splitting to modify our shapes 
(Figure 4.1).

By combining Boolean operations, a feature-based computer-aided design (CAD) 
system associates operations such as creating holes, fi llets, chamfers (blending), bosses, 
and pockets to specifi c edges and faces. When we change the position of the edges or 
faces, the original relationships are preserved and the feature operation moves along 
with it. Th us, using feature-based models the designer can test various sizes of details 
to determine the best solution. One simply adjusts the parameters for the details and 
regenerates the model. In this way, all relationships such as the relative position of a 
window or door are preserved. 

Fig. 4.1
(a) Trimming and splitting techniques 
are powerful tools for modifying 
surfaces.

Boolean Operations



Fig. 4.1
(b) Boolean operations are analogous 
tools in manipulating solids.
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Let us start with two planar sets. Set A consists of all points inside the red T-shaped 
boundary, whereas set B includes all points inside the blue moonlike border. Figure 4.2 
illustrates (shaded areas) various possibilities of combining both sets.

• Th e set that contains all points of set A and all points of set B, but nothing 
else, is called the union of A and B.

• Th e intersection of A and B is defi ned as the set of all points that belong both 
to A and to B.

• Th e diff erence of A and B contains only those points of A that do not lie in 
B. Analogously, the diff erence of B and A consists of points of B that are not 
contained in A.

Union, Difference, and 
Intersection

Fig. 4.2
The union, intersection, and both 
differences of two sets A and B.

union intersection difference A\B difference B\A
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Now we transfer this theoretical concept to solids in 3D space. Figure 4.3 shows 
various operations that combine two shapes, a cube and a sphere, to produce new 
shapes:

• Th e union operation combines both objects into one single entity. We can 
consider the union operation simply as adding or gluing one object to the 
other. To avoid problems in the subsequent modeling process, the involved 
objects should have common spatial regions or should at least touch each 
other.

• Th e intersection operation joins both objects but keeps only those parts that 
lie in both objects. 

• Th e diff erence operation removes the overlapping portions of the second 
object from the fi rst object. It is the same eff ect when countersinking the 
second object from the fi rst—a typical milling procedure. Bear in mind that 
the order of selecting the objects radically infl uences the appearance of the 
combined shape.

Fig. 4.3
Application of Boolean operations to 
a cube and a sphere. For a better 
understanding, the original painting 
of both objects has been preserved in 
these pictures.

sphere and cube

union intersection difference sphere\cube difference cube\sphere
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Th ese operations are called Boolean operations. Th ey can be performed not only on 
two objects but on a set of given objects. Skillful usage of Boolean operations gives 
your modeling a highly productive capability by modifying large amounts of geometry 
(each must be a solid) with a single operation. Some examples, which demonstrate the 
power of Boolean operations, are shown in Figures 4.1 and 4.4. 

History:

Boolean operations are named aft er the English 

mathematician George Boole (1815–1864), who taught 

at University College Cork. He introduced an algebraic 

system of logic that has many applications in electronics and 

in computer hardware and soft ware.

Fig. 4.4
(a) By applying Boolean operations to 
two bodies of extrusion with profi les 
consisting of letters, we obtain 
interesting logos.
(b) To “fi ll water” into a CAD model 
of a bathtub or a swimming pool, we 
can use a fi tting block and the Boolean 
difference operation.
(c) With two congruent bodies of 
extrusion with appropriate profi les and 
the Boolean intersection, we easily 
model a tower. 

(a)

(b) (c)
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From the mathematical point of view, Boolean union and intersection are 
commutative operations. Th is means that the order in which the objects are fed into 
the operation does not matter. Nevertheless, in CAD the sequence of selecting the 
involved objects infl uences the attributes of the emerging object. Th e newly created 
object inherits the attributes of the fi rst selected object.

Sometimes CAD soft ware seems to fail mysteriously in completing Boolean 
operations. Why does this matter, and how can we avoid such problems? To 
understand why Boolean operations do not succeed, one has to consider that these 
operations are multistep processes. Th ey basically combine the following.

• Computing the intersection curves 

• Splitting all involved objects along these curves 

• Deleting those parts not contained in the solution 

• Joining all remaining parts

Boolean operations typically fail because the calculation of the intersection curves 
creates curves with gaps due to badly modeled objects or inaccuracy of computations. 
To support your CAD soft ware in performing Boolean operations you should observe 
the following.

• Try to extend your trimming objects beyond the faces of the modifi ed object.

• Avoid combining objects with co-planar faces.

• Avoid nearly tangent surfaces.
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Boolean operations are powerful tools for the shaping of solids. But when applying 
these tools on surfaces we recognize that the concept of Boolean operations does not 
always work in the desired way. For example, the Boolean diff erence of two surfaces 
would generate an exact copy of the fi rst surface—with only the intersection curve 
missing. Otherwise, the Boolean intersection of two surfaces would only produce the 
intersection curve.

When working with solids, there is no doubt which areas are inside and which are 
outside a CAD model. On the one hand, it is relatively easy to calculate (for example) 
the Boolean intersection as the set of all parts inside all bodies involved. On the 
other hand, it is not decidable which are the inner and outer areas of open surfaces. 
Th erefore, Boolean operations do not work when surfaces are involved.

When it comes to modeling with surfaces, we use the techniques of trimming and 
splitting. Applying these operations to surfaces, the intersection curves are calculated 
and the surfaces are divided along these curves. Th e resulting parts either can be 
manipulated as independent objects (splitting) or deleted automatically (trimming). 
Th ese operations are used to trim (cut) one surface with another, or to split one surface 
along its intersection curve with a second surface. Figure 4.5 shows the splitting of a 
torus with a cylinder.

Trim and Split

Fig. 4.5
By splitting the torus with the cylinder, 
we obtain four parts (indicated by 
different colors). Otherwise, if we 
split the cylinder with the torus we 
derive four distinct objects. We obtain 
a cylinder with three holes and three 
small caplike parts. For reasons of 
better visualization, these parts are 
displaced from their original positions.

split torus with cylinder split cylinder with torus
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Th e trim operation demands a user-controlled intervention to defi ne those parts, 
which have to remain aft er the trimming process. Figure 4.6 illustrates various results 
of the trim operation being used on an ellipsoid and a cylinder. 

During the trimming process, the intersection curve is being calculated. Th us, it can be 
used as a new profi le for generating new surfaces or solids (see Figure 4.6d). 

Fig. 4.6
Trimming of a cylinder and an ellipsoid. 
Sequentially, the pictures show
(a) both objects before the trimming 
process,
(b) when the ellipsoid has been 
trimmed away, and
(c) alternatively when the ellipsoid 
remains while the cylinder has been 
trimmed away.
(d) The calculated intersection curve 
can also be used as a profi le to 
generate a consistently connecting 
surface.

ellipsoid

(c) 

ellipsoid trimmed with cylinder

(d) 

extrusion surface

(a)

                      cylinder

(b) 

cylinder trimmed with ellipsoid
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Most CAD systems also provide a special tool for joining (“gluing together”) trimmed 
surfaces with common intersection curves. Th is stitching operation (Figure 4.7) for 
surfaces is the equivalent of the Boolean union for solids. When surfaces are stitched, 
CAD soft ware oft en not only joins the surface patches but tries to uniform the 
surface normals of the object so that all adjacent surfaces have the same front/back 
orientation. If your CAD system does not supply this functionality, you should change 
the surface’s front/back orientation manually before stitching them. In the case of 
assigning “orientated material” to the stitched surfaces, you will see the diff erence 
immediately. 

Fig. 4.7
Stitching of two surfaces
(a) with the same front/back 
orientation generates continuous 
texturing.
(b) Different orientations of 
the stitched surfaces result in 
discontinuities of oriented textures.

(a)

(b)
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Trimming and splitting techniques can also be used to trim solids with surfaces. Th is 
can be used to create parts of solids that have freeform surfaces as boundaries. Figure 
4.8 shows an application of this technique in modeling a hexagonal prism with a 
saddle-shaped boundary.

Oft en, surface and solid objects can be trimmed or split with simple lines or curves. 
In this case, we can also defi ne the direction of the trimming. Th ese directions depend 
on the world coordinate system, on a user-specifi c auxiliary coordinate system, on 
a reference plane, or on an arbitrary vector. In all of these cases, the CAD soft ware 
calculates the projection (along the specifi ed direction) of the curve onto the original 
object.

Depending on the user’s selection, it then either punches a hole in the surface or 
splits the surface along the projected curve. Th is technique can also be considered 
a combination of generating a surface of extrusion and trimming or splitting the 
original object with this surface of extrusion. Th e profi le of this surface of extrusion is 
the projected curve. Th e direction of the extrusion is defi ned by the direction of the 
projection. Figure 4.9 shows this eff ect in terms of a hole punched into a paraboloid 
(see Chapter 9). 

Fig. 4.8
A hexagonal prism is trimmed with a 
saddle-shaped surface to obtain a solid 
with a curved boundary. 

solid trimmed with surface

Fig. 4.9
The projection of a circle c onto a 
paraboloid punches a hole in the 
surface. This process can also be 

considered as trimming the paraboloid 
with a surface of extrusion (with profi le 
c).
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*Orthogonal projection onto a surface. A special case of this technique consists of 
defi ning the direction of the projection using the surface’s normals. For the following 
description, we need a rough understanding of surface normals (Figure 4.10). Starting 
with an ordinary point p on a surface S, we consider a curve c through point p lying 
completely on the surface. We take a neighboring point q on the curve c. Th e points p 
and q defi ne a straight line l. Now we move the point q along the curve c toward point p.

In the limit, when q coincides with p the straight line l becomes the tangent t of the 
curve c. Th is tangent touches the curve c and the surface S in the point p. Now we 
consider all curves through point p that lie completely on the surface S. If all curve 
tangents in p defi ne one single plane P, we call P the tangent plane of the surface S in 
p. Th e tangent plane touches the surface S in p. Th e normal n to the surface S at the 
point p is then the straight line orthogonal to the tangent plane T through p. A more 
thorough discussion of these terms is found in Chapter 7.

When we punch a hole in the direction of the surface normals, the boundary of the 
generated hole consists of all surface points whose normals intersect the projected 
curve. To understand what the CAD system really calculates, one has to consider the 
intersection of the surface with a special ruled surface (see Chapter 9). Th e generators 
of this auxiliary surface are the normals of the surface along the intersection curve. 

Fig. 4.10
The tangents of all curves through an 
ordinary point p, which lie completely 
on the surface S form the tangent 

plane P. The tangent plane P touches 
the surface in p. It is orthogonal to the 
surface’s normal n in point p.
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Example: 
Punched rotational surfaces (Figure 
4.11). All surface normals of rotational 
surfaces intersect the axis of revolution. 
Th us, when punching rotational surfaces 

the involved ruled surface is a special 
one; namely, a conoid (see Chapter 9). 
In the case of a sphere, all surface normals 
run through the center of the sphere. 

Th erefore, the ruled surface is a cone with 
vertex v in the center of the sphere.

Fig. 4.11
Trimming a rotational surface with a 
curve c in the direction of the surface 
normals can be considered trimming of 
a ruled surface (here a conoid) with the 
rotational surface. In the special case 
of a sphere, the involved ruled surface 
is a cone. 
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With the exception of these special cases, most of the emerging ruled surfaces have a 
very complex shape. As a consequence, the generated intersection curves can take on 
rather unexpected forms.

As previously stated for Boolean operations, one also has to obey some restrictions 
for these trimming and splitting techniques. Th ey do not work properly when the 
calculated intersection curves are not closed or when they have gaps. Th erefore, 
understanding how these operations work is of great signifi cance in avoiding 
undesirable results.

Oft en, intersection curves of curved surfaces assume complicated forms even when the 
involved surfaces are simple ones—such as cylinders or cones (Figure 4.12a). However, 
when we consider the intersection of two half cylinders with the same radius and 
orthogonally intersecting axis (Figure 4.12b, c) we have a cross-shaped vault with two 
planar intersection curves. 

Fig. 4.12
(a) Generally, the intersection curve 
of two cylinders is a spatial curve c. 
(b, c) By trimming two congruent 

half cylinders with crossing axes, we 
obtain a cross-shaped vault with planar 
intersection curves. 

(c)(b)

(a)
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Th ese curves are contained in the two bisecting planes of the cylinder axes. Refl ecting 
one cylinder at such a bisecting plane, we get the other cylinder. Th erefore, the 
intersection curve degenerates into two parts consisting of ellipses. Th is desired and 
well-known eff ect has been intensely used by architects for centuries to build not only 
interesting but very stable sacral buildings. With the help of cross-shaped vaults, it has 
been possible to canopy large halls without a great number of columns.

Fig. 4.12
Different forms of vaults have been used 
in architecture for centuries.
(d) The Abbey of Fontevrault founded 
in 1099 by Robert of Arbrissel (image 
courtesy of Luke M. van Grieken).
(e) The Danish Jewish Museum (opened 
2004) in Copenhagen by Daniel 
Liebeskind.

(e)(d)



Boolean operations allow us to design new objects out of the given primitives with 
only a few mouse clicks. Th e emerging objects are calculated and stored within 
the CAD system solely as solids consisting of many faces. In parametric systems, 
the parents of the operation are stored and allow one to edit the shapes used in the 
Boolean operation. In earlier CAD systems, the forms are lost once the operation is 
applied.

Th is can become a very expensive problem for the designing architect. To avoid those 
troubles, modern CAD systems off er a more sophisticated type of Boolean operation. 
Th ey behave like the normal Boolean operations but store the entire design history 
together with the model. In combination with parametric solids, we then have the 
possibility of controlling the dimensions and the relative positions of all participating 
objects during the entire generation process.

Feature-Based Modeling: 
An Effi cient Approach to 
Shape Variations

125
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To gain even more fl exibility in the design process, a sophisticated CAD system allows 
also manipulation of the Boolean operations and substitution of profi le curves. As a 
result, one can change the order of the Boolean operations. One also has the possibility 
of deleting them or of replacing generating curves by new ones even aft er fi nishing all 
of the modeling work. 

To illustrate the benefi ts of this technique, we consider a cubical sculpture with three 
holes, rounded edges, and a cylindrical socket with vertical axis (Figure 4.13a). We 
assume that the sculpture was modeled in the following order. 

• Positioning of the cube

• Rounding of the edges

• Drilling of the holes

• Positioning of the cylindrical socket and 

• Boolean union

Working with ordinary Boolean operations (i.e. not feature based), we would have 
no diffi  culty enlarging the diameter of the drilled holes by removing more material. 
However, reducing the diameter would cause a lot of additional work since we cannot 
return already removed material. Using a feature-based CAD system we can change 
the diameter of a drill hole in a Boolean operation at any time.

Th e soft ware, which has stored not only the parameters of the involved primitives and 
the design history, recalculates all operations depending on the changed parameter 
(Figure 4.13b). If we now enlarge the diameter of the cylindrical socket, we recognize 
a new problem. Th e height of the cylinder also has to be adjusted to grant a proper 
compound of the socket with the cube (Figure 4.13c). At this point, we see that 
adjusting the height is very critical.

If the height is too small, we produce unwanted faces on the top of the cylinder. 
Otherwise, if the height is too large there would be parts of the cylinder seen inside the 
drilled holes. Figure 4.13d shows this eff ect aft er enlarging the height of the cylinder 
of the starting object. Th is happens because the drilling aff ects only the cube and not 
the cylinder due to the fact that the union was the last operation. By rearranging the 
order of the Boolean operation (Boolean union before drilling), we can avoid this 
problem. Th us, we are able to alter the diameter of the socket without worrying about 
the correct height (Figure 4.13e). 
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During the design process, we oft en position objects and aft erward apply Boolean 
operations. For example, to drill a hole into an object we fi rst place a cylinder in the 
correct position and then apply the Boolean diff erence. By combining these two 
operations to a single “hole tool,” modern CAD soft ware helps to accelerate the 
modeling process. Th is hole tool is even more effi  cient when the relative position of 
the drilling cylinder to the original object or to a user-specifi c coordinate systems is 
obeyed and stored automatically. If the CAD system also allows us (by storing the 
design history) to change the dimensions and relative positions of all participating 
objects, we get even more fl exibility.

Th is technique is called feature-based modeling. Th e design is executed by means of 
features, which we can roughly defi ne as component parts of the models. Th e designer 
does not only specify the geometry and shape of the model but relevant information 
about the technological and functional aspects. We can loosely classify the features as 
follows.

• Body features (basic objects such as cuboids, balls, extrusion solids, freeform 
solids, and so on)

• Form features (holes, pockets, bosses, and so on)

• Operation features (blends, fi llets, chamfers, off sets, and so on)

Fig. 4.13
Feature-based CAD systems do 
not only support changes of all of 
the object’s dimensions but also a 
rearrangement of the design history 
even after fi nishing the modeling job.

(a) (b) (c) (d) (e)
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Example: 
Hole feature. Assume we have a model 
consisting of a half sphere and part of a cone 
(body features) that have been combined 
via Boolean union. Th e inner parts have 
also been modeled as a cone and a sphere, 
and have been split away using Boolean 
diff erence. Finally, the intersection curve 
has been rounded (operation feature). 
Now we apply the form feature hole to 
punch the object (Figure 4.14, left ).
• Th e two holes of the half sphere 
are drilled with respect to diff erent 
coordinate systems. Th e drill axis of the 
blue hole at the top is parallel to the z-
axis of the world coordinate system. Th e 
drill axis of the green hole is parallel to 
the y-axis of the user-defi ned coordinate 
system, which can be seen in the middle 
of the sphere. 

• Th e remaining purple holes through 
the cone and the blending are adjusted 
with respect to the direction of the 
surface’s normals. To support the 
designer in adjusting the holes precisely, a 
user-friendly CAD system calculates the 
normals (black arrows) of the punched 
objects in real time and indicates them 
during the entire modeling process.
Feature-based CAD soft ware stores all 
geometric and functional information. 
Th us, aft er modeling of the entire object 
the functionality of the holes will be 
maintained when moving the holes 
along the surfaces. Th is means that the 
relative positions of the drillings with 
respect to the surfaces or the coordinate 
systems are recalculated. Figure 4.14 
(right) shows this eff ect. 
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Fig. 4.14
(a) When applying a hole feature to a 
model, there are various possibilities 
for the direction of the drilling (e.g. 
parallel to the z-axis of the world 
coordinate system or parallel to a 
surface normal). These directions are 
indicated during the design process.
(b) Three hole features are moved 
along the object. Thereby, the 
information about the drilling direction 
is preserved.

• Th e blue hole has been moved along 
the surface of the half sphere. During 
this movement, the drilling direction is 
maintained parallel to the z-axis of the 
world coordinate system.
• Th e green hole has even been 
repositioned on the cone. Nevertheless, 
it keeps the drilling direction parallel to 
the y-axis of the user-defi ned coordinate 
system.

• One of the purple holes has also 
changed its position. Th is hole keeps the 
information that the drilling direction 
is in the direction of the surface normal 
at the current position.

world coordinate system
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Th e form feature hole can be described as a combination of positioning a cylinder 
and applying the Boolean diff erence. If we substitute the Boolean diff erence by the 
Boolean union, we obtain the protrusion or boss feature. It works in a manner similar to 
that of the hole feature, with the diff erence that it adds material instead of removing it. 
As we see in Figure 4.15, the protrusion feature also fi lls the gaps between the attached 
cylinder and the surface. In addition, boss and protrusion features include automatic 
blending of the protrusion and the original object.

Another possibility in expanding the functionality of protrusion and hole features is 
the substitution of the circular profi le by more general profi les. In combination with 
other functional properties, such as drilling or protruding up to the next surface or 
up to all faces of the modeled work piece, we obtain very powerful tools for designing 
sophisticated objects.

Fig. 4.15
The boss feature combines the 
positioning of a cylinder with Boolean 
union. The user-specifi ed directions can 
depend on local or global coordinate 
systems or on the surface normals. 
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Example: 
Handrail. As an example of an 
application, we show these techniques by 
designing diff erent models of a handrail. 
Aft er modeling the stairs as bodies of 
extrusion and the handrail as an extrusion 
of a circle along a combination of straight 
lines, both objects are combined via the 
Boolean union. To construct the vertical 
bars, we prepare a circle as a profi le for 

the protrusion feature and some lines 
for easier positioning of the bars (Figure 
4.16a, b). 
We fi rst apply the protrusion on to the 
handrail and the stairs with the option 
of protruding in both directions up 
to all faces. Th e vertical bars extend 
automatically up to the handrail and 
down to the fl oor (Figure 4.16c). 

Otherwise, when we restrict the 
downward protrusion to the next face we 
obtain the model shown in Figure 4.16d. 
By substituting the circular profi le (for 
example) with a hexagonal profi le, we 
obtain another prototype of a vertical 
bar for which a proper illumination 
produces sharper borders between light 
and shadow.

Fig. 4.16
Modeling of a handrail using the 
protrusion feature. The choice of 
different options allows quick changes 
in the design.

(a)

(c) 

(b)

(d) (e)
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Operation features such as blends, chamfers, tapers, and off sets (see Figure 4.17) 
give the designer a variety of sophisticated tools that accelerate the design process. 
Depending on the capacity of the CAD soft ware employed, these features are 
associated with many options. 

At this point, we are not able to understand all of the geometric and mathematical 
background of these techniques. For example, we do not know much about surface 
normals or which surfaces are generated when we are blending two solids. Th us, 
sometimes when these techniques do not work it is largely a matter of a geometrically 
impossible choice of parameters.

Fig. 4.17
By means of a triangular prism as base 
object, we illustrate the operations 
taper, chamfer, and blend. The 
resulting shapes appear in architecture.
(a) The Chamber of Commerce and 
Industry (1991–1995) in Dubai by 
Nikken Sekkei (image courtesy Martin 
Reis).

(a)



Fig. 4.17 
(b,c) Blends and chamfers applied on 
built architecture.
(d) The Gleimstraße Loft (2003-2004) 
in Berlin by GRAFT features many 
blendings.

(d)

(c)

(b)
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Figure 4.18 illustrates one of these problems when we try to blend a boundary 
circle c of a cylinder. As long as the radius of the blending is smaller than the radius 
of the cylinder, there is no problem. Th e CAD soft ware calculates the parameters 
and position of a torus tangent to both faces of the cylinder. We can consider this 
computation as fi nding a pipe surface (see Chapter 9) when a sphere (radius is equal 
to the blending radius) is moved along a circle while touching permanently both the 
top face and the mantle of the cylinder. If the blending radius equals the radius of the 
cylinder, we obtain a cylinder with a spherical cap. Th erefore, selecting an even larger 
blending radius is impossible. 

* Blending surfaces. More generally, we can explain the blending of two surfaces in 
the following way (Figure 4.19a): To manage a smooth transition of two surfaces, 
we move a sphere with given blending radius along the intersection curve. During 
the entire motion, this sphere touches both surfaces along the curves c1 and c2, and 
simultaneously generates part of a pipe surface (see Chapter 9).

Th e path of the center of the sphere can be calculated as the intersection curve of 
two off set surfaces (see Chapter 10). If there exists any position during the motion at 
which the moving sphere fails to touch both surfaces, the blending surface cannot be 
generated. More generally, we can also use a varying blending radius. Geometrically, 
this can be considered moving a sphere whose radius is changing during the motion 
(Figure 4.19b). 

Fig. 4.19
(a) A sphere moving along the curve 
c generates the blending surface of 
S1 and S2, which is bounded by the 
touching curves c1 and c2.
(b) Changing the radius of the sphere 
during the movement produces blends 
with varying blending radius.

(a) (b)

Fig. 4.18
As long as the blending radius is 
smaller than the radius of the cylinder, 
the blending of the boundary circle c is 
possible. Using equal radii, a spherical 
cap is generated.
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To avoid problems and to get a better understanding, we have to learn more about 
the properties of freeform surfaces (Chapter 11). Th is will help us select correct 
parameters when working with sophisticated feature tools. Depending on the design 
process, there are oft en alternative ways to get the same model. At fi rst glance, those 
models seem to be equal. However, from the geometric point of view they are not. By 
changing parameters of the participating features, we easily see that diff erent geometric 
approaches result in diff erent models with diff erent properties—which allows 
dissimilar changes.

Example: 
Variations of a simple dome model. 
We generate a spherical roofi ng for a 
prismatic hall. On the one hand, we 
model it using the Boolean intersection 
of a prism and a sphere (Figure 4.20a). 
On the other hand, we create a half sphere 
by rotating a quarter-circle c around the 
z axis. Th en we trim away parts using the 
cutting feature (Figure 4.20b). Th us, we 
obtain two equal-looking models with 
diff erent functionality and possibilities 

for changing the shape. Let us explore 
some simple shape variations.
We consider only those changes of 
the objects’ parameters that do not 
disturb the symmetry. By decreasing 
the diameter of the sphere, we can 
derive (for example) the object shown 
in Figure 4.20c. If we reduce the height 
of the prism, we obtain the one shown 
in Figure 4.20d. Th e second model in 
which we used profi les to generate the 

object allows more extensive changes 
by substitution of the profi les. Th us, we 
can derive Figure 4.20e by replacing the 
square with a regular octagon. We are 
even able to obtain a model like that 
shown in Figure 4.20f (which seems 
to have nothing in common with the 
starting object). To obtain this object, 
we simply substitute the profi le of the 
rotational solid with a curve consisting 
of a straight line and two circular arcs.

Fig. 4.20
Two equal-looking models with 
different geometric approaches have 
different functionality and allow 
different possibilities of changes to 
them. 

(c) (d)

(b)

(e)(f)

(a)

Th is simple example involves only two basic body features and one form feature. 
It demonstrates the variety of possibilities when working with feature-based CAD 
systems. By learning more about curves, surfaces, and shapes (in the following 
chapters)—and by combining this knowledge with feature-based modeling—we will 
master the design of complex projects even more effi  ciently.





 
Planar Transformations
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Planar Transformations
Besides Boolean operations and their surface counterparts, transformations are 
important tools for generating geometric and architectural objects. We fi rst consider 
linear transformations in the plane (“linear” means they map straight lines onto 
straight lines). Other properties of those maps are used to classify and discuss linear 
transformations.

Important basic transformations are congruence transformations (translation, rotation, 
refl ection), which preserve all lengths and angles occurring on an object. Slightly more 
general are similarity transformations, which still preserve angles but multiply all distances 
by the same factor. Furthermore, we look at the shear transformation—which preserves 
the area of the transformed objects. Finally, the scaling transformation provides even more 
freedom for shape modifi cation (but it is still linear).

Th e art of M. C. Escher illustrates in a perfect way various types of transformations. 
He masterly used his knowledge of the properties of planar transformations to 
generate beautiful, nontrivial tessellations. We study some of his many remarkable 
sketches to learn about tilings, which can be useful in creating sophisticated facades 
or surface tilings (Figure 5.1). To round off  this chapter, we introduce nonlinear 
transformations—where straight lines are bent into curves, for example into circles. 

Fig. 5.1
(a) Congruence transformations, 
like translations and rotations, are 
the basic instruments for generating 
tilings.



Fig. 5.1
(b) Various tilings in a building in 
Uzbekistan (image courtesy Martin 
Reis).
(c) Hexagonal wall tiles in a station in 
municipal railway San Francisco.
(d) An irregular tiling of a facade in 
Melbourne.

(b)

(d)

(c)



141

Two triangles abc and a1b1c1 with equal side lengths always have the same angles, and 
thus have the same shape. We call them congruent triangles. Shapes other than triangles 
need not be congruent even if all side lengths are equal (Figure 5.2).

Th e triangle abc (the pre-image) can be mapped into the triangle a1b1c1 (the image) by 
applying a congruence transformation (Figure 5.3). Th is congruence transformation 
does not change the distances between any two points of the triangle. Th us, the 
congruence transformations are also called isometries. 

Translation, Rotation, and 
Refl ection in the Plane

Fig. 5.3
Two congruent triangles can be 
mapped into each other either by 
a direct or an opposite congruence 
transformation.

Fig. 5.2
(left) Triangles with equal side lengths 
are always congruent,
(right) whereas other shapes with 
equal side lengths need not be 
congruent.
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In general, congruence transformations preserve the distances between any two points 
of all transformed objects. Two fi gures that can be mapped into each other by applying 
a congruence transformation are called congruent. If we want to construct a triangle 
a1b1c1 that is congruent to a given triangle abc, we recognize that there are two possible 
solutions for this task (Figure 5.3).

• If the circulation sense of the triangles abc and a1b1c1 agrees (e.g., both 
clockwise or both counterclockwise), then we have a direct congruence 
transformation. 

• If the circulation senses are diff erent, we call this transformation oppositely 
congruent.

Direct congruence transformations of the plane include translation, rotation, and as 
a special case the identity transformation—whereas refl ection and glide refl ection 
are opposite congruent transformations. We will now study some properties and a 
mathematical description of these planar congruence transformations.

Fig. 5.5
A rotation is defi ned by the center of 
rotation and the rotational angle.

Fig. 5.4
(a) A translation is defi ned by a 
translation vector t.
(b) The coordinates of the translated 
point p1 can be calculated by adding 
the vectors p and t.
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Translation. A translation is defi ned by a translation vector t, which specifi es the 
direction and the magnitude of the translation. As we can see in Figure 5.4a, the line 
l and and its image l1 are parallel. 

To derive a mathematical description, we denote the position vector of every point p 
with p—where the position vector points from the origin o to the point p(x,y) (Figure 
5.4b). Let’s now consider a translation defi ned by the vector t = (a,b), which maps a 
point p into a point p1. Th en we get the vector p1 = (x1,y1) simply by adding the vector t 
to the vector p = (x,y). Th us, we calculate the coordinates of the image p1 via (x + a,
y + b) and a translation can be described with

x1 = x + a,

y1 = y + b.

Rotation. We defi ne a rotation by a fi xed point c, the center of rotation, and the 
rotational angle ρ. Figure 5.5 illustrates that a point p and its image p1 have equal 
distances d to the center of rotation. We can also see that the angle between two 
corresponding lines l and l1 is equal to the rotational angle ρ. 

Let us now consider Figure 5.6, in which the point p(x,y) is revolved about the 
origin o into the point p1(x1,y1). We denote the rotational angle with ρ. To calculate 
the coordinates of p1 we use the rectangle oapb and its rotated image oa1p1b1. Th e 
coordinates of a1(x · cos(ρ), x · sin(ρ)) and b1(–y · sin(ρ), y · cos(ρ)) can be derived 
with simple trigonometry (see Geometry Primer). Th e vector p1 is the sum of the 
position vectors a1 and b1 and thus we obtain the coordinates of the point p1 as 
(x · cos(ρ) – y · sin(ρ), x · sin(ρ) + y · cos(ρ)). A rotation with center o and rotational 
angle ρ is then described with

x1 = x · cos(ρ) – y · sin(ρ)

y1 = x · sin(ρ) + y · cos(ρ)

Figure 5.6
Rotation of a point p about the origin. 
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Refl ection. Every time you are looking in a mirror you can see an exact, but 
reversed, copy of yourself (i.e., a refl ection). Th us, we recognize that the refl ection 
about a straight line r, the refl ection line, does not preserve the orientation. It is an 
opposite congruent transformation. Figure 5.7 illustrates the refl ection of a triangle 
abc about the refl ection line r. We see that two corresponding points b and b1 have 
equal distances to the refl ection line r. Th us, the refl ection line r is the perpendicular 
bisector of every corresponding pair of points. Moreover, we can recognize that 
every line and its image l1 intersect in a point of the refl ection line r.

Math:

All transformations we have studied so far are special cases 

of planar affi  ne transformations. A uniform description is 

the following

x1 = a · x + b · y + e,

y1 = c · x + d · y + f,

where a, b, c, d, and e are arbitrary real numbers (such that 

a · d – b · c ≠ 0) . Every affi  ne transformation maps straight 

lines to straight lines, and the ratio of three collinear 

points is equal to the ratio of the image points (cf. parallel 

projections, Chapter 2).

Fig. 5.7
A refl ection about a line r does not 
preserve the orientation.
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As a special case, we study the refl ection about the coordinate axes (Figure 5.8). If we 
refl ect a point a(x,y) about the x-axis we only have to change the sign of the y-coordinate 
to obtain the coordinates of a1. Th us, a refl ection about the x-axis is described with 

x1 = x,

y1 = –y, 

and analogously we obtain the refl ection about the y-axis with

x2 = –x

y2 = y. 

Glide refl ection. A glide refl ection (Figure 5.9) is a composition of a translation and a 
refl ection in which the translation vector is parallel to the refl ection line r. When you 
walk along a line r, the correspondence between your left  footprints and your right 
footprints approximately is a glide refl ection. If we connect corresponding points a 
and a2, we see that the midpoints of these lines are positioned at the refl ection line.

For a mathematical description, we assume that the refl ection line is the x-axis. We 
then get the coordinates of a point a2 by adding the translation vector t = (t,0) to the 
position vector of a1(x,–y) and fi nally
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Composition of congruence transformations. In Figure 5.8 the triangle a2b2c2 can 
also be considered the image of the triangle abc when applying a single rotation about 
the origin with a rotational angle of 180 degrees. We recognize that the intersection 
point of the two refl ection lines is the center of the half turn. Th e rotational angle has 
twice the dimension of the angle between the two refl ection lines. Th is turns out to be 
a special case of the following theorem which is explained in Figure 5.10:

Every composition of two refl ections with intersecting refl ection lines is a rotation. Th e 
center of the rotation is the intersection point of the two refl ection lines. Th e rotational 
angle has twice the dimension of the angle formed by the refl ection lines. 

If the refl ection lines are parallel, the composition of the two refl ections is a 
translation. Th e defi ning translation vector t is orthogonal to the refl ection lines and 
the magnitude is twice the distance d of the two refl ection lines.

When we are given two direct congruent objects, we can always fi nd a single rotation 
or translation that transforms the fi rst object into the second one (and vice versa). 
Figure 5.11 illustrates how the center of rotation c can be found as the intersection of 
two bisectors of corresponding points p,p1 and q,q1. If we interpret the two congruent 
objects as two distinct positions of one object, we have verfi ed the following important 
fact about motions.

Given are two distinct positions of a planar, rigid body. Th en there always exists a unique 
rotation or unique translation that transfers one position into the other. 

So far we have studied the composition of two refl ections, which is always a single 
rotation or a single translation. In general, we can say that the composition of two 
opposite congruence transformations or of two direct congruence transformations is 
always a direct congruence transformation. 

Fig. 5.10
A composition of two refl ections 
is always a single rotation or a 
translation. 
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On the contrary, the composition of a direct and an opposite congruence 
transformation (or vice versa) is always an opposite congruence transformation. 
In Figure 5.12, two diff erent compositions of congruence transformations are 
illustrated. We recognize the important fact that the order in which we apply those 
transformations aff ects the end position. 

 
     

       
  

 
     

      
     



148

Fig. 5.13
A uniform scaling preserves angles and 
thus the shape of the object.
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Congruence transformations preserve shape and distances. Th ey are essential tools for 
moving objects to a diff erent position without changing their shape. When we want to 
modify planar objects, we need more freedom in changing their shape. Th us, we now 
study transformations that do not simultaneously preserve shape and distance.
 

Uniform scaling. A uniform scaling is defi ned by the center of scaling s and a scaling 
factor (Figure 5.13). Th e center of scaling is the reference point about which an object 
is scaled, whereas the scaling factor specifi es the ratio between corresponding distances 
a1b1 and ab. All rays through corresponding points a and a1 originate in the center of 
the scaling, whereas corresponding lines l and l1 are always parallel. Let f  be the scaling 
factor and o the center of the scaling (Figure 5.14, left ). Th en the image p1 of a point 
p(x,y) is calculated with (f · x,f · y). Th erefore, a uniform scaling can be written as 

x1 = f · x,

y1 = f · y. 

Scaling and Shear 
Transformation

Fig. 5.14
A uniform scaling is defi ned by a single 
scaling factor f. An independent scaling 
with different scaling factors fx, fy 
changes the shape.
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Th is transformation is also known as a central dilation, but in most CAD systems it is 
referred to as a special type of scaling. Although distances are changing, the angles and 
the shapes of the objects are preserved when we apply a uniform scaling. A uniform 
scaling is a special similarity transformation. A general similarity transformation is the 
composition of a uniform scaling and a congruence transformation.  

If we employ diff erent scaling factors fx and fy for x- and y-coordinates, respectively, we 
get an independent scaling (Figure 5.14, right). Th e composition of an independent 
scaling with translations or rotations is the most general form of all transformations 
that map straight lines into straight lines and preserve ratios. Note that in the special 
case of an independent scaling with fx·fy = 1 the area of the transformed objects is also 
preserved. 

Shear transformation. Th e shear transformation also preserves the area but 
changes the shape of the transformed object. A shearing is defi ned by a fi xed line g 
and an angle α. Corresponding points are connected via lines parallel to the fi xed 
line g. Corresponding lines l and l1 intersect in a point of the fi xed line g. Th ese 
transformations are primarily used to generate objects with equal area.

To fi nd a mathematical description, we locate the fi xed line in the x-axis. From Figure 
5.15, we see that the position vector p1 is the sum of the vectors p = (x,y) and v, where 
v = (y · tan(α),0) is parallel to the fi xed x-axis. Th us, we obtain 

x1 = x + y · tan(α),

y1 = y. 

Fig. 5.15
A shear transformation changes 
the shape but preserves the area 
of the object. It is a planar affi ne 
transformation and thus maps straight 
lines into straight lines and preserves 
ratios.
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So far we have dealt with planar congruence transformations as eff ective tools for 
positioning objects in the plane. But they are also very useful in creating regular 
tessellations and tilings. By means of the beautiful work of M. C. Escher, we study 
diff erent types of tessellations and we learn some basics of design tiles. In fact, 
the art of designing tilings and patterns has a long history and is therefore well 
developed (Figure 5.16).

Tilings

Fig. 5.16
The art of designing tilings is very old 
and widespread.
(a) Tiles on the fl oor of the Turkish 
Baths in Harrogate, laid by Italian 
craftsmen at the end of the nineteenth 
century.
(b), (c) Tiles in the Alhambra in 
Grenada, Spain.
(d) Tiles in a building in Uzbekistan 
(image courtesy Martin Reis).

(b) (c)

(a)

(d)
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Regular and semi-regular tessellations. Informally, a tessellation is a way of fi lling 
the entire plane with congruent shapes without overlaps or gaps. Th e term tiling 
is sometimes used to describe a special tessellation of the plane using only planar 
polygons. Note that the terms tessellation and tiling are oft en used interchangeably. 
Th ere are numerous types of tessellations. For example, any triangle and any 
arbitrary quadrilateral can be used to tile the plane (Figure 5.17). Th ere are 14 
classes of convex pentagonal tilings known and three classes of tilings with irregular 
hexagonal tiles. Some of these tilings are shown in Figure 5.18. 

If we additionally want the tiles to be congruent regular polygons, we have regular 
tessellations. Th ere exist only three regular tessellations due to the fact that the vertex 
angle of the tiles must be a divisor of 360 degrees. Th erefore, we only have regular 
tessellations with regular triangles, squares, and hexagons (Figure 5.19).

Fig. 5.17
Any triangle or any quadrilateral tiles 
the plane. 

triangular tesselation quadrangular tesselation
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Fig. 5.19
There exist only three regular 
tessellations with regular triangles, 
squares, and hexagons.

Fig. 5.18
Some examples of tilings with irregular 
convex pentagonal and hexagonal tiles. 
The shapes of the tiles are determined 
by the specifi ed lengths and angles.

i l  l ili

i l  h l ili
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Fig. 5.20
The eight semi-regular tessellations are 
named by their vertex confi guration.

Considering tessellations that use two or more diff erent regular polygons, we add the 
rule that every vertex must have exactly the same confi guration. Th is means that in 
every vertex there has to be the same number and the same sequence of congruent 
regular polygons. Tessellations that follow these rules are called semi-regular.

Recall the section about polyhedra. Th ere we also had fi ve regular Platonic polyhedra 
and 13 semi-regular Archimedean polyhedra. In the plane we have eight diff erent 
semi-regular tessellations, which are illustrated in Figure 5.20. To name the various 
types, we simply write down their vertex confi guration. For example, if in each vertex a 
square, a regular hexagon, and a regular dodecagon meet we write 4,6,12.
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Tesselations and congruence transformations. Figure 5.21 shows a tessellation in 
which M. C. Escher used a human fi gure to fi ll the plane. Additionally the underlying 
geometric structure in form of a triangular grid is shown. We consider those congru-
ence transformations that do not change the pattern. For example, if we move the 
pattern by a translation from point a to point b (or to point c), the entire tessellation 
will be preserved.

Th e same holds true if we turn the pattern around point d with a rotation angle of 120 
or 240 degrees. We see that every composition of these translations and rotations will 
also preserve the entire pattern. Th us, we have an infi nite number of possible congru-
ence transformations that do not change the pattern. However, they can all be derived 
by iteratively combining the two translations and a single rotation. 

Translations, rotations, refl ections, and glide refl ections are the only transformations 
that can be applied on patterns without changing the pattern. Some patterns remain 
unchanged only under translations, whereas others allow all types of congruence 
transformations at the same time. Depending on the number and type of distinct 
congruence transformations which do not change a pattern, we distinguish among 17 
diff erent possibilities (crystallographic groups). As an interesting fact, we note that all of 
these ways to tile the plane appear in M. C. Escher’s art.

Fig. 5.21
Rotations and translations preserving a 
tessellation.
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How to design nontrivial tiles. More interesting than the theoretical knowledge 
about diff erent types of crystallographic groups is the practical skill to design tiles. 
Let’s start with the defi nition of T-curves and C-curves, which are parts of most single 
tiles. 

Th e congruent curves ab and dc are parts of the boundary of Escher’s fl ying fi sh tile 
(Figure 5.22). Th e boundary ab can be transformed into dc via a translation. Th us, we 
denote these curves as T-curves and write Tab and Tdc. Note that the rest of the bound-
ary of the fl ying fi sh consists of the congruent T-curves Tad and Tbc. If we repeatedly 
apply translations with vectors u and v we obtain the entire tessellation of the plane. 
Th is pattern is only unchanged under translations, and allows no other congruence 
transformation. Note that in this case the underlying geometric structure is a grid of 
parallelograms.

If we now consider the boundary of a “three-butterfl y” tile (Figure 5.23), we recognize 
that there are no T-curves that always appear pairwise. But we see that we can half 
turn the curve Cab around the midpoint mab of ab. We call such a curve Cab a C-curve 
because it is centrally symmetric with respect to the midpoint. Again, all boundaries of 
this tile are exclusively of one type; namely, C-curves (Figure 5.23).

If we do not obey the coloring of the tiles, we see that the tessellation of the entire 
plane can be obtained by applying translations along the vectors u and v. Th e pattern 
also allows rotations around the vertices of the triangle abc and around the midpoints. 
Th us, it belongs to a diff erent group compared to the previous pattern.

Fig. 5.23
C-lines that are centrally symmetric are 
boundaries of Escher’s butterfl y tiles.

Fig. 5.22
The boundary of Escher’s fl ying fi sh 
tiles consists exclusively of T-curves.
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Th e previous tile was constructed with three C-curves that replaced the sides of a 
triangle. As stated previously, an arbitrary quadrilateral can also be used for tessellation. 
Th us, we replace the sides of a quadrilateral with C-curves to obtain another type of tile. 
Escher used this type when designing another fi sh tile (Figure 5.24a). 

Using a regular tessellation with squares, we do not even need T-curves and C-curves 
to design correct tiles. For example, we can replace two adjacent sides of the square 
with arbitrary curves. Th en we quarter turn them around points b and d, respectively, 
and get a tile used by Escher in another drawing of lizards (Figure 5.24b). A similar 
idea is used in Figure 5.24c, where a tessellation with regular hexagons is used as the 
base of the pattern. Again, we replace three nonconsecutive sides of the hexagon by 
arbitrary curves and apply 120-degree rotations about the vertices a, c, and e.

We have seen how to generate some types of tiles using T-curves and C-curves. 
Altogether, there are 28 diff erent types of tiles. Knowledge of these possibilities could 
be a good inspiration when planning, for example, a facade.

Fig. 5.24
Some further tilings which exhibit more 
freedom in the design of the tiles. 

(a)

(b)
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Fig. 5.24
Some further tilings which exhibit more 
freedom in the design of the tiles. 

(c)



159

So far we have only dealt with linear transformations—transformations that map 
straight lines into straight lines. In addition to linear transformations, many interesting 
nonlinear transformations exist. In general, these transformations map straight lines 
into curves. Th us, they can be useful tools in generating interesting geometry out 
of simple objects. Moreover, we will fi nd a connection between some nonlinear 
transformations and the concept of complex numbers. We will also work out some 
basic aspects of nonlinear transformations that will support us in understanding some 
of the advanced topics of this book. 

Refl ection along a circle: inversion. In Figure 5.25a, the point p1 is generated in the 
following way. Let c be a circle with center o and the line segments ps and pt tangent 
to the circle c. Th en the point p and the intersection point p1 of the line op with st are 
called inverse points with respect to the inversion circle c. Th e process that transforms 
the point p into the point p1 (or the point p1 into the point p) is called an inversion.

*Nonlinear 
Transformations in 2D

Fig. 5.25
(a) p and p1 are inverse points with 
respect to the circle c.
(b) The inverse image of a straight line 
is a circle passing through o.
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Note that every point on the circle c is its own inverse point. Th us, the inversion circle 
c is a fi xed curve. Analogous to refl ections about lines, a line l and its inverse image l1 
intersect each other in points of the inversion circle c (if they intersect at all). But in 
contrast to the refl ections about lines, the inverse image of a line is a circle through the 
inversion center o (Figure 5.25b). We note the similar triangles opt and otp1 (Figure 
5.26), and conclude 

dist(op) : r = r : dist(op1),

and thus we fi nd

r2 = dist(op) · dist(op1), 

or equivalently

dist(op1) = r2/dist(op).   

Th en let the origin o be the inversion center and let p be the point with coordinates 
(x,y). Th en the coordinates x1 and y1 of p1 can be calculated as

x1 = x ⋅ r2/(x2 + y2),

y1 = y ⋅ r2/(x2 + y2).

Figure 5.27 shows how lines, circles, and more general curves are transformed when 
applying an inversion. If we consider straight lines as circles with infi nite radius, we 
can state that an inversion maps circles to circles. Figure 5.27 illustrates the following 
properties of an inversion.

• Th e magnitude of angles is preserved. 

• Th e orientation is reversed.

• Th e interior of the inversion circle is mapped onto the entire exterior, and 
vice versa.

Th ese properties are illustrated by means of an inverted H and an inverted 
checkerboard (Figure 5.28).

Fig. 5.26
Deriving the mathematical description 
of an inversion.
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Fig. 5.27
We illustrate inversion at a circle c 
applied to a straight line l, a circle 
k, and a general curve g. The fi gure 
also illustrates important properties 
of an inversion including the angle 
preservation.

Fig. 5.28
Inversion applied to the letter H and to 
a checkerboard.
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Planar transformations and complex numbers. We will now employ complex 
numbers as an elegant mathematical approach to an important class of planar 
transformations. We suggest reading the section on complex numbers in the Geometry 
Primer fi rst. We start with revisiting congruence transformations, but this time using 
complex numbers.

In the Gaussian plane, every point p(x,y) can be uniquely described by a single complex 
number z = x + iy. When we refl ect the point p over the x-axis we obtain p1(x,–y), 
which corresponds to z̄ = x – iy, the so-called complex conjugate of z. Th us, using 
complex numbers the refl ection over the x-axis can simply be written as z1 = z̄. Figure 
5.29 also illustrates that a translation defi ned by the vector t = (a,b) can be described 
as addition of the two complex numbers z and t = a + ib.

However, the rotation with rotation center o turns out to be a multiplication of z with 
a special complex number z3, where the argument of z3 specifi es the rotation angle and 
the absolute value of z3 has to be 1. Th e multiplication of z with a general complex 
number z4 describes a rotation combined with a uniform scaling. Th e scaling factor is 
the absolute value of z4. 

Fig. 5.29
Some congruence transformations in 
the Gaussian plane.

refl ection and translation

multiplication



163

Fig. 5.30. In the Gaussian plane, the 
inversion can be computed via z2 =1/z̄.

Th is connection between complex numbers and planar transformations can even 
be extended to the inversion (Figure 5.30). So far we did not derive a geometric 
interpretation for the division of complex numbers. Let us start with the computation of 
z1 = 1/z. 

We multiply

 z1= 1 
z =     1        

x + iy  with 1 = x – iy
x – iy

and get

z1= 
    1     
x + iy  

· 
x – iy
x – iy =  

 x – iy 
x2 + y2

 
.

Because x – iy = z̄ is the complex conjugate of z, the transformation of the point p into 
the point p1 is a composition of a refl ection over the real axis and a uniform scaling 
with the factor 1/(x2 + y2). If we then apply another refl ection over the real axis, we 
obtain the point p2, which is obviously the inverse point of p with respect to the unit 
circle c0. Th us, we obtain a description of the inversion with respect to the unit circle 
with

z2 = 1 
z̄ .

Th e inversion with respect to a circle of radius r centered at o is given by z2 = r2/z̄.

division / inversion
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Möbius transformations. Th e transformation z2 = r2/z̄ is a special case of so-called 
Möbius transformations, which are defi ned by 

 z1 =  a · z̄ + b
c · z̄ + d  

 or 

z1 =  a · z + b
c · z + d ,

with a, b, c, and d as arbitrary complex numbers. We do not allow those equations 
where a·d = b·c. Th is restriction excludes only a few transformations, which are not 
properly defi ned. Without a proof, we state that all Möbius transformations map 
circles into circles (in the sense that lines are circles with infi nite radius) and that they 
preserve angles. Some Möbius transformations are illustrated in Figure 5.31. 

For c = 0 and d = 1, the fi rst formula simplifi es to z1 = a·z + b—which describes direct 
similarities (transformations that preserve angles and orientations). We note also that 
all congruence transformations are included in the set of Möbius transformations. 

Fig. 5.31
Examples of Möbius transformations. 
A rectangular grid is mapped onto a 
circular grid.
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Analogous to the fact that all congruence transformations can be generated by 
applying compositions of refl ections about lines, we remark that every Möbius 
transformation can be generated as a composition of suitable inversions. 

Conformal mappings. Figure 5.32 illustrates the following properties of Möbius 
transformations.

• Circles are mapped onto straight lines or circles. 

• Th e intersection angle of two curves is preserved.

If we waive the circle-preserving property but insist on the preservation of angles, we 
have the set of conformal transformations. Conformal transformations or conformal 
mappings are extremely important in many areas of mathematics and also play a role 
in engineering and physics. Th ey can also be very useful in generating patterns by 
deforming planar objects. Th is even more general approach to transformations is 
also based on complex numbers and on the theory of functions of complex variables 
(which is beyond the scope of this book). Figure 5.33 illustrates images of quadrilateral 
grids of two “simple” conformal transformations defi ned by complex functions.

In summary, we can say that complex numbers allow us to derive a uniform description 
of a wide variety of transformations. Th ey may even be useful instruments for design 
purposes. 





Chapter 6
Spatial Transformations





Spatial Transformations
A good understanding of spatial transformations is very useful for positioning three-
dimensional objects. We begin by generalizing planar congruence transformations to 
spatial ones. In three dimensions there are new transformations (such as the helical 
motion) that have no counterpart in two dimensions. We will show that there always 
exists a unique helical motion, a rotation, or a translation that maps two positions of a 
rigid body onto each other—a property very useful in practice.

In addition to the shape- and distance-preserving congruence transformations, 
there are other transformations useful for deforming objects. We introduce affi  ne 
transformations to study transformations from a more general point of view. From the 
mathematical description of these transformations, we can recognize that many of the 
transformations discussed so far are special cases of affi  ne transformations.

As a practical application of transformations, we introduce the concepts of key 
frame animation and animation scripts for the production of animated architectural 
presentations. We include some analytic treatment because this is absolutely necessary 
in facilitating scripting of smooth motions and animations.

Finally, we discuss projective transformations, which empowers us to gain a deeper 
insight into perspective projection. Th is is also the basis of understanding the 
principles of three-dimensional reconstruction from images and the geometric 
background of relief perspective (the art of stage architecture). 
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Translation, Rotation, 
and Refl ection in Space

Fig. 6.1
Direct congruence transformations 
preserve the “handedness” of the 
coordinate frame, whereas opposite 
congruence transformations change 
the type.

Translation, rotation, and refl ection in two dimensions can be generalized to three 
dimensions. Such transformations have properties similar to those of their two-
dimensional counterparts. Th ey are shape- and distance-preserving transformations 
and are therefore spatial congruence transformations. As in two dimensions, we 
distinguish between direct and opposite congruence transformations (Figure 6.1).

In this sense, every congruence transformation that transforms a right-handed 
coordinate frame into a right-handed coordinate frame is called direct. An opposite 
congruence transformation changes the type of the coordinate frame. Th is means that 
a right-handed coordinate frame is mapped into a left -handed coordinate frame, and 
vice versa. 
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When dealing with direct congruence transformations, we distinguish between 
the transformation and the associated smooth motion. On the one hand, we have 
the transformation (sometimes referred to as discrete motion)—which describes the 
relative position of the pre-image and the image of a three-dimensional object. On 
the other hand, the associated smooth motion (also referred to as rigid body motion) 
describes the process that moves a body from the start position into the end position 
(Figure 6.2). Let’s examine three-dimensional congruence transformations in detail.

Translation. Analogously to the planar case, a spatial translation is defi ned by a 
translation vector t. Th is vector specifi es the direction and the magnitude of the 
translation. Translating a point means adding t to it. Th us,

x1 = x + a,

y1 = y + b,

z1 = z + c,

describes the translation with translation vector t = (a,b,c). Th e point p1 = (x1,y1,z1) is 
the image of the point p = (x,y,z). As in the two-dimensional case, a line l and its image 
l1 are parallel. In addition, in three dimensions a plane P and its image P1 are also 
parallel (Figure 6.3). 

Rotation. A planar rotation turns an object around a fi xed point. In three dimensions, 
we rotate about a fi xed rotation axis A (Figure 6.4). We also have to specify a rotation 
angle ρ, which defi nes the amount of rotation. During a rotational motion, every point 
p moves along a circle cp—which lies in a plane orthogonal to the rotational axis.

Fig. 6.2
(left) A transformation describes the 
relative position of two different spatial 
positions of an object,
(right) whereas a motion is the 
continuous process that transfers the 
object from the initial position to the 
end position.
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Th e intersection point of this plane with the rotational axis A is the midpoint mp of 
the circular path of the point p. Th e rotational angle ρ can also be seen as an angle 
between mp p and mp p1. To specify in which direction the rotation has to be applied, 
we need to have an orientation of the axis A and a sign (orientation) of the angle ρ. Th e 
planar rotations happening in the normal planes of A must appear with the oriented 
angle ρ when we look at these planes against the orientation of A (Figure 6.4).

A rotation about the z-axis does not change the z-coordinates. In the top view, this 
rotation behaves like a planar rotation about the origin. Th us, we have the following 
mathematical description for a rotation with angle ρ about the z-axis:

x1 = x · cos ρ  – y · sin ρ,

y1 = x · sin ρ + y · cos ρ,

z1 = z

Analogously, a rotation about the x-axis and the y-axis are respectively given by

x1 = x, 

y1 = y · cos ρ – z · sin ρ,

z1 = y · sin ρ + z · cos ρ,

x1 = x · cos ρ + z · sin ρ,

y1 = y, 

z1 = –x · sin ρ + z · cos ρ.

Fig. 6.4
A rotation is defi ned by an oriented 
axis A and an oriented angle ρ.

Fig. 6.3
A translation is defi ned by a translation 
vector t.
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Refl ections. One generalization of a two-dimensional refl ection is a three-
dimensional refl ection about a straight line r, called the refl ection line. Alternatively, we 
can refl ect an object about a refl ection plane R (Figure 6.6). As in the planar case, every 
point p and its image p1 have the same distance to the fi xed refl ection line or plane—
and the connecting line pp1 is orthogonal to the line r or to the plane R, respectively.

Although both types of refl ections have similar properties, there is one essential 
diff erence. Th e refl ection about a plane R transforms a right-handed coordinate 
frame into a left -handed one. Th us, this type of refl ection is an opposite congruence 
transformation. In contrast, the refl ection about a line r preserves the handedness of 
the coordinate system. Th erefore, it is a direct congruence transformation. In fact, the 
refl ection about a line r is exactly the same as the rotation about r with a rotational 
angle of 180 degress (a half turn about the refl ection axis).

Example: 
Reconstruction of an arbitrary rota-
tional axis. Assume that we are given 
two positions s and s1 of the same straight 
line segment. Th e endpoints in the re-
spective positions are labeled a,b and 
a1,b1 (Figure 6.5). Analogously to the 

planar case, we can always fi nd a unique 
rotation (or translation) that transforms 
s into s1. 
Due to the fact that a and a1 as well as b 
and b1 have equal distances to the rota-
tional axis A, this axis is contained in the 

bisector planes of the point pairs a,a1 
and b,b1. Th us, the axis A can be con-
structed as an intersection line of these 
bisector planes. Th e rotational angle ρ 
can be measured as the angle betweeen 
the straight lines maa and maa1.

Fig. 6.5
The rotational axis A is the intersection 
line of two bisector planes.
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Fig. 6.6
The refl ection about a line r is a direct 
congruence transformation, whereas 
the refl ection about a plane R is an op-
posite congruence transformation.

For a mathematical description, we fi rst consider the refl ection about the coordinate 
planes. Analogously to the planar refl ection, we simply have to change the sign of one 
coordinate. Th erefore, we have the following formulas.

Refl ection about the
xy-plane:

x1 = x, 

y1 = y, 

z1 = –z.

yz-plane:

x1 = –x,

y1 = y, 

z1 = z.

zx-plane:

x1 = x,

y1 = –y, 

z1 = z.
We derive the formulas for the refl ections about the coordinate axes by substituting the 
rotational angle ρ with 180 degrees in the formulas of the rotations described previously. 
Obeying the fact that sin(180°) = 0 and cos(180°) = –1, we obtain the following.

Refl ection about the
x-axis:

x1 = x,

y1 = –y, 

z1 = –z.

y-axis:

x1 = –x,

y1 = y, 

z1 = –z.

z-axis:

x1 = –x,

y1 = –y, 

z1 = z.
In the case of a refl ection about a coordinate axis, we have to change two signs—
whereas a refl ection about a coordinate plane changes only one sign. Th is expresses 
the fact that a refl ection about a coordinate axis can be seen as a composition of two 
refl ections about coordinate planes. 
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Glide refl ection. Again we aim at generalizing the two-dimensional case. Th e 
composition of a refl ection about a line and a translation parallel to this line is a 
composition of a half turn and a translation. Th is is a direct congruence transformation 
and a special case of a helical motion studied later in this section. Th us, we concentrate 
on a composition of a refl ection about a plane R and a translation with a translation 
vector t parallel to R (Figure 6.7).Th is spatial glide refl ection is an opposite congruence 
transformation with exactly the same properties as the planar glide refl ection.

For the mathematical description, we assume that the xy-plane is the refl ection plane. 
Th en the translation vector t has to be parallel to the xy-plane. It follows that the 
z-coordinate of t = (a,b,0) has to be zero. We combine the formulas that describe 
refl ections and translations to obtain

x1 = x + a,

y1 = y + b,

z1 = –z.

Spatial congruence transformations are an essential tool when modeling objects. 
Recognizing spatial symmetries and applying the appropriate transformation 
accelerates the design process. Figure 6.8 shows by means of interesting architectural 
designs the application of these transformations.

Fig. 6.8
(a) The railway station Atocha (opened 
1992) in Madrid by José Rafael Moneo 
consists of many congruent parts. 
These can be mapped onto each other 
via a translation.
(b) A translational motion is used in 
the Palacio Vistalegre Arena (2000) in 
Madrid by Jaime Pérez to open or close 
part of the roof.
(c) The Château de Chambord (1519–
1547) has refl ective symmetry with 
respect to a vertical plane. 

Fig. 6.7
A glide refl ection is a composition of 
a refl ection about a plane R and a 
translation parallel to that plane.

(a) (b) (b)
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Example: 
Dodecahedron with rhombic faces. In 
Chapter 3 we encountered the rhombic 
dodecahedron, which can be used to 
tesselate three-dimensional space. To 
construct a rhombic dodecahedron, we 
start with a cube and add six congruent 
pyramids (Figure 6.9a). Th e height of 
the pyramids has to be half the edge 
length of the cube. Th us, two triangular 
faces of neighboring pyramids have one 
plane in common.

To simplify the modeling process, we 
only construct one pyramid. To copy 
this pyramid to the other fi ve positions, 
we apply rotations about two symmetry 
axes A1 and A2 of the cube. Finally, we 
combine all seven objects by applying 
the Boolean union. Figures 9b-d show a 
sequence of this modeling process.

Fig. 6.9
(a) A rhombic dodecahedron can 
be generated by adding congruent 
pyramids to the six side faces of a 
cube.

(b,c) Using appropriate rotations 
simplifi es this process.
(d) By applying the Boolean union to 
the cube and the six pyramids, we 
obtain the rhombic dodecahedron.

(c)
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Composition of transformations. As in the two-dimensional case, the composition 
of two direct or two opposite congruence transformations generates a direct 
congruence transformation. However, the composition of a direct and an opposite 
congruence transformation results in an opposite congruence transformation. We 
illustrate these properties by means of several examples (Figure 6.10).

(a)

(b)
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Fig. 6.10
Compositions of direct and opposite 
congruence transformations.
(a) Two refl ections can be replaced by 
a single rotation.
(b) Two rotations with intersecting 
axes result in a single rotation.
(c) A rotation and a refl ection where 
the refl ection plane R contains the 
rotation axis r can be replaced by a 
single refl ection.

• Th e composition of two refl ections about nonparallel refl ection planes R1 
and R2 is a rotation about an axis r, which is the intersection line of the two 
refl ection planes. Note that the rotation angle is twice the angle between the 
two planes R1 and R2 (see the analogous facts in regard to two dimensions in 
Chapter 5). 

• Two rotations about intersecting axes r1 and r2 can be replaced by one single 
rotation about another axis r. Th e intersection point i is a fi xed point of both 
rotations. Th erefore, it also has to be a fi xed point of the composite rotation. 
Th is implies that the new rotation axis passes through the point i. 

• Th e composition of a rotation and a refl ection about a plane R, where the plane 
R contains the rotation axis r, generates a refl ection about another plane R1. All 
points of the rotational axis r remain fi xed during either transformation. Th us, 
the new refl ection plane R1 also contains the rotational axis r. 

In the last example, we had a special mutual position between the refl ection plane 
and the rotational axis. Th erefore, the composition of the two transformations could 
be replaced by a single refl ection about a plane. In general, one can prove that the 
composition of a refl ection and a rotation is always a single glide refl ection or a simple 
refl ection. 

(c)
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However, the general case of the second example (the composition of two rotations 
about skew axes) turns out to be diff erent from a single translation or a single rotation. 
Th is is also true for the composition of a translation and a rotation. In fact, there is one 
more direct congruence transformation in space we have not yet dealt with. Before we 
study this transformation, we state again the important fact that changing the order of 
the compositions can aff ect the end position of the transformed objects in an essential 
way (Figure 6.11).

Fig. 6.11
Different orders in which 
transformations are applied result in 
different composite transformations.
(a) The object is fi rst refl ected about 
the plane R, and then rotated about 
the straight line r.
(b) Here, the object is at fi rst rotated 
about r and afterward reflected 
about R.

(a)

(b)
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Th e most general opposite congruence transformation is the glide refl ection, a 
combination of a refl ection and a special translation. Th e helical transformation, as the 
direct congruence counterpart to the glide refl ection, is the composition of a rotation 
about the helical axis A and a translation parallel to this axis (Figure 6.12). It is the 
most general direct congruence transformation in space. 

In the section about planar transformations, we learned that there is always a unique 
rotation (or in special cases, a translation) that transfers an object from a given 
position into another one. If we consider translations and rotations as special cases of 
helical transformations, we have a similar statement in space that is very important for 
the study of spatial motions. 

Given any two distinct (directly congruent) positions of a rigid body, we can always fi nd a 
unique helical transformation that transfers one position to the other. 

Fig. 6.12
A helical transformation is a 
composition of a rotation about an axis 
A and a translation parallel to this axis.

Helical Transformation
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To move an object or an auxiliary coordinate system from one position to another, a 
single helical transformation can be used. Fortunately, most computer-aided design 
(CAD) systems provide a tool for specifying such a helical transformation. In fact, it is 
suffi  cient to defi ne two positions a1b1c1 and a2b2c2 of a triangle abc associated with the 
object (Figure 6.13a). In practice, we proceed as described in the following example.

Fig. 6.13
(a) A direct congruence transformation 
of an object can always be defi ned by 
two positions a1b1c1 and a2b2c2 of a 
triangle abc.
(b) To reposition an object in three 
dimensions, we use three object points 
a, b, and c to defi ne an auxiliary 
coordinate system. The new position 
of this auxiliary coordinate system is 
defi ned by the points a’, 1, and 2.

Example: 
Repositioning of an object. Given is 
an object in three-dimensional space in 
arbitrary position (Figure 6.13b). We 
want to reposition the object such that 
the object points a, b, and c lie in the 
plane P. 
Using a CAD system, we interactively 
defi ne the point a as the origin and the 

line ab as the x-axis of an auxiliary coor-
dinate system. By selecting a  third point 
c we specify the xy-plane and the direc-
tion of the y-axis. Th is also defi nes the z-
axis of that auxiliary coordinate system. 
To reposition the object, we specify the 
new position of that auxiliary coordi-
nate system. 

We defi ne the new position a' of a, a 
point 1 on the new x'-axis, and a point 
2 in the plane P. Th is defi nes the helical 
transformation that maps the triangle 
abc into the triangle a'b'c'. Depending on 
the choice of the point 2 (right or left  of 
the x'-axis), the object lies above or be-
low the plane P.

(a)

(c)

(b)
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Example: 
Reconstruction of the helical axis. We 
assume to know two positions a1b1c1 and 
a2b2c2 of a triangle abc and we want to fi nd 
out the helical axis, the rotational angle, 
and the translational vector. A vector a 
= a2 – a1 (defi ned by the two positions 
a1 and a2 of the triangle vertex a) can be 
considered the sum of the translational 
vector t and a vector ra, where t is parallel 
and ra is orthogonal to the helical axis 
(Figure 6.14a).
Th is holds for all three vectors a, b, and c, 
which are defi ned by the two positions of 
the triangle vertices (Figure 6.14b). Th us, 
as the simple calculation a – b = ra + t 
– (rb + t) = ra – rb shows, the diff erence 
of each pair of these vectors is a vector 
orthogonal to t.

If we now attach the vectors a, b, and c 
to the origin o, we can interpret them as 
position vectors of three points p, q, and 
r that defi ne a triangle pqr in the plane P 
(Figure 6.14c). Th e sides of this triangle 
defi ne the diff erence vectors a – b, b – c, 
and c – a. Th us, all sides of the triangle 
pqr are orthogonal to the translational 
vector t and therefore the entire plane P is 
perpendicular to t. We fi nd the direction 
of the helical axis as a normal of the plane 
P. Moreover, the distance of the origin o 
from the plane P gives the magnitude of 
the translational vector.
Using the negative vector –t we translate 
the triangle a2b2c2 into the intermediate 
position a0b0c0, which can be transferred 
into the original position via a simple 

rotation. Th e axis of this rotation is the 
helical axis we are looking for. Finally, this 
axis and the rotational angle can be found 
by intersecting two bisector planes (refer 
to the example where we reconstructed 
the rotational axis). Special cases are the 
following.
• If the vectors a, b, and c are parallel, 
they have to be of equal length and 
therefore the transformation simplifi es to 
a translation with the translational vector 
a = b = c.
• If the plane P contains the origin o, the 
translational part vanishes and we have a 
rotation (which we studied in an earlier 
example).

Fig. 6.14
Reconstructing the helical axis of a 
direct congruence transformation.

(a) (c)(b)
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Helical motion. Th e transfer of a rigid body from one position to another can be 
performed by a helical transformation, which can be embedded into a simple smooth 
motion called a helical motion. Th e object is continuously rotated about the helical axis 
and simultaneously translated along the axis such that the length of the translation is 
proportional to the rotational angle ρ.

Let’s examine this in more detail. Assume that a point q is moved into the position q1 
by a rotation about an axis A (rotational angle ρ1) and a translation parallel to A. Th e 
translational distance shall be s1. We measure s1 with a sign (positive if the translation 
happens in direction of the orientation of A and negative otherwise). We can repeat 
the same helical transformation again and again to obtain points q2, q3, and so on. 
Note that q2 is obtained from q by helical transformation with rotational angle ρ2 = 
2·ρ1 and translational distance s2 = 2 s1.

Th e nth position qn is related to q by a rotation with angle n·ρ1 and a translation with 
distance n⋅s1. If we refi ne this process and regard all intermediate positions we obtain a 
smooth helical motion (Figure 6.15). Any two positions of a rigid body that undergoes 
a helical motion are related to each other by a rotation about A and a translation 
parallel to A. Th e magnitude of the translation is a multiple p·ρ of the rotational angle 
ρ. Th e factor p is constant and can be computed from any two positions (e.g., from q 
and q1 via p = s1/ρ1). Th is constant ratio of the translational distance and rotational 
angle is called the helical parameter or the pitch.

Fig. 6.15
During a helical motion, a point q runs 
on a helix.
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According to our sign conventions, p has a positive sign if a positive rotational angle 
results in a translation in direction of the orientation of A. Otherwise, p is negative. In 
the case of a positive pitch (p > 0), we speak of a right-handed helical motion—whereas 
a negative pitch (p < 0) belongs to a left -handed helical motion. For p = 0, we obtain 
the rotational motion—whereas p = ∞(“infi nity”) specifi es a continuous translation 
parallel to A, a limit case of a helical motion. 

During a helical motion, every point q outside the helical axis runs on a curve called 
a helix. Aft er one full turn, a point r arrives at a position r1. Th e corresponding 
translational distance is called the height h of the helix. Th us, the pitch p is connected 
to the height h via the formula p = h/(2π) if we use the arc measurement of angles. Th e 
notions of left - and right-handed also apply to helixes. Note that one cannot turn a 
right-handed helix upside down to obtain a left -handed one (it remains right-handed).

Helixes have a lot of nice properties that make them interesting objects for architecture 
and design (Figure 6.16). Some of these properties are illustrated in Figure 6.17.

• Every helix lies on the surface of a rotational cylinder F. Th e axis of this 
supporting cylinder is the helical axis.

• Th e angle α between the tangents of all points of the helix and a normal 
plane of the axis is constant. 

• As a consequence, when we cut the supporting cylinder along a straight line 
(parallel to the axis) and unfold the cylinder into a plane the helix c becomes 
a straight line cd in this planar development F d. 

• If we apply to a helix the generating helical motion, it moves in itself (as a 
whole). Th is is important for the working eff ect of screws.

Fig. 6.16
Some remarkable properties of a helix.



Mathematical description. For a mathematical description of the helical 
transformation, we assume the helical axis to be the z-axis. Th en we have to compose 
the rotation about the z-axis with a translation along the z-axis.

x1 = x · cos ρ – y · sin ρ, 

y1 = x · sin ρ + y · cos ρ,

z1 = z + p · ρ.

Here, ρ and p denote the rotational angle and pitch, respectively. For a fi xed value ρ, 
we obtain the helical transformation (or discrete motion). If ρ takes all values within a 
specifi ed range, we obtain a continuous helical motion.

(a)



Fig. 6.1
Applications of helixes in architecture 
and design.
(a) A staircase of Hartenfels Castle in 
Torgau.
(b) A staircase tower of the 
Waddesdon Manson (1874–1889) in 
Buckinghamshire, England.
(c) A stairway in the Vatican Museum 
in Rome.

(b)

(c)

7
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Fig. 6.18
Three basic scenarios when working 
with animations: 
(a) static camera and moving object,
(b) moving camera and static object,
(c) and moving camera and object.

moving object, static camera static object, moving camera
(a) (b)

Next Page 
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High-quality renderings and professional animations are tools for successfully 
presenting architectural projects. Moving objects and cameras visualize ideas and 
intentions of architects better than static images. Having studied the basics of discrete 
transformations and their associated continuous motions, we are now able to deal with 
the basic concepts of animation. 

To understand the process of creating animations, one only has to put oneself in a 
director’s seat. A director always has to deal with three basic scenarios (Figure 6.18).

• A fi xed camera recording moving actors and objects

• A moving camera recording a scene with static elements

• A moving camera recording moving actors and objects

By analogy, we create animations based on similar scenarios. But instead of recording 
with a real fi lm camera we apply appropriate transformations on our digital models 
and/or virtual cameras. Th en we generate a sequence of slightly diff erent still images 
to create the illusion of a smooth motion. Th ese still images, which are generated 
individually by the CAD soft ware, are called fr ames. To create a really convincing 
illusion of a smooth motion, 30 frames per second should be played. 

Most CAD systems provide a lot of sophisticated tools for automating the process of 
generating a series of still images. Among these tools we will fi nd the following three 
major basic concepts, which help to describe smooth motions of objects and cameras 
with little eff ort. 

moving object, moving camera

Smooth Motions and 
Animation

moving object, moving camera

(c)

Previous Page 
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• Defi ning key fr ames, which specify the positions of objects or parameter 
values at a given set of time steps. Th e soft ware then computes intermediate 
positions between the key frames.

• Defi ning paths on which the objects or cameras are moved. 

• Specifying the spatial position and the defi ning parameters of objects, 
cameras, and lights with the help of a mathematical description. Th is is done 
by scripting the entire process to control the parametric motion.

Combining these methods, we can create animated representations of our digital models. 

Working with key frames. Using key frames to create animations is really easy. Th e basic 
idea is to record diff erent positions of an object (the key frames) and let the soft ware 
compute positions between these key frames. In Figure 6.19, we illustrate this technique 
when decomposing F. R. Brüderlin’s “ZETA object.” For example, we defi ne four 
positions (key frames) the brown part passes through during its motion.

To simulate a smooth motion, the soft ware has to work out further positions of the 
object between two consecutive key frames. Th e calculation of the interpolating objects’ 
positions between two key positions is largely done with the help of quaternions and 
vector calculus. Quaternions are oft en used to describe spatial rotations in a compact 
form. Th ey are a mathematical concept that generalizes complex numbers. 

To get best results with the key frame technique, we defi ne the state of our objects 
especially at critical points. Whereas the soft ware takes control of the overall motion, the 
user has the power to infl uence the motion at least at critical positions. In Figure 6.19, 
the motion of the brown part is composed of an upward translation, followed by an 
arbitrary motion that turns the object upside down, and fi nally a downward translation 
that moves the part again to the base plane. Th us, to obtain the desired composed 
motion we used key frames at the beginning and end of the translational motions (which 
are the key positions of the motion). 

Fig. 6.19
When decomposing the “ZETA object,” 
key frames are used to defi ne the 
motion of the upper part. Then the 
software computes further positions by 
interpolating the key frames’ positions.
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Summarizing, we can say that working with key frames is a quick and easy way of 
generating animations. It works pretty well as long as we do not need to have full control 
over the motion.

Animations with paths. Another simple approach to animation is to defi ne a path 
along which an object is moved. We only have to generate a curve and attach the 
object to it. Th en this object follows the path and thus simulates a smooth motion 
(Figure 6.20). Most CAD systems also allow for a defi nition of the velocity of the 
motion that steers the object. Th us, we can defi ne at which time instance the object is 
positioned at which point along the path (Figure 6.21). Th e object can pause, move 
backward, or even oscillate. 

Prescribing the path of a single point p of the moving body is not suffi  cient to 
determine a smooth motion. To understand this basic fact, let’s associate the moving 
body with a local coordinate system whose origin is the point p. Clearly, the position 
of the origin does not fully describe the position of the coordinate system.

Fig. 6.21
With the help of a velocity diagram or 
a path-time diagram, we can defi ne 
the velocity of an object during the 
motion.

Fig. 6.20
Moving the second part of the ZETA 
object along a path.

(a)

(c)

(b)
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We also need to know the directions of the axes (oft en referred to as the orientation 
of the moving body). Hence, during a motion along a path the object might be 
automatically rotated as the curve changes directions (Figure 6.20a)—or only shift ed 
along the path without a rotation (Figure 6.20b). In the second case, we have a pure 
translational motion along a path. 

Animation scripts. Working with key frames and paths aff ords us easy and rapid 
methods of producing animations. But these techniques do not allow us to take 
control over every detail of a motion. Th erefore, the generation of complex animations 
requires more sophisticated methods that let us specify the position (of a reference 
point) and the orientation of the objects as a function of time. Th e range of the 
involved motions is largely restricted to small local areas. Th us, we defi ne the position 
of these objects with respect to local coordinate systems associated with the moving 
parts (Figure 6.22). 

We control the behavior and motion of each moving part by scripting it with 
equations. Using built-in variables and mathematical functions, the CAD soft ware 
assists the defi nition of these equations. 

Fig. 6.22
A parametric motion is defi ned relative 
to the axes of a local coordinate 
system associated with the moving 
object.
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Example: 
Motion of an advertising cube. An 
advertising cube performs a full rotation 
about a horizontal axis within 12 seconds 
while it is simultanously rotated about 
its own spatial diagonal ag with double 
velocity (Figure 6.23). To generate an 
appropriate animation, we defi ne two 
local coordinate systems linked to the 
rotating bar and the cube.

Th en we defi ne the rotation of the bar 
by scripting it in terms of the number of 
frames. Using a frame rate of 30 frames 
per second means that the bar has to 
rotate one degree per frame to fi nish one 
complete rotation within 12 seconds 
(12 · 30 = 360). 

We attach the cube to the bar. Th erefore, 
the cube is also rotated about the 
horizontal axis of the bar. To specify 
the rotation of the cube about one of its 
spatial diagonals, we script this motion 
with double velocity (two degrees per 
frame).

Fig. 6.23
An advertising cube rotates twice 
about its own spatial diagonal while it 
is rotated once about a horizontal bar.

frame 0 frame 75 frame 109 frame 166

frame 180 frame 216 frame 280 frame 305
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In an animation of a more complex assembly, each moving part would be assigned an 
equation describing its motion. Cameras that record the virtual scene are also treated 
as moving parts. Th ey can be animated with the methods described previously to 
generate instructive walkthroughs or fl y-arounds to communicate the overall design. 
Th us, animations allow a complete exploration of the entire design space—with 
precise camera movement and lens adjustments.

Using appropriate local coordinate systems and the mathematical description of spatial 
transformations derived previously, we are able to generate instructive animations. 
Th e previously described basic techniques are appropriate tools to visualize smooth 
motions. To generate more sophisticated animations that include the deformation of 
objects, specifi c animation soft ware has to be used. Th e CAD models are imported 
into this soft ware, and techniques such as morphing and warping are applied to the 
objects. In this way, we obtain animations that (for example) illustrate the deformation 
of a house (Figure 6.24).

At the end of this subsection, we emphasize that an accurate lighting is a very 
important aspect of each design scene. Lighting eff ects contribute a lot to the 
atmosphere and emotional response eff ected by a scene. Th us, we recognize that 
lighting is an essential factor in producing meaningful animations with aesthetic and 
visual quality.

Fig. 6.24
Specifi c animation software provides 
tools for generating animations where 
objects are deformed. Here we show 
four scenes from the animation Plumber 
by Red Rover Studios.
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We learned in Chapter 5 (on planar transformations) that there are interesting 
transformations other than the shape- and distance-preserving congruence 
transformations. To study some of these transformations, we introduce a more general 
mathematical approach to linear transformations. All spatial transformations we have 
studied so far can be derived from the following general type. 

x1 = a·x + b·y + c·z + u,

y1 = d·x + e·y + f·z + v, (A)

z1 = g·x + h·y + i·z + w.

Th e parameters a, b, … i defi ne the deformation, whereas the parameters u, v, and w 
determine the translation vector t = (u,v,w). All of these parameters are given (real) 
numbers. A transformation of type (A) is called an affi  ne transformation. As illustrated 
in Figure 6.25, affi  ne transformations have the following properties.

• Straight lines are mapped into straight lines.

• Planes are mapped into planes. 

• Parallel lines (planes) are transformed into parallel lines (planes).

• Th e ratio of the lengths of two line segments on parallel lines is preserved 
during the transformation.

Affi ne Transformations 

Fig. 6.25
A general affi ne transformation applied 
to a cube and a rotational cylinder.
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Th ese properties (apart from those about planes) remind us of a parallel projection. 
Indeed, parallel projection is also a special case of an affi  ne transformation—where 
three-dimensional space is mapped into a plane. Replacing the last equation in (A) 
with z1 = 0 (g = h = i = w = 0) leads to a general description of a parallel projection 
into the xy-plane.

Let’s now consider some special choices for the values of the parameters to deduce 
new spatial transformations. To simplify our considerations, we assume that there is no 
translational part [i.e., the translation vector is given by t = (0,0,0)].

Scaling. As a generalization of the planar uniform scaling, we obtain the spatial 
uniform scaling. It is defi ned by the center of scaling b [we select b at the origin (0,0,0)] 
and a single scaling factor (Figure 6.26). Th e uniform scaling has the same properties as 
the two-dimensional analogon. If we use diff erent scaling factors for each coordinate, 
we obtain an independent scaling that can be described by

x1 = a·x, 

y1 = e·y,

z1 = i·z.

Fig. 6.26
A spatial uniform scaling changes 
dimensions proportionally but does 
not change the shape of an object. A 
spatially independent scaling changes 
the shape of an object.
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Independent scaling is oft en used to deform objects along coordinate axes. Applying 
an independent scaling to a sphere, we obtain an ellipsoid for which most circles on 
the sphere are transformed into ellipses (Figure 6.27). If we only want to stretch a 
model of a tower without changing the base, we apply an independent scaling (a = e = 
1, i = 1.5).

Fig. 6.27
Applications of independent scaling.
(a) A sphere is transformed into el-
lipsoids.
(b) A tower is stretched.
(c) The Chrysler building (1928–1930) 
in New York by William Van Alen.
(d) The Pagoda of Kew Gardens 
(1757–1762) in London by William 
Chambers.

sphere

a=1, e=1, i=2 a=0.75, e=1.5, i=1

rotational ellipsoid

ellipsoid

(b)

(a)

(c) (d)
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Shear transformation. Now we study transformations of the type

x1 = x + c·z, 

y1 = y + f·z, 

z1 =  z, 

to obtain a spatial shear transformation. We see that the xy-plane (z = 0) is a fi xed plane 
P, whereas a point p(0,0,1) is mapped into the point p1(c,f,1). Th e fi xed plane P and 
one pair of corresponding points p, p1 defi ne this transformation (Figure 6.28). Th e 
third equation shows that the z-coordinates of points are not changed by the shear 
transformation. Th us, corresponding points lie on lines parallel to the fi xed plane. In 
analogy to the planar case, corresponding lines and planes intersect each other in the 
fi xed plane. An application of the shear transformation is illustrated in Figure 6.29.

Fig. 6.29
Application of the spatial shear 
transformation. The Puerta de Europa 
(opened 1996) in Madrid by Pedro 
Senteri Cardillo and Johnson/Burgee.

Fig. 6.28
Spatial shear transformation.
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Spiral transformation. We now generalize the helical transformation by combining 
a rotation about an axis A with a special scaling whose center lies on the axis A. To 
simplify the mathematical description, we assume the scaling center to be the origin 
and the z-axis to be the axis A. Th en, the spiral transformation possesses the following 
description:

x1 = k(ρ)·x·cos ρ – k(ρ)·y·sin ρ, 

y1 = k(ρ)·x·sin ρ + k(ρ)·y·cos ρ,

z1 = k(ρ)·z.

with k(ρ) = epρ.

If ρ takes all values within a specifi ed range we have the description of a smooth spiral 
“motion” that scales and rotates an object at the same time (Figure 6.30). A spiral 
curve generated by a spiral motion lies on a cone of revolution, intersects the rulings of 
the cone under a constant angle, and moves (as a whole) in itself under the generating 
spiral motion. Th is is a type of generalization of a helix, which intersects the rulings 
of a rotational cylinder under a constant angle and is transformed in itself under the 
generating helical motion. Fig. 6.30

(a) The trajectory of a point p during 
a continuous spiral motion is a spiral 
curve c. It lies on a cone of revolution 
and intersects the rulings of the cone 
under a constant angle. The normal 
projection c’ into the base plane P is a 
logarithmic spiral curve, which inter-
sects the lines through the spiral cen-
ter under a constant angle.
(b) During a spiral “motion,” an object 
is rotated and scaled at the same time.

(b)

(a)
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Th e spiral transformation has the following important meaning in geometry: One can 
always fi nd a unique spiral transformation that transfers a spatial object into a directly 
similar one. Some natural growth processes are based on the exponential rule. Th us, 
it is not surprising that spirals also appear in nature. For example, the shells of certain 
mussels or snails are good approximations of spiral surfaces [i.e., surfaces generated by 
a profi le curve undergoing a spiral motion (Figure 6.31)].

 

Fig. 6.31
Spirals in architecture and nature.
(a) A church in Texing, Austria.
(b) A temple in Independence, Mis-
souri, USA.
(c) The shell of a helix pomata, three-
dimensional data points of its surface 
obtained with a laser scanner (Chapter 
17), and a CAD model.
(d) A nautilus shell.

(b)

(a)

(c)

(d)



Affi  ne transformations constitute the class of linear transformations (i.e., line-
preserving) that maps parallel lines into parallel lines. If we compare affi  ne 
transformations with parallel projection (Chapter 2), we will immediately see their 
similar properties. In fact, a parallel projection is also captured by equations of type 
(A) and thus it is a (degenerate) affi  ne transformation.

Degenerate here means that a parallel projection maps three-dimensional space to a 
two-dimensional plane, whereas nondegenerate affi  ne transformations map spatial 
objects into spatial objects. Also note that a parallel projection maps certain lines 
(namely, projection rays) into points, whereas general affi  ne transformations always 
map straight lines into straight lines.

Projective transformations are related to perspective projection just as affi  ne 
transformations are related to parallel projection. Th e perspective projection maps 
three-dimensional space into a two-dimensional plane. Most straight lines are mapped 
to straight lines, an exception being projection rays (which are mapped into points).

Projective 
Transformations

*
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General projective transformations map three-dimensional space into three-
dimensional space such that any straight line is mapped into a straight line. However, 
we will see that one has to enrich the set of points and lines to make this possible. 
Th us, projective transformations are the most general type of linear transformations. 
Th ey give us full control over all possible line-preserving deformations of an object. 

General projective transformations do not preserve lengths, angles, parallelism, or 
ratios. Th ey are the basic building block in a special fi eld of geometry, called projective 
geometry. It allows for a unifi ed approach to various geometric issues (explored later 
in the book). To get a better overview of the properties of linear transformations, we 
summarize them in the following table.

Euclidean similarity affi ne projective

transformations

translation ✓ ✓ ✓ ✓
rotation ✓ ✓ ✓ ✓
uniform scaling ✓ ✓ ✓
scaling ✓ ✓
shear ✓ ✓
perspective projection ✓
invariants

length ✓
angle ✓ ✓
ratio of lengths ✓ ✓ ✓
parallelism ✓ ✓ ✓

As we saw in Chapter 2, a perspective projection maps parallel lines (which are not 
parallel to the projection plane) to intersecting lines. Th erefore, we introduced the 
concept of vanishing points. In studying properties of projective transformations 
and perspective projections, it is important to regard parallelism as a special form 
of intersection. Th is can be realized by the concept of projective extension of three-
dimensional space.

Projective extension of the plane. For a better understanding, we fi rst introduce 
the projective extension of the plane. We add a point at infi nity to each line such that 
parallel lines share the same point at infi nity. Th us, any two lines in the plane have one 
point in common—a proper point if they intersect each other or a point at infi nity if 
they are parallel. Note that every line contains exactly one point at infi nity, which can 
be approached by moving along the line in either direction. All points at infi nity form 
the line at infi nity. We will see in the following that it makes sense to speak of a line. 
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Homogeneous coordinates. To describe proper points and points at infi nity in 
a unifi ed way, we introduce homogeneous coordinates (Figure 6.32a). We select 
a Cartesian x,y-coordinate system in the plane E. Th e points p of the plane E are 
represented by Cartesian coordinates p(x,y). We embed this plane E into a three-
dimensional space whose points are described by coordinates x1, x2, and x3.Th e plane E 
is positioned parallel to the x1,x2-plane of the three-dimensional space such that it can 
be identifi ed by the plane x3 = 1. 

Every point p(x,y) of the two-dimensional plane E uniquely defi nes a line through the 
origin o of the three-dimensional coordinate system. Every coordinate triple (s·x, s·y, s) 
with s ≠ 0 is a direction vector of this line. Th us, to every point p with two coordinates 
(x,y) we can assign three coordinates (s·x, s·y, s) that are only determined up to a 
constant multiple.

Every triplet (s·x, s·y, s) where s ≠ 0 defi nes exactly the same point as the triplet (x,y,1). 
We call them homogeneous Cartesian coordinates and denote them p = (s·x, s·y, s) = 
(x1, x2, x3). To express that only the ratio of homogenous coordinates is important, 
one oft en writes them as (x1: x2: x3). For proper points, the relation between the usual 
(inhomogeneous) coordinates and homogeneous coordinates is given by

x = x1/x3, y = x2/x3.     (H)

Th e importance of homogeneous coordinates lies in the fact that they can also 
represent points at infi nity (Figure 6.32b). Connecting a point at infi nity (of a 
straight line l ) in E with o yields a line parallel to E (and to l ). Th us, the homogeneous 
coordinates of points at infi nity are characterized by x3 = 0. If (a,b) is a direction 
vector of a straight line l in E, (a:b:0) are the homogeneous coordinates of its point at 
infi nity.

Obviously, parallel lines have the same direction vector (up to a scalar factor). Th us, 
parallel lines are assigned equal homogeneous coordinates (up to an unimportant 
common factor) of its common point at infi nity. Connecting a line l in E with o, 
we obtain a plane. Connecting all points at infi nity with o, we obtain the plane x3 = 
0—which shows that it makes sense to speak of a line at infi nity. 

Fig. 6.32
(a) Introduction of homogeneous 
coordinates in the plane E.
(b) Points at infi nity.
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Planar projective transformations. In homogeneous Cartesian coordinates, 
projective transformations can be described as

x1' = a11·x1 + a12·x2 + a13·x3,

x2' = a21·x1 + a22·x2 + a23·x3,  (P)

x3' = a31·x1 + a32·x2 + a33·x3.

Here, (x1' : x2' : x3') are the coordinates of the transformed point x'. Th is description 
includes all linear transformations we studied in Chapter 5 as special cases. 

An easy way to understand the eff ects of a projective transformation is the following. 
At fi rst, we slightly generalize the concept of a projective transformation by the use of 
two diff erent planes: a plane P [in which we use coordinates (x1: x2: x3)] and a plane 
P ' [in which coordinates (x1' : x2' : x3') are employed]. Now P is mapped to P ' using the 
transformation equations (P). It turns out that we obtain all projective transformations 
between two planes (up to a congruence transformation of one plane) by perspective 
projection.

Fig. 6.33
A planar fi gure and a photo of it are 
related by a projective transformation. 
Making just a few measurements 
on the original object, it is therefore 
possible to reconstruct the full original 
from the photo. (Image courtesy of 
the Institute of Photogrammetry and 
Remote Sensing, Technical University, 
Vienna).

Example: 
Homogeneous coordinates of points. 
Th e homogeneous coordinates of the 
proper points p(–2,3) and q(0,3) are 
p = (–2:3:1) and q = (0:3:1). By equa-
tions (H), points r and s with homoge-
neous coordinates r = (6:–1:2) and s = 

(3:2:3) have usual coordinates r (3,–0.5) 
and s(1,2/3), respectively. Th e point t = 
(1:1:0) is the point at infi nity of the line 
y = x because (1,1) is a direction vector 
of this line. 
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We place the two planes in three-dimensional space, select a projection center (eye 
point) e (not in P and not in P '), and project the points of P onto P '. Th us, a planar 
fi gure and its perspective view are related by a projective transformation. Moreover, if 
we append to the projection a motion that brings P ' into another position (perhaps 
even identical to P), the relation between corresponding fi gures is still a projective 
transformation. Th us, a planar object and a photo of it are related by a projective 
transformation. 

Th is fact is used to reconstruct the original undistorted object from a photo of it 
(Figure 6.33). Using more projective geometry, it is even possible to automatically 
reconstruct a three-dimensional object from several planar images (Figure 6.34). Th ese 
techniques also require algorithms for the automatic extraction of corresponding 
points in the images. 

Th e interpretation of a projective map via the perspective projection of a plane P also 
shows that the images of the points at infi nity in P lie in general on a proper straight 
line of P '. We have encountered this fact in Chapter 2 in regard to vanishing points. 
Recall an important example: the images of the points at infi nity of a horizontal plane 
lie on the horizon. It is easy to see that there exists a straight line of P whose image 
points are points at infi nity. Th us, the line-preserving property is only valid without 
exception if we add the line at infi nity. 

Th e previously discussed affi  ne transformations and their special cases are all included 
in the family of projective transformations. In equations (P) we use as third equation x3' 
= x3. We can then divide the fi rst two equations by x3' (left -hand side) and by x3 (right-
hand side) to obtain

x' = a11·x + a12·y + a13,

y' = a21·x + a22·y + a23.     

Th is is obviously an affi  ne transformation, and therefore all affi  ne transformations are 
special projective transformations.

Fig. 6.34
Projective geometry is a key ingredient 
in state-of-the-art algorithms for the 
reconstruction of three-dimensional 
objects from several images of 
that object. The fi gure shows the 
reconstruction of “St. George rotunda”. 
(Courtesy of H. Cornelius, D. Martinec, 
T. Pajdla.)
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Fig. 6.35
A general projective transformation 
maps a circle c into a conic c’.

Example: 
A general projective transformation. 
Consider the projective transformation
x1' = 1·x1 – 1·x2,
x2' = –1·x1 + 2·x2,                 (E)
x3' = –1·x1 + x3, 
which maps (for example) the points o 
= (0:0:1) and p = (1:0:1) to the points o' 
= (0:0:1) and p' = (1:-1:0). Th us, point 
o is fi xed—whereas the proper point p 
is mapped to a point at infi nity. Now 
consider the circle c, which is centered 

at o and passes through point p (Figure 
6.35). Th is circle c has in Cartesian co-
ordinates the equation x2+ y2 = 1. By 
equation (H), its homogeneous repre-
sentation is c: x1

2  + x2
2 = x3

2. From (E), we 
compute the relations x1 = 2· x1' + x2' , x2 
= x1' + x2' , x3 = 2·x1' + x2' + x3' . Inserting this 
into the equation of c, we obtain for the 
image curve c’ the equation   
x1'2 + x2'2 + 2 · x1'  x2' – x3'2 – 4 · x1' · x3' – 2 · x2' · x3'  
= 0.

Rewriting c' in inhomogeneous coordi-
nates (dividing the equation by x3'2 and 
using (H)) and omitting the primes, we 
obtain
x2 + y2 + 2·xy – 1 – 4·x – 2·y = 0.
Th is turns out to be a parabola due to 
the fact that c', the image of the circle 
c, contains exactly one point at infi nity 
(see the discussion following); namely, 
p' = (1:–1:0). 
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Fig. 6.37
Important terms concerning the conic 
sections hyperbola, parabola, and 
ellipse. The hyperbola and ellipse have 
a midpoint m, two symmetry axes, two 
foci f1 and f2, and four vertices a, b, c, 

and d. The hyperbola additionally has 
two asymptotes u and v. The parabola 
has only one symmetry axis, one 
vertex v, and one focus f.

Fig. 6.36
In perspective projection, points in 
a plane V (parallel to the projection 
plane P) are mapped to points at 
infi nity.

Projective images of circles. Th e image of a circle c under a projective transformation 
is always a conic: an ellipse (including the case of a circle), a parabola, or a hyperbola. 
An equivalent fact is that perspective projection of a circle c always leads to a conic cc 

(unless the plane of the circle appears as a straight line).

As shown in Figure 6.36, any perspective projection possesses a plane V whose points 
have images at infi nity. Th is plane V is parallel to the image plane and passes through 
the eye point e. It depends on the position of c with respect to this plane V how many 
points at infi nity the image conic cc has. If c intersects V in zero, one, or two points, 
the image cc has zero, one, or two points at infi nity. Th e number of points at infi nity 
determines the type of a conic as follows.

• Conic sections with two points at infi nity are hyperbolas. Th e straight 
lines connecting the symmetry center with these points at infi nity are the 
asymptotes.

• Th ose conic sections with exactly one point at infi nity are parabolas. Th e 
point at infi nity defi nes the direction of the parabola’s axis.

• Conic sections with only proper points are ellipses.

Figure 6.37 illustrates special points and lines associated with conic sections.

A careful investigation of the previous example also shows that a conic (projectively 
transformed circle) must be the solution set of a quadratic equation in x and y (a fact 
addressed again in Chapter 7). Finally, we mention that projective transformations 
map conics to conics.
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Conic sections. Th e perspective image of a circle c is the intersection of the image plane 
with the cone of vision, which connects the eye point with c. Th is cone is in general an 
oblique circular cone. It can be shown that all types and shapes of conics are captured if 
we look just at the planar intersections of a right circular cone. 

Intersection of a right circular cone with a plane results in diff erent types of intersection 
curves, depending on the mutual position of the plane and the cone (Figure 6.38). For all 
planes that contain the apex of the cone, we have the following three cases.

• Planes H that intersect along two rulings

• Planes P that touch along one ruling

• Planes E that intersect only at the vertex of the cone

According to these cases, we have three diff erent types of nondegenerate intersection 
curves.

• All planes parallel to a plane H cut the cone along a hyperbola.

• All planes parallel to a plane P intersect the cone along a parabola.

• All planes parallel to a plane E intersect the cone along an ellipse.

We obtain a circle c when the cutting plane is orthogonal to the rotational axis. In this 
case, the parallel plane through the apex does not contain any rulings. Th us, the circle 
appears as a special case of the ellipse. 

Homogeneous coordinates and projective transformations in three dimensions. 
It is pretty obvious how to extend our concepts to three dimensions. We use four 
homogenous coordinates (x1:x2:x3:x4). For a proper point, they are related to the 
ordinary coordinates (x,y,z) via

x = x1/x4, y = x2/x4, z = x3/x4. 

Th e point at infi nity of a line with direction vector (a,b,c) has homogenous 
coordinates (a:b:c:0). All points at infi nity form the plane at infi nity. A projective 

Fig. 6.38
Conic sections as planar intersections 
of cones of revolution.
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transformation has linear equations of the form (P), but now involving all four 
coordinates. Th e following are the fi rst and last equation. 

x1' = a11·x1 + a12·x2 + a13·x3+ a14·x4,

x4' = a41·x1 + a42·x2 + a43·x3+ a44·x4.

Some projective transformations are degenerate, an example being the perspective 
projection from three-dimensional space into a two-dimensional plane. If we have 
no degeneracy, all straight lines are mapped into straight lines, planes are mapped to 
planes, and conics are mapped to conics. Parallelism is in general not preserved, unless 
we have an affi  ne transformation (x4' = x4). 

Projective transformations may be useful for slightly breaking the symmetry and 
regularity of an object, but still keeping its main expression. Th ey are of great importance 
in getting a more unifi ed view onto geometry. For example, the study of quadric surfaces 
(Chapter 9) is greatly simplifi ed when one uses projective transformations. Th ey will 
appear at various places in the subsequent text, including the last chapter (on discrete 
surfaces)—where they are important both for key aspects of the theory and for design. 

Fig. 6.39
(a) A relief perspective is generated 
with the help of a projective transfor-
mation, which maps the half space 
behind a fi xed plane F into the layer 
between F and a parallel plane U’. Cor-
responding points p and p’ lie on a line 
through the center e.

(b) Thus, an observer at e believes he 
is seeing the real scene S instead of the 
smaller transformed scene S’ (which 
better fi ts onto the stage).

Example: 
Relief perspective. Stage architecture 
sometimes uses a technique that maps 
a large part of space to a much smaller 
one so that it fi ts onto the stage but still 
gives the same impression as the real 
scene when viewed from an appropriate 
location (eye point e). Th e key here is the 
application of a projective transformation 
(Figure 6.39). It has a center point e and 
a fi xed plane F.
Th e center e and all points of F remain 
fi xed under the transformation. In 

addition, one prescribes the image 
plane U ' of the plane at infi nity. It must 
be parallel to F (because the points at 
infi nity of F are fi xed). An important 
property of the transformation we are 
looking for is that corresponding points 
p and p' lie on a line through the center e. 
It turns out that the prescribed elements 
e, F, and U and this property uniquely 
defi ne the transformation.
Figure 6.39 shows how to transform a 
simple object (using the preservation of 

straight lines). Th e designed projective 
transformation maps the entire half space 
behind F into the layer between F and U ' 
Stage architecture builds the transformed 
scene S ' instead of the real scene S because 
it fi ts better onto the stage. Moreover, 
when viewed from the area near e it gives 
the same visual impression as the original 
larger scene S because corresponding 
points lie on lines through e. 





 

Chapter 7
Curves and Surfaces





Curves and Surfaces
Curves and surfaces arise in a variety of applications, including art, architecture, and 
design (Figure 7.1). A good knowledge of the basic concepts in connection with 
curves and surfaces is essential for understanding the following chapters. Although 
many concepts apply to both curves and surfaces, curves are easier to study and 
understand. Th erefore, in this chapter we begin with an examination of fundamental 
curve concepts, including mathematical descriptions of curves.

Fig. 7.1
Curves and surfaces are basic elements 
in architecture.
(a) 30 Street Mary Axe (1997–2004) in 
London by Norman Foster.



 

 

(b) (c)

(d)
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We introduce curve tangents (Figure 7.2a), the curvature of curves, infl ection points on 
curves, and so on. Curves may be used as profi les to generate surfaces. In most cases, 
the shape of the profi le curve heavily infl uences the fi nal shape of the emerging surface. 
Hence, we study the properties and shapes of some commonly used curves—including 
the conic sections. 

Th e discussion of curves leads to the study of surfaces in a quite natural way. As a 
generalization of curves, we provide two mathematical approaches to surfaces and 
study concepts such as tangent planes and surface normals (Figure 7.2b).

In terms of illuminating surfaces, we are oft en interested in the border between 
illuminated and dark areas (i.e., the border between visible and occluded parts of the 
surface). With the help of tangent planes and normals, we will fi nd these so-called 
contour generators on surfaces. To conclude the chapter, we study intersection curves of 
pairs of surfaces and illustrate geometric methods of constructing points and tangents 
of these curves. Furthermore, we deal with interesting phenomena in connection with 
intersection curves. Th is knowledge can be useful when designing with surfaces.

Fig. 7.2
Tangents of curves and tangent planes 
of surfaces are important concepts 
used to study curves and surfaces.

Fig. 7.1
Curves and surfaces are basic elements 
in architecture.
(b) The Spline Chair by Unto This Last. 
(c) The Ben Pimlott Building (2003–
2005) in London by Will Alsop.
(d) The Downland Gridshell (2000–
2002) in Singleton by Edward Cullinan.

(a)

(b)
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Fig. 7.3
A helix is a true spatial curve. It 
does not fi t into any plane. Here we 
illustrate several different helixes. In 
architecture, helixes can be found on 
cylindrical columns:
(a) helixes on pillars in the Cathedral 
(1173–1195) in Brunswick and
(b) helixes on the two columns in 
front of the Karlskirche (1656–1723) 
in Vienna by Johann Bernhard Fischer 
von Erlach.
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Previously we have encountered straight lines, circles, helixes, and conic sections as 
special types of curves. We can think of a curve as a connected one-dimensional series 
of points. As we know from a hyperbola, these point series can consist of diff erent 
parts—the branches of a curve. All points of a circle or a conic section lie in a plane.

Th ese curves are called planar curves, in contrast to spatial curves such as helixes 
(Figure 7.3). In the following we study important concepts for planar and spatial 
curves. Th ey are largely introduced in an illustrative geometric way, but we also 
provide the mathematical background. We start with three diff erent mathematical 
approaches to describing curves.

Curves

(b)(a)
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Parametric representation. Th e coordinates of a point p of a parametric curve c 
are expressed as functions of a variable t. Th is means that a spatial curve c can be 
represented by c(t) = (x(t), y(t), z(t)), where t is some parameter assuming all values 
in an interval I. We could consider a curve as the result of a continuous mapping 
of an interval I into a plane or three-dimensional space (Figure 7.4). Th ereby, every 
parameter t is mapped to a curve point p(t). Oft en it is helpful to think about t as time, 
although t need not be time. Th e functions x(t), y(t) and z(t) are called the coordinate 
functions and c(t) is a parameterization of c. 

Fig. 7.5
The circle as a parametric curve.
(a) A circle in general position.
(b) The unit circle.

Fig. 7.4
An interval I is mapped to a curve c in 
three-dimensional space.

(a) (b)
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Example: 
Circle in parametric representation. 
Given the center m(xm,ym) and the 
radius r of a circle, we can derive the 
coordinates of points p(x,y) on the circle 
by adding the vectors m = (xm,ym) and 
n(t) = (r∙cos(t), r∙sin(t)), where t is the 
angle between the horizontal straight 
line through m and the ray from the 

center to the circle point p. Th is angle 
is measured as an arc length on the unit 
circle. Th us, the points p(x,y) of the circle 
are described as
x(t) = xm + r∙cos(t), y(t) = ym + r∙sin(t).
Because the position of the circle point 
c(t) = (x(t),y(t)) depends on a parameter 
t, we speak of a parametric representation 

of the circle (Figure 7.5). If the parameter 
t runs in the interval [0,2π], we obtain 
all points of the circle c. By selecting 
appropriate intervals for the parameter 
t, we obtain a mathematical description 
of circular arcs of any opening angle 
(Figure 7.6).

Fig. 7.6
Several circular arcs with varying 
opening angle.

As we have seen in this example, by restricting the interval of the parameter t we 
obtain a subset of the curve c (sometimes referred to as a curve segment). A parametric 
curve defi ned by polynomial functions is called a polynomial curve. Th e highest order 
of the parameter t in any of the three coordinate functions is called the degree of the 
polynomial curve. 
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Example: 
Parabola and spatial cubic curve. A 
simple example of a planar polynomial 
curve is the parabola with a parametric 
representation p(t) = (t, t2). If the 
parameter t assumes all real numbers, we 
obtain the entire parabola. Restricting 
the interval I to [–3,3], we have the 
curve segment (Figure 7.7a)—which 
starts in the point p0(–3,9) and ends 
in p1(3,9). Th e parabola p contains the 
origin o. It is the curve point to the 
parameter t = 0. Th e highest exponent 

with which the parameter t appears is 
2. It occurs in the coordinate function 
y(t) = t2. We therefore say that the 
parameterization is of degree 2. It can be 
shown that a polynomial curve of degree 
2 is in general a parabola. In special 
cases, it may degenerate to a straight line 
segment.
Th e coordinate functions x(t) = 12t 
– 12t2, y(t) = 6t – 6t2 + 4t3, and z(t) 
= 12t – 24t2 + 16t3 defi ne a spatial 
curve c. Using the interval [0,1] for the 

parameter t, we obtain the curve segment 
that lies entirely within the cube shown 
in Figure 7.7b. Th e highest order (3) 
of the parameter t can be found in the 
coordinate functions y(t) and z(t). Th us, 
we have a polynomial curve of degree 3. 
All polynomial curves of degree 3 are 
subsumed under the name cubic curves. 
Another example for a cubic curve is 
d(t) = (t,t2,t3), which is also illustrated 
in Figure 7.7c.

Fig. 7.7
(a) Parabolas are polynomial curves of 
degree 2.
(b,c) Two spatial cubic curves.(a) (b)

(c)
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If the coordinate functions of a curve have the form p(t)/q(t), where p(t) and q(t) 
are polynomial functions, then the curve is called a rational curve. We use a common 
denominator polynomial q(t) for all coordinate functions. Again, we defi ne the degree 
of this family of curves as the highest order of the variable t occurring in the numerator 
or the denominator of any coordinate function. Polynomial curves are omnipresent in 
freeform curve design. Th eir extension to rational curves is the basic building block of 
the so-called NURBS freeform design scheme (see Chapter 8).

Explicit representation: graphs. Th e parabola c(t) = (t, t 2) studied in the previous 
example also satisfi es the equation y = x2 (Figure 7.9). Th is parabola may be used to 
visualize the function f (x) = x2.  For each x, we plot the function value f (x) = x2 as a y 
coordinate. We call a description via y = f (x) an explicit representation of a curve. Th e 
curve is also referred to as the graph of the function f; namely, the collection of all pairs 
(x,f (x)) in the xy-plane. Examples of graphs are shown in Figure 7.10. 

Example: 
Rational cubic curve.

c(t) = (4t2 – 1
3t2 + 1 , 

t(4t2 – 1)
3t2 + 1 )

is the parametric representation of a planar 
rational curve of degree 3. Note that the 
highest order (3) of the parameter t only 
occurs in the numerator t(4t2 – 1) of the 
coordinate function y(t).

Fig. 7.10
Graphs of
(a) f(x) = sin(x), f(x) = cos(x);
(b) f(x) = cosh(x), f(x) = sinh(x); for 
the defi nition and geometric meaning 
of these functions see the discussion of 
the “catenary” in Chapter 18; and
(c) f(x) = exp(x), f(x) = ln(x).

Fig. 7.9
Parabola as a graph of the function 
f(x) = x².

Fig. 7.8
Example of a planar rational curve of 
degree 3.

(a)

(b) (c)
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Implicit representation. We may write the explicit representation in the form 
y – f(x) = 0. Th en, the left -hand side y – f(x) is a special function F(x,y) of two 
variables—which leads to the following generalization of the explicit representation. If 
the coordinates (x,y) of points of a planar curve c satisfy an equation of the form 
F(x,y) = 0, we call c an implicit planar curve and F(x,y) = 0 an implicit representation of c.

If F is a polynormal function in the variables x and y, then F is a so-called algebraic 
curve. In general, it will not be possible to rewrite F in the form y – f(x) and thus the 
implicit representation can capture many more curves than the explicit representation. 
For additional insight into implicit curves and their generalization to surfaces, see 
Chapter 12. 

Example: 
Th e circle in implicit representation. 
A circle with center (midpoint) m(xm,ym) 
and radius r is the set of all points p(x,y) 
in the plane that have equal distance r 
to the center point m. A mathematical 
formulation of the previous geometric 

defi nition of a circle uses the Euclidean 
distance between two points (Figure 
7.11). From the Pythagorean theorem, 
we derive the squared distance r2 between 
points p(x,y) and m(xm,ym) as
r2 = (x – xm)2 + (y – ym)2.

Th us, all points (x,y) that fulfi ll the 
equation 
F(x,y) = (x – xm)2 + (y – ym)2 – r2 = 0 
lie on the circle c. 

Fig. 7.11
The implicit representation of the circle 
is based on its defi nition as a set of all 
points equidistant from a center point.

As with the representation of a circle, some curves can be represented in both implicit 
and parametric forms. Moreover, if we are given a parametric representation of a 
curve there are infi nitely many other parametric representations of the same curve. If 
one views the curve parameter t as time, all parametric representations diff er in the 
“timing” (speed profi le) used to traverse the curve. Th e implicit representation is not 
unique, which will become clearer in Chapter 12.
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Example: 
Implicit and parametric representa-
tion of a circle. Figure 7.12 shows a circle 
c with center at the origin and radius 1. 
All points of c satisfy the equation F(x,y) 
= x2 + y2 – 1 = 0. Now we try to fi nd a 
parametric representation of c with the 
parameter t. Every point q(t,0) of the x 
axis can be joined with the “south pole” 
s(0,–1) of the circle c (Figure 7.12a). 
Each of these straight lines intersects 
the circle in s and in a further point p = 
p(t) = (x(t), y(t)). As the point q moves 
along the x-axis, its corresponding point 

p moves on the circle. In this way, we 
capture all points of the circle except 
the south pole s(0,–1). Th e latter would 
belong to the t-value infi nity. 
Th e straight line joining the south pole 
s and the point q on the x-axis has the 
equation x = t · y + t. Plugging this 
equation into the circle’s equation and 
solving the resulting quadratic equation 
for y yields two solutions for y. One 
solution is y = –1 because every straight 
line passes through s, whereas the second 
solution is y = (1 – t2)/(1 + t2).

Plugging this result into x = t · y + t (the 
equation of the straight line) yields x 
= 2t/(1 + t2). Th us, we have derived a 
rational parameterization of the circle c. 
If t assumes all real numbers, we obtain 
the entire circle except s— whereas 
using the parameter interval [0, 1] we 
obtain only a quarter circle (Figure 
7.12b). Note that diff erent parametric 
representations may lead to a diff erent 
spacing of curve points (Figures 7.12c 
and d). 

Fig. 7.12
(a,b) Derivation of a rational 
parametric representation of a circle 
from its implicit representation.
(c,d) Different parameterizations lead 
to different spacing of curve points. 

Th e following example derives another parametric representation of a circle from 
its implicit description. Comparing the result of the last example with the result of 
the example of a “circle in parametric representation,” we recognize that there exist 
diff erent parametric representations of the same curve.

(c) (d)

(a) (b)
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To describe spatial curves, a parametric representation is the appropriate approach. 
Th is is one of the reasons the most common representation of curves is the parametric 
representation. A further reason is that drawing a curve based on its parameterization 
is very simple, whereas the same task is more diffi  cult to achieve with the implicit 
representation. In the following we derive all concepts about curves exclusively using 
the parametric representation.

Curve tangent. We can locally approximate a smooth curve c at a point p by a straight 
line, the curve tangent T. To avoid confusion with the curve parameter t, we denote 
in this chapter the curve tangent with a capital T. Th e curve tangent can be found by 
the following limit process (Figure 7.13a). On the curve c, take any point q that is close 
to the point p and connect points p and q by a straight line l. Th is line l is also called a 
chord of c. Th en move the point q on the curve c closer and closer to p. In the limit, the 
point q coincides with p and l assumes a limit position; namely, the tangent T of the 
curve c at p. 

We derive a mathematical representation of the curve tangent T as follows. Let c(t) 
= (x(t), y(t), z(t)) be a parametric representation of the curve c, and p = c(t) a curve 
point for some fi xed t. A point q (which is close to p) of c is represented by c(t + h). 
Th is implies that the connecting line l of p and q has the vector c(t + h) – c(t) as a 
direction vector. Because this vector would converge to the zero vector if we move q 
toward p, we use another direction vector of l; namely, [c(t + h) – c(t)]/h. Moving q 
to p is achieved by letting h tend to zero. By defi nition of derivatives, the limit of the 
direction vector [c(t + h) – c(t)]/h of l for h → 0 is the fi rst derivative vector 

c'(t) = (x'(t), y'(t), z'(t)).

We have just proven that the fi rst derivative vector defi nes the direction of the curve’s 
tangent. A parametric representation of the curve tangent at point c(t) can be found 
with 

T: x(u) = c(t) + u · c'(t).

Here, u is the parameter for describing the points of T. Th e normal of a planar curve 
is the normal of the tangent in the touching point p (Figure 7.13b). A space curve has 
a normal plane at each point p. We will later see that there are two special normals in 
this plane that deserve particular attention. 

Fig. 7.13
(a) A tangent T touches a curve c. It 
can be found with the help of a limit 
process or by calculating the fi rst 
derivative vector c’(t).
(b) The normal of a planar curve 
intersects the curve at a right angle.

(a) (b)
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Points of the curve with a uniquely defi ned tangent are called regular points. All points 
where the tangent vector c'(t) is a non-vanishing vector are regular points. Curve 
points where c'(t) is the zero vector o are singular points. 

Example: 
Tangents of a helix. To fi nd the tangents 
T of the helix c(t) = (r · cos(t), r · sin(t), 
p · t) (see the section on helical motions 
in Chapter 6), we calculate the fi rst 

derivative vector as c'(t) = (–r · sin(t), 
r · cos(t), p). Note that the angle between 
the tangents and the z-axis is constant, 
because the result of the dot product of 

c'(t) and z = (0,0,1) is p = const. Th is also 
means that all tangents have a constant 
inclination angle against the xy-plane.

Example: 
Singular points. Figure 7.15 shows 
two curves that exhibit singular points. 
Th e planar cubic with the parametric 
representation c(t) = (t2,t3), with t 
assuming any real number, has the fi rst 
derivative vector c'(t) = (2t,3t2). With 
the exception of t = 0, this vector is not 
the zero vector. Th us, the point p(0,0) 

is a singular point—whereas all other 
points are regular. 
Th e curve d(t) = (sin3(t), cos3(t)) is 
called an astroid curve according to its 
starlike shape. We will encounter this 
curve again in Chapter 10 (on off sets) 
and in Chapter 12 (on motions). For t 
running in the interval [0, 2π) we obtain 

the full closed curve. It possesses four 
cusps. Th ese singular points are lying 
in the two symmetry axes of the curve. 
Th ey are found by solving the equation 
d'(t) = (3·sin2(t)·cos(t), 3·cos2(t)·sin(t)) 
= o, whose solutions in [0, 2π) are t = 0, 
t = π/2, t = π,, t = 3π/2.

Fig. 7.15
Singular points of curves.

Fig. 7.14
Tangents of a helix.
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Discrete curves. To understand the geometry of curves without the explicit use of 
calculus, we take the so-called discrete approach (Figure 7.16). Let Pc be a polygon with 
vertices c1, c2, c3, and so on, and constant edge length L. If we are given a smooth curve 
c and the length L, we can easily construct this polygon Pc such that its vertices lie on c. 
Th e polygon is also called a discrete curve. In many practical computations, curves are 
actually polygons (i.e., discrete curves). 

We can also use them for the derivation and visualization of theoretical results on 
smooth curves. Previously, we have seen that the polygon edges that join consecutive 
vertices c1c2, c2c3, and so on become tangents of c if the polygon is refi ned (i.e., if L tends 
toward zero). It is actually not necessary that all polygon edges have the same length. We 
simply need to consider suffi  ciently uniform refi nements toward a smooth curve. 

Osculating plane and osculating circle. Let’s now go beyond tangents. For this we 
consider a discrete spatial curve (polygon) Pc (Figure 7.17). Th ree consecutive vertices of 
Pc (such as c1, c2, and c3) span a plane O2. Now we fi x c2, call it p, and refi ne the polygon Pc 

by letting the edge length L tend toward zero. Th en the limit of the connecting plane O2 
becomes the so-called osculating plane O of the smooth curve c at the point p.

By construction, O locally best approximates the given curve and passes through the 
tangent T of c at p. Th e mathematical formulation of the limit process shows that the 
osculating plane at c(t) is spanned by the fi rst derivative vector c’(t) and the second 
derivative vector c’’(t). 

Fig. 7.17
Defi nition of osculating plane and 
osculating circle of a space curve with 

help of an approximation by a 
polygon Pc.

Fig. 7.16
A discrete curve is a polygon Pc that 
approximates a smooth curve. When Pc 
is refi ned and in the limit converges to 
a smooth curve c, the edges of Pc tend 
toward the tangents of c. 
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Th ree consecutive vertices of the polygon Pc possess a circumscribed circle k2, which 
lies in the plane O2. Its rotational axis a2 is the inter section of the bisecting planes B12 
of c1c2 and B23 of c2c3. During the refi nement process, the points c1 and c3 move closer 
until they coincide with c2 = p. In the limit, the circle k2 becomes the osculating circle o 
of the curve.

Our derivation shows that the osculating circle lies in the osculating plane (it touches 
c at p). Its axis a, the limit of a2, intersects the osculating plane in the center of the 
osculating circle—which is also denoted as the curvature center. If the radius of the 
osculating circle (also called curvature radius) is r, the curvature k of the curve c at the 
point p is defi ned as the reciprocal value of the radius (k = 1/r).

Example: 
Computation of the curvature. If α2 
denotes the edge angle at c2 (Figure 
7.18a), trigo nometry shows that the 
radius r2 of k2 is given by  
r2 = L/(2⋅sin(α2/2)).
R2 is the discrete curvature radius at 
c2. Its reciprocal value k2 = 1/r2 can be 
defi ned as discrete curvature. If we now 
fi x p = c2 and let L tend toward zero, k2 
converges to the osculating circle o of c at 
point p, r2 tends to the curvature radius 
r, and k2 converges to the curvature k of c 
at p (Figure 7.18b). 

A simpler limit formula for the 
curvature is obtained as follows. We 
note that for small angles β (Figure 
7.18c), the value β is very close to 
sin β (precisely, β/(sin β) tends toward 
1 if β tends toward 0). Th is shows that 
the curvature is 
k = lim(1/r) = lim(2⋅sin(α/2)/L) = lim 
α/L,  for L → 0,
where α denotes the edge angle at p. 
Th us, curvature measures the local 
directional change of the tangent. If we 

are given a parametric representation c(t) 
of c, the curvature may be calculated as

k= ||c'(t) x c''(t)||
||c'(t)||3 .

For curves c(t) = (x(t),y(t)) in the plane, 
one can give curvature a sign, and then 
one uses the formula

k= x'(t)y''(t) – x''(t)y'(t)
[x'(t)2 + y'(t)2]3/2 .

Fig. 7.18
Derivation of a formula for the discrete 
curvature radius. If the discrete curve 
is refi ned to a smooth curve, the 
discrete curvature radius tends to 
the radius r of the osculating circle. 
The reciprocal value k = 1/r is the 
curvature. 

(a)

(b)

(c)
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Infl ection point and vertex. Osculating circle and curvature are useful tools 
in studying the properties of curves. In general, a planar curve c touches the 
corresponding osculating circle o at point p but changes the side of o (Figure 7.19a). 
A point v of a curve c with a local maximum or minimum of curvature is called a 
vertex. In this case, the osculating circle o does not change the side of the curve c. In the 
proximity of a vertex v, the curve c is very well approximated by the osculating circle 
o (Figure 7.19b). Th ese special points arise, for example, as intersection points of the 
curve c with its symmetry axes.

Other interesting regular curve points are the infl ection points. At these points, the 
osculating circle degenerates into a straight line; namely, the tangent T of c. Th e 
curvature in an infl ection point p is zero and the curve c changes the side of the 
tangent (Figure 7.19c). Th ere may also be points (called fl at points) with vanishing 
curvature where the curve does not change the side of the tangent. Th is happens if 
the tangent T fi ts even better with the curve. Mathematically, phenomena such as 
vertices or fl at points can only be described and carefully classifi ed with higher-order 
derivatives (which are beyond the scope of this text). 

Evolute. Th e locus of the centers of all osculating circles of a planar curve c is called 
the evolute e of c. Th e evolute of a planar curve can also be generated as envelope of the 
curve normals. Th is fact is easily derived from a discrete curve Pc (Figure 7.20, left ). We 
consider the bisector lines b12, b23, and so on of the edges c1c2, c2c3, and so on.

Fig. 7.20
(right) The evolute e of a planar curve 
c is the set of curvature centers and 
the envelope of all curve normals.
(left) This is easily derived from a 
discrete curve.

Fig. 7.19
(a) In general, a curve c touches the 
osculating circle o and changes the 
side of o.
(b) A vertex v is a point with locally 
extremal curvature. At a generic 
vertex, the osculating circle o remains 
locally on the same side of the curve.
(c) A curve c changes the side of its 
tangent at infl ection points p.
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Consecutive bisectors (such as b12 and b23) intersect at the center m2 of the circle 
through c1, c2, and c3, which is a discrete version of an osculating circle (see the previous 
discussion). Hence, all bisectors form the edge lines of the polygon Pe, whose vertices 
are the discrete curvature centers m2, m3, and so on of Pc. If we now refi ne Pc toward 
a smooth curve c (Figure 7.20, right), the bisector lines become the normals of c and 
the polygon Pe converges to the evolute e. Because the bisectors are also the edge lines 
of Pe, they converge to tangents of e. Hence, the normals of c are the tangents of the 
evolute e. 

It is interesting to note that a vertex of the original curve c induces a cusp at the 
corresponding evolute e. Figure 7.21 illustrates this remarkable property by means of 
an ellipse. Th is fi gure shows that the evolute e is related to an astroid (see the example 
“singular points”) by an affi  ne transformation. We will again encounter evolutes in 
Chapter 10 (on off sets) and in the section on curves generated by smooth motions in 
Chapter 12.

Frenet frame of a space curve. For a planar curve, we have defi ned curve normals as 
lines orthogonal to the tangents. In space, there is a plane that intersects the tangent T 
at the curve point p under a right angle. We call this plane the normal plane N of the 
curve c in the point p. Th e normal plane N and the osculating plane O inter sect along 
the principal normal n of the curve (Figure 7.22). Th e principal normal intersects the 
axis a of the osculating circle o at the curvature center m.

Th e straight line b (through the curve point p) which is normal to O (parallel to the 
axis a of the osculating circle), intersects the principal normal and the tangent T of the 
curve at a right angle. We call this straight line the binormal b of the curve c. 

Fig. 7.22
The Frenet frame of a space curve c 
consists of the tangent T, the principal 
normal n, and the binormal b. T and n 
span the osculating plane O. 

Fig. 7.21
The evolute e of an ellipse c is 
related to an astroid by an affi ne 
transformation. The four cusps of the 
evolute are the curvature centers of 
the vertices of the ellipse.
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Th e tangent T, the principal normal n, and the binormal b defi ne a Cartesian frame 
at the curve point p. Th is Cartesian coordinate frame is connected with the space 
curve in a very natural way. We call it the Frenet fr ame of the curve at the point p. Th e 
coordinate planes of the Frenet frame are the osculating plane O (= Tn), the normal 
plane N (= nb) and the rectifying plane R (= Tb). 

Example: 
Frenet frame and orthogonal 
projections. To illustrate that curvature 
is changed under projections, we study 
the projections parallel to the axes of 
the Frenet frame (Figure 7.23). We use 
the cubic space curve c(t) = (12t · (1 – 
t), 2t · (3 – 3t + 2t2), 4t · (3 – 6t + 4t2)), 
which we introduced in the example 
“parabola and spatial cubic curve.”

Th e tangent direction at the point 
p = c(1/2) = (3, 2, 2) is parallel to the 
y-axis and the osculating plane is parallel 
to the xy-plane. Th us, the normal plane 
and the rectifying plane are parallel to 
the xz-plane and the yz-plane. Th e top 
view (coming from the projection into 
a plane parallel to the osculating plane) 
shows the osculating circle o at point p 

without distortion, whereas the front 
view and the side view show curves c''and 
c''', which possess an infl ection point p'' 
and a cusp p''', respectively.

Fig. 7.23
Frenet frame of a cubic c and 
projections of the curve c into the 
planes of this frame. The projection 
parallel to the tangent (side view) has 
a cusp. The projection parallel to the 
principal normal (front view) yields an 

infl ection point of the image curve. The 
local behavior of the projected curve 
can be understood if we also consider 
the projection of the osculating circle of 
the space curve. 
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At the end of the previous chapter we introduced conic sections as planar intersection 
curves of rotational cones. Now we illustrate principles to generate conic-sections 
based on the mathematical concepts introduced in this chapter. 

Implicit representation. Th e simplest implicitly defi ned planar curve is a straight line 
given by a linear equation a·x + b·y + c = 0. We can defi ne a conic as a curve described 
by the quadratic equation 

a·x2 + b·x·y + c·y2 + d·x + e·y + f = 0.

Diff erent choices of the parameters a, b, …, f  lead to diff erent conics. Clearly, a simple 
multiplication of all parameters by the same factor λ corresponds to a multiplication 
of the implicit equation by λ and therefore does not change its solution set. Hence, 
only the ratio a : b : …: f is really important. Depending on the choice of this ratio, we 
obtain circles, ellipses, parabolas, and hyperbolas (and some degenerate cases such as 
pairs of straight lines).

Ellipse. A quadratic equation of the form

b2·x2 + a2·y2 – a2·b2 = 0

describes an ellipse with its center at the origin and the coordinate axes as symmetry 
axes. Th e parameters a and b determine the distances of the four vertices from the 
center (Figure 7.24). Th e coordinates of the major vertices are (a,0), (–a,0), and 
those of the minor vertices are (0,b) and (0,–b). Application of the scaling (affi  ne 
transformation) (x,y) → (x1,y1) = (x,y⋅a/b) fi xes the major vertices and maps the minor 
vertices to (0,a) and (0,–a).

Conic Sections

T

Fig. 7.24
An ellipse has four vertices. It can 
be transformed into a circle using an 
applicable scaling.
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Insertion of x = x1, y = y1⋅b/a in the equation of the ellipse results (aft er division by 
b2) in the equation x12 + y12 – a2 = 0, which describes a circle of radius a. Hence, the 
scaling transforms the ellipse into this circle. Th ere are other scalings that relate an 
ellipse to circles. For example, the scaling x1 = a·x, y1 = b·y maps the circle of radius 1 
(i.e., x2 + y2 = 1) into our ellipse. 

An ellipse has two foci (also called focal points) f1(e,0) and f2(–e,0) on the major axis. 
Th eir distance e (eccentricity) to the center is computed from a and b by e2 = a2 – b2 
(Figure 7.25). Th is shows immediately that the distance of the minor vertices to f1 and 
f2 equals a, which is a special case of the following property. 

Th e sum of distances dist(p,f1) + dist(p,f2) of any point p of an ellipse to its two foci is 
constant (i.e, equal to 2· a). 

Th erefore, an ellipse can be drawn with a string fi xed at the foci (Figure 7.25). An 
analytical proof sets p(x,y), and reduces the condition

dist(p,f1) + dist(p,f2) = √⎯(⎯x⎯–⎯e⎯)⎯2 ⎯ ⎯+⎯ ⎯y⎯2 +  = √⎯(⎯x⎯+⎯e⎯)⎯2 ⎯ ⎯+⎯ ⎯ ⎯y⎯2 = 2a

by simple manipulations to the equation b2x2 + a2y2 – a2b2 = 0 of the ellipse. Due to 
the mechanical interpretation of the string construction, the equal tension forces at 
p have a resulting force in the bisecting line of pf1 and pf2. Th us, the point p can only 

Fig. 7.26
The centers of the osculation circles in 
the vertices can be found by a simple 
construction.

Fig. 7.25
The string construction of an ellipse 
implies the following property of an 
ellipse: Rays emitting from a focus are 
refl ected at the ellipse into the other 
focus. 
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Fig. 7.27
Ellipses and elliptical arcs are used in 
architecture and design.
(a) The Hangar 7 (1999–2003) in 
Salzburg by Volkmar Burgstaller. The 
main shape is a tilted ellipsoid with 
elliptical arcs as support structure.
(b) The Tycho Brahe Planetarium 
(1988–1989) in Copenhagen by Knud 
Munk.

move orthogonally to this bisector. In other words, the tangent of the ellipse at p is 
the outer bisector of pf1 and pf2. Hence, a ray emitted from one focus is refl ected at the 
ellipse into the other focus. Th is property can be applied for illumination or acoustic 
eff ects in buildings. 

Figure 7.26 shows a simple construction for obtaining the centers of the osculating 
circles in the vertices. Th ese circles are useful when sketching an ellipse by hand. To 
fi nd a parametric representation of an ellipse e, we apply the scaling x1 = a·x, y1 = b·y to 
the unit circle c(t) = (sin(t), cos(t)). Th us, we obtain 

c1(t) = (a·sin(t), b·cos(t)).

Analogously, we fi nd a rational parametric representation 

d1(t) = (a · 2t   1+t2  , b · 1–t2 
1+t2

).

of an ellipse by applying the same scaling to the rational parameterization of a circle of 
radius 1. Ellipses arise as planar intersections of rotational cylinders. Th us, they oft en 
occur as parts of architectural designs (as illustrated in Figure 7.27).

(b)

(a)



Hyperbola. By replacing a single sign in the implicit representation of an ellipse, we 
obtain via 

b2·x2 – a2·y2 – a2·b2 = 0

an equation that describes a hyperbola. Th e center of the hyperbola is the origin o, and 
the two major vertices are (a,0) and (–a,0). Th e points (0,b) and (0,–b) do not lie on 
the hyperbola, but on the axis rectangle, whose diagonals are the so-called asymptotes 
u and v. A hyperbola consists of two branches, each of which comes arbitrarily close 
to the asymptotes without touching them. Th e asymptotes are important in correctly 
sketching a hyperbola. One can defi ne foci f1(e,0) and f2(–e,0), with e2 = a2 + b2 (Figure 
7.28), and show that the diff erence of distances ⎜dist(p,f1) – dist(p,f2)⎜is constant (= 
2a) for the points p of the hyperbola.

Fig. 7.29
Parabolic arcs in architecture.
(a,b) The Botanical Gardens (1991–
1995) in Graz by Volker Giencke are 
built using congruent parabolic arcs 
(images courtesy Walter Obermayer).
(c) Under the Beach Park Boulevard 
bridge in Foster City (image courtesy 
Peter Kaminski).

Fig. 7.28
A hyperbola has two vertices and two 
asymptotes.

(c) (a)

(b)
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Parabola. Parabolas and parabolic arcs are important curves for generating interesting 
surfaces [see Chapter 9 (on traditional surface classes) and Chapter 11 (on freeform 
surfaces)]. In addition, because of static properties they can be found in architectural 
design (Figure 7.29). In an adapted coordinate system, the quadratic equation of a 
parabola is given by

x2 – 2py = 0.

Th is parabola has its single vertex in the origin. Th e y-axis is its single symmetry axis 
and is referred to as the axis of the parabola. Th e focus f = (0,p/2) lies on the symmetry 
axis and the evolute e contains only one cusp. A parabola also has a simple defi nition 
with distances (Figure 7.30). We defi ne the focal line F: y = –p/2. It is normal to 
the axis and has distance p to the focus f. Th us, for each point q of the parabola the 
distance dist(q,f) to the focus equals the distance dist(q,F) to the focal line.

To derive an analytical verifi cation, we set q(x,y); rewrite the condition dist(q,f) 
= dist(q,F) as √⎯x⎯2⎯ ⎯+⎯ ⎯(⎯y ⎯–⎯ ⎯p⎯/⎯2⎯)⎯2 = |y + q/2|; square it; and obtain aft er some simple 
manipulations the equation y2 – 2px = 0 of the parabola. Related to the distance 
property is the following fact: Rays emanating from the focus f are refl ected at the 
parabola into lines parallel to its axis (Figure 7.30). 

Note that any two parabolas are similar to each other and that two parabolas with the 
same parameter p are congruent. In the example “parabola and spatial cubic” at the 
beginning of this chapter, we introduced a very simple parameterization c(t) = (t,t2) of 
a parabola with p = 1/2. A parameterization of the parabola x2 – 2py = 0 is obviously 
given by c(t) = (t,t2/(2p)). 

Fig. 7.30
A parabola and its special refl ection 
property.
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Th e thread construction of a parabola. Given two contact elements [i.e., points 
with tangents (b0, T0) and (b2, T2), as in Figure 7.31], we are looking for a parabolic 
arc that starts in b0 with tangent T0 and ends in b2 with tangent T2. By connecting 
corresponding points on both tangents, we obtain tangents of the parabolic arc we are 
seeking. How is this correspondence to be defi ned? Let b1 be the intersection point of 
the two tangents T0 and T2.

We use linear interpolation to compute points p and q that divide the two line 
segments [b0,b1] and [b1,b2] in the same ratio t : (1 – t) (see Figure 7.31). Th en the 
points p and q are corresponding and the line [p,q] is a tangent of the parabola. 
Moreover, computing the point r that divides [p,q] in the same ratio t : (1 – t), we even 
fi nd the contact point! By changing the value of t, we generate all points and tangents 
of the parabola.

Let’s cast this construction in terms of the mathematical framework. Starting with 
the three points b0, b1, and b2 and their coordinate vectors b0, b1, and b2, we fi rst 
calculate the point p = p(t) = (1 – t)∙b0 + t∙b1 and q = q(t) = (1 – t)∙b1 + t∙b2 on the 
line segments [b0,b1] and [b1,b2]. Th en the point r at the line segment [p,q] is obtained 
as r(t) = (1 – t)∙p(t) + t∙q(t). Now we plug in the previous expressions for p(t) and q(t) 
and obtain r(t) = (1 – t)∙[(1 – t)∙b0 + t∙b1] + t∙[(1 – t)∙b1 + t∙b2]. Th is can be further 
simplifi ed to the quadratic parametric representation of a parabolic arc

r(t) = (1 – t)2∙b0 + 2∙t∙(1 – t)∙b1 + t2∙b2.

By varying the parameter t in the interval [0,1], we compute all points of the parabolic 
arc. To prove that pq is the tangent at r, we diff erentiate r(t) with respect to t and 
obtain r'(t) = 2⋅[–(1 – t)b0 + (1 – 2t)b1 + tb2] = 2⋅[(1 – t)(b1 – b0) + t(b2 – b1)] = 
2⋅[q(t) – p(t)]. Th is shows that q(t) – p(t) is a direction vector of the tangent and thus 
the connection of p and q is the tangent at r. 

Th e thread construction of the parabola is a special case of de Casteljau’s algorithm for 
Bezier curves. Th ese are the simplest and most basic freeform curves and are discussed 
in the next chapter. 

Fig. 7.31
The thread construction of a parabola 
uses repeated linear interpolation 
(see Geometry Primer) to generate 
points and tangents of the parabola 
defi ned by two contact elements (b0, 
T0) and (b2, T2). 
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We now generalize the concepts for curves to the study of surfaces. Whereas 
we have previously viewed curves as a one-dimensional series of points, we now 
consider surfaces as a type of two-dimensional skin in space. However, this rough 
representation of surfaces is too inaccurate for studying them in detail. Th us, analogous 
to the curves we introduce parametric, explicit, and implicit representations of surfaces 
for mathematically handling surfaces and studying their geometry analytically.

Parametric representation. In contrast with curves, the coordinates of a surface 
point depend on two diff erent parameters u and v. Th us, a parametric surface S can be 
represented by p(u,v) = (x(u,v), y(u,v), z(u,v)), where the parameters u and v assume 
all values in a two-dimensional region R (Figure 7.32). Instead of mapping a one-
dimensional interval I into space (curve case), we now have a continuous mapping of a 
two-dimensional region R into space. 

Surfaces

Fig. 7.32
The parametric representation 
describes a mapping from a region R of 
the (u,v)-parameter plane to a surface 
patch S in three-dimensional space.
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Every pair of parameters u and v that defi nes a point (u,v) in the region R is mapped 
to a surface point p(u,v). Analogously with curves, we call the functions x(u,v), y(u,v), 
and z(u,v) coordinate functions and p(u,v) a parameterization of S. When we fi x the 
parameter u = u0, we obtain a parameter curve or v-line sv on the surface. Th e name 
v-line expresses that v varies (i.e., v is the curve parameter).

On the other hand, a u-parameter curve or u-line su is generated on the surface S when 
we fi x the parameter v. Th e sketching of parameter lines is oft en useful in visualizing 
the spatial structure of a surface. Th us, they can be used as an architectural tool. Figure 
7.33 illustrates the benefi ts of parameter lines. 

Fig. 7.33
Parameter lines support the spatial 
impression of surfaces.
(a) The same surface with and without 
parameter lines.
(b) The usage of parameter lines in 
architecture is illustrated by means 
of the fan vault of the King’s College 
Chapel (1446–1515) in Cambridge.(a)

(b)
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Example: 
Parametric representation of a sphere. 
Given are the center m(0,0,0) and the 
radius r of a sphere. According to Figure 
7.34, we derive the coordinates of a 
sphere point p as
p(u,v) = (r·cos(u)·cos(v), r·cos(u)·sin(v), 
r·sin(u)).

If the parameters u and v assume all 
values in [–π/2, π/2] and (–π, π] 
respectively, we obtain the entire sphere. 
Th en the v-parameter curves are circles 
(latitude u = const) in planes parallel to 
the xy-plane. Th e u-parameter curves are 
meridian circles (longitude v = const) 
running through the north and south 
poles. 

Fig. 7.34
(a) A parametric representation of 
a sphere can be based on spherical 
coordinates; namely, the geographic 
latitude u and longitude v. The 
meridian circles run through the north 
and south poles of the sphere. 
(b) The Rolling Ball (1992) in Seyring 
by Richard Künz (image courtesy of 
E. Mrazek).

(a)

(b)
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Example: 
Tangent surface. If c(t) denotes a 
parametric representation of a spatial 
curve c, we have shown that the curve 
tangent at point c(t) is described by 
c(t) + u⋅c'(t). If we consider t varying, 
we obtain the set of all tangents of c. 
Th is so-called tangent surface (Figure 
7.36) has the parametric representation 
p(u,t) = c(t) + u⋅c'(t). Th e u-lines (t = 
const) are the tangents. Tangent surfaces 
have important geometric properties 
(discussed in Chapter 15, on developable 
surfaces).

Example: 
Cylinder. A surface with a parameteri-
zation of the form p(u,v) = (x(u), y(u), 
v) is a general cylinder, where c = c(u) 
= (x(u), y(u), 0) is its base curve in the 
xy-plane. All u-lines are congruent to c 
and lie in planes parallel to the xy-plane. 

Fig. 7.35
Cylinders with planar u-lines.

Fig. 7.36
A surface formed by the tangents of a 
spatial curve.

Th e rulings of the cylinder are the v-
lines. Th ey are parallel to the z-axis. 
Figure 7.35 shows two examples, with 
c(u) = (2·sin(u), 3·cos(u))—respectively 
d(u) = (2·cos(u) + 2·cos(2·u), 2·sin(u) + 
2·sin(2·u))—as u-curves in the xy-plane. 
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Explicit and implicit representation. A surface S can also be seen as a set of all 
points that satisfy a condition of the form z = f (x,y) or F(x,y,z) = 0. We call the 
surface description z = f (x,y) an explicit representation and F(x,y,z) = 0 an implicit 
representation. Th e explicit representation z = f (x,y) is mainly used for visualization 
of a function f (x,y) of two variables. We also call this surface the graph of the 
function f (x,y). Of course, the explicit representation is a special case of an implicit 
representation. 

As an example, we illustrate in Figure 7.37 a hyperbolic paraboloid (see Chapter 9) 
with the explicit representation z(x,y) = 2x2 – 3y2 and the “chair” surface with the 
implicit representation (x2 + y2 + z2 – ak2)2 – b[(z – k)2 – 2x2]⋅[(z + k)2 – 2y2] = 0, 
where k = 5, a = 0.95, and b = 0.8. 

Tangent plane and surface normal. When we replace the parameters u and v in the 
parametric representation of a surface respectively with arbitrary functions u(t) and 
v(t), we obtain a curve c(t) = (x(t), y(t), z(t)) on the surface S. Curves on S are also 
called surface curves. We could also say that the surface parameterization maps the 
curve (u(t),v(t)) in the parameter plane to a surface curve. Th e tangent tc of such a 
curve in a point p is called a surface tangent.

 
        
      

     
        

     

 
      

     
      

l  l ‘ ’
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In a regular point of the surface, all surface tangents lie in a plane—the tangent plane 
of the surface S in the point p. In this case, the tangents tu and tv of the parameter lines 
defi ne the tangent plane (Figure 7.38). For the reader familiar with basic analysis, we 
note that the partial derivative vectors of p(u,v) with respect to u and v are respectively 
the directions vectors of tu and tv. Th e surface normal n is the straight line through p 
orthogonal to the tangent plane. 

Points of a surface, like the apex of a cone, where no unique tangent plane exists are 
called singular points.

Example: 
Surface with many singularities. 
Figure 7.40 shows a remarkable surface 
with an implicit representation F(x,y,z) 
= 0, where F is a certain polynomial of 
degree 7. Th is surface, known as Labs 
septic, carries 99 singular points.

Example: 
Whitney umbrella. Th e surface with 
the parameterization p(u,v) = (u, v2, 
uv) is illustrated in Figure 7.39. Along 
the y-axis, this surface has a line of self-
intersection. At any point on the positive 
y-axis, we have two diff erent tangent 

Fig. 7.40
View of the inner part of the Labs 
septic (image courtesy of Oliver Labs).

Fig. 7.39
Whitney’s umbrella carries a line with 
singular points. 

Whitney umbrella

planes. Th us, all points belonging to 
the surface curve c(v) = (0,v2,0) with 
constant parameter u = 0 are singular 
points. All other points turn out to be 
regular ones.
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Note that even in the proximity of a surface point the tangent plane can contain more 
surface points than the touching point p. Figure 7.41 illustrates three diff erent types 
of the behavior of a tangent plane at a point. According to this, we distinguish among 
elliptic, hyperbolic, and parabolic surface points. We will study these point types in detail 
in Chapter 14 (on visualization and analysis of shapes).

Contour and apparent contour. When we sketch a surface S or a CAD program 
produces an image of it, we need the contour of the surface to distinguish between 
visible and occluded parts of the surface. To obtain the contour, we fi rst defi ne the 
contour generator c g as a set of all points p on S whose tangent plane T contains the 
projection ray through p (Figure 7.42). 

In the case of a central projection, this implies that T passes through the eye point e. 
In the case of a parallel projection, T is parallel to the projection rays. In an equivalent 
formulation, we can say that all projection rays tangent to S form a cone (in the case 
of a central projection) or a cylinder (in the case of a parallel projection). Th e contact 
curve between cone (or cylinder) and S is the contour generator. 

Th e projection of the contour generator c g is the apparent contour c a. Th e projection of 
a point p of c g yields a point p' of the apparent contour ca. Because p is on c g, the image 
of its tangent plane T is a straight line T '. Th is line T ' is the tangent of the apparent 
contour c a in p' (Figure 7.42). 

Fig. 7.42
The apparent contour is the projection 
of the contour generator. The latter is 
the set of all surface points p where a 
projection ray touches S. 

Fig. 7.41
Elliptic, hyperbolic, and parabolic 
points and the behavior of the tangent 
plane in these points.

elliptic surface point hyperbolic surface point parabolic surface point



244

Figure 7.43 illustrates an interesting property in connection with contours and surface 
curves. If the curve tangent tc of a surface curve c is not a projection ray, the image tc' 
touches the apparent contour in the point p' (Figure 7.43a). Otherwise, if the tangent 
td of a surface curve d is a projection ray the image d ' of the curve d possesses a cusp 
in the point p' (Figure 7.43b). Because contour generators are already defi ned via 
projection rays tangent to the surface, the special event that a projection ray touches 
the contour generator is not as unlikely. Hence, we quite oft en fi nd cusps in apparent 
contours. Th ere, the visibility of the contour may switch (Figure 7.43c). 

Fig. 7.43
The behavior of the projections of 
surface curves.
(a) In general, the projected curve c’ 
touches the apparent contour ca.
(b) If a projection ray is tangent to a 
curve d, the projected curve d’ exhibits 
a cusp.
(c) Cusps in apparent contours arise 
from projection rays which are tangent 
to the contour generator.



In Chapter 4 (on trimming and splitting) we studied intersection curves of two 
surfaces. We used appropriate CAD tools to generate the intersection curves 
without any understanding of the process of how to fi nd these curves. With a better 
understanding of curves and surfaces, in the following we discuss some geometric 
background of intersection curves. Th is material shows why a stable implementation 
of surface/surface intersection is a challenge in the development of any CAD program, 
and it makes us less critical if this tool sometimes fails. Moreover, it provides some 
hints for correctly sketching intersection curves by hand. 

Constructing points via auxiliary planes. To fi nd points of the intersection curve(s) 
of two surfaces, we may use a set of auxiliary planes. Th ese auxiliary planes intersect 
the original surfaces along surface curves c1 and c2. Th e common points of these planar 
curves are points of the intersection curve c. If we fi nd appropriate auxiliary planes that 
intersect both surfaces along simple curves c1 and c2, we are able to construct points of the 
intersection curve. Only for very special surfaces can we actually fi nd such auxiliary planes. 

Intersection Curves of 
Surfaces
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Figure 7.44a illustrates this method for surface/surface intersection in the case of 
two cylinders. In this case, planes parallel to the generators of both cylinders cut the 
cylinders along generators. Th us, points of the intersection curve can be found by 
intersecting straight lines.

Th e same method can be applied to the construction of the intersection curve of a 
sphere and a cone. As shown in Figure 7.44b, points of the intersection curve can be 
found as common points of a pair of straight lines and a circle. We use auxiliary planes 
through the apex of the cone. In general, these planes intersect the cone along a pair of 
rulings and the sphere along a circle. As we have seen in both examples, the method of 
auxiliary planes is an appropriate one when cylinders, cones, or spheres are involved.

Use of auxiliary spheres. Points of the intersection curve of a rotational cylinder and 
a rotational cone with intersecting axes can also be found with the help of auxiliary 
spheres. Spheres with center m in the intersection point of the two axes a and b 
intersect the cylinder and the cone along circles. Th eir common points belong to the 
intersection curve c (Figure 7.45).

Th is method is best used with rotational surfaces (see Chapter 9) with intersecting axes. In 
Figure 7.46b, we use a projection orthogonal to the plane spanned by the two rotational 
axes. Th en, the images c1' and c2' of the circles c1 and c2 are straight line segments and the 
points of the intersection curve c' can be found as common points of c1' and c2'. 

Fig. 7.46
The use of a special projection 
orthogonal to both axes simplifi es 
the pointwise construction of the 
intersection curve of two rotational 
surfaces.

Fig. 7.45
Construction of points of an 
intersection curve using auxiliary 
spheres.

Fig. 7.44
Points of an intersection curve may 
be constructed with the help of 
appropriate auxiliary planes.

(a)

(b)

(a) (b)
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Fig. 7.48
In architecture, vaults often feature 
interesting intersection curves 
(including parts of conic sections).
(a) Intersection curves in the barrel
vault of the Residenz (1569–1571) in 
Munich.

(b) A cross vault in a building entrance 
(image courtesy of Martin Reis).
(c) Model of a vault.

Fig. 7.47
The tangent of the intersection curve is 
contained in the tangent planes T1 and 
T2 of both surfaces.

Tangents of intersection curves. When sketching an intersection curve by hand, it is 
oft en better to construct a few points plus their tangents instead of generating many 
points without tangents. Th e tangents of a surface curve are contained in the respective 
tangent planes (Figure 7.38). Th us, the tangent tp in a point p of the intersection curve 
is the intersection line of the tangent planes T1 and T2 of the two surfaces in the point 
p (Figures 7.47 and 7.48).

48b48a

(a) (b)

(c)
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Th is construction fails if the given surfaces have the same tangent plane at p. Such 
points of tangency usually lead to double points of the intersection curve. Figure 
7.49 shows an example: the common points of the two ellipses along which the two 
cylinders intersect are exactly their common points of tangency.

Conic sections as intersection curves. Conic sections as special intersection curves 
can be found in many applications in the building and constructing industry (Figure 
7.48). Th is principle was extensively used to construct vaults. It can be generalized to 
the following statement.

If two rotational cylinders or cones possess a common inscribed sphere, their intersection 
curve decomposes into a pair of conic sections or into a conic section and a single ruling.

Fig. 7.49
The complete intersection curve of two 
rotational cylinders with intersecting 
axes and the same radius is a pair of 
ellipses in orthogonal planes.
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Example: 
Rotational cylinders with intersecting 
axes and equal radius. Given are two 
rotational cylinders C1 and C2 with 
intersecting axes and equal radius r. We 
assume the cylinder axes a1 and a2 to lie in 
the yz-plane (Figure 7.49). Using auxiliary 
spheres for the generation of points of 
the intersection curve, we recognize that 
the front view of the intersection curve 
consists of two straight line segments e1'' 

and e2'' . Th ese line segments are parts of 
the angle bisectors of a1'' and a2''. Th us, 
the intersection curve consists of two 
planar curves e1 and e2.
Due to the fact that planar intersection 
curves of rotational cylinders are 
ellipses, the complete intersection 
curve consists of two ellipses e1 and e2 
in orthogonal planes P1 and P2. Th ese 
planes are the bisecting planes of the axes 

a1 and a2. Refl ecting one cylinder at such 
a bisecting plane, we obtain the other 
cylinder. Hence, the intersection curve 
between a bisecting plane and a cylinder 
also belongs to the other cylinder and 
thus to the intersection curve. Th is 
argument may also help in understanding 
intersection curves in other symmetric 
surface/surface confi gurations. 

Fig. 7.50
The intersection curve of two rotational 
cones with a common inscribed sphere 
decomposes into conic sections.

Figure 7.50 illustrates planar intersection curves of two rotational cones. We will 
study an even more general application of this statement in Chapter 9 (on intersection 
curves of quadrics).
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Space curves as intersection curves of general cylinders. At the beginning of 
this chapter, we studied the parametric representation of spatial curves. For planar 
curves, we also introduced explicit and implicit representation. What about implicit 
representations of spatial curves?

As an example for an explicit representation of a planar curve, we used the parabola c: 
y = x2—which we derived from the parametric representation c(t) = (t, t2). In a similar 
way, the spatial polynomial cubic curve d(t) = (t, t2, t3) satisfi es two independent 
equations y = x2 and z = x3.

Th ese two equations defi ne two cylinders C1, C2 with generators parallel to the z-axis 
and y-axis, respectively. Th eir base curves in the coordinate planes z = 0 and y = 0 are 
the parabola y = x2 and the cubic z = x3, respectively. Th us, the spatial polynomial 
cubic can be generated as an intersection curve of the two cylinders (Figure 7.51). 
Th is example shows that a space curve is defi ned by at least two implicit equations. 
However, due to additionally occurring intersection curves we may need even more 
equations to uniquely defi ne the curve.

Th is is seen with the same example if we replace the equation z = x3 with the equation 
y3 = z2. It is also satisfi ed by = (t, t2, t3) and describes a cylinder C3 with rulings parallel 
to the x-axis and a cubic base curve (with a cusp; Figure 7.52) in the yz-plane. Our 
spatial polynomial cubic is also an intersection curve of the parabolic cylinder C1 
and the cubic cylinder C3. However, the complete intersection of these two cylinders 
consists of a second spatial cubic d—which arises from the fi rst spatial cubic by 
refl ection at the yz-plane. 

Fig. 7.51
A parametric cubic curve as an 
intersection curve of two cylinders.
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Fig. 7.52
The parametric cubic curve of Figure 
7.51 as an intersection curve of 
a parabolic cylinder and another 
cubic cylinder. Here, the complete 
intersection contains a further spatial 
cubic.





Chapter 8
Freeform Curves
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Whereas geometric constructions using parts of circles and conic sections have a 
long history in design, smooth freeform curves that we shape by a small number of 
control points are recent tools developed from the 1950s on. Basic knowledge of the 
generation and properties of freeform curves allows the designer to choose the best 
scheme for the task at hand and to employ it effi  ciently. Once we master curves, we are 
able to proceed to freeform surface modeling.

Bézier curves (Figure 8.1a) are among the most widely used freeform curves. We 
discuss their geometric construction and some of their properties based on the 
algorithm of de Casteljau. For the design of complex curves, we present the more 
powerful B-spline curves (Figure 8.1b)—which off er local shape control. B-spline 
curves can be generated by iteratively refi ning a given polygon—a process called curve 
subdivision. Nonuniform rational B-spline (NURBS) curves (Figure 8.1c) have further 
fi ne-tuning possibilities via weights associated with the control points. Th ey are used 
to draw the most complex planar and spatial freeform curves, as well as to draw all 
types of conic sections.

Freeform Curves

Fig. 8.1
Freeform curves used in design:
(a) Bézier curve,
(b) B-spline curve, and 
(c) NURBS curve to the same control   
polygon.

 

Bézier curve B-spline curve NURBS curve

3
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How do we design freeform curves? In freehand drawing, the quality of a curve 
depends on the skill of the human drawer and possibly on mechanical aids used to 
guide the hand. We take a pen or pencil and sketch a curve by leading the hand in a 
smooth way across the paper. For drawing long curves, we have to keep the entire arm 
moving. However, this makes it more diffi  cult to draw wide-stretching curves. Th us, 
long before computers were invented designers used mechanical aids to guide their 
hands. Such aids were called splines, which were usually thin bendable rods made out 
of wood or metal whose shape is controlled via a few points where the rod is fi xed 
(Figure 8.2a). 

Freeform curves available in computer-aided design (CAD) soft ware imitate this 
approach: Bézier, B-spline, and NURBS curves are defi ned using a small number of 
control points connected to a control polygon (Figure 8.2b). From the control points, 
a smooth curve is derived automatically by a geometric algorithm. Th e term control 
polygon indicates that we use it to control the shape of the curve. By modifying the 
control polygon, we change the associated curve (Figure 8.2b).

Note that it is faster to input a few control points and then let an algorithm compute a 
smooth curve than to draw hundreds or thousands of points by hand. Furthermore, if 
we later want to change the shape of the curve it is much easier to modify the position 
of a few control points than to manually reposition hundreds of curve points. Th ere 
are two slightly diff erent approaches to interactive curve design with control points.

• Interpolation: We defi ne ordered points (and possibly tangent directions) and 
ask for a smooth curve that passes exactly through these points.

• Approximation: We defi ne the rough curve shape with a control polygon and 
ask for a smooth curve that resembles that shape.

Fig. 8.2 
Spline tools used by designers.
(a) Traditional (manual), wherein the 
weights are used to control the shape 
of the spline.
(b) Modern (digital), wherein the shape  
of a freeform curve is controlled using 
a small number of control points.
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Interpolation. Th e designer defi nes a few points and an algorithm automatically fi nds 
a curve that passes exactly through these points (i.e., it interpolates them). Because 
there are infi nitely many diff erent interpolating curves (Figure 8.3) that pass through 
the same points, we have to provide additional input. To tell the computer what type 
of shape we desire, we also specify the curve tangents in the interpolation points. Th e 
curve shown in Figure 8.4a has been defi ned by fi ve interpolation points and fi ve 
additional points that give the tangent directions (in total, accomplished with 10 
mouse clicks). Usually, the order in which these points are chosen is as follows: curve 
point, direction point, curve point, direction point, and so forth. Note that there are 
still many possibilities for defi ning an interpolating curve in this way.

Approximation. Here the designer defi nes a coarse “angled” control polygon and an 
algorithm computes a smooth freeform curve that resembles the shape of the control 
polygon. In Figure 8.4b we show a curve that approximates a control polygon with 10 
control points. Note that the fi rst and last control points are interpolated by the curve.

interpolating
curve 1

interpolating
curve 2

Fig. 8.3 
Different freeform curves that 
interpolate the same fi ve points. 

interpolating
curve 3

interpolating
curves 1, 2, 3
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With interpolation and approximation, it is possible to generate similar (or even 
equal) shapes. Depending on the goal, one or the other approach is favored. Note 
that simply recording the position of a moving input device (e.g., the mouse) is not 
recommended for drawing a freeform curve. In Figure 8.4c we show such a “recording” 
result as a sequence of connected data points. Even if the shape of the curve is similar 
to the previous two results, the curve is clearly not as smooth.

(c) 

freehand curve

(b) 

approximating curve

(a)

interpolating curve with tangent directions

Fig. 8.4 
Comparing freeform curves of the 
same shape designed in three different 
ways.
(a) The fi rst curve is designed by 
selecting fi ve points and fi ve tangent 
directions that are interpolated by the 
curve.
(b) The second curve approximates a 
control polygon with 10 control points 
and renders a similar shape.
(c) The third curve results from 
recording the position of the computer 
mouse while we move it. The curve 
is not smooth and the result is 
unsatisfactory.
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As previously stated, Bézier curves are among the most widely used freeform curves 
Th ey possess an intuitive geometric construction via the de Casteljau algorithm, which 
is based on repeated linear interpolation. Linear interpolation is explained in the 
Geometry Primer. It is the fundamental idea for understanding the generation of the 
freeform curves discussed in this book. Bézier curves are completely defi ned by control 
polygons. In Figure 8.5 we illustrate three diff erent Bézier curves together with their 
control polygons. In the course of this section, we label control points with the letter b 
in honor of Pierre Bézier (the inventor of Bézier curves). 

Bézier Curves

History:

Invention of Bézier curves. In the 1950s, the need for 

more complex curves than parabolas (or the other conic 

sections circle, ellipse, and hyperbola) arose in the design 

departments of automotive and airplane industries. In 1959, 

the Frenchman Paul de Casteljau (working for Citroën) 

generalized the thread construction of the parabola to an 

algorithm that is today known as the de Casteljau algorithm. 

Th e idea is the following. Instead of three control points 

b0, b1, and b2 (as in the case of a parabola), we start with n 

control points b0, b1, …, bn.

Th en we run the geometric construction that performs 

repeated linear interpolation until we end up with a single 

curve point. By varying the parameter t, we obtain the 

entire Bézier curve, named aft er their co-creator Pierre 

Bézier—who invented these curves in 1962 at Renault. He 

was allowed to publish this “top secret” result earlier than 

Paul de Casteljau—the reason these curves are today known 

as Bézier curves.

cubic Bézier curve 
with a loop

Bézier curve of degree 4 Bézier curve of degree 5

Fig. 8.5 
Three different Bézier curves with four, 
fi ve, and six control points labelled b0, 
b1, b2, b3, and so forth.
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Algorithm of de Casteljau. We illustrate the algorithm of de Casteljau (Figure 8.6) by 
means of a Bézier curve with four control points b0 , b1,  b2, and b3. Th ese four control 
points can be contained in a plane or can live in 3D space. In the former case, we 
obtain a planar Bézier curve. In the latter case, we obtain a spatial Bézier curve. Let t 
be a parameter in the interval [0,1].

Step 1. In the fi rst step, we perform linear interpolation as follows for pairs of 
consecutive control points to obtain three new points.

b0
1(t) = (1 – t)⋅b0 + t⋅b1

b1
1(t) = (1 – t)⋅b1 + t⋅b2

b2
1(t) = (1 – t)⋅b2 + t⋅b3

Step 2. We linearly interpolate pairs of consecutive new points (for the same 
parameter t) as follows to obtain two new points.

b0
2(t) = (1 – t)⋅b0

1(t) + t⋅b1
1(t)

b1
2(t) = (1 – t)⋅b1

1(t) + t⋅b2
1(t)

Step 3. Th e following fi nal calculation of linear interpolation for the latest two points 
yields the curve point b(t). 

b(t) = (1 – t)⋅b0
2(t) + t⋅b1

2(t).

To obtain the complete Bézier curve, we repeat this construction for all t in the 
interval [0,1]. Because b(0) = b0 and b(1) = b3, a Bézier curve interpolates the fi rst and 
last control point (Figure 8.6). We rewrite the equation of step 3 as follows such that 
it only contains the control points b0, b1, b2, and b3 (and the intermediate points of the 
construction disappear).

b(t) = (1 – t)3⋅b0 + 3⋅(1 – t)2⋅t⋅b1 + 3⋅(1 – t)⋅t2⋅b2 + t3⋅b3.

Note that the degree of the parameter t is at most 3, and thus we speak of a cubic 
Bézier curve or of a Bézier curve of degree 3. We see that repeated linear interpolation 
generates the following cascading scheme of points.

b0

b1 b0
1(t)

b2 b1
1(t) b0

2(t)

b3  b2
1(t)  b1

2(t)  b(t)

Remark. To generate a point on a Bézier curve with n control points, we have to 
perform n – 1 steps of the de Casteljau algorithm.
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Tangents of Bézier curves. Th e algorithm of de Casteljau also constructs the curve 
tangents (Figure 8.6). In fact, the curve tangent at the point b(t) is given by the line 
[b0

2(t), b1
2(t)]. It is of special interest that for t = 0 we obtain the curve tangent [b0,b1] at 

the fi rst control point b0, and similarly for t = 1 obtain the curve tangent [b2,b3] at the 
last control point b3. To convince yourself, just sketch the algorithm of de Casteljau for 
t = 0 and t = 1 to see that [b0

2(0), b1
2(0)] = [b0,b1] and [b0

2(1), b1
2(1)] = [b2,b3].

Math:

Calculation of the curve tangent. We prove the curve 

tangent property by a simple calculation. From calculus, we 

know that the tangent vector of a curve is given by the fi rst 

derivative vector (Chapter 7). Th us, we compute the fi rst 

derivative vector of the curve

  b(t) = (1 – t)3⋅b0 + 3⋅(1 – t)2⋅t⋅b1 + 3⋅(1 – t)⋅t2⋅b2 + t3⋅b3

as   b(t)' = 3⋅[–(1 – t)2⋅b0 + (–2⋅(1 – t)⋅t + (1 – t2))· b1

  + (–t2 + 2⋅(1 – t)∙t)⋅b2 + t2 ⋅b3].

We also compute the vector 

b1
2(t) – b0

2(t) = … = 1/3 ∙ b(t)'.

Th us, the line [b0
2(t),b1

2(t)] is indeed the curve tangent at the 

point b(t).

Fig. 8.6 
Algorithm of de Casteljau illustrated by 
means of a planar cubic Bézier curve. 
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Th e meaning of the four control points. For a cubic Bézier curve, the meaning of the 
four control points is straightforward (Figure 8.7). Th e fi rst and the last control points 
b0 and b3 are simply the two endpoints of the curve. Th e middle two control points b1 
and b2 “control” the tangents at the endpoints. Furthermore, for a spatial cubic Bézier 
curve the fi rst three control points b0, b1, and b2 span the osculating plane (see Chapter 7) 
in the fi rst control point b0. Th e last three control points b1, b2, and b3 span the 
osculating plane in the last control point b3.

Subdivision of Bézier curves. Th e algorithm of de Casteljau also “subdivides” a Bézier 
curve into two Bézier curves with control polygons c0 , …, cn and d0 , …, dn (Figure 8.8a). 
If we repeat the algorithm for the new control polygons and iterate the procedure, 
we obtain a refi ned polygon that represents a good approximation of the Bézier curve 
(Figure 8.8b). Th is process is also known as corner cutting. Corner cutting is one 
instance of the important idea of generating a smooth shape by refi nement of a coarse 
one. In this chapter we explore the curve subdivision algorithms of Chaikin and 
Lane-Riesenfeld, and in Chapter 11 we encounter the surface subdivision algorithms 
of Doo-Sabin, Catmull-Clark and Loop.

Loops and cusps. With cubic Bézier curves, we inherently have the fl exibility 
necessary to design curves that have a single loop or a single cusp. A loop is easily 
achieved by roughly positioning the control points as shown in Figure 8.5 (left ). A cusp
is a curve point where the curve tangent is not well defi ned (i.e., the fi rst derivative 
vector vanishes). For a cubic Bézier curve, we know that the fi rst derivative vector b(t)' 
at a curve point b(t) vanishes exactly if the vector b1

2(t) – b0
2(t) = 0 [i.e., if the points 

b1
2(t) and b0

2(t) coincide].

planar cubic Bézier  curve spatial cubic Bézier curve

Fig. 8.7 
The meaning of the four control points 
for a cubic Bézier curve. The fi rst 
and the last control points are the 
endpoints of the curve. The middle 
two control points “control” the curve 
tangents in the endpoints. We also 
illustrate the osculating planes for a 
spatial cubic Bézier curve.
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At fi rst glance, it seems to be easy to design a cusp. However, if we zoom in we see 
that we really oft en have a narrow bump or a small loop and not a real cusp. A simple 
setup for designing a real cusp is to position the four control points as the corners of 
a rectangle (Figure 8.9). Th en it is guaranteed that the curve point b(1/2) is really a 
cusp. Bézier curves enjoy several useful properties, among which we discuss the convex 
hull property and the affi  ne invariance. In Chapter 3 we learned about the concept of 
a convex domain. Th e convex hull is a special convex domain (explained in material 
following).

subdivision porperty 
of Bézier curves

corner cutting

Fig. 8.8
(a) The algorithm of de Casteljau 
subdivides a cubic Bézier curve with 
control polygon b0, …, b3 into two 
Bézier curves with control polygons 
c0, c1, c2, and c3 and d0, d1, d2, and d3, 
respectively.
(b) After two steps of corner cutting, 
the refi ned polygon approximates the 
Bézier curve fairly well.

Fig. 8.9 
To design a planar cubic Bézier curve 
that contains a cusp is a bit tricky (see 
zooming in). However, if we select 

the four control points as corners of a 
rectangle the curve has a cusp at the 
curve point b(1/2).
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Math:

Convex hull. Th e convex hull of a planar point set is obtained 

intuitively as follows. Th ink of the points as nails in a piece 

of wood. Th en place a rubber band around all nails and let it 

loose. Th e shape of the tight-fi tting rubber band shows the 

convex hull of the point set (Figure 8.10a). Th e convex hull 

of a planar point set is a convex polygon, and the convex hull 

of a spatial point set is a convex polyhedron (Figure 8.10b). 

It can be shown that the convex hull is the smallest convex 

domain that encloses a given point set.

Convex hull property of Bézier curves. Bézier curves enjoy the property that the 
curve is always completely contained in the convex hull of its control points (Figure 
8.11). Th is property follows immediately from the construction via the algorithm of 
de Casteljau (repeated linear interpolation with a parameter t in [0,1] does not create 
points outside the convex hull of the control points). Th e fact that the control polygon 
defi nes the area in which the Bézier curve is lying is relevant to the design. A special 
case of the convex hull property is the so-called linear precision of Bézier curves. If the 
control points of a Bézier curve are contained in a single straight line, the Bézier curve 
is also contained in the same line.

planar spatial

Fig. 8.10 
Convex hulls of
(a) planar and
(b) spatial point sets.

planar curves spatial curves

Fig. 8.11 
Bézier curves are contained in the 
convex hull of their control polygon. 
For a spatial curve, the convex hull 
is a convex polyhedron. One of the 

examples illustrates a special case, the 
linear precision: if the control points 
are collinear, the Bézier curve is also 
contained in that line.
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Math:

Affi  ne invariance. A Bézier curve is affi  ne invariant 

connected to its control polygon. Examples of affi  ne maps 

include translations, rotations, similarities, and parallel 

projections (Chapter 6). Affi  ne invariance of Bézier curves 

means that the affi  ne image of the Bézier curve coincides 

with the Bézier curve computed to the affi  ne image of the 

control polygon (Figure 8.12). Note that central projections 

are excluded from the set of allowed transformations because 

they are not affi  ne.

Fig. 8.12 
A spatial Bézier curve and its planar 
parallel projection illustrate the affi ne 
invariance property between the curve 
and its control polygon.

Fig. 8.13
(a) A simple shape bounded by two 
quadratic Bezier curves.

(b) The letter “a” of a Postscript font 
is bounded by several cubic Bézier 
curves.

Parabolas are quadratic Bézier curves. Recall the thread construction of the 
parabola from Chapter 7. It is actually a special case of the algorithm of de Casteljau 
for three control points. Th us, parabolic arcs are quadratic Bézier curves. It is easy to 
create simple shapes bounded by quadratic Bézier curves (Figure 8.13a). Quadratic 
and cubic Bézier curves are commonly used to defi ne TrueType and Postscript fonts 
(Figure 8.13b), and are standard tools in many soft ware packages.

(a)

(b)
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Example: 
Design a parabolic arc with given axis 
direction and vertex position. To take 
advantage of the static properties of a 
parabolic arc, it is important to know its 
axis and vertex position. In architectural 
design, we usually want parabolic arcs 
with vertical axis direction. If we select 
the three control points b0, b1, and b2 such 
that they form an isosceles triangle with 
base b0, b2 , the axis of the parabolic arc 
is given by the line connecting b1 and the 
midpoint m of b0 and b2 (Figure 8.14a).
Th e vertex of a parabola is the unique 

parabola point on the axis. Because of 
the symmetric setup, we fi nd the vertex 
(using de Casteljau’s algorithm) as the 
curve point to the parameter t = 1/2. 
Note that by the subdivision property 
of the algorithm of de Casteljau we 
split (for t = 1/2) the larger arc into two 
parabolic arcs whose common point is 
the parabola vertex. 
From the previous construction, we learn 
an easy way of designing a parabolic arc 
with given vertex v and axis A (Figure 
8.14b). Select the vertex v as the fi rst 

control point b0. Draw a line T through 
the vertex v that is perpendicular to the 
axis A. Select an arbitrary point b1 on T. 
Th en, T = [b0, b1] is the vertex tangent. 
Mirror the point b0 in b1 to obtain an 
auxiliary point p on T. Finally, select the 
third control point b2 anywhere on the 
line through p that is parallel to the axis 
A. Th is gives us the parabolic arc with 
vertex v, axis A, and control polygon b0 

= v, b1, b2. By mirroring this arc in A, we 
obtain a symmetric parabolic arc with the 
same vertex v and the same axis A. 

Fig. 8.14
(a) Parabolic arc with vertical axis A as 
a quadratic Bezier curve with control 
points b0, b1, and b2. By the subdivision 
property, the arc is split into two 
parabolic arcs that meet at the vertex 
v = b(1/2).
(b) Construction of a parabola with 
known vertex v and axis A.

(a) (b)
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Limitations of Bézier curves. Bézier curves are completely determined by their 
control points. A Bézier curve with n + 1 control points is of degree n (the degree 
of the polynomials that appear in the mathematical description). Th is results in the 
following two major limitations of Bézier curves. 

• A Bézier curve with a large number of control points becomes impractical for 
design. Th e degree of the curve increases and the curve shape resembles less 
and less the shape of the control polygon (Figure 8.15a). 

• Th e control points have global control on the shape of the curve. Th is means 
that if we add a new control point or if we modify the position of one
single control point the shape of the entire curve changes. Th is eff ect 
(Figure 8.15b) is unwanted for certain design purposes. If we are satisfi ed 
with the shape of the curve in one part, we do not want to change the entire 
shape by modifying a few control points in a diff erent part of the curve.

Fig. 8.15
(a) A high-degree Bézier curve gets too 
far away from the control polygon.
(b) Modifying the position of a single 
control point of a Bézier curve changes 
the shape of the entire curve.

(a) (b)
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Example: 
Piecewise Bézier curves. If we want 
to design longer freeform curves, we 
can put together several Bézier curves of 
low degree (2 or 3). At the connection 
points, we want the two joining curves 
to have the same tangent (the best we 
can achieve for quadratic Bézier curves) 
and the same curvature (if we use cubic 
or higher-degree Bézier curves). For a 
piecewise quadratic Bézier curve, we 

can select the fi rst parabolic arc without 
constraints.
All remaining parabolic arcs have the 
constraint that we can only select one 
control point, because for tangent 
continuity the other two control points 
are determined by the previous arc 
(Figure 8.16a). For piecewise cubic 
Bézier curves, this becomes even 
more cumbersome. We can still put 

them together in such a way that each 
neighboring pair has the same tangent in 
their connection point (Figure 8.16b). 
However, how do we select the control 
points so that the pieces have the same 
curvature at the connection points? To 
overcome limitations of Bézier curves 
and piecewise Bézier curves, scientists 
invented B-spline curves (examined in 
the next section).

Fig. 8.16 
Piecewise
(a) quadratic and
(b) cubic Bézier curves with continuous 
tangents. The quadratic and cubic 
segments are shown in different colors.

(a) (b)
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B-spline curves are freeform curves that consist of Bézier curve segments of the same 
degree and that are knotted together at their endpoints with the highest possible 
smoothness [i.e., same tangent, same curvature (if possible), and so on]. Th e fact that 
the B-spline curve does the concatenation of the Bézier curve segments automatically 
is remarkable.

Doing the same concatenation by hand is cumbersome (Figure 8.16), prone to error, 
and makes the later manipulation of the curve more diffi  cult. Another advantage 
(especially for designing longer B-spline curves) is that they stick to the shape of their 
control polygon much better than Bézier curves. B-spline curves share the useful 
properties of Bézier curves, and the latter are actually a special case of B-spline curves.

B-Spline Curves

History:

Spline. Th e term spline comes from a tool used by 

shipbuilders to draw smooth curves by hand (Figure 8.2). 

Th is tool was a thin fl exible wooden or metal rod that could 

be bent to adopt to diff erent shapes of freeform curves as 

needed by the designer. In geometric modeling, a spline 
curve is a curve that consists of several curve segments that 

jointly observe continuity.

B-spline. Th e term B-spline was coined by the Romanian 

mathematician Isaac Schoenberg. Th e B stands for “basis.” 

We can also use the B as a mnemonic to remember that a B-
spline curve consists of several Bézier curve segments.
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Fig. 8.17 
A B-spline curve of degree n = 3, with 
m = 7 control points d0 ... d6. consists 
of four cubic Bézier curve segments.

Defi ning a B-spline curve. A B-spline curve is defi ned by

• m + 1 control points, 

• the degree n, and

• the knot vector. 

Th e control points are now labeled d0 … dm to distinguish them from the Bézier control 
points. Th e control points are used to defi ne the overall shape of the curve. Th e degree 
(denoted by the symbol n) of a B-spline curve is defi ned as the degree of the Bézier 
curve segments that together form the entire B-spline curve. Note that for a B-spline 
curve all Bézier segments have the same degree n (Figure 8.17). 
Th e knot vector collects the “knots” (i.e., parameter values) where the diff erent 
Bézier curve segments are joined. Th e standard approach in CAD soft ware is to use 
uniformly spaced knots. Sometimes B-spline curves with uniform knots are referred 
to as uniform B-spline curves to distinguish them from nonuniform curves. Important 
are the two intuitive design parameters of a B-spline curve: the control points and the 
curve degree.
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• Maximum degree n = 7. Th e B-spline 
curve is a Bézier curve of degree 7. Because 
one segment is the minimum number 
achievable, we cannot further increase the 
degree of the B-spline curve. 
In general, a B-spline curve of degree n with 
m + 1 control points d0, d1, … dm consists of 
m + 1 – n Bézier curve segments of degree 
n. Th e maximum degree achievable is n = 
m, for which the B-spline curve is actually a 
Bézier curve to the same control polygon.
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Fig. 8.18 
Linear, quadratic, cubic, and maximum-
degree seven B-spline curve to the 
same control polygon with eight control 
points. Note that the B-spline curve of 
maximum degree is a Bézier curve.

Example: 
Sketching quadratic spline curves 
for given control polygons. Given a 
control polygon, we sketch a quadratic 
B-spline curve as follows. We simply 
mark the midpoints on the control 
polygon (Figure 8.19) and then sketch 
the quadratic Bézier curve segments 
(parabolic arcs).

Fig. 8.19 
B-spline and Bézier control points of a 
quadratic B-spline curve.

Example: 
Th e infl uence of the degree on a 
B-spline curve. Let us fi x a control 
polygon with eight control points and 
only vary the degree of the corresponding 
B-spline curve (Figure 8.18).
• Degree n = 1. A linear B-spline curve is 
simply the control polygon.
• Degree n = 2. A quadratic B-spline curve 
with eight control points consists of six 
quadratic Bézier curve segments.
• Degree n = 3. A cubic B-spline curve 
with eight control points consists of fi ve 
cubic Bézier curve segments.
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Fig. 8.21 
Open and closed B-spline curves. Note 
that a B-spline curve in open mode to 
a closed control polygon has a sharp 
corner at the coinciding fi rst and last 
control points.

Fig. 8.20 
Local control of B-spline curves.

Local control of B-spline curves. B-spline curves enjoy local control. Th is means 
that by changing the position of one single control point the shape of the curve is only 
modifi ed in a certain limited part of the curve (Figure 8.20). Recall that the shape of a 
Bézier curve depends on all control points. For a B-spline curve, this is diff erent. Only 
the curve segments in a certain infl uence zone around the modifi ed control point are 
changed. Th is is why we speak of “local control” of a B-spline curve via its control 
points. 

Open and closed B-spline curves. B-spline curves can be drawn in two diff erent 
modes: as an open curve having two endpoints or as one single smooth closed curve 
(Figure 8.21). An open B-spline curve interpolates the fi rst and last control points. 
A closed B-spline curve has a closed control polygon that is smoothed as a whole by 
the curve. 

It is important to understand the diff erence between the open and closed modes of 
a B-spline curve. If a B-spline curve of a closed control polygon is in open mode, the 
curve has two endpoints that coincide where the curve has a sharp corner (Figure 
8.21). A closed B-spline curve of degree n with m + 1 control points always consists 
of m + 1 Bézier curve segments, each of degree n. Th is is illustrated in Figure 8.22 for 
linear, quadratic, and cubic B-spline curves to the same control polygon with four 
control points. Th e maximum degree is n = 3. In general, n = m.



273

Fig. 8.22 
Closed B-spline curves of degrees 1, 2, 
and 3 to the same control polygon with 
four control points. The four Bézier 
curve segments of each B-spline curve 
are colored differently. Also shown is 
the Bézier control polygon.

Example: 
Bézier control points of cubic B-spline 
curves. For a closed cubic B-spline curve, 
we fi rst divide all edges of the control 
polygon into three equal parts. Th is can 
be seen as cutting off  the corners of the B-
spline control polygon. Th en, for each cut 
off  corner we insert the midpoint on the 
connecting line of the two newly inserted 

points adjacent to that corner (Figure 
8.23). Together, the points obtained in 
these two steps form the set of control 
points of the Bézier curve segments.
Th e modifi cations for an open cubic 
B-spline curve are as follows. No 
points are inserted on the fi rst and the 
last edge of the control polygon. Th e 

midpoints are inserted on the second 
and next-to-last edge, and all other 
edges are again split into three equal 
parts (Figure 8.23). All such obtained 
points together with the fi rst two and 
last two B-spline control points form 
the set of Bézier control points of an 
open cubic B-spline curve.

Fig. 8.23 
Bézier control points of closed and 
open cubic B-spline curves.
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Why are cubic B-spline curves so popular? If we look at a spline curve put together 
“manually” from several curve pieces (Figure 8.24), the human eye is able to detect 
kinks (because the curve tangents change abruptly) and curvature discontinuities 
(because the curvature changes abruptly). To obtain spline curves that are pleasant 
to the human eye, B-spline curves are constructed in such a way that the underlying 
mathematical principles guarantee that the Bézier curve segments are put together in 
the smoothest possible way. For cubic B-spline curves, we inherently achieve smooth 
tangents and smooth curvature at the knot points where the separate curve segments 
are joined. Th is is one reason cubic B-spline curves are very popular for design 
purposes. 

Why do we still want more? As we have a deeper understanding of B-spline curves 
and their use for freeform curve design, a legitimate question is why we still want 
more. Th e reason is rather simple. We have a fancy tool for drawing very complicated 
freeform curves that enjoy many beautiful properties, including local control. 
However, there is one major drawback.

With B-spline curves, we are not able to represent such simple curves as a circle, an 
ellipse, or a hyperbola. From the conic sections, only the parabola is a special B-spline 
curve (actually a Bézier curve). Because the conic sections are oft en used for design 
purposes, the material following examines an extension of B-spline curves. Th ese 
freeform curves are coined NURBS and allow us to draw a circle, an ellipse, and a 
hyperbola—and of course many other freeform curves. 

Fig. 8.24 
Tangent and curvature discontinuities 
of handmade spline curves.
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As stated previously, the acronym NURBS is an abbreviation of nonuniform rational B-
spline. We already know that NURBS curves are B-spline curves with a nonuniform knot 
vector. Th e NU of NURBS is actually a bit misleading because NURBS curves could 
also have a uniform knot vector. Th e term rational is the really new thing that comes with 
NURBS. Th e term rational comes from the mathematical description of these curves 
(Chapter 7); that is, standard B-spline curves are polynomial—a special case of “rational.” 

Th e really new thing about NURBS is that they have an additional shape parameter, the 
so-called weights. Th ese weights are associated with the control points and come into 
the game by the “rational” property of NURBS. Let’s derive a NURBS curve and its 
weights geometrically. We will see that a NURBS curve living in a space of dimension d is 
nothing more than the central projection of a regular B-spline curve that lives in a space of 
dimension d + 1.

Geometric derivation of NURBS curves. We start with m + 1 control points d0, d1, …, 
dm that we embed into the plane z = 1 (a plane parallel to the xy-plane one unit above) of 
a 3D Cartesian coordinate system. Th en we draw the connecting lines L0, L1, …, L m of 
the origin to the control points d0, d1, …, dm. If we now move the control points di on the 
lines Li to new positions di*, we generate the control polygon of a spatial B-spline curve c* 
(Figure 8.25).

Fig. 8.25 
A planar NURBS curve c is obtained 
as a central projection of a spatial B-
spline curve c*.

NURBS Curves
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Fig. 8.26 
Weights as shape parameters.

Finally, a central projection of the curve c* onto the plane z = 1 (with the origin as 
projection center) gives a planar NURBS curve c to the control points d0, d1, …, dm. 
Th us, we have a connection between B-spline curves and NURBS curves: a planar 
NURBS curve is a central projection of a spatial B-spline curve. In addition, a spatial 
NURBS curve is a central projection of B-spline curve lying in a 4D space.

Weights. Now that we know how to generate NURBS curves, we will discuss the 
weights. Th e weights wi associated with the control points di of a planar NURBS curve 
c are simply the z-coordinates of the control points di* of the associated spatial B-
spline curve c*. Th is is analogously true for NURBS curves that lie in spaces of higher 
dimensions. Let’s examine the infl uence of the weights on the curve shape (Figure 
8.26). Increasing the weight wi of a control point di drags the curve toward the control 
point, and decreasing the weight moves the curve away from that control point.

Th is behavior is intuitive, and thus the weights are a meaningful design parameter. 
From the geometric derivation, it immediately follows that changing the weight of 
one control point only has a local infl uence on the shape of the curve (i.e., modifying a 
weight actually means a displacement of the control point of the corresponding spatial 
B-spline curve). We also know that displacing a control point of a B-spline curve only 
has local infl uence on the overall curve shape.

Remark. Note that we only allow nonnegative weights to avoid points at infi nity in 
the NURBS curve. Such points at infi nity would result from the central projection of 
those curve points of the spatial B-spline curve that are contained in the plane z = 0.

B-spline curves are special NURBS curves. A B-spline curve is a special NURBS 
curve wherein all weights are equal. In the planar case, we have the following geometric 
interpretation. Equal weights mean that the control points of the associated spatial 
B-spline curve c* all have the same constant z-coordinate and are thus lying in a 
horizontal plane at height z = w (Figure 8.27). Th en the central projection of the 
spatial B-spline curve c* onto the plane at height z = 1 is really a similarity (a special 
affi  ne transformation) between c* and c.

uniform weights increasing weights in d1 decreasing weights in d1
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We know that B-spline curves enjoy the property of affi  ne invariance (because 
B-splines curves consist of Bézier curve segments), and thus the curve c is again a 
B-spline curve. Th us, we have a genuine NURBS curve only if we have at least one 
weight diff erent from the others. 

Design handles. From our derivation it is clear that every Bézier and every B-spline 
curve is a special NURBS curve. Th e following table summarizes the design handles 
we have for Bézier, B-spline, and NURBS curves.

Table 8.1 Design handles for freeform curves.

control points degree weights
Bézier ✓

B-spline ✓ ✓

NURBS ✓ ✓ ✓

Table 8.1 should be read in the following way. Th e symbol ✓ means that this design 
handle can be set by the user. For a Bézier curve, the user can only modify the control 
points because the degree follows from the number of control points and the weights 
are all equal to 1. For a B-spline curve, the user can set the control points and the 
degree but the weights are all equal to 1. Only for a true NURBS curve can the user 
employ all three design handles. NURBS curves inherit the useful properties of 
B-spline curves (such as local control and the convex hull property).

Fig. 8.27 
B-spline curves as special NURBS 
curves with equal weights.
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Conic sections as special NURBS curves. For the representation of conic sections 
as special NURBS curves (Figure 8.28), we use three control points d0, d1, and d2 
together with an appropriate choice of weights w0, w1, and w2. We obtain arcs of a 
parabola, hyperbola, ellipse, and circle according to the following table.

Table 8.2 Choice of weights for the representation of conic sections as special NURBS 
curves.

w0 w1 w2

Parabola 1 1 1
Hyperbola 1 > 1 1
Ellipse 1 < 1 1
Circle 1 sin(ϕ/2) 1

Th us, we have reached our goal of one unifying curve scheme that can be used to 
represent the most complicated freeform curves and the simplest basic curves. It 
is little wonder NURBS curves quickly became the industrial standard for curve 
representation in any CAD or design soft ware.

parabolic arc hyperbolic arc elliptical arc circular arc

d
0 d

2

d
1

�

Fig. 8.28 
Conic sections as special NURBS 
curves.



Subdivision curves are generated by iteratively refi ning a given coarse control polygon 
until we obtain in the limit a smooth curve. We fi rst encountered subdivision in 
connection with de Casteljau’s algorithm for the generation of a Bézier curve. Recall 
that by the subdivision property we can iteratively refi ne the control polygon to derive 
a sequence of polygons that rapidly converges toward the Bézier curve. Th is can be 
seen as a “corner-cutting” process because at every iteration we cut away the corners of 
the current polygon. 

Subdivision Curves
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History:

Corner cutting. Th e idea of using corner cutting to generate 

smooth curves is actually older than the algorithm of de Casteljau 

and goes back to G. de Rahm. He introduced in 1947 the fi rst 

“trisection” subdivision algorithm for curves that performs corner 

cutting at 1/3 and 2/3. Later, he described a subdivision algorithm 

that performs corner cutting at 1/4 and 3/4 (Figure 8.29). 

G. de Rahm found his results before computer graphics was 

invented. Th us, when G. Chaikin reinvented in 1974 the 

subdivision algorithm that performs corner cutting at 1/4 and 

3/4 for high-speed generation of curves on computer screens 

(without knowing de Rahms results) the algorithm found 

widespread acceptance and got stuck with Chaikin’s name.

What is a subdivision curve? A subdivision curve is a polygon defi ned by two 
entities: the control points and the subdivision (or refi nement) level. Th us, if we want 
to specify exactly what curve we mean we speak of a “subdivision curve at level k given 
by its control points.” In this section, we examine approximating and interpolating 
subdivision algorithms (subdivision surfaces are described in Chapter 11).

We begin with Chaikin’s algorithm for the generation of quadratic B-splines. Th e 
Lane-Riesenfeld algorithm is a generalization of Chaikin’s algorithm that produces 
in the limit a uniform B-spline curve of degree n. Finally, we discuss the four-point 
scheme (which produces interpolating subdivision curves).

Fig. 8.29 
Corner cutting according to de Rahm 
and Chaikin.
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Fig. 8.30 
Chaikin’s subdivision algorithm for 
open and closed control polygons

Chaikin’s algorithm. Given is a coarse control polygon as shown in Figure 8.29. In 
every subdivision step, we perform corner cutting. For that purpose, we subdivide 
the edges of the current control polygon at 1/4 and 3/4 using linear interpolation 
for parameters t = 1/4 and t = 3/4. Th ese new points are connected to form a new 
polygon that already better resembles the shape of the fi nal curve (Figure 8.30).

We iterate the procedure and thereby produce a sequence of polygons that for an 
infi nite number of subdivision steps produces a uniform quadratic B-spline curve with 
the initial polygon as control polygon. Chaikin’s algorithm produces a subdivision 
curve that approximates the given polygon. For an open control polygon, we have to 
modify Chaikin’s algorithm for the fi rst and last polygon edge (Figure 8.30). Instead of 
subdividing it twice, we subdivide these two edges just once at their midpoints. 
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Lane-Riesenfeld algorithm. Chaikin’s corner-cutting algorithm can also be seen as 
a split-and-average procedure (Figure 8.31). In each iteration step, we fi rst split the 
current polygon by inserting the edge midpoints to obtain a new polygon. Th en in the 
averaging step we compute the midpoints of all edges of the new polygon. Connecting 
these vertices reveals the polygon for the next subdivision step.

In 1980, Lane and Riesenfeld realized that by generalizing this procedure from “split 
and 1 × average” to “split and 2 × average” one generates a subdivision curve that in 
the limit approaches a uniform cubic B-spline curve (Figure 8.32). In general, the 
subdivision strategy of  “split and n × average” produces in the limit a uniform 
B-spline curve of degree n + 1 (a useful result). 

split 1 x average split 1 x average

step 2

step 1

split 1 x average 2 x average

Fig. 8.32 
Lane-Riesenfeld’s subdivision of “split 
and 2 × average” produces in the limit 
a uniform cubic B-spline curve.

step 1 step 2

Fig. 8.31 
Chaikin’s subdivision as “split and 1 × 
average.” 
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Fig. 8.34 
The generalized four-point scheme of 
Dyn et al. Note that not all values of 
the weight factor w produce a smooth 
limit curve.

Fig. 8.33 
The four-point scheme of Dubuc.

pi
pi+1

pi+2pi-1

new

pi

step 1

Th e four-point scheme. Given is again a set of points from which we generate a 
sequence of polygons that in the limit produces a smooth curve. Now the curve is 
required to interpolate the given points. Dubuc (1986) fi rst showed that by computing 
a new curve point pi

new from four old curve points pi-1, pi, pi+1, and pi+2 we can generate a 
smooth interpolating subdivision curve (Figure 8.33).

Formally, the new point is computed as

pi
new = –1/16 pi-1 + 9/16 pi + 9/16 pi+1 – 1/16 pi+2.

Note that the coeffi  cients sum to 1 via (–1 + 9 + 9 – 1)/16 = 1, an important property 
for a scheme to be geometrically meaningful. Of course, Dubuc did not simply 
guess at these coeffi  cients but derived them mathematically using the unique cubic 
interpolating curve of the four points. One year later, Dyn et al. (1987) generalized the 
four-point scheme as follows.

pi
new = –w∙pi-1 + (1/2 + w)∙pi + (1/2 + w)∙pi+1 – w∙pi+2.

For w = 1/16 we have the original four-point scheme. Note that not all values of w will 
produce a smooth limit curve (Figure 8.34).





Chapter 9
Traditional Surface 
Classes
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Traditional surface classes are largely based on a simple “kinematic” generation. 
Th ey are swept by a profi le curve undergoing a smooth motion. For example, we 
obtain extrusion surfaces (see Chapter 1) by translating a curve along a straight line, 
rotational surfaces by rotating a curve (e.g., a B-spline curve) about a straight line, and 
helical surfaces by applying a smooth helical motion to a curve (see Figure 9.1.).

Translational surfaces are generated by moving a profi le curve in an appropriate way 
along another curve, whereas ruled surfaces can be generated by moving a straight line. 
Because ruled surfaces carry a family of straight lines, they can be built more easily and 
can be found in such entities as concrete architecture and timber frame construction. 
We study various remarkable special cases, including ruled surfaces with two sets of 
straight lines commonly used as thin shells in architecture. 

Traditional Surface 
Classes

Fig. 9.1
(top left) Translating a curve c along 
a straight line results in an extrusion 
surface,
(top right) whereas translating this 
curve along another curve d generates a 
translational surface.
(bottom left) A rotational surface is 
created by rotating c about an axis A,
(bottom right) whereas a ruled surface can 
be generated by moving a straight line.

 f l l f
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Rotational surfaces (surfaces of revolution) are generated by rotating a (planar or 
spatial) curve c about an axis A (Figure 9.2). Every point p of the generating curve c 
describes a circle cp whose supporting plane Sc lies orthogonally to the axis A. Th us, 
every rotational surface carries a set of circles in parallel planes—which we call parallel 
circles. 

Planes M that contain the axis A of the rotational surface intersect the surface along 
congruent planar curves m, the meridian curves. Th e supporting planes Sc of the 
parallel circles cp and the meridian planes M of the meridian curves m are orthogonal. 
Th is implies that the meridian curves and the parallel circles also intersect at right 
angles. Th ey form a net of orthogonal curves on the surface. 

Th e principle of the generation of rotational surfaces is a very simple one. Th us, they 
have been used in art, design, and architecture for ages (Figure 9.3). 

Rotational Surfaces

Fig. 9.3
Rotational surfaces are found widely in 
architecture. 
(a) The Church of the Transfi guration 
of the Savior (1714) in Kizhi, Russia.

(a)
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Fig. 9.3
Rotational surfaces are found widely in 
architecture. 
(b) The Royal Pavilion (1815–1823) in 
Brighton, UK, by John Nash.
(c) 30 St Mary Axe (1997–2004) in 
London by Foster + Partners.
(d) The Torre Agbar (2000–2005) in 
Barcelona by Jean Nouvel.

(b)

(d)(c)
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Th e tangent plane Tp at a point p of a rotational surface can be defi ned by the tangent tc 
of the parallel circle cp and the tangent tm of the meridian curve m. In every point p, the 
surface normal np has to be orthogonal to the circle tangent tc. Th us, np is contained in 
the meridian plane M and intersects the axis A (Figure 9.4). Th e intersection point of 
the surface normal and the rotational axis A is the center of a sphere that contains the 
surface point. Th e sphere and the rotational surface are tangent along a parallel circle. 

Meridian curves better indicate the fi nal shape of the rotational surface than arbitrary 
generating curves. Th us, it is recommended that surfaces of revolution be generated 
using planar meridian curves rather than arbitrary spatial curves. Meridian curves are 
symmetric to the rotational axis. Each of the symmetric parts, the half meridian curves, 
or the entire meridian curve can be used to generate the same rotational surface. Using 
a half meridian, we have to rotate with the full angle of 360 degrees—whereas using 
the entire meridian curve we have to apply a 180-degree rotation. 

If the meridian curves intersect the rotational axis A at an angle diff erent from a right 
angle, we obtain a singular point on the rotational surface (Figure 9.5). Th ese singular 
points can become very critical in the subsequent design process. Computer-aided 
design (CAD) systems may not cope with this problem. 

Fig. 9.5
Meridian curves that intersect the 
rotational axis in an angle different 
from 90 degrees generate rotational 
surfaces with singular points.

Fig. 9.4
All surface normals of a rotational 
surface intersect the rotational axis.
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Mathematical description. To fi nd a parametric representation of a rotational surface, 
we simply have to apply a continuous rotation about an axis to the generating curve c. 
According to Chapter 6, on spatial transformations, a rotation about the z-axis is given 
by 

x1 = x·cos u – y·sin u,

y1 = x·sin u + y·cos u,

z1 = z.

Substituting x, y, and z with the parametric representation of a spatial curve c(v) = 
(x(v), y(v), z(v)) we obtain 

x(u,v) = x(v)·cos u – y(v)·sin u,

y(u,v) = x(v)·sin u + y(v)·cos u,

z(u,v) = z(v).

If the rotational angle u assumes values in the range 0 ≤ u ≤ 2·π (using the radian 
measure), the generating curve completes a full rotation. Using a meridian curve m(v) 
= (x(v),0,z(v)) in the xz-plane as the generating curve, the parametric representation 
simplifi es to

x(u,v) = x(v)·cos u, 

y(u,v) = x(v)·sin u, 

z(u,v) = z(v).

We call this the standard representation of a rotational surface.

Discrete rotational surfaces. Smooth rotational surfaces can be frequently found in 
modern design. However, they are sometimes not suitable for putting architectural 
ideas into practice. When constructing actual physical objects, we oft en need a discrete 
model that suffi  ciently approximates the smooth surfaces we have designed with CAD 
soft ware. Th us, we have to replace smooth surfaces (Figure 9.6a) with appropriate 
planar faces that can be manufactured in a more convenient way. 

Fig. 9.6
By substituting the meridian curve 
with a polyline, we obtain a surface 
formed by conical and cylindrical strips. 
If we also discretize the rotation, we 
generate a polyhedral surface (discrete 
rotational surface).

(a) (b) (c)
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To generate a discrete rotational surface, we start with a proper polygonal 
approximation d of the generating curve c. Using this polyline d as the generating 
curve, we obtain a rotational surface consisting of parts of rotational cylinders and 
cones (Figure 9.6b). Th is surface can be used as a suitable replacement for the original 
surface, whose basic elements can be developed (see Chapter 15) into the plane.

To generate a surface’s substitute with planar facets, we rotate the polyline d in a 
discrete way k times about the rotational axis A with an angle of 360°/k. Connecting 
corresponding points (for example, a1,a2 and b1,b2) on subsequent positions (d1,d2) of 
the polyline, we obtain planar facets (Figure 9.6c) because all of these connecting lines 
are parallel. 

To summarize the process of discretization, we have to substitute the generating curve 
with a polyline and then apply a discrete version of the rotational motion onto the 
polyline. A similar process is used for all surface types generated by moving a profi le 
curve.

Here we have a simple but powerful tool for approximating smooth surfaces by 
their discrete analogies. However, it should be noted that we will not always achieve 
planarity of faces in the discrete model. Th e more we refi ne the generating polyline 
and the discrete transformation the better the discrete version will approximate a 
smooth surface (Figure 9.7).

Special rotational surfaces. Special forms of rotational surfaces are seen widely 
in architecture and design. Spheres, cylinders, cones, and tori are well-known 
representatives of this surface class. Th ey are generated by rotating a circle or a straight 
line about an axis. Depending on the mutual position of the circle or the straight line 
to the rotational axis, we obtain the following surfaces (Figures 9.8 and 9.9).

Fig. 9.8
Cylinders, cones, and spheres are 
special rotational surfaces.

Fig. 9.7
Enlarging the number of vertices in the 
generating polyline and the number of 
its positions leads us closer and closer 
to a smooth surface.
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• A cylinder is generated when we rotate a straight line parallel to the axis.

• A straight line that intersects the rotational axis A generates a cone when we 
rotate it about A. Th e intersection point becomes the apex v of the cone.

• Rotating a circle c about any of its diameters produces a sphere.

• We generate a torus by rotating a circle c about an arbitrary line. Th is straight 
line has to lie in the supporting plane of the circle c. Depending on the 
number of intersection points of c and the rotational axis, we obtain three 
diff erent types of tori. 

Examples where parts of tori were used in architecture are shown in Figures 9.9b and 
9.9c.

Fig. 9.9
(a) Three different types of tori.
(b) The shape of the TGV railway 
station (1998–2001) in Avignon was 
obtained by the intersection of two ring 
tori (image courtesy of RFR).
(c) An industrial building in Marche-en-
Famenne (opened 1995) by Samyn and 
Partners features a part of a torus. We 
can nicely see the parallel and meridian 
circles of the torus.

horn torus s = r spindle torus s < rring torus s > r

(b)

(c)

(a)
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*Example: 
Villarceau’s circles of a torus. Among 
the three torus types the ring torus has 
a remarkable property. In addition to 
the meridian and the parallel circles, a 
ring torus carries two other families of 
circles. Each double tangent plane (i.e., a 
plane tangent to the torus at exactly two 
diff erent points) intersects the surface 
along two circles. Th ey are named 
Villarceau’s circles in honor of their 
discoverer the French mathematician 
and engineer Yvon Villarceau (1813–
1883). Th us, every point p on a ring torus 
can have four circles drawn through it 
(Figure 9.10). 

Example: 
Parametric representation of a torus. A 
circle c in the xz-plane with radius r and 
center on the x-axis is rotated about the 
z-axis. During this rotation, the center 
of c runs on a diff erent circle with radius 
s. Th en the circle c can be parametrized 
with c(v) = (s + r · cos v, 0, r · sin v) and 
we obtain the parametric representation 
of the torus as
x(u,v) = (s + r · cos v)·cos u,
y(u,v) = (s + r · cos v)·sin u, 
z(u,v) = r · sin v.
Th ereby, u,v are chosen in [0,2π]. We are 
able to distinguish among three diff erent 
torus types by examining the relative 
sizes of r and s (Figure 9.9a).

• s > r corresponds to the ring torus.
• s = r corresponds to a horn torus.
• s < r corresponds to a self-intersecting 

spindle torus.

Fig. 9.10
Through every point p of a ring torus 
there pass four different circles lying 
on the torus. Two of them are called 
Villarceau’s circles.
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In all of the previously cited cases the generating straight line or circle is a meridian 
curve of the rotational surface. Now we will study rotational surfaces with arbitrary 
generating circles and straight lines.

We start with a circle c whose rotational axis b intersects the axis A in the point m. 
According to the right-angled triangle with vertices p, m, and n, every point p lying on 
the circle c has constant distance d = dist(p,m) = √⎯r⎯2 ⎯ ⎯+⎯ ⎯k⎯2 from the intersection point 
m (Figure 9.11a). Hence, the circle c sweeps a segment of a sphere confi ned by two 
parallel circles.

Using a circle c whose axis is skew to the rotational axis, we obtain rotational surfaces 
that contain at least three families of circles. We have the congruent family which 
comes from the generating circle c and the family of circles that lie in supporting planes 
normal to the rotational axis (Figure 9.11b). 

Fig. 9.11
Using a circle in arbitrary position as a 
generating curve, we obtain
(a) a segment of a sphere if the circle 
axis b intersects the rotational axis A 
or
(b) a general rotational surface if the 
circle axis b is skew to the rotational 
axis A. These rotational surfaces carry 
at least three families of circles.
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We can also mirror the generating circle c about an arbitrary meridian plane P to 
obtain another circle d, which also lies on the surface. By rotating d we obtain the third 
family of circles. Many of these surfaces carry two additional systems of circles that 
are analogues of the Villarceau’s circles of the ring torus. Th ey can also be found by 
intersecting the surfaces with double tangent planes (Figure 9.12). 

A generating straight line g, skew to the rotational axis A, sweeps a rotational surface 
called a one-sheet rotational hyperboloid (Figure 9.13). When we refl ect the generator 
g about an arbitrary meridian plane, we obtain another line h that is also part of the 
one-sheet rotational hyperboloid. Th us, the one-sheet rotational hyperboloid contains 
two sets of lines.

Fig. 9.13
A one-sheet rotational hyperboloid 
contains two sets of lines. The meridian 
curves are hyperbolas.

Fig. 9.12
A rotational surface that carries fi ve 
different systems of circles.
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Th e one-sheet rotational hyperboloid is a special case of the ruled surfaces examined 
at the end of this section. Without a proof, we note that a one-sheet rotational 
hyperboloid can also be generated by rotating a hyperbola about its minor axis. Parts 
of one-sheet rotational hyperboloids are commonly used in architecture and design 
(Figure 9.14).

Fig. 9.14
One-sheet rotational hyperboloids in 
architecture and design.
(a) The world’s fi rst hyperboloid water 
tower (1896) in Nizhny Novgorod, 
Russia, by Vladimir Shukhov.
(b) The Aspire Tower (2005–2007) in 
Doha, Qatar, by Hadi Simaan is a 318-
meter-high structure (image courtesy
of Craig and Steph Tanner).
(c) A cathedral (opened 1970) in 
Brasilia by Oscar Niemeyer.
(d) The Port Tower in Kobe, Japan.
(e) A structure in the Mediatheque 
(1998–2001) in Sendai, Japan, by Toyo 
Ito.

(a) (b)

(c) (d) (e)



299

Rotational quadrics. Th e one-sheet rotational hyperboloid is a rotational surface 
resulting from a conic section being rotated about one of its axes. We subsume all 
rotational surfaces generated by rotating a conic section about one of its axes under the 
term rotational quadrics (Figure 9.15). 

History: 

Th e interesting fact that rotating a hyperbola or a straight 

line g skew to the rotational axis generates the same surface 

was known to Christopher Wren (1632–1723), the famous 

English architect and mathematician who designed and 

oversaw the contruction of St. Paul’s Cathedral in London. 

Fig. 9.15
Rotating conic sections about their 
axes results in rotational quadrics. In 
addition to the one-sheet rotational 
hyperboloid, we distinguish among 
two-sheet rotational hyperboloids, 
prolate rotational ellipsoids, oblate 
rotational ellipsoids, and rotational 
paraboloids.
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In addition to the one-sheet rotational hyperboloid, we obtain the two-sheet rotational 
hyperboloid by rotating a hyperbola about its major axis. Note that only the one-sheet 
hyperboloid contains generating lines. Due to the fact that an ellipse has two diff erent 
symmetry axes, we fi nd two types of rotational ellipsoids: the oblate rotational ellipsoid 
(generated by rotating the ellipse about its minor axis) and the prolate rotational 
ellipsoid.

In the second case we have to rotate the generating meridian ellipse about its major 
axis. A rotational paraboloid arises by rotating a parabola about its axis. Rotational 
quadrics are useful and important basic elements of many design processes. Th us, we 
summarize their standard equations in Cartesian coordinates as follows.

• Oblate rotational ellipsoid:
x2/a2 + y2/a2 + z2/c2 = 1 (a2 > c2)

• Prolate rotational ellipsoid:
x2/a2 + y2/a2 + z2/c2 = 1 (a2 < c2)

• Two-sheet rotational hyperboloid:
x2/a2 + y2/a2 – z2/c2 = –1 

• One-sheet rotational hyperboloid:
x2/a2 + y2/a2 – z2/c2 = +1 

• Rotational paraboloid:
z = a·(x2 + y2)

Note that the equations of the diff erent types of rotational ellipsoids and hyperboloids 
only diff er in some signs. All rotational quadrics are defi ned by quadratic functions. 
Th us, the intersection with an arbitrary plane generally results in a conic section—
under the assumption that there exists an intersection curve at all (Figure 9.16).
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Both types of ellipsoids are intersected solely along ellipses, whereas paraboloids are 
intersected along ellipses and parabolas. On the other hand, hyperboloids carry all 
types of conic sections, ellipses, parabolas, and hyperbolas. Note that the intersection 
of a rotational one-sheet hyperboloid with a tangent plane is a pair of straight lines, 
the generating lines.

When we apply independent scalings with fi xed coordinate planes to rotational 
quadrics we obtain more general types of surfaces. Th ey belong to the class of regular 
quadrics (Figure 9.17). In addition to these quadrics (which can be derived from 
rotational quadrics), we have another type: the hyperbolic paraboloid (examined 
in the following section on translational surfaces). Th e type of paraboloid obtained 
from a rotational paraboloid by an independent scaling (Figure 9.17c) is referred to as 
elliptic paraboloid. 

Every quadric type possess at least two planes of symmetry. Hyperboloids and 
ellipsoids even have three symmetry planes. Th e intersection point m is a symmetry 
center of the surface and is therefore called the midpoint. In addition to noting the 
large extent of symmetry, when cutting a quadric with parallel planes we obtain similar 
intersection curves. Th us, we can sweep a quadric with a set of similar conic sections. 

Fig. 9.17
(a) General ellipsoids,
(b) hyperboloids and
(c) elliptic paraboloids are regular 
quadrics. They can be generated from 
rotational quadrics by applying an 
independent scaling.

( )
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By refl ecting such a set of conics about a symmetry plane of the surface, we can 
generate a network of similar surface curves (Figure 9.18). Due to the fact that conic 
sections have traditionally been favored and are well known geometric elements, we 
fi nd quadrics (and especially rotational quadrics) in architectural design (Figure 9.19). 

During independent scaling, the planar surface curves (conics) are mapped into conic 
sections of the same type—whereas the circles in planes orthogonal to the rotational 
axis are mapped into ellipses. Th us, all quadrics that can be derived from rotational 
quadrics carry ellipses. However, they carry many more ellipses than just the images 
of the parallel circles. Among all of these ellipses we may even fi nd circles. In the 
following we show how to fi nd these circles.

Fig. 9.19
Parts of ellipsoids in architecture.
(a) The Reichstag cupola (opened 
1999) in Berlin by Norman Foster has 
the shape of half a rotational ellipsoid 
(images courtesy of Waagner-Biro 
Stahlbau AG).

(b) The Cornell Medical College 
(opened 2004) in Qatar by Arata 
Isozaki, Perkins & Will.

Fig. 9.18
Similar conic sections form a net of 
surface curves on a quadric.

(a)

(b)

(a)
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Intersection curves of quadrics. In Chapter 7 we studied the basics of intersection 
curves. As a special phenomenon, we learned about double points—which appear 
when a surface S1 touches a surface S2 in a point p. Figure 9.20 illustrates this fact again 
by means of two rotational quadrics. Th e oblate rotational ellipsoid E touches the one-
sheet rotational hyperboloid H in two points p1 and p2. As we can see in Figure 9.20, 
the intersection curve consists of two distinct planar curves. Because they are surface 
curves of the ellipsoid E, these curves are ellipses.

For design purposes, it can be advantageous to fi nd planar intersection curves. Th e 
transition from one surface to the other can then be realized more eff ectively. As a 
generalization of the example in Figure 9.20, we can use the following criterion to 
produce planar intersection curves when designing with quadrics.

If two quadrics touch each other in two points, the complete intersection curve 
consists of two planar curves (in general, conic sections).

Cylinders and cones can be considered special (nonregular) quadrics, and therefore 
the statement also holds for cones and cylinders. An application of this geometric fact 
is illustrated in Figure 9.21 by means of the intersection curve of an elliptic paraboloid 
and a rotational cone. If we apply the result of this application to the intersection of a 
quadric and a sphere, we obtain a pair of planar intersection curves. Because they have 
to lie on the sphere, they must be circles. Th is is the general idea of the method for 
fi nding circles on quadrics. 

Fig. 9.21
A rotational cone touching an elliptic 
paraboloid in two points intersects the 
paraboloid along two planar curves.

Fig. 9.20
Two rotational quadrics with planar 
intersection curves.



304

For an ellipsoid, this can easily be done by intersecting it with a sphere centered in 
the midpoint of the ellipsoid and touching it in two points (Figure 9.22). Th ese 
points of tangency are vertices of the ellipsoid (they lie in two symmetry planes). Th e 
intersection curve consists of two circles c1 and c2 in planes P1 and P2, respectively.

Any intersection curve of the ellipsoid with a plane parallel to P1 (or P2) is similar to c1 
(or c2) and is thus also a circle. Hence, a general ellipsoid carries two families of circles—
whereas a rotational ellipsoid contains only the system of parallel circles. In a similar way, 
we fi nd circles on general hyperboloids and elliptic paraboloids (Figure 9.23). 

Fig. 9.23
Quadrics carrying two sets of circles.
(a) Elliptic paraboloid.
(b) One-sheet hyperboloid.

Fig. 9.22
A sphere and a concentric ellipsoid that 
touch each other in two points have 
two circles in common.

(a)

(b)
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Assume two curves k and l intersecting in a single point, the origin o. Translating the 
profi le curve k along the path curve l, we generate a translational surface (Figure 9.24a). 
Th us, a translational surface contains a set of curves kp that are congruent with the 
profi le curve k. Each of the profi le curves kp intersects the path curve l in a point p.

We obtain a common point x of the surface curve kp by translating a point q of the 
profi le curve k with the vector p. Th is point x of the curve kp can also be obtained by 
adding the vector q to the point p of the path curve l. When we add the vector q to all 
points of the path curve l, we obtain the surface curve lq—which is congruent with the 
path curve l (Figure 9.24b). Th us, we see that we can change the roles of profi le and 
path curves to generate the same translational surface. 

As another consequence, to obtain an arbitrary point x on the translational surface we 
simply have to add two position vectors p and q which are defi ned by the points of the 
generating curves k and l. In mathematical notation, the curves k and l can be captured 
by parametric representations k(u) and l(v) with parameters u and v. Th us, we are able 
to express each point x of a translational surface as

x(u,v) = k(u) + l(v).        (T)

Translational Surfaces

Fig. 9.24
(a) Translating a profi le curve k along 
another (path) curve l, we obtain a 
translational surface.
(b) Translating the path curve along 
the profi le curve generates the same 
translational surface.
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Further, the tangent plane at a point x is spanned by the respective tangents tk and tl of 
the two generating curves. Along a parameter curve k(u) = kx, the tangents of the other 
family of parameter lines are parallel. Th ey build a cylinder with profi le curve kx. Th is 
cylinder is tangent to the translational surface along the curve kx (see Figure 9.25). Due 
to the fact that the generating curves can change their roles, the same is true for the 
parameter curve lx.

Th e straightforward generation of translational surfaces by simply translating a curve 
along another curve, and the fact that they carry two sets of congruent parameter 
curves, predestine them for design and building processes. Th us, we fi nd many 
interesting examples of built objects that contain translational surfaces (Figure 9.26).

Fig. 9.26 
Translational surfaces are commonly 
used elements in architectural design.
(a) The Eso Hotel (1998-2002) atop 
Cerro Paranal by Auer+Weber.

(b) The Japanese Pavilion at Expo 2000 
in Germany by Shigeru Ban and Frei 
Otto.
 

Fig. 9.25
All tangents along a generating curve 
envelope a cylinder tangent to the 
translational surface.

(a) (b)



Instead of smooth curves, we could also use polylines as generating curves. 
In analogy to the discrete rotational surfaces, we obtain discrete translational 
surfaces with planar faces (parallelograms) that are a suitable basis for steel/glass 
construction (Figure 9.27). 

Special translational surfaces. Simple representatives of the class of translational 
surfaces are the cylinders. For these, one of the generating curves is a straight line (see 
Figure 9.1). Planar curves that lie in orthogonal planes are frequently used for the 
generation of translational surfaces. Th ey off er a wide range of interesting possibilities 
while being easy to handle.

Fig. 9.27
(a) Approximation of a translational 
surface using polylines as generating 
curves. 
(b) The Glass dome of the Hippo 
House (1996) at the Berlin Zoo by 
J. Gribl (image courtesy of Schlaich 
Bergermann & Partners).

(a)

(b)
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Elliptic paraboloids. As we have seen, rotational paraboloids are special translational 
surfaces. Th e application of an independent scaling on a rotational paraboloid results 
in an elliptic paraboloid. Th e two congruent profi le parabolas in orthogonal planes are 
mapped into two parabolas with parallel axes that are no longer congruent. However, 
they can be used to generate the scaled rotational paraboloid by translating one 
parabola along the other.

Th e parabolas are open to the same side, and their supporting planes are orthogonal. 
As an interesting property, we note that all non-singular planar intersection curves 
are parabolas or ellipses. Moreover, the entire surface only contains elliptical points. 
Th erefore, this paraboloid is called an elliptic paraboloid. It possesses two symmetry 
planes that intersect in the axis of the elliptic paraboloid.

Fig. 9.28
The generation of a rotational 
paraboloid as a translational surface.

Example: 
A rotational paraboloid generated as 
translational surface. In the section 
on rotational surfaces, we derived the 
equation of a rotational paraboloid as z 
= a·(x2 + y2). Th e surface is generated by 
rotating the parabola z = a·x2 about the 
z-axis of the coordinate system. Now we 
introduce parameters u = x and v = y and 

obtain the parametric representation of 
the paraboloid as 
(x,y,z) = (u,v,a·u2 + a·v2) = (u,0,a·u2) + 
(0,v,a·v2). 
Th is is precisely an instance of Equation 
(T), showing that the surface is generated 
by translating the parabola k(u) = 
(u,0,a·u2) of the xz-plane along the 

parabola l(v) = (0,v, a·v2) of the yz-plane. 
Th us, a rotational paraboloid can also be 
generated as a translational surface for 
which we use congruent parabolas in 
orthogonal planes as generating curves 
(Figure 9.28). Note that all of these 
parabolas are opened to the same side.
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Th e direction of this axis is parallel to the supporting planes of the generating 
parabolas, and the intersection point of the axis with the surface is called the vertex v 
(Figure 9.29). Th e tangent plane in the vertex is orthogonal to the axis. Th erefore, the 
axis is the surface normal in the vertex. 

Th e intersection curve of an elliptic paraboloid and a plane is a parabola if the plane 
is parallel to the axis of the paraboloid. Otherwise, a planar intersection curve is an 
ellipse—provided the plane intersects the surface at all (Figure 9.30).

Hyperbolic paraboloid. If we refl ect one of the generating parabolas about its vertex 
tangent, we obtain another type of translational surface that also carries two sets of 
congruent parabolas (Figure 9.31). Th is surface is called a hyperbolic paraboloid. Just as 
a remark we mention that both types of paraboloids belong to the class of quadrics we 
encountered in the section on rotational surfaces. Whereas the elliptic paraboloid can 
be generated from a rotational paraboloid by applying an independent scaling, this is 
not true for the hyperbolic paraboloid. 

 
      

     

 
      

     
    

         
        

      
   



310

A hyperbolic paraboloid carries exclusively hyperbolic points. In other words, every 
part of this surface is saddle shaped. Analogously to the elliptic case, the intersection 
line of the two symmetry planes is the axis of the hyperbolic paraboloid (Figure 9.31). 
Th e vertex is the intersection point of the axis with the surface, and the tangent plane 
in the vertex is orthogonal to the axis. Studying the planar intersection curves, we have 
to distinguish among three diff erent cases (Figure 9.32).

• In analogy to the elliptic paraboloid, planes parallel to the axis intersect the 
surface along parabolas.

• Tangent planes cut out two lines.

• All other planes intersect along hyperbolas.

Th e fact that every tangent plane intersects the surface along a pair of diff erent lines 
implies that the hyperbolic paraboloid carries two sets of lines. Th us, the hyperbolic 
paraboloid is another example of a ruled surface. As a translational surface with simple 
profi le curves (which can also be generated by moving a straight line), the hyperbolic 
paraboloid has always been an important basic shape for architectural design. Due 
to the fact that this surface is oft en used, the name of the hyperbolic paraboloid is 
sometimes shortened to HP surface.

Although it is possible to generate paraboloids with an arbitrary axis, we suggest using 
only paraboloids with vertical axes—to take advantage of the positive static properties 
of this assembly. 

Fig. 9.32
Hyperbolic paraboloids are intersected 
by planes along parabolas, hyperbolas, 
or a pair of lines. There are no ellipses 
on a hyperbolic paraboloid.

Fig. 9.31
A hyperbolic paraboloid is generated 
by translating a parabola along another 
parabola. Both generating parabolas 
have to be open to different sides. The 
axis of a hyperbolic paraboloid is the 
intersection line of the two symmetry 
planes.

Next Page 
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Cylinders, cones, one-sheet hyperboloids, and hyperbolic paraboloids are surfaces that 
carry families of straight lines. Th us, they could also be generated by moving a straight 
line. 

In the following we study the class of all surfaces generated by a moving straight line. 
Th ese surfaces are called ruled surfaces. By defi nition, they contain a continuous family of 
straight lines called generators or rulings (Figure 9.33). We will study several possibilities 
for defi ning the motion of a line generating a ruled surface.

Each of these approaches has advantages, but some of them will restrict the diversity of 
ruled surface types. Note that from the geometric point of view ruled surfaces always 
extend to infi nity because the generating straight lines extend to infi nity. For practical 
reasons, we use in this section straight line segments that generate only fi nite parts of 
ruled surfaces.

Ruled Surfaces

Fig. 9.33
Ruled surfaces in architecture.
(a) The New State Gallery (1977–
1983) in Stuttgart by James Stirling.
(b) The Planai skiterminal (2006) by 
Hofrichter-Ritter (image courtesy of 
Hofrichter-Ritter Architekten).

(a) (b)

Previous Page 
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Ruled surfaces by moving a straight line along a directrix curve. We start with a 
curve c1, called directrix curve, and move one point of a straight line (segment) g along 
this curve. A single point does not yet defi ne the position of a straight line. We also 
need to prescribe its direction. Th e direction varies continuously when moving along c1 

(Figure 9.34).

Assume that c(u) is a parametric representation of the directrix curve c1 and d(u) 
describes the continuously changing direction vector of the moving straight line 
segment. Th en we calculate the position of an arbitrary point x of the generated 
ruled surface by adding the vectors c(u) and v · d(u). Th us, we obtain a parametric 
representation of ruled surfaces with

x(u,v) = c(u) + v⋅d(u).

As a special case, we obtain cylinders when using a constant direction d. 

Fig. 9.35
(a) Conoids can be generated by 
moving a straight line segment along a 
linear directrix c1.

Fig. 9.34
Moving a point of a straight line 
segment along a curve c1 and changing 
its direction simultaneously, we 
generate a ruled surface.

(b)

(c) The Japanese Art and Technology 
Center (opened 1995) in Kraków, 
Poland, by Arata Isozaki.

(b) The Ysios Winery (1998–2001) 
in Laguardia, Spain, by Santiago 
Calatrava.
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Example: 
Conoid. We use a straight line as directrix 
c1 and a generator g, which intersects c1 
at a right angle. Allowing only rotations 
about the directrix, we generate a special 
type of conoid (Figure 9.35). Note that 
we will study a more general approach to 
conoids at the end of this section. Using 
the z-axis as directrix c1, its parametric 
representation may be chosen as c(u) =
(0,0,u). Because the generators g shall be 
orthogonal to z, their direction vectors 
d(u) have a vanishing z-coordinate. 
We write them as d(u) = (cos(f(u)), 
sin(g(u)), 0). Here, f(u) and g(u) are 
functions of the parameter value (height) 

u along the directrix. Th us, a parametric 
representation of the generated ruled 
surfaces is given by 
x(u,v) = v·cos(f(u)),
y(u,v) = v·sin(g(u)),
z(u,v) = u.
Figure 9.36 illustrates some of these 
surfaces. For constant functions f(u) 
and g(u), we obtain a parameterization 
of a plane—whereas for identical linear 
functions f(u) = g(u) = a⋅u + b common 
helicoids are generated. We will 
encounter this special case of a conoid 
again in the section on helical surfaces. 

Fig. 9.36
The functions f(u) and g(u) control the 
variation of the generator’s direction 
and thus determine the fi nal shape of 
the conoid.
(a) f(u) = g(u) = u.
(b) f(u) = u, g(u) = u2

(c)
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Similar to the example “conoid,” we can replace the term u/2 with an arbitrary 
function f (u). Figure 9.38 illustrates the infl uence of various functions f (u) on the 
fi nal shape of the ruled surface. 

 
      

        
    

   
   
   

 
        

Example: 
Möbius strip. As a generalization of 
the previous example, we use a circle c1 
as directrix curve. Now we move a line 
segment g such that one of its points 
runs along c1, whereas g is continuously 
rotated about c1 and thus remains 
orthogonal to c1. When the line segment 
arrives again at the starting position, it 
shall have made one half turn. Th us, the 

end position of the ruling g coincides 
with its starting position.
To obtain a parametric representation, we 
adapt the coordinate frame to the Möbius 
strip as shown in Figure 9.37. Th en the 
directrix circle c1 can be described by c(u) 
= (r⋅cos(u), r⋅sin(u), 0). Th e generator’s 
rotation in the normal planes of the 
circle proceeds with the rotational angle 

u/2. Th us, we obtain with d(u) = (cos(u/
2)·cos(u), cos(u/2)·sin(u), sin(u/2)) a 
parametric representation of a Möbius 
strip:
x(u,v) = r⋅cos(u) + v⋅cos(u/2)·cos(u),
y(u,v) = r⋅sin(u) + v⋅cos(u/2)·sin(u),
z(u,v) = v⋅sin(u/2).
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Ruled surfaces by connecting corresponding points of two generating curves. Let’s 
start with a simple case: a one-sheet rotational hyperboloid. In the previous section, 
we generated a one-sheet rotational hyperboloid by rotating a straight line about an 
axis. But we can interpret this generation depicted in Figure 9.39 in a second way: the 
generators can be found by connecting corresponding points on circles c1 and c2.

We now generalize this generation process to create ruled surfaces from two arbitrary 
spatial curves (directrices) c1(u) and c2(u). Th e generators join curve points that 
correspond to the same parameter value u. Depending on the parameterization of the 
two curves c1 and c2, we can generate diff erent ruled surfaces to the same directrices c1 
and c2 (Figure 9.40). 

Due to the fact that we have nearly full freedom to choose the directrices and 
their parameterization, this approach opens a wide diversity of possible shapes 
(Figure 9.41). Special choices of directrices and their parameterization lead to some 
remarkable ruled surfaces. 

 
      
     

 
      
     
    

      

 
    

     
     



HP Surfaces. HP surfaces (hyperbolic paraboloids) are well established in the area 
of shells. Positive static properties (which are especially good for HP surfaces with 
vertical axis) allow the construction of shells of large span width with relatively small 
thickness. Th ey are easy-to-use elements for architectural design and off er many design 
possibilities (Figure 9.42).

In addition to its generation as a translational surface, an HP surface can be generated 
as a ruled surface in the following way (Figure 9.43). We start with two skew line 
segments ab and dc, and use a linear parameterization to fi nd corresponding points 
p and q on ab and on dc. We then obtain an arbitrary ruling g of the HP-surface by 
connecting the points p and q.
 Manually, this could easily be done by dividing ab and dc with the same ratio 
dist(a,p) : dist(p,b) = dist(d,q) : dist(q,c). To fi nd a parametric representation of the 
HP surface, we calculate the position vectors of the points p and q and obtain p(u) = a 
+ u·(b – a) = (1 – u)·a + u·b and q(u) = (1 – u)·d + u·c. Th en, an arbitrary point x on 
the ruling g(u) that connects the points p and q can be calculated with

x = (1 – v)⋅p + v·q = (1 – v)·[(1 – u)·a + u·b] + v·[(1 – u)·d + u·c].

Finally, this can be expanded to

x(u,v) = (1 – v)·(1 – u)·a + (1 – v)·u·b + v·(1 – u)·d + v·u·c.

Fig. 9.42
HP surfaces in use by architectural 
design.
(a) The Pengrowth Saddledome 
(opened 1983) in Calgary by Graham 
McCourt is believed to still be the 
widest spanning hyperbolic paraboloid 
concrete shell in the world. The 
geometric shape is obtained by cutting 
a hyperbolic paraboloid with a sphere.
(b) Part of a high school sports 
complex in Houston.

(a)

(b)



If the parameters v and u take values between 0 and 1, we obtain an HP surface patch 
confi ned by the skew quadrilateral abcd. Using values greater than 1 or less than 0, we 
obtain points of the HP surface situated outside this boundary.

Th e parameterization of an HP surface is linear in both parameters v and u. We can 
rewrite it as

x(u,v) = (1 – u)·[(1 – v)·a + v·d] + u·[(1 – v)·b + v·c].

If we interpret r(v) = (1 – v)·a + v·d and s(v) = (1 – v)·b + v·c as position vectors of 
points r and s, we recognize that there exists a second familiy of rulings h(v) that can 
be generated by dividing the line segments ad and bc with constant ratio (Figure 9.44). 

HP surfaces and one-sheet hyperboloids carry two diff erent families gi  and hi of 
rulings. All rulings of the same family are mutually skew, whereas an arbitrary ruling 
of one family intersects all rulings of the other family. Th us, HP surfaces and one-sheet 
hyperboloids can be interpreted as ruled surfaces in a double sense.

Fig. 9.44
An HP surface carries two families of 
generators.
(a) Construction of the second family.
(b) Use in a garden pavilion.

Fig. 9.43
Constructing rulings of an HP surface 
by connecting linearly parameterized 
straight line segments.

(b)

(a)
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Th ey are sometimes called double ruled surfaces. Th rough every arbitrary point x of a 
double ruled surface two diff erent generators gx and hx can be drawn. Th ese rulings 
gx and hx defi ne the tangent plane in the point x (Figure 9.45). It can be proved that 
the HP surfaces and the one-sheet hyperboloids are the only types of double ruled 
surfaces.

In contrast to the one-sheet hyperboloid, all rulings of an HP surface that belong 
to the same family are parallel to a director plane. To be more precise, every plane D 
parallel to two diff erent rulings of one family belongs to a set of parallel planes—and 
each of these planes is called a director plane. An HP surface has two diff erent families 
of director planes according to the two families of rulings.

Th ere is exactly one tangent plane of an HP surface that is orthogonal to both types of 
director planes. Th e corresponding surface point v is the vertex of the HP surface, and 
the surface normal through the vertex v is the axis (Figure 9.46).

Fig. 9.46
The director planes of both families of 
rulings on an HP surface are parallel 
to the axis. Therefore, a projection 
parallel to the axis maps the rulings 
onto two families of parallel lines.

Fig. 9.45
HP surfaces and one-sheet 
hyperboloids carry two different 
families of generators.
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Intersections with planes parallel to the axis (but diff erent from director planes) are 
parabolas. Th ey can be used to generate the HP surface as a translational surface. 
Figure 9.47 illustrates both generation principles—on the one hand as a ruled surface 
and on the other as a translational surface. 

Conoids. Now we consider a generalization of HP surfaces; namely, ruled surfaces 
with rulings parallel to a director plane that intersect a single straight line c1 (Figure 
9.48). Parts of these conoids are commonly used for the design of shells or shed roofs 
(Figure 9.35). Although the shape of the second directrix c2 can be chosen arbitrarily, 
we have to provide appropriate parameterizations to force all rulings to be parallel to a 
director plane. 

Fig. 9.48
All rulings of a conoid are parallel to 
the director plane D and intersect a 
straight line c1.

Fig. 9.47
An HP surface can be generated either 
as a ruled surface or as a translational 
surface.
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Example: 
Plücker’s conoid. Figure 9.49 shows 
an example with a horizontal director 
plane and the z-axis as a directrix. Th e 
second directrix c2 has been chosen as an 
ellipse, with the major vertex a on the z-
axis. In addition, the ellipse is symmetric 
with respect to the yz-plane and lies on a 

vertical cylinder of revolution. In Figure 
9.49, this Plücker’s conoid is confi ned 
by the intersection curve with a coaxial 
rotational cylinder. We also mention 
that every rotational cylinder that 
contains the z-axis intersects Plücker’s 
conoid along an ellipse. 
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Tangent planes of ruled surfaces. Th e tangent plane in an arbitrary point p of a ruled 
surface contains the generator g, which runs through p. As illustrated in Figure 9.50, 
this plane generally is only tangent to the ruled surface in a single point p. If the point 
p varies along the generator g, the tangent plane rotates about g. We have seen this 
behavior of a tangent plane on the HP surfaces.

On the other hand, ruled surfaces (such as cylinders and cones) contain rulings 
where the tangent plane touches the surface along the entire line. Such rulings are 
called torsal generators, to distinguish them from the common case of the non-torsal 
generators (Figure 9.50). All conoids illustrated in Figures 9.49 and 9.51 contain at 
least one torsal generator. In these cases, the torsal generators are lying in the symmetry 
planes of the conoids. 

Fig. 9.51
A skew ruled surface with four torsal 
generators g1,…, g4.

Fig. 9.50
A tangent plane at a point p of a non-
torsal generator g only touches the 
ruled surface in the single point p. 
Different points of the same generator 
have different tangent planes.
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Ruled surfaces with exclusively torsal generators are called developable surfaces, whereas 
ruled surfaces consisting largely of non-torsal generators are called skew ruled surfaces 
(or warped ruled surfaces). Cylinders, cones, and ruled surfaces that consist of tangents 
of a spatial curve (Figure 9.52) are developable surfaces. We will study this class of 
surfaces in detail in Chapter 15. 

Fig. 9.52
Ruled surfaces that consist of all 
tangents of a spatial curve are 
developable surfaces. Together with 
cylinders and cones, these surfaces
have the important property that they 
can be unfolded into the plane without 
stretching or tearing.
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When we apply a smooth helical motion to a spatial curve c, it sweeps a helical surface 
(Figure 9.53). During this motion, every point p of the generating curve c traces a helix 
hp. Th us, the net of congruent generator curves c and helixes determines the shape of 
the helical surface. Th e tangent plane in an arbitrary surface point q is specifi ed by the 
tangents tc and th. In analogy to the rotational surfaces, the intersection curve of the 
helical surface with a plane through the helical axis is called a meridian m.

Helical Surfaces

Fig. 9.53
A helical surface is generated by 
applying a helical motion to a curve c.



324

Meridians and cross sections orthogonal to the helical axis are oft en used to 
characterize the shape of a helical surface (Figure 9.54). It is important to realize that a 
helical surface is mapped into itself (as a whole) by application of the generating helical 
motion. Th erefore, the surface can also be generated using a meridian curve or a cross 
section as a generating profi le.

Mathematical description. Knowing the parametric representation of the generator 
c(v) = (x(v), y(v), z(v)), we insert it into the equations for a helical transformation 
with pitch p,

x1 = x·cosu – y·sinu,

y1 = x·sinu + y·cosu,

z1 = z + p·u,

to obtain the parametric representation of a helical surface with 

x(u,v) = x(v)·cosu – y(v)·sinu,

y(u,v) = x(v)·sinu + y(v)·cosu,

z(u,v) = z(v) + p·u.

Using a meridian curve m(v) = (x(v),0,z(v)) in the xz-plane as the generating curve, 
the parametric representation simplifi es to

x(u,v) = x(v)·cosu, 

y(u,v) = x(v)·sinu, 

z(u,v) = z(v) + p·u.
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Special helical surfaces. Among the helical surfaces, those with circles and straight 
lines as generators are commonly used for modeling purposes. Using circles as 
meridians or cross sections is useful in generating tubelike screw surfaces, whereas a 
circle c whose supporting plane is orthogonal to the helix’s tangent th sweeps a helical 
pipe (Figure 9.55). Th e last type of skrew surfaces is representative of the class of pipe 
surfaces studied at the end of the chapter. 

 
    



326

Example: 
Intersection of a helicoid and a special 
cylinder. Given are a helicoid and a 
rotational cylinder with the helical axis A 
as a generator (Figure 9.58). We assume 
the axis b of the cylinder to intersect the 
x-axis of the coordinate frame in the 
point m(r,0,0). 
Th us, we fi nd the equation of the cylinder 
with x2 – 2⋅r⋅x + y2 = 0. To calculate the 
intersection curve of the cylinder and 

the helicoid, we insert the helicoid’s 
parameterization into the cylinder’s 
equation. We obtain the equation 
v2 ⋅ cos2u – 2 ⋅ r ⋅ v ⋅ cosu + v2 ⋅ sin2u = 0,
which we simplify with the steps
v2 ⋅ cos2u + v2 ⋅ sin2u – 2 ⋅ r ⋅ v ⋅ cosu = 0,
v2 ⋅ (cos2u + sin2u) – 2 ⋅ r ⋅ v ⋅ cosu = 0,
v2 – 2 ⋅ r ⋅ v ⋅ cosu = 0,
to fi nally fi nd
v ⋅ (v – 2 ⋅ r ⋅ cosu) = 0.

Applying a helical motion to a straight line segment, we obtain helical ruled surfaces. 
Th e simplest and at the same time the most important type is the common or right 
helicoid (Figure 9.56). It is swept out by a straight line g that orthogonally intersects 
the axis of the generating helical motion. Th erefore  all cross sections are straight lines 
parallel to a director plane orthogonal to the helical axis.

If we interpret a helix h and the helical axis A as two directrices of a ruled surface, 
we see that a common helicoid is a special case of a conoid (Figure 9.57). To obtain a 
parametric representation of a helicoid, we use the parameterization c(v) = (v,0,0) to 
describe the generator g and thus we obtain the equations

x(u,v) = v·cosu, 

y(u,v) = v·sinu, 

z(u,v) = p·u,

for the helicoid.

 
       

Fig. 9.56
A common helicoid is a helical surface 
whose generators orthogonally 
intersect the helical axis.
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Fig. 9.58
Intersection of a helicoid and a cylinder 
of revolution through the helical axis.

Th is equation has two diff erent solutions: 
v = 0 (which describes the common z-
axis) and v = 2 ⋅ r ⋅ cosu. We insert the 
second solution into the parametric 
representation of the helicoid to obtain 
a parameterization of the intersection 
curve I with
x(u) = 2 ⋅ r ⋅ cosu·cosu, 
y(u) = 2 ⋅ r ⋅ cosu·sinu, 
z(u) = p·u.

Now we apply a translation with 
translation vector t = (–r,0,0),
x(u) = 2 ⋅ r ⋅ cosu·cosu – r, 
y(u) = 2 ⋅ r ⋅ cosu·sinu, 
z(u) = p·u,
and simplify the equations with known 
formulae for trigonometric functions to
x(u) = r ⋅ cos(2u), 
y(u) = r ⋅ sin(2u),
z(u) = p·u = (p/2) ⋅ 2u.

Th is is a parametric representation 
of a helix i with half the pitch p of the 
original helical motion. Th e axes of both 
helixes are parallel. Th us, in addition to 
the helical paths every common helicoid 
contains many more helixes (Figure 
9.59). Parts of common helicoids are 
oft en used to model spiral staircases or 
heliclines (Figure 9.60).

Fig. 9.59
A common helicoid carries different 
families of helixes.

Fig. 9.60
(top) A common helicoid appears in a 
“spiral” staircase in Portugal (image 
courtesy Martin Reis).
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Another important case of a ruled helical surface is generated by applying a helical 
motion to a tangent th of a helical path h. Th is tangent sweeps a developable ruled 
surface (Figure 9.61). Th e helix h is a singular curve of the surface and creates a sharp 
edge on it. As is typical of developable ruled surfaces, every tangent plane touches 
along the entire generator th. 

Fig. 9.61
Applying a helical motion to a tangent 
of a helical path generates a helical 
surface that is at the same time a 
developable ruled surface.
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A pipe surface is the envelope of spheres of equal radius r whose centers lie on a curve 
c, called the spine curve or central curve c (Figure 9.62). Simple special cases are a 
rotational cylinder (which arises for a straight line as a spine curve) and the torus, 
which belongs to a circular spine. Th e pipe surface is defi ned by the spine curve and 
its radius r. It can also be generated as a family of circles of radius r lying in the normal 
planes of a spatial curve c and having their centers on c. 

To actually build curve-like structures in architecture, they need to have a certain 
thickness. Th e thickness can be expressed by the radius of a pipe surface. In practice, 
one uses metal tubes bent into the required form (Figure 9.63). Note that the 
manufacturing of such bent tubes is challenging.

Pipe Surfaces

Fig. 9.63
The “Shoal fl y-by” public art by SIAL 
installed at the Melbourne Docklands.

Fig. 9.62
Several pipe surfaces to the same 
spatial spine curve with two endpoints.





Chapter 10
Offsets
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In geometric modeling, we oft en work with surface models to represent geometry. 
From the geometric point of view, a surface has no thickness. However, in architecture 
one oft en builds with shells (Figure 10.1). Th us, we need to give our surface model a 
certain thickness to make it more realistic. Th is can be done using the off set operation. 

In our following discussion of off sets, we will see that the off set operation may 
generate self-intersections. It can also result in parts that are closer to the original 
object than the off set distance. To remove these parts from the off sets, we use the 
trimming operation. We study off sets for planar curves and for surfaces, in the smooth 
and discrete settings. Th e chapter concludes with a discussion of applications of 
off sets, including rolling ball blends and roof design.

Offsets

Fig. 10.1
Roof of the conference center in the 
DG Bank (1995–2001) in Berlin by 
Frank O. Gehry.
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Fig. 10.3
Offsets to smooth planar curves.

Fig. 10.2
For a smooth planar curve, we have in 
each curve point a unique tangent and 
a unique normal. The distance from 
the curve is measured along the curve 
normal.

(a) (b)

(c) (d)
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At each point p of a smooth planar curve c we have a unique curve tangent t and a 
unique curve normal n (Chapter 7). Th e normal is orthogonal to the tangent, and is 
used to measure the distance from the curve. On each curve normal n, there are exactly 
two points q1 and q2 that are at distance d from the curve c. We may fi nd these points 
by intersecting a circle with center p and radius d with the curve normal n (Figure 
10.2).

Off sets of smooth planar curves. For a smooth planar curve c, we defi ne an off set 
curve cd at distance d (for simplicity oft en just called an off set) in the following way. On 
each curve normal, we mark the two points that are at distance d from the curve c. Th e 
set of all of these points forms the off set cd (Figure 10.3a).

It is easy to show that an off set has the same curve normals as the original curve, and 
thus the corresponding tangents of c and cd in corresponding points are parallel. Th us, 
off set curves are sometimes referred to as parallel curves. Figure 10.3 also illustrates 
that off sets can be obtained as envelopes of circles with radius d centered at the curve c.

By varying the distance d, we can easily generate a family of off set curves. For a closed 
convex curve, the off sets consist of exactly two branches: one on each side of the original 
curve c (Figure 10.3b). In the case of an open curve, there exist at least two diff erent 
possibilities for defi ning the off set at the endpoints a and b. On the one hand, we may 
construct two disconnected branches (Figure 10.3c). On the other hand, the off set may 
be connected—with each of the endpoints contributing a half circle (Figure 10.3d).

Offset Curves

Math:

Computing off set curves. Mathematically, we compute an 

off set curve as follows. Let 

c(t) = (x(t), y(t))

be a parametric representation of a planar curve. Th e curve 

shall be oriented by increasing values of the parameter t. 
We compute the unit normal vectors n(t). We obtain 

these vectors n(t) by rotating the oriented tangent vectors 

c'(t) = (x'(t),y'(t)) counterclockwise through 90 degrees. 

Th en we normalize them to unit length by dividing through 

the length of c'(t) via
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Th e off set cd(t) at distance d to c(t) is obtained as

cd(t) = c(t) ± d⋅n(t).



336

Fig. 10.4
(a) The offsets of a circle are 
concentric circles.
(b) The offsets of an ellipse are of a 
more general nature and are no longer 
ellipses.

Example: 
Off sets of a circle and an ellipse. We 
take a circle with center m and radius r 
and generate an off set curve at distance 
d. Th e off set is of course a pair of circles 
with the same center m and with radii 
r + d and r – d (Figure 10.4a). For a circle, 
all off sets are concentric circles. Th ey all 
share the same curve normals, and their 
tangents are parallel at corresponding 
points. In general, the off set of a planar 
curve is no longer of the same type.

Th is is already the case for an ellipse. 
Th e off set cd of an ellipse c is no longer 
a pair of ellipses. At fi rst glance, this 
might be surprising. At a small distance 
d, the off set to an ellipse still looks very 
much like an ellipse. But we immediately 
see that the off sets of an ellipse are not 
ellipses anymore once the inner part 
starts to have self-intersections (Figure 
10.4b). 

(a) (b)
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Curve, off set, and evolute. Recall from Chapter 7 that the evolute e of a planar 
curve c is the locus of the centers of all osculating circles. It is also the envelope of all 
curve normals. Let k(t) be the curvature at a point c(t), whereby r(t) = |1/k(t)| is the 
curvature radius. Th e minimum and maximum curvature radii of a curve are denoted 
by rmin

 = |1/kmin| and rmax
 = |1/kmax|, respectively. Th e normals of c and cd are the 

tangents of the evolute e. A parametric representation of the evolute can be computed as

 e(t) = c(t) + 1/k(t)⋅n(t).

One branch of the off set cd at distance rmin ≤ d ≤ rmax has cusps on the evolute e (Figure 
10.5a). Th e cusps are those curve points cd(t) where d = r(t) [i.e., the constant off set 
distance d coincides with the varying curvature radius r(t)]. At a cusp, the off set curve 
meets the evolute orthogonally.

Example: 
Cusps on an ellipse off set. Note that the 
inner off set of an ellipse has cusps if the 
distance d is larger than the minimum 
curvature radius rmin and smaller than 
the maximum curvature radius rmax. For 
an ellipse, rmin and rmax are the curvature 
radii of the major and minor vertices. 

Fig. 10.5
(a) One branch of the offset cd(t) has 
cusps on the evolute e(t) of a planar 
curve c(t) if the curvature radius r(t) 
of c(t) takes on the same value as the 
constant offset distance d. 

(b) The inner offset c1 of an ellipse at 
distance d1 = rmin has two higher-order 
cusps. 
(c) The offset cd at distance rmin < d 
< rmax has four cusps that lie on the 
evolute e of c.

Due to its symmetry, the inner off set 
of an ellipse can have either two or four 
cusps that lie on the evolute e (Figures 
10.5b and 10.5c). We obtain two higher-
order cusps for d = rmin or d = rmax and 
four cusps for rmin < d < rmax. 

(b) (c)(a)
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Example: 
Silhouette of a torus under normal 
projection. Th e off sets of an ellipse 
appear (for example) as the silhouette of 
a torus under normal projection. A torus 
is the envelope surface of a sphere S of 
constant radius r = d whose center moves 
along a circle k. Th e normal projection 
of the middle circle k of the torus is in 
general an ellipse kn. Th e silhouette of 
the sphere S under normal projection is a 
circle of radius d with center on kn. Th us, 
the silhouette of a torus under normal 
projection can be found as the envelope 
of a family of circles Sn of radius d with 

centers on kn. Th e silhouette is therefore 
the off set of kn (Figure 10.6).
Let’s examine another geometric 
interpretation of this simple fact. Along 
each profi le circle c with center m, the 
torus is also touched by a rotational 
cylinder C. C has radius d and its axis A 
is the tangent of the middle circle k in 
m. Th e silhouette of C consists of two 
straight lines parallel to the projection 
An of the axis (which is the tangent of the 
ellipse kn). Th ese pairs of straight lines 
also envelope the silhouette of the torus. 
Because they are parallel to the tangents 

Fig. 10.6
The offsets of an ellipse appear, for 
example, as the silhouette of a torus 
under normal projection.

of kn at constant distance d, we see again 
that the silhouette of a torus can indeed 
be obtained as the off set of an ellipse kn 
at distance d.
Th e silhouette points are lying on the 
curve normals of kn. Th e outer part of 
the silhouette is always an oval-shaped 
curve. Th e shape of the inner part of the 
silhouette depends on the inclination 
angle of the torus axis with respect to 
the image plane. It can be an oval-shaped 
curve, a curve with two higher-order 
cusps, or a curve with four cusps (see also 
Figures 10.5b and 10.5c).

torus
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Off sets of planar polygons. Let’s take a look at the off sets of planar polygons p. For 
each edge (i.e., straight line segment) of a polygon, we have a unique normal. However, 
in each vertex we have an entire fan of normals (Figure 10.7). Th us, one branch of the 
off set pd at constant distance d consists of line segments (corresponding to the edges of p) 
and circular arcs (corresponding to the vertices of p).

Fig. 10.7
Offsets of planar polygons. For each 
vertex, the offset is a circular arc.
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Fig. 10.8
An offset surface Sd of a smooth 
surface S has the constant distance d 
to S.



Offset Surfaces
Th e defi nition of an off set surface is analogous to the defi nition of an off set curve. 
Again, we measure the distance from the surface along the surface normals. For a given 
smooth surface S, we defi ne an off set Sd at distance d as follows (Figure 10.8). On each 
surface normal, we mark the two points that are at a constant distance d from the 
surface S. Th e set of all of these points forms the off set surface Sd. It can be shown that 
the surface S and all of its off set surfaces Sd share their surface normals.

Th e tangent planes of S and Sd in corresponding points are parallel, and thus off set 
surfaces are sometimes also called parallel surfaces. Analogous to the planar curve case, 
off sets can be obtained as an envelope of spheres of fi xed radius d centered at the base 
surface S. In the following fi gures, we only show one part of the off set to make the 
illustrations more readable.

Math:

Computing an off set surface. Mathematically, we compute 

an off set surface as follows. Let 

S(u,v) = (x(u,v), y(u,v), z(u,v))

be a smooth parametric surface in three-dimensional space. 

We compute the normal vectors n(u,v) as the cross product 

of the partial derivative vectors Su(u,v) and Sv(u,v). We 

normalize them to unit length and orient them so that they 

all point to the same side of the surface. Th en we obtain the 

off set surfaces Sd(u,v) at distance d to S(u,v) as

Sd(u,v) = S(u,v) ± d · n(u,v).

341
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Only special surface classes have the property that their off sets are again of the same 
surface type. Th ese include cylinders and rotational surfaces. For practical purposes, 
this is a useful property because it allows an easy generation of off sets (as illustrated in 
the examples following).

Fig. 10.9 
(a) The offset surfaces of a sphere are 
concentric spheres.
(b) The offsets of rotational cylinders 
are coaxial rotational cylinders.

(c) The offset surfaces of rotational 
surfaces are coaxial rotational surfaces.
(d) The offsets of a torus are tori with 
the same axis and the same middle 
circle.

Example: 
Off sets of spheres and rotational 
surfaces. Obviously, the off set surfaces 
of a sphere with center m and radius r 
at distance d are concentric spheres of 
radius r ± d (Figure 10.9a). 
Let C be a rotational cylinder with axis 
A and radius r (Figure 10.9b). Th e off set 
consists of two rotational cylinders Cd 
of radius r + d and r – d with the same 
axis as C. Th e surfaces C and Cd share the 
same surface normals that intersect the 
rotational axis A orthogonally. 

In general, the off sets Sd of rotational 
surfaces S are again rotational surfaces. 
A rotational surface is generated by 
rotating a profi le curve c around a co-
planar axis A (Chapter 9). Th e curve 
normals of the profi le curve are also the 
surface normals of the rotational surface 
(all normals intersect the rotational axis 
A). Th us, we obtain the off set Sd in the 
following way. We fi rst generate a planar 
off set cd of the profi le curve c. Th en we 
rotate cd around the axis A to obtain the 

off set surface Sd as a coaxial rotational 
surface (Figure 10.9c). 
A torus is a special rotational surface 
enveloped by a sphere whose center 
moves along a circle. Th e off sets of the 
sphere are again spheres, and thus the 
off sets of a torus are again tori with the 
same axis and the same middle circle 
(Figure 10.9d). Figure 10.10 illustrates 
off sets of special surfaces used in 
architecture.

+r d

A

r

c

cd

concentric spheres

coaxial rotational surfacescoaxial rotational cylinders tori

(a)

(b) (c) (d)



Fig. 10.10
Offsets of special surfaces in 
architecture. 
(a) Parts of concentric spheres appear 
in the Jubilee Church (1996–2003) in 
Rome by Richard Meier.
(b) The Imperial War Museum North 
(2000–2002) in Manchester, England, 
by Daniel Liebeskind features offsets of 
spherical parts.

(a)

(b)
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Fig. 10.11 
(a) The offset of a cylinder surface is 
again a cylinder surface.
(b) Both vertical parts of a wooden 
staircase by Sevil Peach are shells 
generated as offsets of a cylinder 
surface. The staircase is located in the 
Novartis Pharma Headquarters (2003–

2005) by Diener & Diener in Basel, 
Switzerland.
(c) Triad (2000–2002) in Hodaka by 
Fumihiko Maki.
(d) The Serpentine Gallery Pavilion 
(2003) in London by Oscar Niemeyer.

Example: 
Off sets of cylinder surfaces. A cylinder 
surface C can be generated by extruding 
a smooth planar curve c (lying in a plane 
P) in a direction orthogonal to P. Now 
each planar section of C parallel to P is a 
congruent copy of c. Note that all surface 
normals of C are parallel to the plane P. 

An off set surface Cd of the cylinder C is 
obtained as follows. We fi rst generate the 
off set curve cd of c at distance d in the plane 
P, and then extrude cd. Th us, the off set 
of a cylinder surface is again a cylinder 
surface. Off sets of cylinders oft en appear 
in architecture (Figure 10.11).

(b)

(c)

(d)

(a)

c

cd

P



345

Th e off set surfaces in the previous examples are all of the same surface type as the base 
surface to which the off set is computed. Th is property also holds for pipe surfaces 
because these surfaces are generated by moving a sphere along a central curve (Figure 
10.12). Changing the radius of the moving sphere from r to r + d does not change the 
type of the surface. Th us, the off sets are again pipe surfaces.

Note that a pipe surface can always be seen as an off set of its central curve. However, 
not all “simple” surfaces have the property that their off set surfaces are again of the 
same type. For a cone surface that is not a rotational cone, the off sets are of a more 
complicated nature (as illustrated in the following example).

Example: 
Off sets of cone surfaces. A cone 
surface C is obtained by connecting a 
planar curve c with straight lines (called 
generators) to the apex v. Because C is not 
smooth at v, the surface has no unique 
surface normal there. Rather, we can 
think of a bouquet of surface normals at 
v. Th us, the off set of v is part of a sphere 
S (Figure 10.13a). What about the off set 

of the cone surface itself ? Th e surface 
normals along a generator g of a cone 
surface are parallel. Th us, the off set gd of 
each generator g is a again a straight line.
Th ese straight lines gd form the off set 
surface and touch the sphere S along a 
curve vd. In general, these straight lines 
gd no longer meet in a single point. Th us, 
the off set is no longer a cone surface. Th e 

exception are rotational cones whose 
off sets are again rotational cones where 
only the apex has to be treated separately 
(Figure 10.13b). But even in the general 
case the surface normals of Cd along  gd are 
parallel. Th us (see Chapter 9), the off sets 
of general cone surfaces are developable 
surfaces.

Fig. 10.12
The offsets of a pipe surface are again 
pipe surfaces.

Fig. 10.13 
(a) The offset of a general cone C 
consists of part of a sphere S and a 
developable surface Cd.
(b) The offset of a rotational cone is 
again a rotational cone.

 

offset Cd of a general cone C is a developable surface

offset of a rotational cone

(b)

(a)
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Off sets of polyhedral surfaces. We have considered smooth surfaces as the base 
objects for off set operations. Let’s now examine the off sets of polyhedral surfaces. 
Recall from Chapter 3 that a polyhedral surface P consists of planar faces, straight 
edges, and vertices. Each planar face has a unique normal and thus a well-defi ned 
off set. However, for an edge and a vertex this is not the case.

Each edge point has a fan of normal lines, and each vertex even has a bouquet of normal 
lines. Th us, the off set Pd of a polyhedral surface P at constant distance d consists of planar 
faces, parts of rotational cylinders (corresponding to the edges of P), and parts of spheres 
(corresponding to the vertices of P). Figure 10.15 illustrates off sets of convex polyhedral 
surfaces. In Chapter 19, we will again encounter off sets of polyhedral surfaces.

Fig. 10.15 
The offset of a polyhedral surface 
consists of planar faces, parts of 
rotational cylinders, and parts of 
spheres.

Fig. 10.14
The offset surface Sd of a hyperbolic 
paraboloid S is no longer a hyperbolic 
paraboloid.

Example: 
Off sets of hyperbolic paraboloids. 
Recall from Chapter 9 that a hyperbolic 
paraboloid S (HP surface) is a special 
ruled surface that carries two families 
of generators. To generate the off set Sd 

at constant distance d, we study what 
happens to the generators. When we 
travel along a generator of an HP surface, 
the surface normal varies its direction. 
Th us, the part of Sd resulting from a 

generator g is actually a spatial curve on 
Sd and is no longer a straight line (Figure 
10.14). Th is indicates that the off se  of an 
HP surface is no longer an HP surface. g  1 .1

 

Fig  0

 

Fi  
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In some applications, only parts of the off set are useful for the actual purpose. Recall 
from the example “cusps on an ellipse off set” that the inner off set of an ellipse may 
have self-intersections. Th ese self-intersections lead to points of the off set closer to the 
ellipse than the off set distance d. Th us, for practical applications one sometimes needs 
to remove these parts of the off set curve. Th e operation that does just that is called 
trimming.

In many computer-aided design (CAD) systems, the off set operation is followed by 
a trimming operation to automatically remove overlapping parts that are too close to 
the original curve. Figure 10.16 shows the off set curve to a smooth planar curve before 
and aft er trimming. Note that both local and global trimming may be necessary.

By local trimming we remove parts of the off set that overlap because the off set curve 
intersects the evolute of the original curve. Global trimming is necessary to remove 
parts of the initial off set curve that overlap but result from distinct regions of the 
original curve (Figure 10.16). 

Trimming of Offsets

Fig. 10.16
Offset of a smooth planar curve before 
and after trimming. We illustrate local 
and global trimming.

offsets offsets after local trimming offsets after global trimming
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Trimming off sets in three dimensions. Trimming off set surfaces is a diffi  cult 
operation because the off set can be very complex. Th ere might be many overlapping 
and self-intersection parts in the off set surface. Th erefore, local and global trimming 
might be necessary (Figure 10.17). 

Trimming is performed using numerical computations. If a CAD system fails to 
generate a trimmed off set surface, the operation might just be too complicated for the 
methods implemented in the system. For special surfaces, we learned that the off set 
belongs to the same surface class. To avoid unnecessary trimming, we should employ 
this geometric knowledge. Th is can be illustrated by means of a cylinder surface with 
base curve c. Instead of trimming the off set surface, it is much easier to trim the off set 
curve cd and then extrude it to obtain the trimmed off set surface (Figure 10.18). 

Fig. 10.18
Smart generation of a trimmed offset 
of a cylinder surface.

Fig. 10.17
Offset of a smooth surface before and 
after trimming. We illustrate local and 
global trimming.

offsets cylinder offsets trimmed offsets trimmed cylinder offsets

offsets

t mingoffsets after global trimming

offsets after local trimming
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Discrete off sets of planar polygons. Note that some CAD systems provide 
alternatives for the off set computation of planar polygons. Instead of replacing a vertex 
of a polygon P with a circular arc, the off set will have a sharp corner. Th us, the off set Pd 
of a polygon P is again a polygon. However, now some points of Pd might be further 
away from P than the off set distance d.

We construct this discrete off set as follows. Straight lines parallel to the edges of P at 
a distance d are drawn, and neighboring pairs of straight lines are trimmed at their 
intersection points (Figure 10.19a). If we refi ne the polygon P (e.g., using a subdivision 
algorithm of Chapter 8), we obtain in the limit a smooth curve.

With such a refi nement process, the discrete off set converges toward the smooth 
(trimmed) off set (Figure 10.19b). Note that these diff erent types of off sets can be seen 
in vector graphics of lines where we can choose between diff erent options of how line 
corners and endpoints are handled (Figure 10.19c).

ig. 1 .

Fig. 10.19
(a) Alternative offset to a polyline.
(b) Subdivision and offset of a polygon.
(c) Vector graphics of lines with 
different choices for corners and 
endpoints.

(b)

(c)

(a)



350

 

Discrete off sets of polyhedral surfaces. Th e discrete face off set of a polyhedron P is 
again a polyhedron Pd. We construct a discrete face off set Pd as follows. Off set planes 
at distance d are computed for each planar face, and neighboring planes are then 
intersected appropriately (Figure 10.20).

Note that certain points of the off set Pd are actually further away from P than the 
off set distance d. However, the off set consists again of polyhedra, a property that is 
sometimes more important than to get the (more complicated) off set at constant 
distance d. If we need the “true” geometric off set and we are missing such a command, 
we proceed in the following way. We fi rst generate the polyhedron off set Pd as 
described previously, and then round the edges and vertices with appropriate tools.

Fig. 10.20
Alternative offset to a polyhedron. 
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Application of Offsets
Off sets have several useful applications in addition to those mentioned previously. We 
discuss two of these applications: rolling ball blends and roof design.

Rolling ball blends. In many applications, we want to avoid sharp edges and thus 
we replace them with rounded edges. If a sharp edge is generated by two intersecting 
surfaces, one oft en replaces it with a blending surface (Chapter 4). A common choice 
for a blending surface is a part of a pipe surface (Chapter 9).

Such a pipe surface is generated by rolling a ball of radius r “along the edge” such that 
it always touches both surfaces. Th e central curve c of this pipe surface is generated as 
the intersection curve of two off sets S1

r and S2
r at constant distance r (Figure 10.21a). 

For the blending, we use the part of the pipe surface shown in Figure 10.21b. 

Fig. 10.21
Rolling-ball blend with radius r along a 
sharp edge. 
(a) The central curve c of the pipe 
surface is found by intersecting offset 
surfaces S1

r, S2
r. 

(b) Only a small part of the pipe 
surface is used for the blending.

(b)

(a)
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Geometric roof design. Th e geometric shape of a roof is driven by a combination 
of drainage constraints, the fl oor plan, and stylistic considerations. Th is principle has 
led to a number of traditional roof forms (Figure 10.22), but can as well be applied 
to new—possibly less regular—forms of roofs. Here we illustrate how off sets may be 
employed for geometric roof design. First, however, we need to introduce some special 
terms commonly used in roof design.

Th e main purpose of a roof is to protect the bottom part of the building (e.g., from 
rain and water accumulation). Sloping diff erent roof parts toward the closest edge of 
the building allows water to run off . Most roofs consist of several planar faces. From 
a geometric point of view, many roofed buildings resemble a polyhedron. Edges and 
faces of roofs are named with respect to their function (Figure 10.23).

Fig. 10.23 
The edges and faces of a roof carry 
special names used in roof design.

Fig. 10.22
Different roofs to the same base 
building: saddleback, hipped, half-
hipped, mansard, and shed.



• A ridge is the upper (usually horizontal) boundary edge of a non-horizontal 
roof plane.

• An eave is a lower (always horizontal) boundary edge of a non-horizontal 
roof plane.

• A hip is the intersection line of two roof planes in such a way that the hip and 
the two eaves join in a convex corner.

• A valley is the intersection line of two roof planes such that the valley and the 
two eaves join in a non-convex corner.

Th e complexity of roof design also depends on the layout of the base building. Figure 
10.24 shows a building with about a hundred rooms and many nested roof structures. 
Special roof design soft ware is available. Nevertheless, a few geometric ideas already 
allow the design of meaningful roofs. Let’s now employ off sets for roof design.

Fig. 10.24
The Winchester ouse in California 
has about a hundred rooms and many 
nested roof structures.

Mystery H
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Designing roofs of constant slope using off sets. We assume that all roof planes are 
sloped with the same inclination angle. Th e main idea is that the off set polygons of 
the eave polygon (formed by the eaves) are nothing more than the top views of the 
iso-height contour lines of the roof (Figure 10.25a). Th e contour lines are generated by 
intersecting the roof with parallel horizontal planes.

Because we do not have the roof—but want to design it—we work the other way 
round. We generate the contour lines using the off set operation with appropriate off set 
distances. From the contour lines, we derive the top views of hips, valleys, and ridges of 
the roof. Th en we complete the roof design by adding the height information. 

Let’s start with the case that all eaves are at the same height. Using off sets, we fi nd 
the top views of hips, valleys, and ridges of the roof as follows. We work in the basal 
plane of the eaves. We generate trimmed off sets Pd at increasing distance d to the eave 
polygon P until P is completely fi lled. Th ereby, we record events when edges of Pd 
disappear or coincide. Using the iso-height contour lines of the roof planes, we fi nd 
the intersection line of two planes and the intersection point of three planes. We use 
this in the following way.

Th e lines through corresponding vertices of the family of off set polygons form top 
views of hips and valleys of the roof (Figure 10.25b). Because all roof planes have 
the same inclination angle, the top views of hips and valleys are lines of symmetry of 
neighboring eaves. In addition, top views of ridges are parts of center lines of parallel 
eaves.

iso-height contour lines

 

(a)



355

 

Fig. 10.25
Roof design where all eaves are at the 
same height and all roof planes are 
sloped with the same inclination angle.
(a) The iso-height contour lines of a 
roof.
(b) The top views of the iso-height 
contour lines of the roof are the offsets 
Pd of the eave polygon P.
(c) The offset distance d yields for 
different roof inclination angles α, β 
different heights hα, hβ.

If two edges of the off set polygon coincide, they result from parallel opposite eaves 
and we have found the top view of a ridge of the roof. If one edge of the off set polygon 
disappears, this means that its two neighbor edges are now adjacent. Such an event 
marks a point where three diff erent roof planes meet in a single point. Once we have 
found the roof layout in the top view, we can construct the roof.

We read off  the heights of the relevant points where hips, valleys, and ridges intersect 
from a simple diagram (Figure 10.25c). Depending on the inclination angle α, an 
off set distance d corresponds to a certain height hα in the roof plane. To the same 
off set distance d, a diff erent inclination angle β yields a diff erent height hβ.

(b)

(c)



356

Of course, we can also design roofs of constant slope to smooth eave curves. Th en the 
roof will be formed by a developable surface of constant slope (encountered again in 
Chapter 12 and studied in detail in Chapter 15). Figure 10.26 shows one example 
where the eave curve is an ellipse. Here, we construct in the top view the iso-height 
lines of the roof as off sets of the eave ellipse.

We fi nd the top view of the curved ridge as a straight line segment that connects the 
curvature centers e1 and e2. Note that the normals to the off sets intersect the eave 
ellipse orthogonally. Th us, the water fl ows down the roof along the generators of the 
developable surface. Excavation pits can be constructed analogously to roofs. Basically, 
we just need to mirror a roof at a horizontal plane to obtain an excavation pit.

Fig. 10.26 
Roof design to a smooth eave curve. 
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Designing roofs of varying slope. Analogously with the foregoing, we can design 
roofs where the roof planes have diff erent slopes. Again, we assume that all eaves are at 
the same height. Otherwise, we work with an auxiliary eave polygon where all eaves are 
at the same height. For each eave, we know the slope α, β, and γ.

From the diagram shown in Figure 10.27, we read off  the distances dα  , dβ, and dγ 
corresponding to a constant height h and varying slopes α, β, and γ. In such a way, we 
can again draw the top views of the contour lines of the roof that we intend to design. 
However, now these contours are no longer off sets of the eave polygon. Th e remaining 
roof design steps are as described previously.

Fig. 10.27
Roof design for roof planes of different 
slope.
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Freeform Surfaces
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Freeform Surfaces
Suffi  cient fl exibility in the design of 3D shapes is diffi  cult to achieve with classical 
surfaces such as cylinders, cones, spheres, rotational surfaces, and ruled surfaces. 
Freeform surfaces off er much more fl exibility. In this chapter, we fi rst introduce Bézier 
surfaces and B-spline surfaces as natural and easy-to-understand extensions of the 
corresponding freeform curves.

Whereas the Bézier and B-spline method possesses severe restrictions on topological 
types, subdivision surfaces overcome these limitations in a simple and elegant way 

(Figure 11.1).Th eir use is a trend that started in the animation industry. Subdivision 
surface tools are used in a number of design applications now due to the complex 
surface modeling necessary for lifelike character animation. Let’s go ahead and unpack 
the secrets of this highlight of modern constructive geometry!

Fig. 11.1 
Bézier, B-spline and subdivision 
surfaces are closely related concepts 
for freeform surface design. In fact, 
Bézier and B-spline surfaces are special 
subdivision surfaces.
(Top) A Bézier and a B-spline surface 
with the corresponding control mesh.
(Bottom) Subdivision refi nes a coarse 
input mesh by repeated application of 
simple refi nement rules.

Bézier surface B-spline surface

coarse input mesh fi rst two steps of subdivision refi nement



History of freeform surfaces in architecture. Complex 

geometries and freeform surfaces appear very early in 

architecture—dating back at least to the fi rst known dome-

like shelters made from wood and willow about 400,000 

years ago. Double curved surfaces have existed in domes and 

sculptural ornaments of buildings through the ages. 

It was only in the nineteenth century that architects were 

granted a signifi cant amount of freedom in their expression 

of forms and styles with industrialization and improved 

building materials such as iron, steel, and reinforced concrete 

(cf. François Coignet, Béton Aggloméré, 1855). 

Antoni Gaudí (1852–1926) achieved a deep understanding 

of the statics and shape of freeform surfaces through the 

development of form-fi nding techniques and physical 

models. His Sagrada Familia (1882-today) and the Casa 
Milà (1905–1907) are the most prominent examples 

(Figure 11.2). 

Hermann Finsterlin (1887–1973) created hundreds of 

drawings, watercolors, and physical 3D models of fantastic 

plastic architecture between 1918 and 1924 (Figure 11.3a). 

Unfortunately, he could not realize any larger project. In 

the same period, the rather small but sculpturally impressive 

Einstein tower (1920–1921) was built in Potsdam by Erich 

Mendelsohn (Figure 11.3b).

Fig. 11.2 
History of freeform surfaces in 
architecture. 
(a) The Casa Milà (1905-07) and 
(b) La Sagrada Família (1882-today) 
by Antoni Gaudí. The fi rst and second 
Goetheanum by Rudolf Steiner. 

2 (a,b)

3 (a,b)



Fig. 11.3
(a) Unrealized architectural model 
(1920) by Hermann Finsterlin.
(b)The Einstein Tower (1920-21) by 
Erich Mendelsohn (Image courtesy of 
Astrophysikalisches Institut Potsdam).

Fig. 11.4 
(a) Reinforced concrete has been used 
to build Notre Dame du Haut 
(1950-55) by Le Corbusier, and 
(b) the TWA Terminal (1956-62) by 
Eero Saarinen.

Fig. 11.5 
The Sydney Opera House (1957-73) by 
Jørn Utzen (Image courtesy of Bjarte 
Sorensen).

Reinforced concrete seemed to be a good solution for 

sculptural forms and wide spans, with a peak of use in the 

1960s. Famous examples include Notre Dame du Haut 

(1950–1955) by Le Corbusier and the TWA Terminal 
(1956–1962) of JFK International Airport by Eero Saarinen 

(Figure 11.4). Th e limitations of reinforced concrete in terms 

of weight, cost, and labor were soon realized. Early attempts 

to reduce weight include the segmentation of the desired 

surface into structural members and cladding elements. 

5

4 (a)

4 (b)
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Fig. 11.6
(a) The Guggenheim Museum 
(1991-97) in Bilbao by Frank O. Gehry.

(b) The Kunsthaus Graz (2002-03) by 
Peter Cook and Colin Fournier.

A successful example of prefabrication is the spherical shells 

that form the roof of the Sydney Opera House (1957–1973) 

by Jørn Utzen (Figure 11.5). Projects such as the Sydney 

opera house made it clear that complex freeform shapes 

need sophisticated techniques of geometric description and 

integration of structural and fabrication principles to make 

them buildable.

One of the fi rst architects to use computer-aided geometric 

design (CAGD) technologies to build freeform shapes is 

Frank O. Gehry. He is well known for employing shapes 

that are approximating developable surfaces (the topic of 

Chapter 15) in his designs (Figure 11.6a). Th e Kunsthaus 

Graz (2002–2003) was designed by Peter Cook and Colin 

Fournier as a biomorphic freeform shape (Figure 11.6b). 

History of freeform surfaces in CAGD. During the 

1940s and 1950s, practical needs in the aeronautic and 

car manufacturing industries initialized the development 

of mathematical descriptions of freeform geometry. To 

solve tasks such as “how to store a surface design digitally” 

or “how to communicate a designed freeform geometry 

to a numerically controlled milling machine,” one needs 

appropriate mathematical algorithms that can be fed into a 

computer.

R. Liming and J. Ferguson at Boeing, S. Coons at MIT, 

M. Sabin at British Aircraft  Corporation, P. de Casteljau 

at Citroën, and P. Bézier at Renault developed solutions 

to these tasks. In the case of CAGD, the requirements for 

manufacturing drove the mathematics—and led to the 

development of mathematics that could describe the types 

of freeform surfaces seen widely in products today. 

(a) (b)



Bézier Surfaces 
Translational Bézier surfaces. Let’s see how we can create Bézier surfaces from Bézier 
curves. We start with a simple example (Figure. 11.7) and consider two Bézier curves: 
one with degree 2 and the other one with degree 3. To become familiar with the double 
index notation used in the general theory, we denote the three control points of the 
quadratic Bézier curve b2 as b00, b10, and b20 and the four control points of the cubic 
curve b3 as b00, b01, b02, and b03.

Note that the curves have a common endpoint b00 and are therefore well suited as profi le 
curves of a translational surface. Th is surface carries a family of quadratic Bézier curves 
(any of those arises from b2 by an appropriate translation). Th e surface also carries a 
family of cubic curves related to b3 by translation. It is important to distinguish between 
the parameters of the two Bézier curves, and thus we denote the parameter on b2 as u 
and the parameter along b3 as v. 

365
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Fig. 11.7 
Translational Bézier surface generated 
by moving a Bézier curve of degree 3 
along a Bézier curve of degree 2. The 
control points of a position of the cubic 
Bézier curve, a so-called v-curve, can

be constructed with the algorithm of 
de Casteljau: It has to be applied to 
the 4 column polygons with the same 
parameter u.

To bring the cubic profi le b3 into a new position, we fi rst compute a point b2(u) on 
the quadratic curve—using the algorithm of de Casteljau. We then displace b3 with the 
translation, which brings b00 to b2(u). Th e translation vector is w = b2(u) – b00. Th e 
control points of the resulting curve are b2(u) = b00 + w, b01 + w, b02 + w, and b03 + w. 

Th ere is another way to get these points. We translate the control points of the quadratic 
curve b2 in such a way that b00 moves to b01. Th e resulting polygon is called b01, b11, b21. 
We call such a polygon a column polygon, more precisely the one with column index 
(second index) 1. Likewise, the given control polygon of b2 is the column polygon with 
index 0. In the same way, we construct column polygons with indices 2 and 3.

Altogether, we have four column polygons—each with three control points. Now 
we view each column polygon as a control polygon of a quadratic Bézier curve and 
compute its point to the same parameter value u. Doing this for all columns, we obtain 
precisely the control points b00 + w, b01 + w, b02 + w, and b03 + w of a cubic Bézier curve 
lying on the surface. 
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Fig. 11.8 
The translational surface from Fig. 11.7 
can also be generated by translation 
of a Bézier curve of degree 2 along a 
Bézier curve of degree 3. The control 
points of a position of the quadratic 

Bézier curve, a u-curve, can be 
computed with the algorithm of de 
Casteljau applied to the 3 row polygons 
with the same parameter v.

We call such a cubic curve a v-curve, because the curve parameter along it is v. Th e given 
curve b3 is also a v-curve; namely, to u = 0. Its control polygon is the row polygon with 
row index (fi rst index) 0. Th e row polygon b20, …, b23 with row index 2 also defi nes a 
v-curve.

However, the row polygon b10,…, b13 does not defi ne a v-curve. Th e corresponding 
curve does not lie on the translational surface. Analogously, only two column polygons 
(namely, those with column index 0 and 3) defi ne Bézier curves that lie on the surface. 
Column polygons b01, b11, b21, and b02, b12, b22 do not defi ne curves on the surface!

So far we have generated the translational surface by moving the cubic curve along the 
quadratic one. Th is yielded the family of v-curves. Th eir control points lie on the four 
auxiliary quadratic Bézier curves defi ned by the column polygons. 

Analogously, we may move the quadratic curve b2 along the cubic b3 (Figure 11.8). 
A position of such a curve is defi ned by a point b3(v) on b3 and its curve parameter is 
u. Hence, we call it a u-curve. Th e control points of a u-curve are points on the Bézier 
curves defi ned by the row polygons, constructed to the same parameter v. 
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General Bézier surfaces. Th e extension of translational Bezier surfaces to the general 
case is straightforward. Input of a Bézier surface is its control mesh. It consists of 
an array of points, visualized as a quadrilateral mesh of row polygons and column 
polygons.

We use two indices for each control point. Th e fi rst index attains values 0,1,…,m and 
tells us the row. Th e second index has values 0,1,…,n and defi nes the column. Th us, 
altogether we have (m + 1)(n + 1) control points.

Th e surface contains two families of Bézier curves: a family of u-curves of degree 
m and a family of v-curves of degree n. Th us, one speaks of a Bézier surface of degree 
(m,n). Analogous to the case of translational surfaces, a u-curve is constructed as follows
(see also Figure 11.9). 

• Apply the algorithm of de Casteljau to each row polygon using the same 
parameter value v. Th is results in m+1 points r0,…,rm. 

• Th e Bézier curve with control points r0,…,rm is the desired u-curve.

Analogously, a v-curve is found with help of the column polygons. It is quite simple to 
see that the families of u-curves and v-curves really lie on the same surface. 

In the previous example of a translational Bézier surface, all quadrilaterals in the 
control mesh are parallelograms and thus are planar. In general, we now do not require 
planarity of the quads in the control mesh. 
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Properties of Bézier surfaces. Each boundary polygon of the control mesh defi nes a 
Bézier curve that is a boundary curve of the designed Bézier surface patch (Figure 11.10). 
Th e boundary polygons are the only row and column polygons that defi ne curves on 
the surface. By the construction explained previously, the surface lies in the convex hull 
of the control mesh (Figure 11.11).

Th e relationship between control mesh and surface is well suited for design—provided 
we have suffi  ciently low-degree m and n. Th is is due to the fact that we actually apply 
the Bézier curve construction in u and v direction.

It is worth looking at some Bézier surfaces of low degree in more detail. Th eir use is 
appealing in architecture. Moreover, we fi nd interesting relations to surface classes we 
have studied in previous chapters. 

Bézier surfaces of degree (1,1). A Bézier surface patch of degree (1,1) has only one 
quadrilateral as control mesh (Figure 11.12). Th e surface contains two families of 
Bézier curves of degree 1, i.e., straight line segments. Let’s construct one of them (e.g., 
a u-curve). First, we have to compute the points r0, r1 on the row polygons to the same 
parameter value v.

Fig. 11.12 
A Bézier surface patch of degree (1,1) 
is part of a hyperbolic paraboloid. The 
u-curves and v-curves are straight line 
segments. 

Fig. 11.11 
A Bézier surface does not leave the 
convex hull of its control mesh. 

Bézier surface 
& control mesh

convex hull 
of control mesh

Bézier surface & convex 
hull of control mesh
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Th ese are points r0 = (1 – v)b00 + vb01 and r1 = (1 – v)b10 + vb11 , which divide 
opposite boundary segments b00b01 and b10b11 in the same ratio (1 – v):v. Th e u-
curve is the straight line segment r0r1. Th is shows that the surface is (part of ) a 
hyperbolic paraboloid (or part of a plane if the control quad is planar). To continue the 
computation, the line segment r0r1 is parameterized by u via (1 – u)r0 + ur1. Inserting 
the expressions for r0, r1 yields 

b(u,v) = (1 – u)(1 – v)b00 + (1 – u)vb01 + u(1 – v)b10 + uvb11.

If we vary u in the interval [0,1] and v in [0,1], this formula captures all surface points. 
It is a parameterization of the surface (Chapter 7). As an exercise, you may verify that 
the v-curves, which are also straight line segments, defi ne the same surface. Evaluating 
the mathematical representation b(u,v) for arbitrary u and v, not just those in the 
range between 0 and 1, we obtain the entire hyperbolic paraboloid.  

Bézier surfaces that are also ruled surfaces. Consider a Bézier surface of degree 
(1,n). Its u-curves are Bézier curves of degree 1 and therefore straight line segments. 
Th erefore, this surface is a ruled surface—spanning two Bézier curves of degree n 
(Figure 11.13).

Fig. 11.13 
Bézier surfaces where one degree 
equals 1 are ruled surfaces. 
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Th is fact constitutes a very good way of designing ruled surfaces in a CAD 
environment. Let’s add two special cases. If all column segments in the control mesh 
are parallel (Figure 11.14), we obtain a general cylinder surface. Modeling a general 
cylinder as a Bézier surface of degree (1,n) gives us a lot of freedom in the design of the 
boundary curves. Th ey need not be congruent.

Th is is in contrast to the generation of a cylinder by extrusion of a Bézier curve. In 
addition, control points are allowed to coincide. If all control points of a row fall into 
the same point v = b00 = … = b0n, we obtain a cone surface patch with vertex v (Figure 
11.15).

Fig. 11.15 
General cone surface patches may also 
be designed via Bézier surfaces.

Fig. 11.14 
General cylinder surface patches 
designed as Bézier surfaces with one 
degree equal to 1. Here we have more 
degrees of freedom for the design of 
the boundary curves than the extrusion 
function would give us. 
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Fig. 11.16 
How to place the control points of a 
parabolic arc with vertical axis. 

Example: 
Surfaces from parabolas with vertical 
axes. Due to their structural effi  ciency, 
catenary arcs (refer to chapter 18) and 
their approximation by parabolic arcs are 
oft en used in architecture. To make use 
of its structural potential, the parabolic 
arc axis has to be oriented vertically.
As an example for modeling with Bézier 
surfaces, we show how to design a Bézier 
surface fr om parabolic arcs. To achieve the 
desired structural behavior, we defi ne all 

u-curves of the surface as parabolas with 
vertical axes. To simplify things, we use a 
coordinate system with a vertical z axis.
How do we place the three control points 
of a Bézier curve of degree 2 (parabolic 
arc) so that the curve’s axis is vertical? 
Figure 11.16 shows the solution. We 
just have to look at the top view in the 
xy-plane and make sure the top view of 
the inner control point is the midpoint 
of the top views of the endpoints. Th is 

gives a fi rst simple solution of our surface 
problem: we use a control grid of a 
Bézier surface of degree (2,n), whose top 
view is a rectangular grid (Figure 17.11). 
For n=2 we even obtain a surface whose 
v-curves are parabolas with vertical 
axes. In general, this surface is not a 
paraboloid (which can be obtained if we 
make sure all quads in the control mesh 
are parallelograms).

symmetric case general case
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Bézier surface of degree (2,2) Bézier surface of degree (2,2) 
(elliptic paraboloid)

Bézier surface of degree (2,3) Bézier surface of degree (2,2) 
(hyperbolic paraboloid)

Fig. 11.17 
Surfaces with a family of parabolas 
with vertical axes may be constructed 
above a rectangular grid in a horizontal 
plane. The surfaces on the right hand 
side have parallelograms as faces of 

the control mesh; they represent 
an elliptic or hyperbolic paraboloid, 
respectively and are special 
translational Bézier surfaces.
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Fig. 11.18 
Bézier surfaces formed by a family 
of parabolas with vertical axes. The 
restrictions on the top view of the 
control mesh (left) make sure that any 
u-curve is a parabola with a vertical 
axis.

Th e proof of this construction uses the fact that we can construct the top views of the 
control points of a u-curve directly in the top view by application of the algorithm of de 
Casteljau (affi  ne invariance of Bézier curves). However, the same proof can be applied to 
a much more general scenario (Figure 11.18). We just make sure that the top view of our 
Bézier surface of degree (2,n) has column polygons that satisfy the criterion depicted in 
Figure 11.16 (three collinear points at equal distance in the top view).
Th e essence of the proof is already found via n=1 and is illustrated in Figure 11.18 
(bottom row): for a fi xed v, we construct the three control points of a u-curve and see 
that they also satisfy the condition of Figure 11.16 and thus represent a parabola with 
vertical axis.

Bézier surfaces joined smoothly. Smooth joins between surfaces are much more 
diffi  cult to achieve than smooth curve joins. Th ere is, however, one construction 
method for achieving a smooth transition between two Bézier patches that is easy 
to grasp and quite useful in practice. Figure 11.19 shows a Bézier surface B of degree 
(3,3) and highlights a boundary polygon and an adjacent polygon of the control mesh.

Th ese two row polygons form a control mesh of a ruled Bézier surface R of degree 
(1,3). Th e general construction algorithm for u-curves shows that the straight line 
segments on R are end tangents of the u-curves. Hence, R is tangent to B along a 
boundary curve. 
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Now consider two Bézier surface patches B1 and B2 whose control meshes have a 
common boundary row polygon. Th is polygon defi nes a Bézier curve (v-curve) b. 
Th e surfaces B1 and B2 join along b, but the two surfaces will in general have diff erent 
tangent planes at points of b. Th e composite surface possesses a sharp edge along b, 
which might be undesirable.

To achieve smoothness, we make sure that the tangent ruled surface patches R1 and R2 
along b lie on the same ruled surface R. Because three v-curves of a Bézier ruled surface 
R of degree (1,n) possess control points that defi ne the same ratio along the column 
segments, we obtain the construction via equal ratios depicted in Figure 11.20. 

Fig. 11.19 
The control mesh of a Bézier surface 
B contains control meshes of ruled 
surfaces R, which are tangent to B 
along its boundary curves.

Fig. 11.20 
(left) Joining two Bézier patches in a 
smooth way.

(right) The proof for this construction. 
Three v-curves along the same Bézier 
ruled surface R of degree (1,3) defi ne 
the same ratio along the column 
segments.
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Fig. 11.21 
Smooth Bézier junction between a 
parabolic cylinder and a plane.

Example: 
Smooth Bézier junction between a 
parabolic cylinder and a plane. As 
an application of this construction, we 
discuss the design of a smooth blending 
surface between a parabolic cylinder C 
and a plane P (Figure 11.21). As a blending 
surface, we use a Bézier surface B of degree 
(2,3) that connects a boundary parabola 
p1 of C to a parabola p2 lying in P.

Th e fi rst and the last column of the 
control mesh of B coincide with the 
control polygons of the two parabolas 
p1 and p2. Th e second column of the 
control mesh can be chosen according 
to the construction via equal ratios (as 
in Figure 11.20).
Th e third column just has to lie in the 
plane P because then the tangent ruled 

surface is a patch in P and we obtain a 
smooth join with P. Th is still gives some 
choice to the designer in varying the 
shape of the blending surface. However, 
this must be done always ensuring a 
smooth blend between the parabolic 
cylinder and the plane.
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Because Bézier surfaces are just families of Bézier curves, they have the same drawbacks 
as their curve counterparts: As soon as one degree is too high, they poorly represent 
the shape of the control mesh. Moreover, changing one control point has a global 
eff ect—which makes editing diffi  cult.

To avoid this problem, one can use B-splines for the surface defi nition. Such a B-
spline surface is also defi ned by a quadrilateral control mesh. However, in addition we 
can choose the degrees for the u- and v-curves. Th e implications of the degree on the 
smoothness of the surface are the same as for curves.

Yet another straightforward extension is the use of NURBS surfaces, which have a 
weight attached to each control point. Th e eff ects of changing a weight are the same as 
for NURBS curves (Figure 11.22). 

B-Spline Surfaces and 
NURBS Surfaces

  
      
     

     
     

   

l  f  f f
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Let’s examine a few examples, as shown in Figure 11.23. Surface B1 is of degree (1,3) 
and has a control mesh of 2 x 6 points. Hence, the u-curves are straight lines and the 
surface is a ruled surface. Surface B2 is also of degree (1,3), but has 4 x 6 control points. 
Th erefore, the surface is formed by three ruled surfaces that join along sharp edges.

Surface B3 is of degree (3,3), which implies continuity of curvature (discussed 
further in Chapter 14). In Chapter 14 we will also point to an important visual 
eff ect concerning refl ection lines if the surface is polished. Smooth curves generate 
smooth refl ections only if the surface is curvature continuous. At fi rst sight, it is 
surprising that this does not hold for a surface containing only well-defi ned tangent 
planes (no sharp edges). 

Fig. 11 .23
Some B-spline surfaces illustrating the 
infl uence of the degree.

Fig. 11.24 
Three different topological types of 
NURBS surfaces, depending on the 
chosen mode (open or closed) for u- 
and v-curves, respectively.

ruled surface three ruled surfaces B-spline surface of degree (3,3)
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Open and closed mode. B-spline curves and NURBS curves can be constructed in 
the open or closed mode. In the latter case, the control polygon has to be closed as 
well. A B-spline surface carries two families of B-spline curves: the u-curves and the 
v-curves, which can be in open or closed mode. Th is yields three quite diff erent ways in 
which the surface is put together (Figure 11.24).

• Open mode for u- and v-curves: the surface is a four-sided patch. 

• Closed mode in one direction (u or v), open mode in the other direction: 
such a surface looks like a deformed piece of a pipe.

• Closed mode in both directions: the surface looks like a deformed torus. 

Th ese three types are instances of diff erent topologies. With control meshes in which 
one or more boundary polygons degenerate to a single point (Figure 11.25), we may 
model patches with fewer than four curved sides, (as discussed in material following, 
they are topologically equivalent).

We may also obtain the topology of a sphere (deformed sphere). However, more 
complex topologies—such as a closed surface, as shown in Figure 11.1 (bottom)—
cannot be modeled by a single B-spline surface. Stitching several B-spline patches 
together to obtain a more complicated surface is diffi  cult and quite far away from 
being practical. Th is topological dilemma is resolved by subdivision surfaces. Before 
discussing them, we address a few other surface types that are very useful in shape 
modeling.

Fig. 11.25 
Some B-spline surfaces with 
degenerate control meshes. 

3-sided patch

2-sided patch

disk
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Interpolating spline surfaces. Bézier and B-spline surfaces possess a rich spectrum 
of possible shapes. Th ey can be interactively designed by editing their control mesh. 
However, there are other ways of defi ning and using them. For example, we may 
require the surface to pass precisely through a given set of points.

Th is interpolation problem in its most general form is diffi  cult to solve. However, the 
following solution is easy and is implemented in most 3D modelers: Given a set of 
points, arranged like the control points in a quadrilateral mesh, pass a B-spline surface 
through it (Figure 11.26). 

In our discussion of digital reconstruction in Chapter 17, we will see that we can 
approximate any given shape or measurement data from a 3D scanner with high 
accuracy—provided we use a suffi  cient number of B-spline patches and a good 
algorithm for computing them.

Fig. 11.26 
B-spline surfaces may be used 
to interpolate the vertices of a 
quadrilateral mesh. The latter is not 
the B-spline control mesh. 

quadrilateral mesh interpolating B-spline surface
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We have discussed many types of smooth surfaces. Apart from a few very simple 
ones, such as cylinders and cones, building such surfaces at an architectural scale 
within the usual budget constraints may not be feasible. So what to do in order to 
realize a beautiful design, which includes a nonstandard shape? One answer is to use 
meshes. Th ey come in diff erent types, and some of them are promising candidates for 
architectural design. 

Roughly speaking, a mesh is a collection of points (vertices) arranged into basic 
elements called faces. Th e faces are bounded by polygons. Typically, one type of 
polygon dominates (e.g., triangle, quadrilateral, or even hexagon). Th ey fi t together 
along common edges and roughly describe the shape of a smooth surface (which may, 
however, have some non-smooth features such as sharp edges or corners).

In fact, almost all seemingly smooth surfaces in animations, games, and the like are 
actually just smoothly rendered meshes (recall Chapter 2 on rendering) . Th ey are 
omnipresent in graphics, but are also heavily used for simulations in engineering. 
Some examples of meshes are shown in Figure 11.27. Th e use of meshes in architecture 
enjoys increasing popularity, a few of the many recent projects being displayed in 
Figure 11.28d–f. 

Meshes 

Fig. 11.27
Meshes come in different types: 
triangle meshes, meshes formed by 
quadrilaterals or even hexagons. In 
contrast to triangle meshes, their faces 
are not necessarily planar, but shall 

join along common straight edges. 
The meshes shown here have been 
designed with software developed by 
Ergun Akleman.



History of meshes in architecture. A milestone for 

realizing freeform geometric shapes in architecture were 

the early twentieth-century fabrication methods for glass 

panels (Irving Colburn, 1905; Emile Fourcault, 1913; Max 

Bicheroux, 1919). In 1914, the German architect Bruno 

Taut (1880–1938) used reinforced concrete girders as 

structural elements for his glass pavillion (Figure 11.28a), 

with Luxfer glass bricks as glazing elements. Glass, as the 

epitome of “fl uidity and sparkle” and the “highest symbol of 

purity and death,” is the perfect material for Bruno Taut.

Th e evolution from iron to steel off ered new dimensions and 

possibilities of prefabrication, as well as novel assembling 

logistics and material compositions for complex geometric 

lightweight structures. Pioneers are Buckminister Fuller 

(famous for his geodesic domes), V. G. Suchov, and  Frei 

Otto (known for his suspended structures, Figure 11.28b), 

and H. Schober and J. Schlaich, with their cable nets and 

grid shells (Figure 11.28c). 

In general, geometric knowledge in combination with 

new methods of structural computation opens up new 

approaches to manufacturing and fabrication of freeform 

surfaces. One example is the Sage Gateshead (1994–2004) 

by Foster and Partners (Figure 11.28d), a building whose 

roof is geometrically a quadrilateral mesh.

Triangular meshes have been used in architecture whenever 

freeform surfaces cannot be easily planarized in another 

way. Recent examples include the comparatively small Mur 
island (2003) in Graz by Vito Acconci (Figure 11.28e) and 

parts of the huge glass roof of the Milan trade fair (2002–

2005) by Massimiliano Fuksas (Figure 11.28f ).

(b)
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Fig. 11.28 
(a) The Glass Pavilion (1914) by Bruno 
Taut.
(b) The Munich Olympia Stadium 
(1972) by Frei Otto.
(c) The glass roof of the Hippo 
House (1996) at the Berlin zoo by 
Schlaich Bergermann und Partner is a 
quadrilateral mesh with planar faces.
(d) The Sage Gateshead (1994-
2004) by Foster and Partners has 
a roof whose geometry is that of a 
quadrilateral mesh.
(e) The Mur Island (2003) by Vito 
Acconci has a triangle mesh structure.
(f) The roof of the Trade Fair (2002-
2005) in Milan by Massimiliano Fuksas 
is a huge half triangle, half quad mesh.

(a)

(c)

(d)

(e)

(f)
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Geometry and connectivity. When dealing with meshes, we should fi rst discuss their 
connectivity—also refered to as their “mesh topology.” Roughly speaking, this means 
that we have to label the vertices of the mesh and know in which way they are joined 
to form the edges and faces. A more precise description follows. 

Meshes with precisely the same connectivity may have very diff erent shapes. We just 
have to change the coordinates of the vertices (within meaningful limits) and keep all 
connectivity information (see Figure 11.29).

Th e larger the number of faces the more freedom we have in our design. However, 
this may also be a burden and thus we need strategies for the generation of meshes. In 
our search for such strategies, aesthetics plays a crucial role. Figure 11.30 shows two 
meshes approximating the same shape, but one is obviously much more balanced than 
the other.

Fig. 11.30 
Two triangle meshes may approximate 
the same shape, but have a very 
different connectivity. This has an 
infl uence on the visual appearance of 
the mesh. 

Fig. 11.29 
These two triangle meshes have the 
same connectivity, but represent quite 
different shapes. 
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To describe the same geometry with a more balanced mesh, we might have to change 
the connectivity. Many algorithms in mesh design are basically about a clever interplay 
of designing/changing connectivity and geometry.

To be more specifi c about geometry and connectivity, a way is needed for storing the 
essential information. Among other fi le formats, the commonly used OBJ  format 
accommodates this approach.

• A list of coordinate triples (x,y,z) is the fi rst part of this format. A list is just 
an ordered sequence, and the coordinates defi ne the vertices of the mesh. 
Th e coordinates greatly contribute to the geometry. However, there is more 
information—given by the order in this list. Th e coordinate triple (vertex) 
that comes fi rst may be seen as having label 1, the triple coming next defi nes 
the vertex with label 2, and so on. Th e actual order may not have anything to 
do with the geometry or connectivity at this moment. Th e only important 
insight is that through an ordered list of triples the coordinates of ver ices are 
defi ned and each vertex is assigned a label. 

• Th e next information in such a fi le are the face commands. Th e face command 
specifi es polygons that represent the faces of the mesh. Let’s look at an 
example (Figure 11.31): (f 1 3 6 4) means that vertices with labels 1, 3, 6, and 
4 form a quadrilateral face; (f 2 4 6) defi nes a triangular face with vertices 
2, 4, and 6. Again, more information is contained in the face commands. 
Th e order of vertices (such as 1 3 6 4) defi nes all edges of the face: an edge 
joining 1 and 3, edge 36, edge 64, and edge 41. We always close a face 
polygon. Clearly, the same face can be written with the command (f 3 6 4 
1). However, (f 4 6 3 1) would make some diff erence: one assumes here that 
the underlying surface has an inner and outer side and that the orientation is 
counterclockwise if we look at the surface from its outer side. Have a look at 
two faces that join along an edge, such as 46 and 64 in our example. Because 
of the orientation assumption, we trace the edge in opposite directions for 
the two faces. For the quad face, we trace it as 64 (go from 6 to 4) and for 
the triangle we trace it as 46. Just the edges at the boundary of the mesh 
are traced only once; interior edges are traced twice, in opposite directions. 
Otherwise, the representation is not consistent. 

Fig. 11.31 
The face information (f 1 3 6 4) and 
(f 2 4 6) tells us: A quadrilateral face, 
traced in counter-clockwise order when 
observing it from the outer side of 
the surface, has vertices with labels 
1,3,6,4. It meets a triangular face with 
vertex labels 2,4,6 along the common 
edge with vertices 4 and 6. 
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Th is is all we need in order to defi ne both the connectivity and the geometry of the 
mesh. We will return to this topic in the section on topology in Chapter 14. One 
useful limitation should be mentioned: It would be an advantage to exclude so-called 
T-junctions, where two faces meet the same edge of another face (see Figure 11.32).

Likewise, we do not want degenerate triangles (i.e., triangles whose vertices are all lying 
on the same straight line, producing T-junctions). Degenerate triangles do not defi ne a 
face plane and are therefore a potential source of failure in other programs using such a 
mesh as input.

We have discussed only the basics. Programs may store further information (e.g., 
surface normal vectors, texture information, material properties, and so on) needed for 
certain applications, such as rendering.

Meshes are so-called discrete representations of surfaces. Th ey generalize the pretty 
obvious fact that a polygon may be used as a discrete representation of a smooth curve. 
However, the step from curve to surface is a large one and certainly not easy. Th erefore, 
you cannot expect to easily extract all essential information about the geometry of 
surfaces (such as curvatures) from meshes.

For curves, this has been very easy. However, for surfaces we will use other tools. In the 
following you will learn about the most basic types of meshes and which ones have the 
potential to be visually pleasing. 

Fig. 11.32 
T-junctions in meshes are not 
desirable, but CAD programs may 
generate them in large amounts.
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Quadrilateral meshes. To obtain nice meshes that represent surfaces, we fi rst consider 
meshes representing the plane (such as with faces of the same type). Th e easiest way to 
tile the plane with quadrilaterals is to use squares (or rectangles) arranged in a regular 
way. In Figure 11.33, four squares join in a vertex.

A well-formed quadrilateral mesh (also called a quad mesh) will have the same 
connectivity as this special planar mesh. At an interior vertex (i.e., a vertex that is not 
at the boundary of the mesh), exactly four faces meet. Of course, four edges meet there 
too. We speak of a vertex of valence 4. In general, the valence of an interior vertex is the 
number of incoming edges (the same as the number of faces through that vertex).

In a quad mesh, an interior vertex of valence 4 is called a regular vertex. If the valence is 
diff erent from four, we talk about an irregular vertex. Let’s have a look at the simplest 
quad mesh, the cube. Each vertex has valence 3. As a consequence, all vertices are 
irregular—which might be a surprise at fi rst glance. Note, however, that the cube is 
not really a satisfying approximation of a smooth surface.

Quad meshes with regular vertices only are shown in Figure 11.34. Do you remember 
these types from a previous section? Could you imagine a fully regular quad mesh 
approximating a sphere? 

To reduce topological restrictions, one may introduce some non-quadrilateral faces 
into a quad mesh (which would constitute a quad-dominant mesh).

Before moving to other surfaces, understand that the quadrilaterals in a quad mesh in 
general are not planar (although this is certainly a very useful property for applications 
in architecture). We have already encountered some special surfaces that can be 
approximated by meshes with planar quads. Th is interesting topic is explored in detail 
in Chapter 19. 

Fig. 11.34 
Quad meshes with only regular vertices 
have limitations concerning their 
topology; see the section on topology 
in Chapter 14. 

Fig. 11.33
(left) In a regular tiling of the plane 
with squares, exactly four squares join 
at a common vertex.
(right) A regular vertex in a 
quadrilateral mesh has the same 
property.

“cylinder” “torus”“four sided patch”

Next Page 
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Triangle meshes. A triangle mesh consists exclusively of triangles. In exploring them, 
we take the previous approach and fi rst have a look at the case of a plane. How do we 
tile a plane with regular triangles only? Th is is very simple (Figure 11.35; see also the 
discussion on planar tilings in Chapter 5).

Obviously, we have to assemble six triangles around a vertex. Note that the same mesh 
topology is obtained when we split the squares of a square tiling in the plane by one 
family of parallel diagonals (Figure 11.36).

Conversely, we obtain a tiling via parallelograms by removing a family of parallel lines 
from a regular triangle mesh in the plane. It is almost needless to say that a regular 
vertex of a general triangle mesh is an interior vertex of valence 6 (Figure 11.35). Th e 
other interior vertices are called irregular. 

Triangle meshes are well suited for architecture because their faces are planar. On the 
other hand, we may roughly need twice as many triangles as quads to represent the 
same shape (Figure 11.36). 

Fig.11.36 
The conversion of a quad mesh into a 
triangle mesh and vice versa is shown 
in the plane, but would also work in 
regular parts of meshes representing 
surfaces. 

Fig. 11.35
(left) In a tiling of the plane with 
regular triangles, six faces join at a 
vertex.
(right) The same is true at a regular 
vertex of a general triangle mesh.

square tiling triangle tiling regular planar 
triangle mesh

parallelogram tiling

Previous Page 



Hexagonal meshes. Can we tile the plane with regular polygons other than squares 
or triangles? Investigating the edge angles at a vertex of a tiling that consists of regular 
polygons, one notices that the angles total 360 degrees.

Based on this fact, only one more possibility is left : hexagons (Figure 11.37). Of 
course, three hexagons of such a honeycomb tiling join at a vertex—which is also 
considered a regular case for a general hexagonal mesh (Figure 11.38). 

Fig. 11.38 
A hexagonal mesh in architecture 
(Nicholas Grimshaw, The Eden Project). 
Note that the hexagonal faces of 
the mesh cannot be planar regular 
hexagons. Why is this so?

Fig. 11.37
Tilings of the plane with regular 
hexagons are related to regular 
triangular tilings very closely; recall 
the quite analogous duality between 
Platonic polyhedra.

honeycomb tiling regular triangular tiling
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Mesh refi nement. It is sometimes desirable to design a mesh by starting with a coarse 
mesh and then refi ning it via an appropriate procedure. Subdivision surfaces (discussed 
in material following) work in this way. However, before moving to subdivision 
surfaces let’s have a look at some principles of refi nement. It is useful to think about 
refi nement as a two-step procedure: change the connectivity (number of vertices 
and the way they are connected) and then change the geometry (the position of the 
vertices). At this point, you might want to review the explanation of geodesic spheres 
in Chapter 3. 

Let’s fi rst examine triangle meshes. If we insert all edge midpoints and connect them as 
shown in Figure 11.39, we will end up with a fi ner triangle mesh that has exactly four 
times as many faces as the coarse mesh. Each face is split into four new faces. At this 
point, the geometry is still the same.

But now we are able to change the vertices so that this new mesh follows the design 
intent. Th is can represent a lot of work, and therefore the automatic displacement via 
appropriate algorithms is discussed later in the chapter. Of course, with the increased 
number of triangles we have more fl exibility and a better chance of having the mesh 
resemble the shape of a smooth surface.

Edge midpoint insertion is not the only means of mesh refi nement, but it has the 
great advantage that it does not introduce new irregular vertices. If we had inserted 
the barycenter of each triangle and connected it with the vertices (see Figure 11.40), 
we would immediately destroy the regularity everywhere. Except if the design should 
exactly look like this, you probably do not want to use such meshes. One can also 
easily extract quad meshes from a triangle mesh. 

Fig. 11.40 
Insertion of barycenters into the 
triangular faces and connecting 
them to the vertices destroys all 
regular vertices, but may have a 
visually appealing effect. Connecting 
barycenters with edge midpoints may 
be used to get a quad mesh. 

Fig. 11.39 
Triangular mesh refi nement by edge 
midpoint insertion quadruples the 
number of faces. 

triangle mesh —> insert edge midpoints —> refi ned triangle mesh
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For quad mesh refi nement, we can proceed along the same path. Edge midpoint 
insertion works very well. As shown in Figure 11.41, we connect the midpoints of 
opposite edges in a face. Th ese connections join in the barycenter of a face. In this 
way, we split each face into four subfaces, all of them are lying on the same hyperbolic 
paraboloid [compare also with our fi ndings on Bézier surfaces of degree (1,1) (Figure 
11.12)]. Th is construction keeps the regularity of vertices and may be the basis for 
further editing operations on the vertices. 

Th ere is yet another quad mesh refi nement based on edge midpoints (see Figure 
11.42). In this case, we simply connect the edge midpoints of a face to obtain one new 
quad face. It is an easy exercise to show that this quad is always a parallelogram (the 
proof is shown in Figure 11.42, bottom row). However, we still have four triangles 
sitting at the vertices of each old face.

We connect all arising triangles around an old vertex v to form a new poygon. If v is 
regular, this new face is a quad. Unfortunately, such a quad is in general not planar. 
Apart from some triangles, which may be left  at the boundary, this midpoint insertion 
scheme roughly doubles the number of faces. If we perform the same construction 
with a regular square mesh in the plane (see Figure 11.36), the mesh is still regular. We 
have scaled all faces by a factor of 1/√ ⎯2 and have rotated them by 45 degrees. 

Fig. 11.41 
A quad mesh may be refi ned by 
insertion of edge midpoints and face 
barycentres. Note that each skew quad 
is split into four skew subquads, lying 
on the same hyperbolic paraboloid. 

Fig. 11.42 
Quad mesh refi nement may also be 
performed via edge midpoint insertion. 
Note that the central quads arising in 
each face are always parallelograms, 
regardless of the planarity of the 
original face. The top row of the 
fi gure gives a geometric explanation: 
opposite edges of a central quad are 
parallel to a diagonal of the original 
quad.

quad mesh refi ned mesh

quad mesh —> insert edge midpoints —> refi ned quad mesh

non planar quad —> central quad —> diagonals of quad
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It is further interesting to apply midpoint insertion of the second type twice (Figure 
11.43). In fact, applying the rule depicted in Figure 11.42 again and again we will 
obtain in the limit a smooth surface. Th is is probably the simplest subdivision 
algorithm for surface generation and has been studied by J. Peters and U. Reif. 

We leave it as an exercise for the reader to think about hexagonal mesh refi nement. 
Hint: try to relate the hexagonal mesh to a triangle mesh!

Fig. 11.44 
Mesh reduction on a triangular 
mesh. The reduced meshes may still 
represent the underlying surface 
very well so that the differences in 
the shaded images may hardly be 
recognized.

Fig. 11.43 
Refi nement according to Fig. 42, 
applied twice, three times, and four 
times. Continuing this, we get in the 
limit a smooth surface.

level 1 level 2 level 3 level 4

mesh refi nement by edge midpoint insertion

original mesh reduced mesh

coarse mesh
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Mesh decimation. Although probably not at fi rst intuitive, the reverse of mesh 
refi nement (mesh decimation) can be very important as well. For example, a simple 
mesh decimation process removes “appropriate” vertices (selected by the algorithm 
according to the local geometry) and connects the remaining ones in a consistent way.

Th is topic is beyond the scope of this discussion. A more useful aspect is illustrated in 
Figure 11.44. Th e fi gure shows three triangle meshes, one with a signifi cantly larger 
number of triangles than the other two. However, they are all representing the same 
underlying shape very well. Such a mesh pattern might not be used in an architectural 
application, where one actually wants to implement the edges as metal beams.

However, the procedure depicted in Figure 11.44 is an important data reduction step 
for acceleration of downstream applications such as simulations, fast rendering, and 
so on. We will encounter this data reduction step again in Chapter 17 in relation to 
digital reconstruction. 

Bad meshes. Whether a mesh is considered a “good” or “bad” one might depend on 
its purpose. Th e visual appearance may be one aspect. Too many irregular vertices, 
distributed in an irregular way, might not look good. But there is something else we 
need to consider, especially if the mesh is to be used for a simulation (behavior under 
loads, stresses, stability, and so on) based on the so-called fi nite element method 
(FEM).

It can be shown that the numerical algorithms used in FEM do not reach the required 
precision if a model contains “thin” triangles. In a thin triangle, there is at least one 
very small angle. In other words, the inscribed circle has a much smaller radius than 
the circum-circle. CAD soft ware may produce such triangles in large numbers. 
An example is shown in Figure 11.45. Another frequent problem for downstream 
applications are holes in meshes, which, for example, tend to occur near surface/
surface intersections. 

Fig. 11.45 
Example of a surface triangulation, 
generated automatically by certain 
CAD programs. Note that this mesh 
has long thin triangles even at places 
(circular top face), where one does not 
really need to use them. These long 
thin triangles are not appreciated by 
simulation programs since they are a 
potential source of inaccuracies. 
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Aesthetics of meshes and relaxation. A more rewarding topic is to think about 
good ways of enhancing the aesthetic appearance of meshes. Although there exists a 
subjective aspect when we talk about aesthetics, we can still provide some hints on 
how to obtain a more balanced node distribution in a mesh.

One basic idea is to adjust all mesh vertices so that the resulting mesh consists of nearly 
regular faces only. Precisely regular faces (e.g., equilateral triangles) are in general 
not possible. A related idea is a physical interpretation using a so-called mass-spring 
simulation system. In such a system one implements the vertices as mass points and the 
edges as springs. Th en, one fi xes some points (e.g., all boundary vertices) and lets the 
other vertices move freely until the entire system achieves an equilibrium . 

Th is technique is called relaxation. Very interesting membrane-like shapes may arise 
in this way. If one wants to remain close to a given design surface, one re-projects the 
points onto the surface aft er each relaxation step. As a result of this projection the 
vertices move on the given surface and achieve an equilibrium position. If we are given 
a triangle mesh, a simple form of relaxation moves each vertex p toward the barycenter 
of the (in general, six) vertices joined with p by an edge. Th is is done again and again 
until the displacements are fall below a specifi ed cutoff  threshold. Relaxation has been 
used by Chris Williams in the optimization of the triangle mesh for Norman Foster’s 
British Museum project (Figure 11.46). 

mesh before relaxation mesh after relaxation
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Fig. 11.46 
We compare top views of the mesh
(left) before and(right) after relaxation 
and in this way illustrate how much a 
rather minor displacement of the
mesh vertices infl uences the aesthetic 
appearance.

Rendering (top) and photo (bottom) of 
the glass roof of the British Museum.
(Figure is courtesy by Chris Williams.)
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Fig. 11.47 
Subdivision surfaces use a simple 
refi nement rule for meshes and apply 
it again and again. This leads to a 
smooth limit surface, but our interest 
may focus on meshes from appropriate 
intermediate levels of this refi nement 
process. There is a large variety of 
different schemes, a few are illustrated 
here: Doo-Sabin, Catmull-Clark and 
Loop.

Doo-Sabin subdivision

Catmull-Clark subdivision

Loop subdivision
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Motivation. We have encountered topological restrictions in shape modeling at least 
twice so far: in our study of B-spline surfaces and in the discussion of quad meshes 
containing regular vertices only (i.e., vertices of valence 4). Th ere is actually a close 
relation between these two instances because the control meshes of B-spline surfaces are 
quad meshes.

If we avoid multiple control points (as in Figure 11.25), the control meshes are regular 
(Figures 11 24 and 11.34). We will see in the following that a B-spline surface may be 
viewed as a result of a refi nement process, which keeps regularity of quad meshes but 
refi nes them to fi ner and fi ner levels until in the limit we obtain a smooth surface.

Th is does not change the topology. Hence, if we want to model surfaces with a more 
general topology (such as those shown at the bottom of Figure 11.1) we need to use 
control meshes which have irregular vertices. We also need to know how to refi ne them 
(subdivision surfaces do exactly that). 

Th e bottom row of Figure 11.1 also shows some refi nement steps. Th e focus of our 
interest is not just the smooth limit surface we are getting through repeated refi nement. 
In fact, for applications in architecture one might be much more interested in an 
intermediate level as appropriate to a particular design (in which the faces are of the 
desired size only).

Subdivision Surfaces

Tony de Rose Malcom Sabin Edwin Catmull Charles Loop

Fig. 11.48 
Some pioneers of subdivision are 
M. Sabin, E. Catmull, C. Loop, and 
T. de Rose. PixarTM was one of the 
pioneers using subdivision surfaces for 
computer animated 3D feature movies.
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History of subdivision surfaces. In 19  two publications 

appeared which are now regarded as the starting point of 

research in surface subdivision schemes. Both dealt with 

refi nement rules which in the limit produce B-spline surfaces 

from a coarse input mesh. One of them, by D. Doo and M. 

Sabin, deals with surfaces of degree (2,2); the other one, by 

E. Catmull and J. Clark, with degree (3,3) surfaces.

In 1987, C. Loop developed one of the fi rst subdivision 

algorithms that works on triangle meshes. For all of these 

schemes, the subdivision surface at a fi ner level approximates 

the subdivison surface at a coarser level. At the same 

time, an interpolating subdivision scheme (for which the 

refi ned surface always passes exactly through the vertices 

of all previous refi nement steps) was published by N. Dyn, 

J. Gregory, and D. Levin.

Because of smoothness issues at extraordinary vertices, the 

use of subdivision surfaces in the automotive and aeronautic 

industries is limited. In the 1990s, Pixar pioneered the use 

of subdivison surfaces for computer graphics applications. 

(See Figure 11.48.)
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Hence, subdivision must also be seen as a effi  cient way of generating visually pleasing 
meshes. Fortunately, a number of 3D modeling systems have incorporated this great tool. 
An exhaustive overview is beyond the scope of this book, but we need to be familiar with 
the basic properties of a few important subdivision schemes. Th e “zoo of subdivision 
schemes” is as crowded as the “zoo of spline types.” Figure 11.47 shows a few species. 

Quadratic B-spline surfaces via subdivision. Recall Chaikin’s subdivision algorithm 
for the generation of a quadratic B-spline curve (Figure 11.49, top). In this case, we 
insert on each edge two new points by dividing the edge in the ratios 1:3 and 3:1. Th en 
these new points are connected. Th is is one refi nement step, which is then iterated.

Note that in regard to subdivision we talk about one basic refi nement step: how to 
proceed from the current level to the next fi ner level. To use the same idea for B-spline 
surfaces, we have to apply the rule to a regular quad mesh instead of a single control 
polygon (Figure 11.49, bottom).

As indicated in the discussion of Bézier surfaces, the transfer to surfaces works as 
follows. First, Chaikin refi nement is applied to the column polygons. Second, the new 
points are connected. Th ird, we apply it to the already increased number of rows. Th e 
role of rows and columns can be swapped. Th is fi nally yields a refi ned quad mesh with 
roughly four times as many faces as the coarse mesh. 

Fig. 11.49
(top) One step of Chaikin’s algorithm.
(bottom left) Applying this step at fi rst 
to the column polygons refi nes the 
column polygons and introduces new 
row polygons.
(bottom right) Next we apply the same 
rule to the obtained family of row 
polygons which also refi nes these and 

introduces new column polygons. This 
has to be seen as a single refi nement 
step of a subdivision algorithm. The 
refi ned quad mesh has roughly four 
times as many faces as the course 
mesh (the precise number depends on 
the boundary and vertex valences). 

Chaikin’s algorithm
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Splitting the transition of a mesh to its next fi ner level into two steps is awkward. We 
want to formulate an explanation in a single step, which turns out to be very easy. 
To understand it, we fi rst look at a single quad with vertices a,b,c,d and see how it is 
changed (Figure 11.50).

Divide a b in the ratio 1:3 and 3:1, respectively. Do the same with d c and connect 
corresponding points. Divide these connections again in the ratios 1:3, 3:1. Th is is all 
we have to do. If the quad is skew, it defi nes a hyperbolic paraboloid [Bézier surface of 
degree (1,1)]. All lines used in this construction (and of course all involved points) lie 
on this same hyperbolic paraboloid. 

Th is is very easy to implement, which becomes clear from the following formulae. Let 
a,b,c,d be the coordinate vectors of the large quad’s vertices. Dividing a b in the ratio 
1:3 yields point a' = (3/4)a + (1/4)b. Doing the same with d c, we obtain d ' = (3/4)d 
+ (1/4)c. Dividing a’d’ in the ratio 1:3 fi nally yields the new vertex 

a1 = (3/4)a' + (1/4)d ' = (9/16)a + (3/16)b + (3/16)d + (1/16)c.

Th is means that we only have to multiply the coordinate vectors of the old vertices with 
coeffi  cients 9/16, 3/16, and 1/16 and add them. Only these coeffi  cients are important, 
and thus subdivision rules are oft en graphically depicted by labeling those old vertices 
with the coeffi  cients needed to obtain a new vertex (see Figure 11.50, right). 

To summarize, in each quad we compute with the rule of Figure 11.50 our four new 
points, which are the vertices of the refi ned quad mesh. Th ere is one drawback: we 
can only model special topologies. But there is a surprisingly simple solution to this 
dilemma; namely; the Doo-Sabin subdivision sceme. 

Fig. 11.51 
Doo-Sabin subdivision is an extension 
of quadratic B-spline subdivision, but 
also handles the fact that irregular 
vertices (valence not equal to 4) 

create extraordinary faces which are 
not quads. These faces are refi ned 
according to the rule in Fig. 11.52

Fig. 11.50 
(left) The construction of the new 
vertices in a quad for one refi nement 
step in a subdivision algorithm for 
quadratic B-spline surfaces. The 
computation multiplies the coordinate 
vectors of the old quad’s vertices with 
certain coeffi cients and then adds the 
resulting vectors.
(right) The diagram shows which 
coeffi cients are associated with the old 
vertices to compute the highlighted 
new vertex a1. 
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Doo-Sabin subdivision scheme. Th is scheme does exactly the same for every quad 
as the procedure previously described. If we assume that there are only quads in our 
mesh, why don’t we just use this rule on any quad mesh? Doo-Sabin does. However, 
note that a vertex of valence 3 will create a triangle and a vertex of valence 5 will create 
a pentagonal face in the refi ned mesh (see Figure 11.51). Th erefore, in the next step we 
need a rule for handling such extraordinary faces.

As in a quad, the rule consists of a multiplication of the vertices’ coordinate vectors 
by coeffi  cients and forming the sum of these vectors. Th e coeffi  cients are more 
complicated but for completeness and for the mathematically interested reader the 
complete calculation is provided in Figure 11.52. If the extraordinary face is a regular 
planar polygon with K vertices (K-gon) and center m, the refi ned K-gon is also regular 
and has the same center. However, it is scaled with the factor 1/2. 

Operations that might also be needed for an implementation (but not discussed here) 
include the proper handling of boundaries and the introduction of features such as 
creases. So far, we have only discussed a single refi nement step. To obtain a subdivision 
surface, one has to apply this subdivision step again and again. It is beyond the scope 
of this book to provide a proof for the limit being a smooth surface. As a scheme that 
yields quadratic B-splines for a regular initial mesh, we cannot expect better surface 
smoothness than we obtain with quadratic B-splines.

Th e subdivision surface very nicely resembles the shape of the initial mesh. One indicator 
for this is the following simple fact: When we subdivide a quad Q again and again it 
remains on the same hyperbolic paraboloid P (or in the same plane P in the case of a 
planar quad) but shrinks toward the barycenter b of the original quad (Figure 11.53).

Fig. 11.53 
Repeated Doo-Sabin refi nement of a 
quadrilateral Q yields in the limit the 
barycentre of Q. If Q is skew, it defi nes 
a hyperbolic paraboloid P, which 

contains all the refi ned quads as well. 
If the original quad lies in a plane P, 
the same holds for the refi ned ones. 

Fig. 11.52
Rule for extraordinary faces in Doo-
Sabin subdivision: the diagram shows 
those coeffi cients of the vertices which 
are needed to compute the highlighted 
vertex of the refi ned mesh. The fi gure 
shows a 5-sided face (K=5), but the 
formula holds for arbitrary K-sided 
faces.
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Each of these resultant quads lies on one refi nement level of the sequence of meshes 
created in the Doo-Sabin subdivision process. Because the quad’s edges converge to 
tangents of the limit surface, the fi nal surface touches P at the barycenter b (Figure 
11.54). Th is also shows that the initial mesh does not shrink very much during the 
subdivision process.

From cubic B-splines to Catmull-Clark subdivision. Th e previously described 
strategy for obtaining a subdivision scheme for surfaces from a quadratic B-spline 
curve subdivision rule (Chaikin’s algorithm) works for cubic B-splines as well. 
Generating cubic B-spline curves via subdivision is based on the Lane-Riesenfeld 
algorithm: insert the edge midpoints of the current polygon and subsequently perform 
two rounds of averaging (see Figure 11.55).

Fig. 11.55 
One refi nement step of cubic B-spline 
subdivision according to the Lane-
Riesenfeld algorithm requires midpoint 
insertion and two rounds of averaging 
(the fi rst round yields exactly the 
points for the Chaikin rule). The fi gure 
also shows the coeffi cients of the 
vertices for computing the highlighted 
point of the refi ned polygon.

Fig. 11.54 
A Doo-Sabin surface passes through 
the barycenters of the quads in the 
input mesh and touches there the 
plane or hyperbolic paraboloid, which is 
defi ned by the quad. 
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We could say that there are two types of new points: the edge midpoints and points, 
which are displaced vertices of the coarse polygon. Let’s focus on the latter points only 
and call bn the new location of b, whose left  and right neighbors are denoted bl and br 
(Figure 11.55). Obviously, bn is the midpoint of the two Chaikin points cl = 1/4 bl + 
3/4 b, cr = 3/4 b + 1/4 br. Th erefore, it has the representation 

bn = 1/2 cl + 1/2 cr = 1/8 bl + 3/4 b + 1/8 br.

Let’s examine a regular quad mesh (i.e., subdivision for cubic B-spline surfaces). Th is 
will lead us to the Catmull-Clark subdivision rules for the regular part of the mesh.  
To derive the rules, we apply Lane-Riesenfeld subdivision to the columns and then to 
the rows (or vice versa).

Formulated in a single refi nement rule, we will obtain the cases depicted (with 
coeffi  cients) in Figure 11.56. Th e coeffi  cients depend on how edge midpoints 
(depend on two old vertices) and displaced vertices (depend on three old vertices) are 
combined. Combining the edge midpoints gives the face barycenter, which depends 
on the four quad vertices.

If an edge midpoint is paired with a displaced vertex, we obtain a new point that 
may be seen as a displaced edge midpoint of the coarse quad mesh (the computation 
requires 2 · 3 = 6 old vertices). Th e coeffi  cients are the products of 1/2 · 3/4 and 
1/2 · 1/8 and hence 3/8 and 1/16, respectively. Finally, the combination of two 
displaced vertex computations (coeffi  cients 3/4 and 1/8) requires 3·3 = 9 points. Th eir 
coeffi  cients are 3/4 · 3/4 = 9/16, 3/4 · 1/8 = 3/32, and 1/8 · 1/8 = 1/64, respectively. 

Fig. 11.56 
Rules for one refi nement step 
in Catmull Clark subdivision (= 
subdivision rule for cubic B-spline 
surfaces) in the regular part of the 
mesh.
(left) There are three cases: face 
barycentres get inserted,

(middle) the midpoint of each edge 
gets displaced to a new location and
(right) each vertex of the coarse mesh 
is brought into a new position. The 
fi gures show the required coeffi cients 
for the computation. 

Catmull-Clark 
subdivision rules
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Th e computation for a displaced vertex is only valid for a regular vertex. For singular 
vertices (valence K diff erent from 4), the special rule depicted in Figure 11.57 has to 
be applied. 

Th e smoothness of Catmull-Clark surfaces away from singular vertices is higher than 
for Doo-Sabin surfaces (refl ection lines are also smooth). However, the behavior at the 
singular vertices is still not as smooth as one might desire for certain applications (such 
as car body design).

As we have mentioned, however, architecture does not rely as much on surface 
continuity due to the constraints of building at a large scale. Because more averaging 
is involved in Catmull-Clark surfaces, they exhibit a stronger smoothing eff ect and are 
farther away from the control mesh than Doo-Sabin surfaces (see Figure 11.58). 

Fig. 11.58
(left) Comparison of Doo-Sabin 
subdivision and
(right) with Catmull-Clark subdivision. 
The latter yields the smoother result, 
since more averaging is involved 
in each step; because of that, the 
Catmull-Clark surface is farther away 
from the initial control mesh than the 
Doo-Sabin surface. 

Fig. 11.57 
Rule for extraordinary vertices in 
Catmull-Clark subdivision: the given 
numbers are the coeffi cients needed to 
compute the new vertex of the refi ned 
mesh. Here, K is the valence of the 
vertex (K=7 in the fi gure).

extraordinary vertex

Doo-Sabin Catmull-Clark
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Skew quad warning. Even if we start with a mesh consisting of planar quads only, 
subdivision will introduce skew quads. None of the subdivision schemes based on 
quads and in which refi nement is performed with simple linear combination rules (as 
the schemes previously cited) would preserve planarity of quads.

However, there are “planarization” algorithms that can be combined with subdivision 
algorithms to maintain planar quadrilateral faces. An example of the action of such 
an algorithm is shown in Figure 11.59. Th is interesting topic is investigated in greater 
detail in Chapter 19. 

Fig. 11.59 
Standard subdivision algorithms 
generate lots of non-planar 
quadrilateral faces even if we start 
with a mesh that is composed of planar 
quads only (see Doo-Sabin algorithm, 
top row). However, one may apply 

an optimization procedure after each 
subdivision refi nement step, which 
aims at a minimal displacement of the 
vertices so that the quads become 
planar (cf. Chapter 19). 

non-planar quads planar quads

level 0 level 1 level 2 level 3
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Triangle-based subdivision. Although a triangle mesh representation of a curved 
surface needs roughly twice as many faces as a quad mesh, it has the great advantage 
that the faces are always planar. Unfortunately, we cannot just derive triangular 
subdivision schemes from curve algorithms (as discussed previously).

Th us, we must refrain from any derivation and point directly to one of the most 
prominent schemes (Loop subdivision). Its rules are illustrated in Figure 11.60, and 
some results of the algorithm are shown in Figure 11.61. Th e smoothness obtained 
with this scheme is the equivalent of that obtained with Catmull-Clark surfaces. 

All of the schemes we have presented are based on mesh smoothing. Th e resulting 
surfaces do not pass through the vertices of the input mesh. Th ere are various schemes 
which generate surfaces that pass through the vertices of the input mesh, but we refer 
the reader to the literature for details on these. 

Fig. 11.60 
Rules for triangular mesh subdivision 
according to Loop. 

edge midpoint vertex extraordinary vertex
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Fig. 11.61 
Meshes resulting from Loop’s 
subdivision algorithm. 

level 1 level 2
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Multi-resolution Modeling. Perhaps you may have the impression that subdivision 
is a type of machinery activated by an input mesh and run without the designer being 
able to infl uence it. Th is should not to be the case!

We may perform editing operations on any intermediate level of refi nement. Th e resulting 
limit surface is still smooth: just view the fi nest mesh on which you made some editing 
operations as an initial mesh for further subdivision. 

It may be advantageous to collect a few basic facts about meshes on diff erent levels of 
detail. When we start with a coarse mesh and apply subdivision (any refi nement rule) 
on it iteratively we obtain a so-called coarse-to-fi ne hierarchy of meshes. At any level of 
this hierarchy, we can perform editing operations before proceeding to the next fi ner 
level.

Fig. 11.62 
Subdivision algorithms can be combined 
with editing operations: a change, made 
at a coarse level, has a broader infl uence 
than one made at a fi ne level. This is the 
principle of multi-resolution modelling. 
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Why does this make sense, and why is there a diff erence at which level we make 
a change? To resolve this, examine Figure 11.62, in which a change in the initial 
phase infl uences a much larger area than a change at fi ner levels. To prove this claim, 
think about the neighborhoods needed to compute the new points in a subdivision 
algorithm (Figures 11.50, 11.52, 11.56 and 11.60).

Th us, basic trends of the surface shape should be integrated right away in the initial 
control mesh. Large-scale modifi cations have to be made at early stages of the process, 
and details can be modeled at fi ner levels. Th is technique is called multi-resolution 
modeling, which represents a powerful method of shape modeling. Figure 11.63 shows 
a model created with this method. 

Fig. 11.63 
Shape design can be effectively 
performed with multi-resolution 
modelling.

  

 
 





Chapter 12
Motions, Sweeping, 
and Shape Evolution
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Several surface classes studied so far can be defi ned by applying a special motion to a 
profi le curve p (Figure 12.1). If p rotates about an axis, it generates a rotational surface. 
If p is moved with a continuous helical motion, we obtain a helical surface. Translation 
of p along another curve yields a translational surface. A pipe surface is generated by 
a circle p whose center is moved along a curve c and whose plane remains orthogonal 
to c. Now we will show that there are many more interesting motions that generate 
surfaces for geometric design. Before we can discuss these surfaces, it is necessary to 
understand some basics of kinematic geometry (geometry of motions).

Motions, Sweeping, and 
Shape Evolution

Fig. 12.1
Surfaces generated by applying a 
continuous motion to a profi le curve: 
rotational surface, helical surface, 
translational surface and pipe surface. 
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Th ere are further reasons we should discuss kinematic geometry. Industrial design may 
require an understanding of kinematics because design and functionality cannot be 
fully separated. For example, the design of a capsule around a mechanism must not 
form an obstacle for any moving part of that mechanism. Moreover, contemporary 
architecture may include fl exible elements that can change their shape because there 
are mechanisms tied to them (Figure 12.2). Designing fl exible shapes requires a basic 
understanding of the geometry of motion. 

In this section, we will fi rst study kinematic geometry in the plane and in three 
dimensions. Th is will lead us to a number of remarkable surface classes generated by 
the motion of a profi le curve. We will then consider cases in which the profi le may 
change its shape. Th is motivates us to study curve evolutions. Finally, we will address 
some related surface generation methods such as skinning and meta-balls. 

 

Fig. 12.2
The Quadracci Pavilion (1994–2001), 
an addition to the Milwaukee Art 
Museum by Santiago Calatrava. The 
striking feature of this building is the 
Brise de Soleil, a sun screen that is 
raised and lowered throughout the 
day to provide light and shade to 
the interior of the museum (images 
courtesy of Jeff Millies/Hedrich 
Blessing, Timothy Hursley).
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In the following, we consider a planar geometric object M that can move in the plane 
F in which it is lying. M is considered rigid (i.e., distances between points of M remain 
unchanged). We call M the moving system and F the fi xed system. Under a continuous 
motion, M assumes time-dependent positions in F. If t denotes time, we call M(t) the 
position of M in F at time t. We have discussed special continuous motions in earlier 
sections.

A very simple motion is a continuous rotation about a point p (Figure 12.3). During 
such a rotation, each point of M moves along a circle with center p. Th e circle is called 
the path or trajectory (the set of positions) of that point. Certainly, the normals of the 
trajectories (circles) pass through p.

Fig. 12.3
Under a continuous rotation, points of 
the moving system generate concentric 
circles as trajectories. The normals 
of the trajectories pass through the 
rotational center.
 

Motions in the Plane



416

Th is example indicates that general continuous motions may possess rather complicated 
trajectories of points. However, there is some systematic behavior, and the simplest is the 
following: At any time instant t0, the normals to the trajectories pass through a point p(t0) 
(or they are parallel). Let’s see why this is the case. 

At fi rst, we consider two positions M(t0) and M(t1) at nearby time instances t0 and t1. 
In Chapter 5, we saw that two directly congruent positions M(t0) and M(t1) of a planar 
fi gure M can be mapped onto each other by a rotation or a translation (see Figure 
12.5). Th e proof of this result is as follows. To determine a position of a rigid system, 
it is suffi  cient to describe the positions of two points (e.g., r and s). Th eir positions are 
r(t0), r(t1), and s(t0), s(t1).

Fig. 12.4
A four-bar linkage: the bar with 
endpoints a and b forms the fi xed 
system. We are interested in the 
motion of the opposite bar cd. Its two 
endpoints move along circles. Any 
other point x of that bar describes a 
more complicated trajectory, and the 
same holds for other points y of the 
moving plane defi ned by cd. 

Example: 
Four-bar linkage. Th e kinematics of 
mechanisms requires the understanding 
of some of its basic building blocks. One 
of those is the four-bar linkage (Figure 
12.4). Th is is simply a quadrangle abcd 
with rigid edges (bars) and rotational 
joints at the vertices. We fi x the edge 
with vertices a and b and call it the fi xed 
system F. Th e two adjacent edges da and 

cb perform pure rotations, whereas the 
motion of the fourth edge cd is more 
complicated.
Of course, point c moves on a circle with 
midpoint b. Point d runs on a circle with 
midpoint a. Th is does not mean that the 
full circles are traced. Depending on the 
specifi c geometry, only parts of these two 
circles may be reached by points c and d. 

Th e picture becomes more complicated 
if we consider the trajectory of another 
point x on cd. Moreover, edge cd 
defi nes a moving plane M, and we may 
consider the motion of any point of that 
plane. Th is is shown in regard to point 
y in Figure 12.4. It depicts the rigid 
connection with the bar cd by a triangle. 
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Th e bisecting lines of r(t0)r(t1) and s(t0)s(t1) either intersect in a point p or are parallel 
(Figure 12.5). In the fi rst case, p is the center of a rotation—which maps r(t0) to r(t1) 
and s(t0) to s(t1), and hence M(t0) to M(t1). In the second case, the two line segments 
r(t0)r(t1) and s(t0)s(t1) are parallel and of equal length. Because they are nearby 
positions of a continuous motion, the orientations are the same as well—and therefore 
M(t0) and M(t1) can be mapped onto each other by a translation. 

We now consider closer and closer positions (i.e., formally let t1 tend toward t0). 
During this limit process, a connecting line of corresponding points converges to a 
tangent of a trajectory. Th us, the bisector discussed previously converges to a normal 
of the trajectory. It is called a path normal (Figure 12.6). In the fi rst (general) case, we 
obtain a limit position p(t0) for the point p, the so-called instantaneous pole.

All path normals of positions at time t0 run through the pole p(t0). We can say as well 
that with respect to path tangents and path normals the moving system behaves at this 
time instant t0 like a rotation about p(t0). We speak of the instantaneous rotation. As we 
have seen in the case of nearby positions, it may happen that the rotation degenerates 
to a translation. Th is means that all path tangents (hence, also all path normals) at 
such a moment t0 are parallel and we have an instantaneous translation. 

Fig. 12.6
At any time instant t0 of a continuous 
motion, the path normals of points of 
the moving system
(left) pass through a point p(t0) or
(right) are parallel. 

Fig. 12.5
Two directly congruent positions M(t0) 
and M(t1) of a planar fi gure M can be 
mapped onto each other by
(left) a rotation or
(right) a translation.

path normals pass through a point path normals are parallel
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In general, diff erent time instances give rise to diff erent poles. Th e following also 
hold (Figure 12.7). Th e set of poles in the fi xed system is a curve pf, the so-called fi xed 
polhode. Because the instantaneous rotation may degenerate to a translation, the pole 
may lie at infi nity and therefore the polhode may have points at infi nity. Analogously, 
we may consider the set of poles as a set of points in the moving system. In this way, we 
obtain the moving polhode pm (as a part of the moving system).

At any time instant, the current position of the moving polhode is tangent to the fi xed 
polhode at the instantaneous pole. In fact, the motion can be considered a rolling 
motion of pm on pf. “Rolling” means that there is no gliding. In equal time spans, the 
pole traces parts with equal arc length on moving and fi xed polhode (Figure 12.7). We 
will not investigate this in detail. We look at some simple instructive examples instead. 

Just as the position of a fi gure may be determined by the positions of two of its points 
we may defi ne a continuous motion by prescribing the trajectories of two points r and 
s. Th e simplest choice is discussed in the following example. (See Figure 12.8.)

Fig. 12.7
A continuous motion can also be 
generated by the rolling motion of 
the moving polhode pm on the fi xed 
polhode pf. At any time instance, 
the point of tangency between the 
polhodes is the instantaneous pole.  
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Fig. 12.9
Cardan motion. All points of the 
moving circle have straight line 
segments as trajectories. Clearly, the 
center of the moving circle generates a 
circle as a path. The trajectories of all 
other points are ellipses.

Fig. 12.8
A Cardan motion can be defi ned via 
straight trajectories lr and ls of two 
points r and s, respectively. The two 
points r and s defi ne the moving plane 
and thus they lie at constant distance 

R. The motion of the moving plane can 
be replaced by the rolling motion of a 
circle of diameter R inside a circle of 
radius R. 

Example: 
Cardan motion. Th is example has been 
chosen because we will later use it to 
design some remarkable ruled surfaces. 
Moreover, it presents a very simple 
motion whose polhodes can be easily 
found. We take two points r and s in the 
moving system and prescribe straight 
trajectories lr and ls (Figure 12.8) for 
them. For simplicity, we assume that 
these trajectories are orthogonal.
Th e intersection point of lr and ls is called 
m. For a position at time t0, we construct 
the pole p(t0) by intersection of the path 
normals at r(t0) and s(t0). Obviously, the 
distance R between r(t0) and s(t0) equals 
the distance of p(t0) and m. Hence, the 
fi xed polhode pf (set of poles in the fi xed 

system) is a circle with center m and 
radius R. To fi nd the moving polhode, 
we should try to take the viewpoint of an 
observer sitting in the moving system.
Such an observer sees that r and s appear 
from the pole at a right angle. Hence, 
by the theorem of Th ales the moving 
polhode pm (set of poles in the moving 
system) is a circle with diameter line rs 
and thus radius R/2. Th e motion can 
also be generated by the rolling motion 
of the circle pm in the circle pf. 
All points of pm, not just r and s, have 
straight line segments (through m) 
as trajectories. Rolling means that in 
equal time spans the pole traces parts 
with equal arc length on moving and 

fi xed polhodes. Th ose equal arcs R∙α 
= (R/2)∙2α are precisely delineated 
by the lines through m (Figure 12.9), 
and therefore points of pm move along 
diameter lines of pf. By an elementary 
construction of an ellipse, any point x of 
the straight line rs (x diff erent from r and 
s) generates an ellipse as a trajectory.
Clearly the midpoint of rs runs on a 
circle. All other general points x of the 
moving system have ellipses as paths. 
Th is can be proved by passing a diameter 
line of pm through x, which brings us 
back to the special situation we started 
with (Figure 12.9): two points r', s' run 
on orthogonal lines and thus a point x 
on the line r's' generates an ellipse. 
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Fig. 12.10
Trajectories under rolling motions 
may exhibit phenomena such as loops 
and cusps. The latter occur at the 
instantaneous pole. 

Example: 
Cusps and loops. Consider the rolling 
motion of a circle pm on a straight line pf  
(i.e., the motion of a car’s wheel; Figure 
12.10, bottom). Th e midpoint m of pm 
moves on a line parallel to pf. Other 
points x generate cycloids. Th ese are 
periodic curves, one period belonging 
to a full turn of the moving circle. A 

point x of the rolling circle generates a 
trajectory with a cusp. Points xo of the 
moving system that lie outside pm have 
trajectories with loops, whereas points xi 

inside pm have paths with two infl ection 
points per period.
Th ese phenomena are much more 
general. For example, a point x has a 

cusp in its trajectory at those locations 
where x is the instantaneous pole (Figure 
12.10, top). We have seen this already in 
the example of the elliptic motion. Th ere, 
the cusp is a turning point on a straight 
path. Artists may be inspired by the 
interesting shapes of curves generated by 
motions (see Figure 12.11). 
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Swept areas and envelopes. Th e union of all positions of a moving fi gure M under 
a continuous motion is called its swept area. If the environment in which M is 
moving contains some (fi xed) obstacles, which shall be avoided, the swept area of M 
is quite useful. An interference free motion of M requires that the swept area of M 
contain no obstacle. We may also say that the swept area describes the minimal space 
requirements. We are interested in the boundary of the swept area. It may contain two 
types of curves (Figure 12.12).

• Parts of trajectories of those points x, which are sharp corners on the 
boundary of the moving object M 

• Envelopes of boundary curves b of M 

Fig. 12.12
The swept area of a moving object may 
contain parts of certain trajectories and 
envelopes at its boundary. 

Fig. 12.11
The Eyebeam Museum of Art and 
Technology (project, 2001) by Greg 
Lynn FORM. In this project, curves with 
loops and cusps are extensively used. 
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For a better understanding of envelopes, let’s look at the envelope of a curve c under 
a continuous rotation about a point p. Th e envelope must consist of circular arcs 
(Figure 12.13). At a contact point e(t0) between a position c(t0) of c and the envelope 
e, the common normal passes through p. Th is important property is valid for general 
motions. At any time instant t0, the contact normals between positions of curves and 
their envelopes pass through the pole p(t0). Th is may result in a simple construction of 
the contact points. Figure 12.13 illustrates this by means of a straight line segment l 
whose end points are running on straight lines (Cardan motion). 

Fig. 12.14
The instantaneous pole of the motion 
of the Frenet frame along a planar 
curve c is the center of curvature. 
During this motion, the curve normal 
rolls on the evolute of c. Points of the 
normal have offsets of c as trajectories 
and thus their cusps lie on c’s evolute. 

Fig. 12.13
(left) Envelopes under a continuous 
rotation about a point are circles.
(right) Construction of points on the 
envelope of a moving straight line 
segment l using the property that the 
contact normal passes through the 
instantaneous pole.

Example: 
Motion of the Frenet frame of a planar 
curve. We consider a planar curve c 
and defi ne a motion along it as follows 
(Figure 12.14). In the moving plane we 
mark a Cartesian frame. Now we move 
this frame so that its origin runs on c. Th e 
x axis remains tangent to c, and thus the 
y axis remains normal to c. Th is means 
that any position of our frame is a Frenet 
fr ame of the curve c (recall Chapter 7).

Consider such a Frenet frame position 
at time t with c(t) as the position of the 
origin. Because c is a trajectory, the curve 
normal n(t) at c(t) is a path normal and 
thus n(t) contains the pole p(t). Moreover, 
the normal n(t) touches the envelope of 
all normals (the evolute) at the center e(t) 
of curvature. Th e contact normal at e(t) 
also passes through the pole. Th erefore, 
e(t) must be the pole p(t).

Th e evolute e is the fi xed polhode and 
the y axis (curve normal) is the moving 
polhode. Points on the curve normal 
generate the off sets of c. Because the 
curve normal n(t) contains the pole, the 
tangents of the off sets are parallel to each 
other [orthogonal to n(t)]. Moreover, 
their cusps lie on the fi xed polhode (i.e., 
on the evolute; see Figure 12.14). 
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Extending planar motions to three dimensions. A motion in a plane F defi nes a 
three-dimensional motion in a natural way (Figure 12.15). Th is is like the motion of a 
three-dimensional object M with a planar bottom that glides along a table. Points that 
lie on a normal of F generate congruent trajectories. We may extrude the moving and 
fi xed polhode of the planar motion in a direction normal to F and obtain two cylinder 
surfaces. During the three-dimensional motion, the moving cylinder rolls along the 
fi xed cylinder. During such a motion, a curved profi le in the moving system generates a 
sweeping surface. 

Fig. 12.15
Extending a planar motion to three 
dimensions. In this case, the two-
dimensional motion in F is a rolling 
motion of two circles. Its extension to 
three dimensions is a rolling motion of 
two right circular cylinders. The fi gure 
also illustrates a sweeping surface 
generated by a profi le curve in a 
diameter plane of the moving cylinder.  

Spatial Motions
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Fig. 12.17
This object is formed by ruled surfaces 
generated by the three-dimensional 
extension of Cardan motions.

Fig. 12.16
Ruled surface generated by a straight 
line via the three-dimensional 
extension of a Cardan motion. This 

surface is also defi ned by moving a line 
such that two if its points, r and s, run 
along skew lines lr and ls.

Example: 
A ruled surface with ellipses as cross 
sections. Figure 12.16 shows a ruled 
surface generated by a straight profi le 
during the three-dimensional extension 
of a Cardan motion. Th e surface carries 

a family of ellipses that lie in planes 
parallel to F. All rulings of that surface 
have a constant inclination angle (slope) 
against F. An object based on such 
surfaces is depicted in Figure 12.17.
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Sweeping along a planar path and moulding surfaces. We obtain very interesting 
sweeping surfaces by three-dimensional extension of the Frenet frame motion along 
a planar curve c. During this motion, a plane N rolls on a cylinder E. N is always 
normal to c, and E is obtained by extrusion of c’s evolute normal to the plane F of 
c. If we place the profi le curve q in N, it generates during the motion a moulding 
surface S (Figure 12.18).

At any time instant, the motion behaves like a rotation about an axis, which is the 
line of tangency between the position N(t) of N and the cylinder E. Hence, all 
path tangents of points in N(t) are orthogonal to N(t). Th erefore, N(t) intersects 
the surface S along the profi le position q(t) at a right angle. : Th e moulding surface S 
intersects a family of planes (namely, the tangent planes of a cylinder E) at right angle.

As the trajectories of points of q (intersections of the surface with planes parallel to 
the plane F of c) are congruent to off sets of c, they may have cusps. Th ese cusps arise at 
points of tangency between a profi le position q(t) and the cylinder E (Figure 12.19).

Fig. 12.19
Cusps of trajectories on a moulding 
surface. These cusps form singular 
curves on the surface. 

Fig. 12.18
A moulding surface is a special 
sweeping surface, generated by the 
three-dimensional extension of the 
Frenet frame motion along a path c in 
a plane F. The positions q(t) of 

the moving profi le curve lie in the 
normal planes of c. The intersections 
of the surface with planes parallel to 
F are trajectories of the motion and 
congruent to offsets of c. 
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Figure 12.20 shows an example of the use of moulding surfaces in architecture. Th e 
availability of congruent profi les is a great advantage in building these surfaces. 

It is instructive to look at a discrete version of moulding surfaces. We consider a planar 
polygon Pc [e.g., with edges of equal length and vertices c1, c2, c3, and so on (Figure 
12.21)]. Let B12 be the bisecting plane of c1c2, B23 shall denote the bisecting plane of 
c2c3, and so on. Th ese planes pass through the edge midpoints m12, m23, and so on. 
Th e plane B12 intersects B23 in a line a2, which is the axis of a circle through c1c2c3. In 
the same way, we obtain axes a3, a4, and so on. Now we select a polygon q12 in the 
plane B12.

Th is polygon is copied into the other bisecting planes as follows. Rotate q12 about a2 
into B23. Th en rotate the resulting polygon q23 about a3 into B34, and so on. We also 
connect corresponding positions of vertices by straight line segments. Th e connections 
between vertices of q12 and q23 are parallel to m12m23, and similarly for higher indices. 
Th e result of our construction is a mesh with quadrilateral faces. Each face has two 
parallel edges, and hence the face is planar.

 

Fig. 12.20
Moulding surfaces in a project design 
of the Tomihiro Hoshino Museum 
(2001) by Neil M. Denari.



Quadrilateral meshes with planar faces are interesting for architecture, especially for 
glass structures. Th is topic is discussed in detail in Chapter 19. Finally, we consider 
the limit process when the polygon Pc is refi ned and its edge length tends toward 
zero. Bisecting planes converge to normal planes; the set of axes a2,a3,… converges to 
the evolute cylinder E; and our quad mesh becomes in the limit a smooth moulding 
surface. (See Figure 12.22.) 

Fig. 12.22
This design is based on a discrete 
version of a moulding surface (see also 
Figure 12.21).

Fig. 12.21
Constructing a discrete version of 
a moulding surface from a planar 
polygon yields a quadrilateral mesh 
with planar faces.  
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Developable surfaces of constant slope. Even such a simple profi le as a straight line q 
(which is not parallel or normal to the plane F of c) generates a remarkable moulding 
surface S. Clearly, this surface is a ruled surface—all of whose rulings [positions q(t) 
of the profi le] have a constant inclination angle α against F. Along each ruling q(t), 
the surface is tangent to a plane with the same inclination angle α (Figure 12.23). Th is 
follows from the fact that the surface S intersects the plane N(t) at a right angle. Note 
that the surface has singularities along a curve s, which lies on the evolute cylinder E. 
In fact, the surface S is the set of tangents of that curve s. In Chapter 15, we will see 
that S is a developable surface that can be unfolded into the plane without distortion. 

Th ere is another way to obtain these developable surfaces of constant slope. We may 
move a right circular cone with vertical axis such that its vertex runs along a given 
curve m and its axis remains vertical. Th en, the envelope surface (of all positions of the 
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moving cone) consists of surfaces of constant slope. Th e construction of the rulings 
is shown in Figure 12.24. Usually, m is a sharp edge on the resulting envelope. Such 
objects appear in nature as sand dunes and in architecture as curved roofs of constant 
inclination angle (Figure 12.25). In civil engineering, surfaces of constant slope are 
preferred shapes of dams. 

General spatial motions. When we turn to general continuous motions in space, we 
face some diffi  culties. It is not suffi  cient to defi ne such a motion via the trajectories of 
two points r and s. Th is is because known positions r(t) and s(t) of r and s still leave 
one degree of freedom; namely, a rotation about the line r(t)s(t). Unfortunately, we 
cannot prescribe the trajectory of a third point. Th is would obstruct any motion. 
Apart from the problem of defi ning the motion, the instantaneous behavior is more 
complicated.

 

 

Fig. 12.25
Surfaces of constant slope appear for 
example as shapes of sand dunes or as 
curved roofs with constant inclination 
angle (Images on the left courtesy 

of M. Hofer and M. Reis). St. Benedict 
chapel (1988) in Sumvitg, Switzerland 
by Peter Zumthor.
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Any two positions M(t0) and M(t1) of a rigid body M in space can be transformed into 
each other by a helical motion, a rotation, or a translation (see Chapter 6). Very similar 
to the discussion of planar motions, we now let t1 tend toward t0 and fi nd that at any 
time instant a continuous spatial motion has path tangents that are the same as those 
of a certain helical motion, continuous rotation, or translation. Th e helical case is the 
generic one, and is more complicated as a rotation or a translation. A discussion of the 
kinematic geometry of motions in space is beyond the scope of this book. We restrict 
ourselves to discussing a few motions related to the generation of sweeping surfaces. 
(See Figures 12.26 and 12.27.)

 

Fig. 12.26
Surfaces generated by motions 
superimposing two uniform rotations 
about orthogonal axes. The surface on 
the left side is a one-sided surface (i.e., 
a Möbius strip)

Fig. 12.27
Möbius strip by M. C. Escher (Image of 
the 3D print courtesy of G. Elber).

Example: 
Superposing uniform rotations. A 
moving object may be rotating with 
constant “angular velocity” v1 about an 
axis a1, which itself rotates with angular 
velocity v2 about an axis a2 in the fi xed 
system. Constant angular velocity v 

means that the rotation angle for a time 
span T is v∙T  (i.e., in equal time spans 
the body rotates about the same angle).
Figure 12.26 shows surfaces generated 
by such motions. Th e two axes are 
orthogonal and skew. An interesting 

case is obtained with v1:v2 = 1:2 and a 
straight profi le orthogonal to a1. Th e 
resulting ruled surface is one-sided, a 
Möbius band. Figure 12.27 shows M. C. 
Escher’s version of it (see also the section 
on topology in Chapter 14).

Next Page 
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Sweeping a profi le along a curved path. Most modeling systems provide a sweeping 
tool by which you can select two curves: a path c and a source q. Assume that q lies in 
a plane Q. Th en, q may be moved such that a prescribed point in its plane Q runs on 
c—with Q remaining orthogonal to c. Here, we still have some degrees of freedom; 
namely, a rotation about the tangent of c. A frequently used method of resolving this 
freedom is to employ the motion of the Frenet frame.

A surface designed in this way is shown in Figure 12.28. Th is is also a valuable tool in 
visualizing the variation of the osculating plane. In parts with a high variation of the 
osculating plane, the motion winds about c quite a lot. For some design applications, 
this behavior is undesirable. 

Fig. 12.28
Sweeping surfaces generated by the 
motion of the Frenet frame along a 
space curve c. The profi le q is placed in 
the normal plane. 

Sweeping and Skinning

Previous Page 
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Rotation minimizing frame and quadrilateral meshes with planar faces. Th ere 
is a motion that minimizes the winding about the path and that is preferred for 
sweeping surface design. To understand this motion, we take a discrete approach. It is 
completely analogous to our discussion of discrete moulding surfaces (Figure 12.21). 
Th e only diff erence is that the path c—represented by a polygon Pc with vertices c1, c2, 
c3, and so on—is not planar. With edge midpoints m12, m23,… bisecting planes B12, B23, 
… and their intersection lines a2, a3,…, the construction proceeds as follows. 

Select a polygon q12 in the plane B12. Project q12 parallel to m12m23 into B23. Th is is 
the same as rotating q12 about a2 into B23, and thus q12 and the resulting polygon q23 

are congruent. Th en project the polygon q23 parallel to m23m34 into B34, and so on. 
We also connect corresponding positions of vertices by straight line segments and in 
this way obtain a quadrilateral mesh with planar faces (Figure 12.29). One warning is 
appropriate: if the polygon Pc is closed, this construction need not close (i.e., when we 
return with our polygon to B12 aft er traveling through Pc the resulting end position 
need not be the initial position q12).

Fig. 12.29
Quadrilateral mesh with planar faces as 
discrete sweeping surface (generalized 
moulding surface) generated by a 
rotation-minimizing frame. 
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If we refi ne the polygon Pc by letting its constant edge length tend toward zero such 
that it converges to a smooth path c, we obtain a smooth generalized moulding surface 
S (Figure 12.30). Th e surface carries a family of congruent planar profi les q(t) that 
lie in the normal planes of c. Th e surface S intersects these normal planes at a right 
angle. In fact, S can be generated by the rolling motion of a plane along the envelope 
surface of all normal planes of c. Another important property is that a straight profi le q 
generates a developable ruled surface (see Chapter 15, on developable surfaces). 

Sweeping with several paths and sources. Sweeping tools need not always move a 
curve like a rigid object. Th ere are advanced options by which the moving profi le may 
change its shape during the “sweep.” Hence, one may prescribe more than one path—
as well as an initial and a fi nal shape of the source. Typically, we cannot prescribe 
precisely where these sources will be placed in space. Th is depends on the chosen part 
of the modeling menu and on the specifi c modeling system. Some examples are shown 
in Figure 12.31. 

Fig. 12.30
Some sweeping surfaces generated by 
the motion of the rotation-minimizing 
frame along a space curve c. A closed 
curve c need not defi ne a closed surface. 
A polygon as source q generates a 
surface composed of developable 
surface strips (see Chapter 15). 

Fig. 12.31
Sweeping surfaces with more than one 
path and source. 
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Skinning surfaces. Whereas sweeping oft en does not allow us to precisely prescribe 
the location of the sources in space, there is a method for doing so. It is called skinning, 
which wraps a surface (skin) over a given network of curves (Figure 12.32). Because 
there is an infi nite number of surfaces passing through a given curve network, the 
result of skinning also depends on the specifi c modeling system and the options we 
use. Further detail on this is beyond the scope of this book. Suffi  ce it to say that this is 
a tool you might want to explore. However, if you prefer better shape control it may 
not be the method of choice. 

Fig. 12.32
Skinning surfaces fi ll the gaps in a 
network of curves. There is still a lot of 
freedom in this task, and thus different 
systems may come up with quite 
different options and solutions. 



 

 

 

Fig. 12.34
The Natural Ellipse (2001–2002) in 
Tokyo by Masaki Endoh and Masahiro 
Ikeda. The building can be generated 
as a skinning surface using 24 vertical 
ellipses.

Fig. 12.33
This sculpture (Wiener Trio by Philip 
Johnson) has been modeled with the 
help of skinning surfaces.

Example: 
Skinning surfaces in art and 
architecture. Figure 12.33 shows a 
student’s project which models the 
sculpture Wiener Trio by Philip Johnson 
(1996). An example of a skinning surface, 
passing through a sequence of ellipses, 
has been designed by Masaki Endoh and 
Masahiro Ikeda (Figure 12.34).
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Fig. 12.35
Curve evolution at constant speed 
produces offsets. 



To model surfaces with the help of a changing profi le, it may be very useful to know 
methods for the design of changing curves—also called evolutions of curves (or curve 
fl ows). In the following, we point to a few remarkable results on this topic. 

We consider a curve c that is changing its shape over time t. Let c(t) be the curve at 
time t. To describe an evolution, one typically describes the instantaneous velocities at 
points p of the state c(t) at time t. It is not diffi  cult to see that it is suffi  cient to consider 
the component of the local change (velocity vector), which is orthogonal to the 
current state. Let v(p,t) be this normal component (evolution speed) at a point p of the 
current state c(t) of the curve. We are now discussing several remarkable examples of 
curve evolutions. 

Constant speed. If v(p,t) is constant over time and positions p, it is pretty obvious 
that the curve changes into its off sets. Off sets were discussed in Chapter 10. Note 
that the off sets might be more complicated than the curve we start with (Figure 
12.35). Th ere is an implementation of this evolution which avoids the occurrence 
of self-intersections and thus performs the off set trimming operation discussed in 
Chapter 10.

Curve Evolution



438

Curvature fl ow. Th ere are evolutions that simplify the shape of the initial curve. Now 
the starting curve is assumed to be closed. A remarkable and well-studied example is 
obtained if v(p,t) equals the curvature of the current curve c(t) at p. One can show that 
this evolution will shrink the curve to a point (Figure 12.36). To visualize in which 
way the shrinking process takes place, one may at each time rescale the curve. Now the 
fi nal curve is always a circle. Clearly a circle remains a circle under this evolution. Th is 
truly remarkable result has applications in image processing, but it may also be useful 
for design.

A simple polygon evolution. Another astonishing curve simplifi cation fl ow is 
obtained in the following discrete version, which operates on polygons and was fi rst 
described by the French geometer G. Darboux in 1878. One evolution step is defi ned 
as follows. Form the polygon of edge midpoints and for the resulting polygon, again 
compute the polygon of edge midpoints (Figure 12.37).

Rescaling assumed, the fi nal position is always an affi  nely regular polygon (i.e., the 
affi  ne image of a regular polygon, which is the image of a regular polygon under a 
parallel projection; see Figure 12.37). Obviously, such a polygon is a fi xed shape of the 
fl ow. However, the proof of the convergence of any polygon to such a special one is 
not as simple and is beyond the scope of this text. Figure 12.38 illustrates the smooth 
version of this fl ow.

Fig. 12.36
(top) The curve evolution whose speed 
is given by the curvature at the current 
position shrinks any closed curve to a 
point (image courtesy of K. Frick).
(bottom) If we rescale the curve to 
avoid shrinking, the fi nal position is a 
circle.
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Fig. 12.38
The continuous and rescaled version 
of Darboux’s fl ow evolves any closed 
curve (which may even have self-
intersections) to an ellipse. 

Fig. 12.37
(left) One step of Darboux’s polygon 
evolution forms the polygon of edge  
midpoints (blue) and does this a 
second time (black).
(right) If it is rescaled to avoid

shrinking, the fi nal shape is an affi nely 
regular polygon. It is the affi ne image 
of a regular polygon and hence its 
vertices lie on an ellipse. The polygon 
edges and the center of that ellipse 
form triangles of equal area. 



Fig. 12.39
Architectural model based on Darboux’s 
evolution (Images courtesy of B. 
Schneider).

Example: 
Surface design via a curve evolution. 
A sequence of curves generated by 
Darboux’s evolution forms the basis for 
the architectural model shown in Figure 
12.39. Th e various evolution states are 
stacked above one another to form this 
interesting shape.



441

Curves. Th e understanding of modeling with implicit surfaces becomes easier if we 
fi rst look at curves. Recall from Chapter 7 that a curve c may be described by a single 
equation of the form f(x,y) = 0. We assume that (x,y) are Cartesian coordinates in 
the plane. A point of the plane belongs to the curve c if its coordinates (x,y) solve the 
equation f(x,y) = 0. One calls the set of points on c the zero level set of f because for all 
points of c the value of f is 0. Th e representation of a curve as a level set of a function is 
also known as implicit representation. 

We may look at other level sets of f (also denoted as isolines or isocurves of f), which 
are the loci of points where f has the same value k. Of course, the equation of such a 
level set is f(x,y) = k. Clearly, if we defi ne the new function g(x,y) = f(x,y) – k the k-level 
set of f appears as the zero-level set of g. Th is is a simple example for the fact that the 
representation of a given curve as a level set of a function is not unique. We also see that 
any implicitly represented curve c: f(x,y) = 0 may be embedded into a family of level sets 
f(x,y) = k. By variation of k, we obtain a mathematical description of a curve evolution. 

Metaballs and Modeling 
with Implicit Surfaces
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We may visualize a function f(x,y) of two variables by its graph surface (x,y,f(x,y)). 
For each point (x,y) in the xy plane, it shows as z coordinate its function value f(x,y). 
Points with the same function value k lie in the plane z = k, and therefore the level set 
f(x,y) = k is found by intersecting the graph surface with the plane z = k and projecting 
the intersection into the xy plane (Figure 12.40).

Note that a level set may be composed of several curves. (See Figure 12.41.) Moreover, if 
the level is changed the number of component curves in the corresponding level set may 
also change. Figure 12.42 illustrates the situation in which two components merge when 
the level increases. Th e border shape between the two types exhibits a double point. 

Fig. 12.41
Topographic maps exhibit a very 
familiar type of level set; namely, 
curves of constant height above sea 
level. 

Fig. 12.40
Level sets of a function f(x,y) of two 
variables are loci of points where f 
has the same value k [i.e., f(x,y) = 
k]. We may obtain them from the 
graph surface z = f(x,y) by slicing it 
with planes z = k and projecting the 
resulting intersection curves into the 
xy plane z = 0.

Example: 
Isolines for scientifi c visualization. 
We are familiar with a number of 
examples for level sets of functions. In 
geographic maps, the topography is 
usually visualized with the help of level 
sets of the height (i.e., curves of constant 

height above sea level; Figure 12.41). 
In weather maps, the visualization is 
oft en enhanced by isolines of important 
measurement data such as temperature 
or air pressure.
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Fig. 12.42
Cassini curves are level sets of a 
function of two variables, which 
associates with each point (x,y) the 
product of its squared distances to the 
points (1,0) and (–1,0). Curves for 
which this product k is less than 1 are 

composed of two ovals. Curves for a 
product k greater than 1 have only 
one component. A fi gure eight shape 
appears for k = 1. It is a lemniscate 
and has a double point.

Example: 
Cassini curves. We consider two points 
(1,0) and (–1,0) and study those curves 
(known as Cassini curves) for which the 
product of distances to these two points 
is constant. Th e squared distance of 
point (x,y) to (1,0) is (x – 1)2 + y2, and 
the squared distance to (–1,0) is (x + 1)2 

+ y2. Because the product of distances 
shall be constant, the product of the 
squared distances is also constant (e.g., 

equal to k)—and thus a Cassini curve 
satisfi es the following implicit equation,
 [(x – 1)2 + y2]⋅[(x + 1)2 + y2] = k,
In other words, a Cassini curve appears 
as a level set of the function f(x,y) = [(x 
– 1)2 + y2]⋅[(x + 1)2 + y2]= x4 + y4 + 2x2y2 

– 2x2 + 2y2 + 1 (see Figure 12.42). For 
levels k less than 1, the complete Cassini 
curve consists of two ovals. A Cassini 
curve to a level k > 1 has only one 

component. Th e borderline case of k = 1 
is a fi gure eight, known as a lemniscate, 
and has a double point at the origin. We 
see that the shape of a Cassini curve is 
determined by the two “control points” 
to which the distances are measured [in 
our case, the points (1,0) and (–1,0)] 
and by the level k.
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Implicit representation of surfaces. Th e extension of the implicit representation of 
curves to surfaces is rather straightforward. A surface is represented as a zero-level set 
f(x,y,z) = 0 of a function of three variables x,y,z. As in the case of curves, the function 
f is not uniquely determined for a given surface and a given coordinate system. Any 
implicitly represented surface is embedded into a family of level sets, f(x,y,z) = k, and is 
therefore also a member of a family of surfaces (surface evolution).

If one changes the level, the topological type of the level sets may change. In the case 
of curves, we have observed this in regard to the number of components. However, for 
surfaces a topology change may have more fundamental eff ects on the components as 
well. For example, a component may obtain a “handle” (or a tunnel). Just think of a 
sphere-like object turning into a ring shape (Figure 12.43). 

Fig. 12.43
Level sets of the same function may 
be of different topological type. Here 
we see how a hole develops and thus 
a sphere-like object is evolves into a 
ring shape.  

Example: 
Rotational surfaces with Cassini 
profi les. Let’s rotate a Cassini curve 
about the bisecting line of its two control 
points (the y axis of the coordinate 
system used previously). Th is may be 
achieved if we replace the term x2 in the 
equation of a Cassini curve with x2 + z2. 
Th e resulting surfaces are the level sets of 

the function f (x,y,z) = (x2 + z2)2 + y4 + 
2(x2 + z2)y2 – 2(x2 + z2) + 2y2 + 1.
Th e level sets f (x,y,z) = k exhibit a 
topology change from a sphere-like 
topology (for k < 1) to a ring shape (k 
> 1) (Figure 12.43). Rotating Cassini 
curves about the x axis yields another 
change of topology (not shown in 

Figure 12.43); namely, a change from 
one to two components. We discuss 
topology in much more detail in 
Chapter 14. However, it is important to 
mention it here because when we model 
with implicit surfaces such as meta-balls 
we must be aware of this fundamental 
eff ect.
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Distance-based functions. In the example of Cassini curves, the function f  has been 
set up via a product of distances to two input points. Combining distances to input 
shapes (points, lines, simple surfaces) into an implicit surface representation is a 
frequently used modeling tool. Th e general procedure is as follows. One sets up fi eld 
functions to the given input shapes, adds these fi eld functions, and then considers the 
level sets of the resulting function f (x,y,z). 

Let’s examine this approach for input points only. Each input point p = (p1,p2,p3) 
(control point of the shape) is associated with a local fi eld function. Th is is a function 
D(r) of the distance r to the point and typically decays with increasing r. For example, 
one may use a decay (as in the Gaussian normal distribution) based on the exponential 
function exp(x) = ex:

D(r) = a⋅exp(–b⋅r2).

Here, a and b > 0 are constant values that are usually set automatically but may be used 
to fi ne-tune a shape. Although for large distances r the value of D is small, it is only 
zero for infi nite distance. To have a more local infl uence of a control point, one oft en 
uses alternative functions that have a similar decay behavior but are precisely zero if the 
distance r exceeds a certain threshold T (Figure 12.44). 

Keep in mind that the local fi eld function of point p = (p1,p2,p3) is a function of (x,y,z). 
For the Gaussian decay model D(r), it reads 

P(x,y,z) = a⋅exp(–b⋅[(x – p1)2 + (y – p2)2 + (z – p3)2]). 

Fig. 12.44
The function D(r), which defi nes the 
local fi eld function, usually exhibits a 
decay as shown in this fi gure.
(left) The Gaussian model and
(right) a modifi cation with function 
value 0 for distances r greater than a 
threshold T.

Gaussian model modifi cation



Having only one input point is not interesting because the level sets of a single local 
fi eld function are of course spheres, centered at the corresponding control point p. Th is 
is so because the value of the function depends only on the distance to p. However, if 
we take several control points the situation becomes more interesting. Assume that we 
have two control points p, q and a local fi eld function P and Q associated with each of 
them. Th en, we consider the sum of these functions f(x,y,z) = P(x,y,z) +  Q(x,y,z) and 
use its level sets for modeling. Th is is illustrated in Figure 12.45. 

Meta-balls. Meta-balls, also known as “blobs” or “soft  objects,” follow the same 
principle. Th eir shape is controlled by input shapes, which are typically simple objects 
such as points, lines, and simple surfaces. Using the distance to the input shapes, each 
input shape is associated with a local fi eld function. Th ese local fi eld functions are 
summed, which yields a function f (x,y,z). Its level sets f (x,y,z) = k are the surfaces one 
is interested in. An example is shown in Figure 12.46. 

 

 

Fig. 12.45
Implicit surfaces modeled with two 
control points and a Gaussian fi eld 
function. Depending on the level, we 
obtain one or two components. Note 
that these surfaces are rotational 
surfaces, the axis of rotation being 
the connecting line of the two control 
points. 

Fig. 12.46
This model has been generated via 
meta-balls (Image courtesy of B. 
Schneider).



 

 

Fig. 12.47
The Bubble (1999) in Frankfurt am 
Main by ABB Architects with Bernhard 
Franken.
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Deformations
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Deformations
Deformations alter the geometry of a shape based on some underlying mathematical 
principle. Typically, the shape is included in some simple solid and the deformation acts 
in a more or less intuitive way on that solid and thereby deforms the shape (Figure 13.1). 
However, the modifi cation of the shape is more general than a deformation performed 
by an affi  ne or a projective map. It even goes beyond the nonlinear transformations we 
have already learned about. Deformations can be applied to any shape.

Th e use of deformations may be seen as a convenient way of performing a change 
of a design or part of it. Th ereby, a valid computer-aided design (CAD) model is 
mapped to another valid CAD model. Intersections, smooth transitions, blending 
areas, and so on are automatically transferred to the modifi ed model. Full freedom of 
shape modifi cation is provided the designer by freeform deformations, which extend 
freeform curves and surfaces (and like these types of surfaces they can be interactively 
guided with the aid of control points).

Fig. 13.1
The principle of shape deformations. 
The shape to be modifi ed is embedded 
in a simple solid, and typically the solid 
is then transformed into a new 

one with the aid of appropriate design 
handles. This deformation acts on all 
points of the solid and thus transforms 
the embedded shape into a new one.
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Continuing the discussion of transformations found in Chapters 5 and 6, we are 
now investigating the more advanced transformations in three dimensions. To have 
a solid basis for our study, we fi rst look at the mathematical representation of a 
transformation in three dimensions.

Math:

Description of transformations in three dimensions. 

Assume that we are given a Cartesian coordinate system 

(x,y,z). A transformation maps a point p = (x,y,z) to an image 

point p1 = (x1,y1,z1). Th e analytical representation of the 

transformation expresses how to compute the coordinates 

(x1,y1,z1) of p1 if the coordinates (x,y,z) of p are given :

x1 = f(x,y,z), y1 = g(x,y,z), z1 = h(x,y,z).

Th e functions f, g, and h must be explicitly given in order to 

compute a specifi c transformation. 

For an affi  ne map the functions f, g, and h are linear. Th is 

means that function f is of the form f = f0 + f1x + f2y + f3z 

(with given numbers f0,f1,f2,f3) and analogous expressions 

hold for g and h (see Chapter 6). Affi  ne maps have some 

very simple properties. Th ey map straight lines to straight 

lines and planes to planes, they keep parallelity of lines or 

planes, and they do not change the ratio of collinear points. 

Th ere is a more general form of linear transformations in 

three dimensions in which “linear” means that straight lines 

are mapped to straight lines and hence planes are mapped 

to planes (see Chapter 6). Th ese are the projective maps T. 

Here, the coordinate functions f, g, and h are fractions of 

linear functions [f = (f0 + f1x + f2y + f3z)/D] with a common 

denominator D = d0 + d1x + d2y + d3z—which is the same 

for all three coordinate functions f, g, and h. 

Clearly, if d1 = d2 = d3 = 0 (d0 ≠ 0) we have an affi  ne map. 

Otherwise, the equation d0 + d1x + d2y + d3z = 0 determines 

a plane V whose points are mapped to points at infi nity. 

Th us, a careful study of projective maps needs a tool for the 

representation of points at infi nity, which is provided by 

homogeneous coordinates (see Chapter 6). 

Mappings diff erent from projective maps and their 

special cases (such as affi  ne maps) are called nonlinear 
transformations. Th ey have the property that not all straight 

lines are mapped to straight lines. Th e study of those 

nonlinear transformations which are important tools for 

shape modelling is the content of this chapter.

Three-Dimensional 
Transformations
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Slice-based three-dimensional transformations. Many of the simple and frequently 
used nonlinear transformations operate as follows. One slices the object to be 
transformed by parallel planes. Th ese slices are then rearranged (displaced, and perhaps 
also scaled) in a systematic way to a new object (Figure 13.2). For visualization, we 
may use a simple object such as a box, but we always have to bear in mind that these 
deformations may be applied to much more general shapes. 

In the following, we will study the most common nonlinear transformations 
(deformations)—many of which are slice based. In several cases, it will be necessary 
to use a mathematical representation of a simple derivation of important properties. 
Th us, this chapter may also be seen as an exercise in the use of analytic geometry.

Fig. 13.2
Several frequently used deformation 
techniques are based on slicing 
an object with parallel planes and 
rearranging the slices into a new 
object.

original taper

twist shear bulge
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To defi ne the twist deformation, we select a fi xed bottom plane B and a straight line 
A (called twist axis) orthogonal to the plane B (Figure 13.3). Th e layers of the object 
in planes orthogonal to the axis (i.e., parallel to B) are now rotated about A as follows. 
Th e bottom plane B remains fi xed and the rotational angle αmax of the top plane T is 
prescribed. We assume that the distance between the bottom and top planes is h, the 
height of the object to be deformed. Th e rotational angle α(z) of the slice at height z 
above B is selected to be 

α(z) = (z/h) αmax.

Th is is a linear variation of the rotational angle with respect to the distance. For the 
bottom plane B, we have z = 0 and thus α(0) = 0—which means that the bottom slice 
remains fi xed. As desired, the top plane T (z = h) is rotated by the angle αmax . Th e 
plane at bottom distance z = h/2 is rotated by αmax/2, and so on. 

Twisting

Fig. 13.3
The twist operation uses an axis A and 
rotates slices in planes orthogonal to 
A about A. One fi xes a chosen bottom 
plane B and describes the rotational 
angle of the upper plane T. 

The intermediate slices are rotated 
automatically, using a linear variation 
of the rotation angle with respect to 
the distance from the bottom plane. 
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Th ere is an obvious connection with helixes and helical motions (Figure 13.4). Any 
straight line l parallel to A is mapped to a helix l1 with axis A. A cylinder surface S 
with rulings parallel to A is deformed into a helical surface S1 with axis A. Th e cross 
section of S in B serves as a generating curve of the helical surface S1. Th is result has 
some simple and important special cases. A plane P parallel to A is deformed into a 
helical ruled surface. In particular, the twist operation maps a plane P through A into 
a helicoid. 

Fig. 13.5
Because the areas of parallel slices 
and their distance to the bottom are 
not changed under the twist operation, 
an object S and its twisted version S1 
enclose the same volume. 

Fig. 13.4
The twist operation is closely related 
to the helical motion. Lines parallel to 
the twist axis A are mapped to helixes. 
Cylinder surfaces S with rulings parallel 
to A are mapped to helical surfaces 

S1. In particular, and a plane through 
A is transformed into a helicoid and a 
plane parallel to A is mapped to a ruled 
helical surface.



7

Another interesting property of the twist operation is that it preserves the volume. 
By the Cavalieri principle, the volume of an object (solid S) may be obtained by 
integration of the areas of the slices with respect to the distance z. Because the slices 
of the original and transformed object are congruent (rotated versions of each other), 
the areas of the slices agree. Th us, the volume of a solid S and its image S1 under a twist 
operation is the same (Figure 13.5). Architecture that can be designed using a twist-
like deformation is illustrated in Figure 13.6.

Fig. 13.6
(a) The Turning Torso (2000–2005) in 
Malmö by Santiago Calatrava. 
(b) The Synagogue (2001) in Dresden 
by Wandel Hoefer Lorch + Hirsch.

(a)

(b)
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Fig. 13.7
Tapering fi xes all points in a plane B 
and on an axis A, and performs scaling 
transformations in the planes parallel 
to B. A further input is the scaling 
transformation to be applied in the top 
plane T. The fi gure shows the image of 
a quadratic prism. It also shows that 
straight lines orthogonal or parallel to the 
taper axis are mapped to straight lines. 
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We select a reference plane B (say, the bottom plane) and an orthogonal axis A. All 
points of B and all points of A remain fi xed under tapering. One then changes the 
object by scaling the slices in planes orthogonal to A (i.e., parallel to B). Quite similar 
to twisting, a further input for the scaling is its action in the top plane T. Th is requires 
us to specify two orthogonal scaling directions plus corresponding scaling factors 
(Figure 13.7). From this input, the scaling factors used for the layers between bottom 
and top plane are determined automatically. 

Tapering

Math:

To describe the tapering deformation in a precise way, we use 

a mathematical description and select an adapted Cartesian 

coordinate system in which A is the z axis and B is the xy-plane. 

Furthermore, we assume that the scaling directions are parallel 

to the x- and y-axes, respectively. Hence, in the top plane T 

[which has the equation z = h (h being the distance between B 

and T)] the scaling is of the form x1 = v⋅x, y1 = w⋅y.

Here, we have denoted the user-specifi ed scaling factors in 

the x and y directions by v and w, respectively. Because the 

bottom plane remains fi xed, we may say it is scaled with 

factor 1 in both directions. One then uses a linear variation 

of the scaling factors between bottom and top planes. Th is 

means that the scaling factor v(z) for the x direction in 

height z is equal to 

v(z) = 1 + z⋅(v – 1)/h.

As desired, v(0) = 1 and v(h) = v. Replacing v with w, we 

obtain the scaling factor in the y direction. In the plane at 

height z, the scaling is x1 = v(z)⋅x, y1 = w(z)⋅y. Inserting the 

expressions for the scaling factors, we arrive at the following 

analytical representation of the tapering operation.

x1 = x + x⋅z⋅(v – 1)/h,

y1 = y + y⋅z⋅(w – 1)/h,

z1 = z
Because we see on the right-hand side terms x·z and y·z, 

respectively, tapering is not a linear transformation. It is a 

special quadratic transformation. 
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Math:

A general straight line l is mapped to a parabola l1. As an 

example, take the straight line with the parameterization x 

= t, y = t, z = t. Inserting this into the tapering equations, we 

obtain the curve parameterization

x’ = t + t2⋅(v – 1)/h, y’ = t + t2⋅(w – 1)/h, z’ = t.

Because this parameterization is quadratic in t, the curve 

is a parabola (recall Chapter 8). More generally, inserting 

a linear parameterization of a straight line we obtain in 

general a quadratic parameterization of the image curve and 

hence a parabola.

Exceptions arise if for all points of a straight line the 

coordinates x and y are constant (i.e., the line is parallel to 

the taper axis A) or if z is constant (i.e., the line is orthogonal 

to the taper axis A). In both of these cases, the terms x⋅z and 

y⋅z only contribute linear terms in t for the image curve. 

Th us, the image l1 of a line l that is parallel or orthogonal to 

the taper axis A is a straight line (see Figure 13.7). 

Th e reader is encouraged to discuss the images of planes in a similar way. It is helpful 
if one views a plane as a set of straight lines and bases the discussion on the images of 
straight lines (see also Figures 13.7 and 13.8). 

Fig. 13.8
From Figure 13.7 one may erroneously 
conclude that tapering is a linear 
transformation. However, this is not the 
case. Straight lines that are not parallel 
or normal to the taper axis are mapped 
to parabolas and only very special 
planes remain planar. 
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Th ere are various pretty obvious extensions of tapering, which are illustrated in 
Figure 13.9. Th ey are actually combinations of the basic tapering operation explained 
previously. We may classify them by scaling functions v and w, which use diff erent 
linear functions in certain height intervals. In slices where one switches from one 
linear function to another, additional edges are created. Figure 13.9b illustrates the 
scaling function v as a function of the height z for a specifi c example. 

Fig. 13.9
(a) Combinations of the basic tapering 
operation may be used to obtain 
effects such as those depicted in this 
illustration. CAD systems may provide 
user-friendly ways of handling this type 
of generalized tapering. 

(b) A result of generalized tapering and 
the corresponding scaling factors v, 
depending on the height z. We see that 
v(z) is a piecewise linear function, and 
therefore the tapered object has edges 
at those heights where v(z) has corner 
points.
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Bulge. If one wants to have thickening or thinning eff ects without loss of smoothness, 
one can use a deformation technique sometimes called bulge. It works like tapering, 
but uses smooth scaling functions v(z) and w(z). In the basic type of bulging, quadratic 
scaling functions are applied. Because a quadratic function is determined if we know its 
values at three points, one can provide the scaling factors for three heights. Figure 13.10 
shows an example in which top and bottom slice remain fi xed [i.e., v(0) = v(h) = 1, w(0) 
= w(h) = 1)], whereas the middle slice z = h/2 is scaled with prescribed factors. 

As an exercise, the reader may verify with the mathematical approach provided for 
tapering that bulge with quadratic scaling functions is a cubic transformation. A 
straight line parameterized linearly with respect to a parameter t is mapped to a curve 
with a cubic parameterization in t (contains terms with t, t2, and t3). Recall that we 
have encountered such curves as Bézier curves of degree 3. 

Fig. 13.10
(a) The bulge deformation is based on 
smooth scaling functions v and w. In 
this example, the bottom and top slice 
remain unchanged and the middle slice 
is scaled with prescribed factors. 
(b) The building Le Bureau in Vienna 
(2004–2005) by Françoise-Hélène 
Jourda features a bulge.
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Shear deformations are yet another technique of the same family of methods, where 
slices with parallel planes are transformed within these planes. Twisting rotates the 
slices. Tapering and bulging scale the slices. Shear deformations apply translations to 
the slices (Figure 13.11). Because a translation is determined if we know the image 
point of a single point, one prescribes the image A1 of the axis A.

Th e axis is selected orthogonal to a bottom plane B, which remains fi xed. Note the 
following diff erence to the previously discussed techniques: A shear deformation 
does not fi x the axis but changes it. Moreover, the shear deformation is determined 
uniquely by the change of the axis.

Shear Deformations

Fig. 13.11. 
A shear deformation applies 
translations to the slices with parallel 
planes. These translations are defi ned 
by the user-specifi ed image curve A1 of 
the axis A. 
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Math:

For a mathematical representation of shear transformations, 

we use a Cartesian coordinate system in which the xy-

plane is the bottom plane B and where the z-axis is the axis 

A. It is natural to use the height z as a parameter for the 

representation of the image curve A1 of the axis. Hence, we 

let A1 be given in the form (a(z),b(z),z).

Functions a(z) and b(z) provide a parameter representation 

of the top view of A1. In each height z, the translation 

to be applied to the corresponding slice has the vector 

(a(z),b(z),0). Because the bottom plane z = 0 shall remain 

fi xed, we have a(0) = b(0) = 0. We obtain the following 

representation of a shear deformation.

x1 = x + a(z), y1 = y + b(z), z1 = z
In the simplest case, we use linear functions a(z) = c⋅z and 

b(z) = d · z—which implies that the image of the axis A is a 

straight line (through the origin). Th en, the representation 

of the shear transformation is linear in x,y,z and is therefore 

an affi  ne map (recall Chapter 6; see also Figure 13.12).

Insertion of quadratic functions a(z) = c1⋅z + c2⋅z2 and b(z) 

= d1⋅z + d2⋅z2 gives a parabola A1 as image of the axis A. 

Because the representation of the shear transformation is 

now quadratic in z (linear in x and y), general straight lines 

are mapped to parabolas (Figure 13.13). However, straight 

lines normal to the axis (i.e., in a slicing plane) have constant 

Figure 13.12
A shear deformation for which the 
image A1 of the axis A is a straight line 
is an affi ne map. Thus, in this case 
straight lines are mapped to straight 
lines and planes are mapped to planes.
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Fig. 13.13
A shear deformation with a parabola 
A1 as image of the axis A maps 
straight lines to parabolas. An obvious 
exception is given by straight lines 
in slicing planes (orthogonal to the 
axis), which remain straight lines. All 
planes different from slicing planes 
are therefore mapped to parabolic 
cylinders. 

z and are thus mapped to straight lines. Th is follows also from 

the fact that in the slicing planes a shear transformation is a 

translation. A slicing plane remains fi xed as a whole (shear 

performs a translation inside this plane). All other planes P carry 

only one family of parallel straight lines in slicing planes which 

remain straight. Any other line in P is mapped to a parabola 

and thus the image surface P1 of a general plane P is a parabolic 

cylinder.

Modeling systems may provide a variety of options for the construction of A1 and thus 
for the types of arising shear transformations. Having discussed the simplest cases, it 
should be easy to understand the others. 



Fig. 13.14
(a) A shear deformation does not 
change the volume of a solid. These 
two vases hold the same amount of 
water. 
(b) City Hall (1998–2002) in London by 
Norman Foster.

Shear transformations leave the shape and thus also the area of the slices unchanged. 
Th ey also preserve the height z of each slice. By Cavalieri’s principle, shear 
transformations are therefore volume preserving. Th e volume of a solid S and its image 
S1 are the same (Figure 13.14a). Architecture that may be the result of a shear-like 
deformation is illustrated in Figure 13.14b.

Next Page 
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Some systems may contain the nonlinear shear deformations discussed previously 
as versions of bending (Parallel option in the menu). In the following we examine 
bending deformations that also change the orientation of the slices. In an elementary 
radial bending operation, the axis A is mapped to a circle A1 and the slices are 
rearranged in planes normal to the circle (see Figure 13.15).

Th ere is some freedom in this construction, even if the circle A1 is already determined. 
First, we can select the length of the arc that appears as an image of the axis 
segment between bottom and top slice. Typically, one selects the axis segment and 
corresponding circle segment of equal length. Moreover, we have some freedom in the 
arrangement of the planes because of a possible rotation of each slice about the point 
on A1.

Figure 13.15 shows the most common solution to this problem. If A is the z-axis and 
A1 lies in the yz-plane, one maps x-parallel lines to x-parallel lines. Th us, radial bending 
is just a spatial extension of a planar bending deformation in the yz-plane with the aid 
of x-parallel lines. Th is is very similar to the extension of a planar motion into a three-
dimensional motion, which we have discussed in Chapter 12.

Bending

Fig. 13.15
A simple radial bending operation maps 
the axis A to a circle A1 and rearranges 
the slices in planes orthogonal to A1. 

Previous Page 
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Th ere are also modeling options that change A to a more general curve (e.g., a Bézier 
curve) and rearrange the slices in planes normal to A1. Th e arising freedom of a 
rotation about A1 may be resolved as in our discussion of the rotation-minimizing 
frame (Chapter 12). An example is shown in Figure 13.16. 

Fig. 13.16
Bending transformations may map the 
axis A to a Bézier curve A1. The slices 
are automatically rearranged in planes 
orthogonal to A1. 
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Planar Bézier deformations of degree (1,1). As a preparation for the understanding 
of Bézier freeform deformations, we consider a Bézier surface patch of degree (1,1) 
but select its four control points in the same plane (Figure 13.17). Th e mathematical 
representation of the patch is given by 

b(u,v) = (1 – u)(1 – v)b00 + (1 – u)vb01 + u(1 – v)b10 + uvb11.

Here, b00, b01, b10, and b11 are the coordinate vectors of the four control points  We 
assume that these four control points form the vertices of a convex quadrangle. We 
may understand the planar surface patch as an image of the parameter square in 
the uv-plane.

Freeform Deformations

Fig. 13.17
A planar deformation of a square 
region may be performed with the aid 
of a Bézier map of degree (1,1) . This 
bilinear map is guided with the aid of 
four control points. 
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Recall that both parameters u and v are in the interval [0,1] and therefore any pair 
of admissible parameters (u,v) describes a point in the parameter square. Hence, we 
have a deformation of the square into a region bounded by a quadrangle. To obtain 
a representation that looks more similar to those used previously, we may write (x,y) 
instead of (u,v) and write (x1,y1) instead of b(u,v). It is more convenient to summarize 
the two equations for the coordinates into a single vector equation: 

 (x1,y1) = (1 – x)(1 – y)b00 + (1 – x)yb01 + x(1 – y)b10 + xyb11.

We call this mapping bilinear because both x and y appear only linearly. However, 
because we have products x⋅y the mapping is not linear. In fact, it is quadratic. Straight 
lines are in general mapped to parabolas, exceptions being x-parallel or y-parallel lines 
whose images are straight lines as well (Figure 13.18). For a proof of this claim, one 
simply need note that a straight line l has a linear parameterization in t that results in a 
quadratic parameterization of the image curve l1. 

We have chosen a simple case of a Bézier surface to illustrate its use for planar 
deformations. It is rather straightforward to extend the idea to higher degrees. Th is is 
examined in the following in regard to three-dimensional maps. 

Fig. 13.18
A planar Bézier deformation of degree 
(1,1) is a bilinear map. Lines parallel 
to the x and y axes are mapped to 
straight lines. The images of general 
lines are parabolas. The fi gure also 
shows a circle c and its image curve c1, 
which is not a circle (also not a conic). 
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Bézier deformations of degree (1,1,1). In a totally analogous way to the two-
dimensional case, we can study Bézier deformations in three dimensions. Again, we 
start with the simplest case; namely, degree (1,1,1)—illustrated in Figure 13.19. As 
in the familiar two-dimensional case, we have an algorithm of de Casteljau for the 
construction of the image point p1 of a given point p in the parameter domain. Th e 
parameter domain is usually assumed to be a cube. 

Fig. 13.19
A Bézier deformation of degree (1,1,1) 
deforms a cube S into a solid S1 
bounded by Bézier surfaces of degree 
(1,1); that is, hyperbolic paraboloids 
(or planes). Lines parallel to the edges 
of S are mapped to straight lines 
and ratios of points are preserved on 
them. This enables us to construct the 
image point p1 of a given point p via 
a transfer of ratios (extension of the 
algorithm of de Casteljau). 
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Math:

A mathematical description is based on the algorithm 

of de Casteljau and is totally analogous to the surface 

case discussed in Chapter 11. Using triple indices for the 

eight control points b000,…,b111, we obtain the following 

representation of the mapping.

(x1,y1,z1) = (1 – x)(1 – y)(1 – z)b000 + (1 – x)(1 – y)zb001 + 

(1 – x)y(1 – z)b010 + (1 – x)yzb011 + x(1 – y)(1 – z)b100 + 

x(1 – y)zb101 + xy(1 – z)b110 + xyzb111

Th is is easy to remember because a factor (1 – x) implies a 

fi rst index 0 of the corresponding control point and a factor 

x implies fi rst index 1. Likewise, (1 – y) and y yield a second 

index 0 and 1, respectively. Finally, (1 – z) and z belong to 

third index 0 and 1, respectively. 

Th e mapping is called trilinear because all variables x,y,z 

appear linearly but we also have the products x⋅y, x⋅z, y⋅z, 

and x⋅y⋅z. 

Fig. 13.20
The image of a straight line g under 
a Bézier map of degree (1,1,1) is in 
general a cubic curve g1. A straight line 
h parallel to a coordinate plane but not 
parallel to a coordinate axis is mapped 
to a parabola. The fi gure also shows the 
image surface P1 of a general plane P 
and the image surface S1 of a sphere S. 
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Properties of these trilinear maps follow easily from their analytic representation. 
Straight lines parallel to a coordinate direction are mapped to straight lines. Planes 
parallel to a coordinate plane (e.g., the faces of the parameter cube) are mapped in a 
bilinear way [i.e., their image is in general a hyperbolic paraboloid (Figure 13.19)]. 
In accordance, straight lines parallel to only one coordinate plane are mapped to 
parabolas. General straight lines g are mapped to cubic curves g1 (Figure 13.20).

Th is is proved by taking a parameterization (x,y,z) = (a1 + a2t, b1 + b2t, c1 + c2t) of g 
and inserting it into the representation of the trilinear map. Obviously, the resulting 
parameterization (x1,y1,z1) of the image curve g1 is cubic in t—which means that the 
highest-order terms in t are t3 terms. 
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We can also use Bézier deformations of higher degree. Note that we can prescribe three 
degrees, corresponding to the x, y, and z directions. If these degrees are p, q, and r, 
respectively, we have to prescribe (p + 1)⋅(q + 1)⋅(r + 1) control points. Examples are 
shown in Figure 13.21.

Sometimes, one uses a parameter cuboid instead of a cube and represents this cuboid 
with the aid of regularly arranged control points (according to the degree). Th e new 
positions of the control points may then more easily be associated with the desired 
changes of the geometry (Figure 13.21). One may also use B-spline representations for 
freeform deformations.
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In Chapter 5 we encountered the inversion at a circle with center o and radius r. A 
point p is mapped to a point p1 on the line op such that the product of distances op and 
op1 equals r2. Using the same defi nition in three dimensions, we obtain the inversion 
with respect to a sphere S. Selecting the sphere center as the origin of a Cartesian 
coordinate system, the inversion has the representation

x1 = r2⋅x/(x2 + y2 + z2),

y1 = r2⋅y/(x2 + y2 + z2),

z1 = r2⋅z/(x2 + y2 + z2).

As a control of this equation, we note that the distance of p = (x,y,z) from the origin 
equals √⎯x⎯ 2⎯ ⎯+⎯ ⎯y⎯ 2⎯ +⎯ z⎯ 2. Th e origin distance of p1 = (x1,y1,z1) is equal to √⎯x⎯ 1⎯ 2⎯ +⎯ y⎯ 1⎯ 2⎯ ⎯+⎯ ⎯z⎯ 1⎯ 2 = 

r2/√⎯x⎯ 2⎯ +⎯ y⎯ 2⎯ ⎯+⎯ z⎯ 2, and thus the product of the two distances is r2. Moreover, the vector p1 is 
a multiple of p and therefore the two points p and p1 lie on a line through o. Note that 
applying an inversion twice results in the original.

Th is is the same as for a refl ection, and thus one also calls the inversion a refl ection 
at a sphere. Many properties of inversions in three dimensions can be deduced from 
properties of the inversion in two dimensions. Th is follows from the fact that a 
spatial inversion acts in each plane through the center o like an inversion in this plane. 
Th erefore, the image of a general straight line is a circle (Figure 13.22)—whereas any 
straight line through o is of course mapped onto itself.

Inversions

Fig. 13.22
The inversion with respect to a sphere 
maps 
(a) straight lines to circles through the 
center o and 
(b) planes P to spheres P1 through o. 
Spheres (which do not pass through o) 
are mapped to spheres and circles (not 
through o) are mapped to circles. 
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Th e image of a plane (not through o) is a sphere through o. Applying the inversion 
again, we see that spheres through o are mapped to planes. Other spheres are 
transformed to spheres. A general circle c can be defi ned as the intersection curve of 
two spheres A, B. Th erefore, the image c1 is also the intersection of two spheres A1, B1 
and is thus a circle. 

Inversions are conformal mappings. Th is means that they preserve the intersection 
angles between curves and surfaces, respectively. As a fi rst example, we consider the 
basic sphere S and another sphere A that intersects S along a circle c at a right angle. 
Th e inversion fi xes S and c and maps A to a sphere that intersects S at a right angle. 
Th ere is only one sphere that intersects S along c at a right angle and this is A. Hence, 
spheres that intersect the base sphere S at a right angle are mapped onto themselves. 
However, points outside S are mapped to points inside S, and vice versa (Figure 13.23). 
A further example of the angle-preserving property of the inversion is shown in Figure 
13.24. In particular, Figure 13.25 illustrates that the stereographic projection may be 
obtained by restricting an inversion to a sphere through the inversion center o. Since 
the inversion preserves angles, the same holds for the stereographic projection. 
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Any (diff erentiable) function f(z) of one complex variable z =x + iy defi nes a 
conformal (angle-preserving) mapping of the plane (see Chapter 5). In space, there are 
far fewer conformal mappings. Th e French mathematician Joseph Liouville (1809–
1882) proved that a conformal mapping in three-dimensional space must be a Möbius 
transformation, which is either a similarity or the composition of a similarity and an 
inversion. 

As a further example of the use of inversions, we apply an inversion to a torus—in this 
case, a ring torus T (Figure 13.26). Th e image surface is called a Dupin cyclide T1. Some 
important properties of the Dupin cyclide follow easily from properties of the torus 
and inversions. A ring torus is the envelope of two families of spheres. One family of 
spheres is centered on the axis and has variable radius. Th e other family of inscribed 
spheres is centered on a circle and has constant radius. Th e inversion does not keep the 
constancy of the radius and does not map the center of a sphere to the center of the 
image sphere. However, spheres are mapped to spheres and thus the Dupin cyclide T1 

is the envelope of two families of spheres. 

 
         

       
      

o        
       
        

e       

 
     

     
       

       
    

          
        

       
   

     



478

Remarks on envelopes of spheres. As we have seen, a Dupin cyclide can be generated 
in two ways as the envelope of a family of spheres. Let’s examine those surfaces C 
that can be defi ned as envelopes of a family of spheres. Th ese surfaces are called canal 
surfaces. We consider the family of spheres S(t) depending on some parameter t, which 
may be viewed as time. Th e sphere S(t) to some time instance t has a center m(t) and 
radius r(t).

Th e locus of sphere midpoints m(t) is called the spine curve m of the canal surface C. 
Th e radius r(t) can vary with time t. If we take two spheres S(t) and S(t + h) to two 
close time instances t and t + h, they intersect in a circle k* (see Figure 13.27). Th e 
rotational axis of k* is the connecting line of the sphere centers m(t) and m(t + h). If 
we let h tend toward zero, the sphere S(t + h) tends toward S(t). Th e intersection circle 
k* of the two spheres tends toward a circle k(t), along which S(t) touches the canal 
surface C.

Th e axis of k* (a chord of the spine curve m) converges toward the tangent of m at 
m(t). Th us, the axis A(t) of k(t) is the tangent of the spine curve at m(t) (see Figure 
13.27). In general, k(t) is not a great circle of S(t) and thus the centers of k(t) and S(t) 
are diff erent. 

If, however, the radius r is constant we obtain a pipe surface C as an envelope (see 
Chapter 9). Th en, each inscribed sphere S(t) is tangent to the pipe surface C along a 
great circle k(t) of S(t). Its axis is tangent to the spine curve at m(t). Th is means that 
k(t) lies in the normal plane of the spine curve at m(t) (see Chapter 10). Another 
special type of canal surfaces are those with a straight line as spine curve m. Th ese 
surfaces are obviously rotational surfaces with rotational axis m. 

Fig. 13.27
A canal surface C is the envelope of 
a family of spheres. The locus of the 
midpoints of the spheres is a curve 
m. The radius r of the spheres is in 
general not constant. Each of these 

spheres S(t) touches the surface along 
a circle k(t), which is in general a small 
circle on S. The rotational axis A(t) 
of the circle k(t) is the tangent of the 
curve m at the center m(t) of S(t). 
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Th e generation of three-dimensional textures is closely related to certain deformations 
and thus it seems appropriate to briefl y discuss them here. A familiar technique for the 
mapping of three-dimensional textures onto a smooth surface works as follows (see 
Figure 13.28). One views a three-dimensional texture as a topographic surface [i.e., the 
graph surface of a height fi eld, which associates to each point p1 of a surface S1 a height 
h(p1) of the texture].

Th is height is measured along the surface normal at p1. For the defi nition of the shape 
of the three-dimensional texture, we may use a height fi eld defi ned over a plane S. Its 
shape is provided by the user. Th en, the program (perhaps supported by some user 
input) defi nes an appropriate mapping of the plane S to the surface S1 and carries over 
the heights. For a point p in the plane, we know its height h(p) and use the same height 
as height h(p1) of the image point p1 on the surface S1.

Three-Dimensional 
Textures

Fig. 13.28
A three-dimensional texture may be 
added to a surface S1 with the aid of 
a mapping between a plane S and 
S1. Given the texture over the plane, 
the mapping is used for a transfer of 
the three-dimensional texture from 
S to S1 via equal distances (heights 
h) above the base surfaces S and S1, 
respectively.
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It is not really necessary that the original texture be a height fi eld above the plane. 
We may use the normal-based mapping to defi ne a deformation of a layer around the 
plane to a layer around the surface S1. Th is deformation is then used to map a texture 
associated with S to a texture added to S1. Figure 13.29 shows examples of three-
dimensional textures created by an algorithm based on this principle.

Remark. A normal-based deformation maps a plane parallel to S (say, at distance d 
to S) to an off set surface of S1 at distance d. We know already from Chapter 10 that 
off sets may have self-intersections. Th ey arise from a self-collision of the normal-based 
deformation. It is clear that similar eff ects may occur for three-dimensional texture 
generation, especially if the texture goes too far away from the underlying surface S. 
Figure 13.30 illustrates this phenomenon—for the purposes of clarity and simplicity 
in regard to a two-dimensional equivalent. 

Fig. 13.29
Three-dimensional texture generation 
is not limited to height fi elds. Given a 
mapping between a plane S (or another 
surface) and a surface S1, one uses the 
surface normals and equal distances 
measured along the normals to set up 
a deformation from a layer around S 
to a layer around S1. In this way, one 
performs the transfer from a texture 
associated with S to a texture added 
to S1. This image shows the result of 
an even more advanced algorithm that 
avoids the collision problem depicted in 
Figure 13.30. (Images courtesy of D. 
Zorin.)
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Fig. 13.30
Normal-based three-dimensional 
texture mapping may create 
undesirable self-intersections of the 
texture to be added. This results from 
a self-collision of the normal-based 
deformation, which is illustrated 
here for the two-dimensional case. 
Such self-collisions may also happen 
for many of the three-dimensional 
deformations discussed. 





Chapter 14
Visualization and 
Analysis of Shapes
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Before producing a shape, one should analyze its suitability to the desired application. 
A deeper analysis should go beyond matters of realistic rendering. For example, 
certain undesirable eff ects (such as small bumps) may only be seen from a particular 
perspective under special lighting conditions. Here, curvature of surfaces comes into 
play. A more thorough analysis of a smooth surface may be based on curvatures. In 
fact, the judgment of a shape as visually pleasing depends largely on the way in which 
curvature varies along the surface. We try to keep the discussion of curvatures of 
surfaces as simple as possible, but there is no way around a little bit of mathematics. 
Knowing more about curvature will also let us better understand unexpected eff ects 
in refl ections on a shiny surface (See Figure 14.1). Moreover, it is crucial to distortions 
under texture mapping, paper models, unfoldings, and shape optimization, among 
other issues. 

Visualization and 
Analysis of Shapes

Fig. 14.1
Smooth surface with refl ections. The 
Cloud Gate (1999-2005) in the Chicago 
Millennium Park by artist Anish Kapoor 
(images courtesy of Steve McGinnis, 
RadioSpike photography).
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To achieve a realistic look in a designed shape, we show how to map texture onto 
shapes. Th is is related to properties of mappings between a plane and a surface or 
between surfaces, and curvature plays an essential role here as well.

With the recent availability of three-dimensional digital data of terrain elevation and 
existing buildings, it is possible to build a complete three-dimensional model of the 
entire scene containing the new building. Th erefore, we also discuss some basics on 
digital elevation models.

Th e fi nal topic in this chapter is topology. We have encountered it at several places 
already. So now is the time to study it in more detail. Geometry and topology are the 
two main tools used to describe shapes. Starting with Euler’s formula for polyhedra, we 
provide a crash course on a few basic topological properties. Non-orientable surfaces 
(including the famous Möbius strip and the Klein bottle) are discussed, as well as some 
basics on knots. (See Figure 14.2.) 

Fig. 14.2
There are several challenges in a good 
geometric understanding of this shape, 
all of them related to topics in this 
section.
(a) It is a strip of paper and therefore 
a developable surface, which is 
characterized by Gaussian curvature 
zero.
(b) We see smooth refl ections, 
indicating that its curvature (not only 
Gaussian curvature) has no sudden 
changes.
(c) The surface is closed and one-
sided, a so-called Möbius band.
(d) The band is an instance of a trefoil 
knot. 
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Curves revisited. To compute the tangent of a curve, we need a fi rst derivative of 
its mathematical representation. Recall from Chapter 7 what we have said about 
curvature and the osculating circle of a planar curve c. Th e computation of these 
entities requires derivatives up to second order, but not higher than that. Th is implies 
the following fact: Th ere are many curves d that touch the given curve c at a chosen 
point p and have the same curvature k and osculating circle there.

We say that any of these curves d osculates c at p. Of course, the osculating circle itself is 
one example, but there are infi nitely many osculating curves. An easy way to obtain an 
osculating parabola is based on Taylor’s theorem (Figure 14.3). Let the curve c be given 
as the graph of a function f  (x); that is, the curve has the form y = f (x). To pick a point 
on this curve, we choose an x value (e.g., x = a) and obtain the curve point p = (a, f (a)). 
We also compute the fi rst and second derivative of f evaluated at x = a and denote 
these values f  '(a) and f  ''(a), respectively. We then consider the following function

g (x) = f (a) + f  '(a)(x – a) + ½ f  ''(a)(x – a)2.   (14.1)

If we insert x = a, we obtain g (a) = f  (a). Th is says that the curve d given by y = g (x) 
passes through the point p = (a,f (a)). To compute the fi rst derivative of g, we note that 
a, f (a), f  '(a), and f  ''(a) are constants (do not depend on x). Th us,

g'(x) = f  '(a) + f  ''(a)(x – a).

We see that g'(a) = f  '(a), which means that the curve d and our original curve c have 
the same tangent at p. Th e equation of the tangent is y = f (a) + f  '(a)(x – a). Curves c 
and d even have the same curvature at p! To prove this, we diff erentiate again as

g''(x) = f  ''(a).

Th us, the second derivative of g is constant and is the same as the second derivative 
of f at x = a. Because functions f and g agree at x = a in all derivatives up to second 
order, their graph curves c and d osculate at p. Th e function g is a quadratic function 
of x and is called the second-order Taylor approximation of f at x = a. As the graph of 
a quadratic function, the curve d is a parabola. It is important to note that the second 
derivative  f  ''(a) is in general not the curvature at p. However, the following is a special 
case: If  f  ''(a) = 0, the point p is an infl ection point and the curve d is just the tangent 
of c at p.

Curvature of Surfaces

Fig. 14.3
Taylor’s theorem allows us to easily 
compute an osculating parabola of a 
curve given as graph of the function 
y = f(x).
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Fig. 14.4
Osculating parabolas for the curve y 
= sin x. We focus on a few points of 
this curve: (x,y) = (π/2, 1) describes a 
point p with vanishing fi rst derivative 
(and there p is the vertex of the 
parabola); (–π/4, –√⎯2 /2) is a “general” 
point; and (0,0) and (π,0) are 
infl ection points where the osculating 
parabola degenerates to the tangent.

Example: 
Curvatures of a sine curve.  We let f (x) 
= sin x; that is, we study the graph curve 
c of the sine function (Figure 14.4). Note 
that f  '(x) = cos x,  f  ''(x) = –sin x. 

• Let’s start with a = 0. Here, we have 
f (0) = 0, f´(0) = 1,  f  ''(0) = 0. 
Inserting this into the second-order 
Taylor expansion g from Equation 
14.1, we see that the osculating 
parabola y = g (x) has the equation y 
= 0+ 1⋅x + ½ ⋅0⋅x2; that is, it agrees 
with the tangent y = x in accordance 
with the fact that the point (0,0) is 
an infl ection point of the sine curve. 
Infl ection points also occur for a = π, 
2π,…, –π, –2π,…

•  Next, we set a = π/2 and note f (π/2) 
= 1,  f  '(π/2) = 0, f  ''(π/2) = –1. Th is 
yields g(x) = 1 + 0⋅(x – π/2) – ½ 
⋅1⋅(x – π/2)2, and thus we obtain the 
osculating parabola y = 1 – ½ ⋅(x 
– π/2)2. Its vertex is the considered 
curve point (π/2, 1), and its curvature 
at this point is –1 (see discussion 
following). 

•  Finally, we consider a = –π/4, which 
leads to f (–π/4) = –√⎯2 /2, f´(–π/4)= 
√⎯2 /2, f  ''(–π/4) = √⎯2 /2. Th is yields 
y = (√⎯2 /2)⋅[–1 + x + π/4 + ½ ⋅(x + 
π/4)2] as the equation of the osculating 
parabola.
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We may take a special parabola, y = ½ x2, and use the formula of Chapter 7 to compute 
its curvature k at the origin (x,y) = (0,0), which is the vertex of this parabola (Figure 
14.5). We fi nd k = 1; that is, the radius r of the osculating circle at the vertex is also 
r = 1. Th is is in agreement with the fact that the radius of the osculating circle at the 
parabola’s vertex equals twice the distance of the focal point to the vertex and this focal 
distance is ½. 

In an analogous way, the curvature of the parabola y = (k/2)x2 for some constant value 
k at the origin is equal to k. Note that k is also the second derivative of the function 
g(x) = (k/2)x2. Th erefore, in this special case the second derivative gives us the right 
value of the curvature at the origin. Th e reason behind this is the vanishing fi rst 
derivative at the origin. 

Th e osculating paraboloid. Now we are well prepared for a discussion of the 
curvature behavior of smooth surfaces. Inspired by the results on curves, we will 
use Taylor’s theorem—but now for two variables, x and y. We do not even quote its 
general form, but just outline the considerations that lead to a simple result upon 
which the further discussion can be based.

Th e goal is to obtain a counterpart of an osculating parabola, but already in a special 
position, analogous with Figure 14.5. Hence, we select a point p of the surface S 
(where we want to study the curvature) and let p be the origin of the coordinate 
system. Moreover, we place our coordinate system such that the xy-plane (equation 
z = 0) is the tangent plane of S at p. Our osculating surface P at p, which is called the 
osculating paraboloid of S at p, now has an equation of the form

z = ax2 + bxy + cy2.

Th e values of a,b,c are certain second-order derivatives, but are not needed right now. 
Th is surface P is in general a paraboloid. In special cases, it is a parabolic cylinder. 
Alternatively, if a = b = c = 0, it is just the plane z = 0. Because all of these surfaces 
have two orthogonal planes of symmetry, we may further adapt our coordinate system 
and make sure that the xz-plane and the yz-plane are the symmetry planes. Th is 
removes the term bxy in the previous equation. We denote the resulting coeffi  cients 
of x2 and y2 as k1/2 and k2/2, respectively. Th us, our surface P (which has the same 
curvature behavior as S at p) has the simple equation

z = (k1/2)x2 + (k2/2)y2.     (14.2)

A complete derivation of this result would require more mathematics. For our 
purposes, it is suffi  cient to know that this equation contains the curvature behavior of 
a general smooth surface S where smoothness means that S has a twice-diff erentiable 
mathematical representation.

Note the relations of Equation 14.2 to the curve case. In the xz-plane (equation y = 0) 
we have the parabola p1: z = (k1/2)x2 with curvature k1 at the origin p. Th e intersection 
curve of P with the yz-plane (equation x = 0) is the parabola p2: z = (k2/2)y2 with 
curvature k2 at p. Th ese curvatures k1 and k2 are called principal curvatures of P and S 
at p. Th e x- and y-axes, which we have chosen based on geometric considerations, are 
called principal directions at p. 

Fig. 14.5
The curvature of the parabola 
y = (1/2)x2 at its vertex (origin) is 1. 
More generally, the curvature of the 
parabola y = (k/2)x2 at its vertex (0,0) 
is k. This is the constant value of the 
second derivative of the function 
g(x) = (k/2)x2.
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Normal curvatures. Normal curvatures of a surface S at a point p are obtained as 
follows. We intersect S with a plane R through the normal n of S at p and measure the 
curvature kn of the resulting intersection curve at the point p. Th ere are infi nitely many 
normal curvatures, depending on which plane R we have chosen. We know from the 
previous discussion that we may use the osculating paraboloid P from Equation 14.2 
instead of S. 

Th e surface point p is then the origin and the normal at p is the z-axis. Th e plane R can 
be defi ned by its angle α against the x-axis (fi rst principal direction). Introducing a 
coordinate system (u,z) in the plane R as shown in Figure 14.6, we have the following 
relations between the u coordinate of points in R and their x and y coordinates:

x = u⋅cosα, y = u⋅sinα.

We can insert this into Equation 14.2 and obtain for the intersection curve between P 
and R the equation

z = (1/2)[k1(cosα)2 + k2(sinα)2]u2.

Th is is a parabola p(α), whose curvature at the origin is the desired normal curvature 
kn(α) to direction angle α. Because the coeffi  cient (1/2)[k1(cosα)2 + k2(sinα)2] of u2 
equals kn/2, we have the following result,

kn(α) = k1(cosα)2 + k2(sinα)2.     (14.3)

Hence, knowing the principal curvatures k1 and k2 we can compute the normal 
curvature kn(α) to any given direction angle α. Th e tangent of p(α) at p (u-axis in 
Figure 14.6; intersection line of the plane R and the tangent plane at point p) is also 
called the direction with which the normal curvature kn(α) is associated.

Fig. 14.6
Normal curvatures of a surface S at 
a point p are the curvatures of the 
intersection curves with planes R 
through the surface normal n. Using 
the paraboloid P from Equation 14.2, 
we can introduce a (u,z)-coordinate 
system in R and in this way obtain 
Euler’s formula (Equation 14.3)—which 
relates the normal curvature to 
direction angle α with the two principal 
curvatures.
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Classifi cation of surface points. Surface points can be classifi ed according to the type 
of the osculating paraboloid.

• Elliptic surface point. Here, the osculating paraboloid P is an elliptic 
paraboloid (Figure 14.7). Mathematically, in this case the principal curvatures 
k1 and k2 are of the same sign and diff erent from zero. Geometrically, this 
implies that the parabolas p1 and p2 are open toward the same side. Th e 
paraboloid P and the underlying surface S lie locally on one side of the 
tangent plane T at the considered surface point p. A visualization via planar 
intersection curves is shown in Figure 14.8. 

• Hyperbolic surface point. In this case, the osculating paraboloid P is a 
hyperbolic paraboloid (Figure 14.9). Th e principal curvatures k1 and k2 have 
diff erent signs and thus the parabolas p1 and p2 are open toward diff erent 
sides. P and the underlying surface S lie locally on both sides of the tangent 
plane T at p (Figure 14.10). T intersects the surface S along a curve, which 
has a double point at p. Th e tangents of this curve at the double point p are 
the so-called asymptotic directions along which the normal curvature vanishes. 
Th ey are also the intersection lines between the osculating paraboloid P 
and T. Euler’s formula (Equation 14.3) can be used to compute the angles α 
between principal directions and the asymptotic directions. We simply 
have to solve kn(α) = 0. Note that due to the diff erent sign of k1 and k2 this 
equation has a solution. It does not have a solution at an elliptic point where 
k1 and k2 have the same sign.

Fig. 14.10
At a hyperbolic surface point p, the 
surface S lies locally on both sides of 
the tangent plane T. The intersection 
curve between T and S passes through 
p and has a double point there. The 
fi gure also shows some intersection 
curves with planes parallel to T.

Fig. 14.9
At a hyperbolic surface point p of a 
surface S, the osculating paraboloid P 
is a hyperbolic paraboloid. Thus, the 
surface has locally a saddle-like shape.

Fig. 14.8
At an elliptic surface point p, the 
surface S lies locally on the same side 
of the tangent plane T. Intersection 
with a plane Q that lies on this side 
and is parallel to T gives a closed curve 
whose shape approaches that of an 
ellipse as Q gets closer and closer to T. 

Fig. 14.7
At an elliptic surface point p, the 
osculating paraboloid P is an elliptic 
paraboloid.
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• Parabolic surface point. Here, the osculating paraboloid P is a parabolic 
cylinder (Figure 14.11). One principal curvature vanishes, and we may 
assume that k2 = 0. Th e corresponding direction is the only direction with 
vanishing normal curvature. Th e local behavior with respect to the tangent 
plane is more complicated to explain. Some essential cases are shown in 
Figure 14.12. In general, parabolic points occur along curves that separate 
regions of elliptic points from regions with hyperbolic points. 

• Flat point. In this case, both principal curvatures vanish and therefore all 
normal curvatures are zero. Th e osculating surface P degenerates to the 
tangent plane (Figure 14.13).

 

T
p

 

 

T

p

Fig. 14.13
At a fl at point p, the osculating surface 
P is the tangent plane T. All normal 
curvatures at p vanish.

Fig. 14.12
Examples of the local behavior of a 
surface at a parabolic point, visualized 
with the help of the intersection curve 
between surface and tangent plane.

Fig. 14.11
At a parabolic surface point p, the 
osculating “paraboloid” P is a parabolic 
cylinder.
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Fig. 14.15
A surface of revolution, classifi ed 
into regions of elliptic and hyperbolic 
points. The separating circle contains 
the parabolic points.

Fig. 14.14
Two circles segment a ring torus into a 
region with elliptic points and a region 
with hyperbolic points (saddle-like 
points). The two circles contain only 
parabolic surface points. 

Example: 
Surfaces of revolution. We illustrate 
the classifi cation of surface points of a 
ring torus S (Figure 14.14). Th ere are 
two planes orthogonal to the axis, each 
of which touches the torus along a circle. 
Th ese circles contain the parabolic 
points. Obviously, the outer ring has 
only elliptic points because there the 

torus lies locally on the same side of the 
tangent plane.
Analogously, the remaining part is the 
one that has only hyperbolic points, 
where the torus lies locally on both 
sides of the tangent plane. At each 
point, the principal directions are the 
tangent to the circular profi le and the 

tangent to the parallel circle (rotational 
path). Analogously, we can discuss the 
distribution of elliptic and hyperbolic 
points along other types of rotational 
surfaces. Th ere, it is important to note 
that an infl ection point of the profi le 
gives rise to a parabolic surface point 
(Figure 14.15). 
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Fig. 14.17
The Gaussian spherical mapping views 
the outward unit normal vector at any 
point x of the considered surface S as 
a coordinate vector of a point x* on 
the unit sphere S*.

Example: 
Freeform surfaces. Segmentation of 
a surface into regions with elliptic and 
hyperbolic points can be done with 
modeling programs that have a tool for 
visualizing Gaussian curvature K = k1⋅k2, 
the product of principal curvatures. 
Gaussian curvature is further discussed 
in material following (Figure 14.16).
Here, we can already note that Gaussian 

curvature zero characterizes a parabolic 
point or fl at point. At an elliptic point, 
both principal curvatures have the same 
sign and thus we have a positive Gaussian 
curvature. Likewise, a hyperbolic point 
has principal curvatures of diff erent sign 
and therefore it is also characterized by 
negative Gaussian curvature.

Fig. 14.16
A freeform surface with a color-based 
visualization of Gaussian curvature 
K.  Positive K characterizes an 
elliptic point, negative K belongs to a 
hyperbolic point, and K = 0 holds at 
parabolic points.
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Gaussian curvature. Th e product K = k1⋅k2 of principal curvatures is called Gaussian 
curvature. Before we discuss some of the properties of Gaussian curvature, we briefl y 
illustrate the approach taken by Carl Friedrich Gauss (1777–1855) to defi ne this 
measure of surface curvature. It uses the following mapping from a surface S onto 
the unit sphere S* (= sphere of radius 1 whose center is the origin of the underlying 
Cartesian coordinate system): In the neighborhood of the considered point p on S, 
we use a consistent orientation of the surface normals. Th is means that we distinguish 
between two sides of the surface, and call them the outer and inner side. In this way, 
each point x in a neighborhood of p has an outward unit normal vector (called n) that 
points to the outer side. Th is vector has length 1, and seen as coordinate vector of a 
point thus represents a point on the unit sphere S*. Summarizing, we have to do the 
following (Figure 14.17): For a point x of S, we take the outward unit normal vector n 
and view it as coordinate vector of a point x* on the unit sphere S*. Th e mapping x → 
x* is called Gaussian spherical mapping. Th e image of a surface S under this mapping is 
called its Gaussian image. 

Let’s consider some examples.

• If S is a plane, all normals are parallel and therefore any point of the plane is 
mapped to the same point of the Gaussian sphere. Th e entire Gaussian image 
of the plane S is this single point.

• Let S be a sphere of radius R (Figure 14.18). On S, we consider a disk D 
with spherical center p. Th e Gaussian mapping maps the disk D to another 
disk D* on the Gaussian sphere S*. Connecting the boundary circle k of D 
with the center of the sphere S, we obtain a cone of revolution N—which is 
also formed by the normals of S along k. Th e corresponding cone N*, which 
connects the boundary circle k* of D* with the center of S*, is congruent to 
N. Th erefore, D results from D* by applying a uniform scaling with factor 
R and a translation. Hence, the surface area A* of D* and the area A of D 
possess the ratio A*/A = 1/R2. Because the normal curvatures of the sphere 
R at any of its points equal k1 = k2 = 1/R, the Gaussian curvature K = k1⋅k2 of 
the sphere equals K = 1/R2 and thus K agrees with the ratio A*/A.Fig. 14.18

The Gaussian spherical mapping 
applied to a spherical disk D. The 
normals at the boundary of D form 
a cone of revolution N, which is 
congruent to the corresponding cone 
N* formed by the normals along the 
boundary circle k* of D*.
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Let S now be an arbitrary surface, and let p be a point on it. We consider a local 
neighborhood D of p on S. With the Gaussian mapping, it is mapped onto a 
neighborhood D* of p* on the sphere S* (see Figure 14.19). Obviously, if the variation 
of surface normals over D is strong the domain D* will be larger than for a weak 
normal variation (see the examples considered previously). In other words, the ratio 
A*/A of the area A* of D* and the area A of D will measure the variation of normals—
which is clearly a measure of curvature.

Now one considers the limit of the area ratio A*/A when D shrinks to a point p. Of 
course, also D* shrinks to a point p* and thus both areas are zero. Th is is no problem, 
because the limit of the ratio A*/A exists (if the representation of the surface S is twice 
diff erentiable). Th e limit of the ratio A*/A is the Gaussian curvature K at p. We have 
verifi ed this previously for the very special example of a sphere, but it is true for general 
surfaces. We may therefore say that the Gaussian curvature measures the local area 
distortion under the Gaussian spherical mapping. 

Isometric mappings and cartography. Cartography is concerned with the generation 
of planar maps of the earth’s surface. If one approximates the surface of the earth by a 
sphere S, the problem is to fi nd an appropriate mapping of a part D of S onto a planar 
domain D1. Ideally, one would like to have a mapping that preserves the length of any 
path (river, street, and so on) on the earth—of course, up to an appropriate scaling 
factor that applies to all distances.

Fig. 14.20
An isometric mapping between two 
surfaces preserves the lengths of 
curves and the intersection angles 
between curves. The Gaussian 
curvature at corresponding points x 
and x1 are equal. Moreover, the surface 
area of any domain B and its image 
domain B1 are the same.

Fig. 14.19
The Gaussian spherical mapping 
maps a neighborhood D of p to a 
neighborhood D* of p*. The ratio A*/A 
of the area A* of D* and the area A of 
D measures the variation of normals 

on D. This is an “averaged” measure 
of curvature on the domain D. The 
Gaussian curvature K is the limit of 
A*/A when D shrinks to the point p.
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In this way, one would have the ideal impression of the distances between diff erent 
places. However, such a mapping does not exist! A simple proof can be based on the 
fact that a circle c (spherical radius r) on S needed to be mapped onto a circle c1 of 
radius r in the plane, but these circles have diff erent length. Another proof follows 
from a much more general result by C. F. Gauss, which concerns so-called isometric 
mappings between two surfaces S and S1 (see Figure 14.20).

Such a mapping maps any point x of S to a point x1 of S1. A curve c on S is mapped to 
a curve c1 on S1 such that c and c1 have the same length. Hence, distances measured 
along curves are preserved. C. F. Gauss proved that Gaussian curvature is preserved 
under isometric mappings. If S has Gaussian curvature K at point x, S1 must have the 
same Gaussian curvature K at the image point x1 of x. Because the sphere has Gaussian 
curvature 1/R2 and the plane has Gaussian curvature zero, there is no way to fi nd an 
isometric mapping between the sphere and the plane. Hence, there is no distortion-fr ee 
map of the earth.

One can show that an isometric mapping S → S1 also preserves the intersection angles 
between curves (see Figure 14.20). Moreover, it preserves surface areas: a domain B in S 
and its corresponding domain B1 in S1 have the same surface area. 

However, an angle-preserving mapping (also called conformal mapping) need not be 
an isometric one. In fact, there are many angle-preserving maps between any pair of 
surfaces. Let’s compare this result with our discussion of the inversion in Chapter 13. 
If an inversion maps a surface S to a surface S1, the mapping between the two surfaces S 
and S1 generated in this way is conformal.

However, there are other ways of obtaining a conformal mapping between two 
surfaces S and S1—ways that are actually related to the fact that there are many 
conformal mappings of the plane onto itself (see Chapter 5). Requiring angle 
preservation for a mapping of thre -dimensional space onto itself (not just between 
two surfaces) is much more restrictive and only leads to similarities, inversions, and 
their combinations (see Chapter 13). 

Likewise, there are many area-preserving mappings. Frequently used mappings of the 
earth are either angle preserving or area preserving (see Figure 14.21). However, they 
cannot have both properties because preservation of both angles and areas implies an 
isometric mapping.

 

Fig. 14.21
Examples of mappings used in 
cartography.
(a) The angle-preserving stereographic 
projection (see Chapter 2)
(b) An area-preserving mapping 
attributed to K. B. Mollweide (1805).

(a) 

(b) 
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Developable surfaces. A surface S that can be mapped into the plane by an isometric 
mapping is called a developable surface, and the isometric planar image is called its 
development. Due to the preservation of Gaussian curvature under isometric mappings, 
a developable surface must have vanishing Gaussian curvature K = 0 at all of its points. 
Th us, these surfaces are also called single curved surfaces (in contrast to double curved 
surfaces with K diff erent from zero; see Figure 14.22). We will study these surfaces 
in Chapter 15. Here, we only give two examples: cylinder surfaces and cones are 
developable surfaces. 

Mean curvature. Another important measure of surface curvature is mean curvature H 
= (k1 + k2)/2, the arithmetic mean of the principal curvatures. Surfaces with vanishing 
mean curvature are minimal surfaces, which appear (for example) as shapes of soap fi lms 
through a closed wire (Figure 14.23). Th ese and related equilibrium shapes of surfaces 
are discussed in Chapter 18 in connection with shape optimization problems. 

Fig. 14.23
Minimal surfaces in form of soap fi lms 
(images courtesy of K. Rittenschober). 
Minimal surfaces are characterized by 
vanishing mean curvature.

Fig. 14.22
An application of Gaussian curvature 
in architecture: Pompidou Two by 
NOX, invited competition for the City 
of Metz, France. The designed shape 
has been segmented into single curved 
areas and double curved parts. This 
segmentation is also refl ected in the 
construction methodology.
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Visualization of the curvature behavior. Th e curvature behavior of a surface is 
diffi  cult to convey by a shaded image. One means of visualizing such behavior employs 
color-coded images. Th e values of a given curvature measure—for example, Gaussian 
curvature K or mean curvature H (or another function of the principal curvatures)—
are encoded according to color (Figure 14.24). In this way, minute imperfections of 
a surface can be made visible (see also Figure 14.16). Th e frequently used subdivision 
surfaces (Doo-Sabin, Catmull-Clark, Loop) possess a complicated and sometimes 
undesirable curvature behavior near irregular vertices of the base mesh; this can be 
visualized by curvature diagrams (Figure 14.25). 

Fig. 14.25
The curvature behavior of a subdivision 
surface near an irregular vertex can be 
complicated and undesirable for certain 
applications.

This fi gure (courtesy of  I. Ginkel and 
G. Umlauf) illustrates the problem for a 
Loop subdivision surface (left)
via a color-coded Gaussian curvature 
diagram (right).

Fig. 14.24
Curvatures, here mean curvature, in a 
color-coded visualization are frequently 
used tools for surface analysis.
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Principal curvature lines. To obtain an overview of the principal directions, one can use 
principal curvature lines. A principal curvature line is a curve on a surface whose tangents 
are in principal direction. Th us, through each general point of a surface there are two 
principal curvature lines that intersect at a right angle and touch the principal directions.

Some examples are shown in Figure 14.26. Principal curvature lines or related 
networks of curves are sometimes used for the generation of surface illustrations that 
aim at results that are similar to drawings made by artists. Th is is an instance of a non-
photorealistic rendering technique (see Figure 14.27). 

Fig. 14.27
Non-photorealistic rendering of a surface 
resembling a drawing. Hatching is 
guided by the principal directions on the 
surface. (Image courtesy of D. Zorin.)

Fig. 14.26
The network of principal curvature lines 
of a surface represents fundamental 
shape characteristics.
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Fig. 14.28
Principal curvature lines form the basis 
for the layout of freeform structures 
with planar quadrilateral glass panels. 
Here we only show such a structure. The 
geometric discussion for its generation 
is found in Chapter 19. The singular 
vertices in the mesh (valence 6) 
correspond to the umbilics (fl at points) 
on an underlying smooth surface.

Remark (umbilics). Th e principal directions are uniquely defi ned only if k1 and k2 
are diff erent. For k1 = k2, we have a special surface point called an umbilic. Th ere, the 
osculating paraboloid P is a paraboloid of revolution or a plane (k1 = k2 = 0). 
A sphere S (radius R) has only umbilics. Th e intersection curve with any plane through 
a surface normal is a great circle (radius R) and thus all normal curvatures equal 1/R. 
At an umbilic, we have the same curvature behavior as for a sphere or a plane; in the 
latter case we also speak of a fl at point (Figure 14.13). At an umbilic the network of 
principal curvature lines has a singularity (Figures 14.26 and 14.28).
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Fig. 14.29
A viewer with eye point e sees a 
refl ection line lr of a light source l on a 
shiny surface S.
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If a surface S is built from a shiny material, the surrounding scene will be refl ected in 
it as in a mirror. Th ese refl ections are not simple projections. Th e way in which we 
see such mirror images also depends on the surface normals. Th erefore, we observe 
some unexpected behavior. For example, even if the surface S has a well-defi ned 
tangent plane everywhere the mirror image of a smooth curve may have tangent 
discontinuities. To understand this eff ect and similar ones, we have to thoroughly 
examine the geometric situation. 

Generation of a refl ection line. Assume that we are given a shiny surface S (which 
we also call the mirror surface) and a straight line l, which we may assume to be a light 
source. Th en, a viewer whose eye is placed at point e will see a refl ected image l r of l on 
S (Figure 14.29). For the geometric generation of l r, we fi rst recall the law of refl ection: 
Th e incoming ray r and the refl ected ray r* lie in a plane through the surface normal n 
at the point p of refl ection; moreover, the angle ∠rn equals the angle ∠nr*. 

A point p is a point of the refl ection line l r if there is a ray r emanating from a point 
on the source l such that the refl ected ray r* passes through the eye point e. To test 
whether a point p of the surface S belongs to the refl ection line, one refl ects the ray r* 
= pe to obtain the ray r and checks whether this ray r intersects the source l. Th e light 
source need not be straight. We can take any curve l as a light source  

Optical Lines for Quality 
Control
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Math:

Let’s sketch an analytic description of a refl ection line. 

Assume that the surface is given in parametric form p(u,v) 

= (x(u,v),y(u,v),z(u,v)). We want to fi nd the parameter 

values (u,v) of surface points p(u,v), which belong to the 

refl ection line. One has to connect p(u,v) and e and refl ect 

at the surface. To do so, we need the surface normal at p—

which requires diff erentiation with respect to u and v (i.e., 

the partial derivative vectors pu and pv of p(u,v) with respect 

to u and v). Th us, the refl ected image r of the ray r* = pe 

contains in its mathematical representation functions of p, 

pu, and pv. Finally, the intersection condition between r and 

l is an equation of the form

F(p(u,v),pu(u,v), pv(u,v)) = 0.

One may view this as a defi nition of a curve in the (u,v) 

parameter domain that corresponds to the refl ection line 

lr. Because fi rst-order derivatives of p(u,v) are involved, we 

loose one order of diff erentiability. For example, a surface 

p(u,v) with continuous fi rst derivatives leads to a refl ection 

line that has continuous positions but may have tangent 

discontinuities (sharp corners; see Figure 14.30). Th ese 

eff ects are discussed in more detail in material following. 

Th eir origin is this loss of one order of diff erentiability, 

which in turn results from the fact that normals are involved 

in the defi nition of a refl ection line.

Fig. 14.30
If two patches are connected along a 
curve c such that the tangent planes 
agree along c but the curvature is 
not continuous there, this “defect” 
in smoothness is clearly seen in 
refl ection lines. Those have tangent 
discontinuities (corners) at curvature 
discontinuities of the surface.
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Isophotes. Before proceeding with a discussion of the behavior of refl ection lines, we 
mention another family of optical lines (which may actually be seen as a special case 
of refl ection lines). Th ese are isophotes, whose defi nition also depends on the surface 
normals. One takes a fi xed direction—determined, for example, by a vector v. Th en, a 
curve c on S along which the surface normals form a constant angle α with v is called 
an isophote (Figure 14.31). In a simple shading model, these curves are isocurves of 
intensity. Th ey have also been used in descriptive geometry for the enhancement of the 
realistic appearance of a drawing (Figure 14.32). 

Contour generators. Consider a special isophote c on S along which the angle α 
between the normals and the viewing direction v is a right angle (Figure 14.33). At 
each point p of c, there is a line r parallel to v and normal to the surface normal (i.e., 
r is tangent to the surface). We may view r as a projection ray of a parallel projection 
parallel to v or as a light ray. Th en, c has to be considered as contour generator or 
shadow contour. 
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Fig. 14.34
Contour generators for objects 
consisting of a cone or a sphere on 
top of a right circular cylinder. The 
contour generator is discontinuous 
for the left-hand object and has 
tangent discontinuities for the tangent 
continuous object on the right side.

Example: 
Contour generator of simple objects. 
To support our claim that optical lines 
are less smooth than the original surface, 
we consider two very simple examples 
(Figure 14.34). Th e fi rst is the union of a 
coaxial cone and a cylinder of revolution. 
For the shown viewing direction v, the 
contour generator consists of straight 
line segments (rulings of cone and 
cylinder) that are not connected at the 

common circle k. Th is follows from the 
fact that cylinder and cone have diff erent 
tangent planes along k. Th us, although 
the object has a continuous surface the 
contour generator is not continuous. 
Th e second object is even tangent 
continuous and has a hemisphere on 
top of a cylinder. Th ere, the contour 
generator for the shown direction v 
consists of a half great circle (on the 

spherical part) and two straight line 
segments (on the cylindrical part). 
Th e contour generator as a whole is 
not smooth. Th ere is a sharp corner 
at the common circle k of sphere and 
cylinder. Th us, the contour generator is 
not tangent continuous—whereas the 
surface has a well-defi ned tangent plane 
at every point. 
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Optical lines for shape analysis. Optical lines (i.e., refl ection lines or isophotes) are 
frequently used tools for quality control of surfaces. Th is is due to the following.

• An optical line c on a surface S in general has a discontinuity at a tangent 
discontinuity of S (Figure 14.35a).

• An optical line has a corner point (tangent discontinuity) at a curvature 
discontinuity of the underlying surface S (Figure 14.35b).

• For a curvature-continuous surface [e.g., a B-spline surface with degree greater or 
equal to three (and single knots)], all optical lines are smooth (Figure 14.35c).

• Optical lines are sensitive to small imperfections such as bumps (Figure 14.35d).

Th e proof of these facts follows from the mathematical formulation given previously. 

Fig. 14.35
(a) Optical lines are useful in detecting 
tangent discontinuities or
(b) curvature discontinuities on a 
surface.
(c) A smooth pattern of refl ection lines 
is considered an indicator of a fair 
surface because
(d) small imperfections such as bumps 
are clearly seen in the refl ection lines.

Example: 
Subdivision surface. Surfaces con-
structed with the subdivison algorithms 
of Doo-Sabin, Catmull-Clark or Loop 
are not curvature continuous at irregu-
lar vertices of the input mesh. Refl ec-
tion lines clearly exhibit this defect of 
smoothness (Figure 14.36). 

Fig. 14.36
The pattern of refl ection lines reveals 
an undesirable curvature behavior of a 
Loop subdivision surface (cf. Figure

 14.25) caused by an irregular vertex 
of the control mesh (image courtesy of  
I. Ginkel and G. Umlauf).

(a) (b)

(c) (d)
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Implications on aesthetic design. If the curved surface will generate refl ections, the 
quality of the surface is important (Figure 14.37). It can be tested with help of optical 
curves. Th ere are also algorithms that allow us to modify a surface so that the pattern 
of refl ection lines becomes more pleasing. In any case, we have to note that if we want 
to have smooth mirror images of smooth curves the mirror surface S must be curvature 
continuous. For a B-spline surface, this is achieved by using degree 3 or higher in both 
parameter directions. 

Fig. 14.37
Refl ections of a building in a car hood 
from different viewpoints.

Next Page 
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We have seen in Chapter 1 that there are a number of possibilities for mapping texture 
onto an object in order to enhance its realistic appearance or to make it more attractive. 
An object can be represented in boundary or solid form. Likewise, we can map texture 
just to the boundary surface of the object or we can assign texture to the solid itself. 

In the latter case, we will see the texture on all cuts of the object. Associated with the 
three basic coordinate systems (Cartesian, cylindrical, spherical), the embedding space 
may be textured. Th e object is then assigned this texture (Figure 14.38). Th us, this 
depends on the relative position between the underlying coordinate system and the 
object. In this way, one can handle both surface textures and solid textures. 

Texture Mapping

Fig. 14.38
A simple way of mapping texture onto 
a surface (or solid) is to take it from 
a spatial texture associated with the 
underlying coordinate system.
(a) We show here a Cartesian system,
(b) a cylindrical system, and
(c) a spherical system.

(a)

(b)

(c)

Previous Page 
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Under the application of a deformation, one may be able to deform the texture as well. 
Hence, if we model a more complicated object from a simpler one via a deformation it 
depends on the application and the desired eff ects whether we apply the texture before 
or aft er the deformation. Figure 14.39 illustrates the diff erence. 

If a surface S is represented by a parameterization (x(u,v), y(u,v), z(u,v)), it is the image 
of a mapping from the uv-parameter domain to three-dimensional space. S may be 
seen as the image of a deformation of the parameter domain, and thus the method 
outlined previously can be applied. We can assign a texture to the uv-parameter 
domain and map it via the parametric representation onto the surface.

As we have seen previously, there are many diff erent parameter representations that 
describe the same surface as a set of points. However, in connection with textures the 
points are assigned a color (texture value) and therefore the value has an infl uence 
on which parameterization one uses in regard to the fi nal appearance of the texture. 
Figure 14.40 shows a simple grid texture mapped onto the same surface, but using two 
diff erent parameterizations. 

Many modeling systems will provide automatic solutions, based on the standard 
internal parameterization. However, there is also a large amount of research on texture 
mapping that is based on optimal parameterizations of the surface. 

Unfortunately, unless a surface S is developable there are no isometric mappings from 
the parameter domain to S and thus the problem becomes diffi  cult. Figure 14.41 
shows a state-of-the-art result of texture mapping, which is based on an optimized 
parameterization. Its explanation would be far beyond the scope of this book. 

Fig. 14.40
Different parameterizations of a 
surface give rise to different surface 
textures if we use the same basic 
texture in the parameter domain.

Fig. 14.39
If an object S1 results from an object 
S by a deformation, we have two 
different options for assigning a 
texture.
(left) We can map a basic texture to S 
and then deform toward S1,
(right) or we can apply the texture to 
S1 after the deformation.

map texture to S and deform towards S1 apply texture to S1
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Fig. 14.41
High-quality texture mapping onto 
a complex surface such as the one 
shown here requires advanced 
mathematical methods, which are still 
an active topic of research. (Images 
courtesy of P. Schröder.)
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Fig. 14.43
In this design of a pattern on a cone, 
we start with a spiral curve on the 
cone. It intersects the cone rulings 
under a constant angle of 60 degrees. 
Rotated and refl ected copies of c1 
fi nally give a pattern with diamond-
shaped tiles. These tiles form a 
constant angle at each vertex.

Fig. 14.42
Museum of Glass (1998-2002) in 
Tacoma by Arthur Erickson.

Example: 
Texturing a cone. Th e Tacoma Museum 
of Glass by Arthur Erickson (Figure 
14.42) incorporates as its most striking 
feature a tilted cone covered by 
diamond-shaped stainless steel plates. 
Designing the pattern of the tiles may 
be seen as a problem of texture mapping. 
Although the cone is developable, we 
cannot just cut it along a generator line 
g and unfold it into the plane. Applying 
a planar texture to the developed cone 
may result in a clearly visible seam along 
g aft er mapping back to space.

To obtain a similar design, but one with 
tiles of constant vertex angles, we may 
proceed in another way. We start with 
a curve c1 on the cone that intersects all 
rulings under a constant angle (spiral 
curve; see Chapter 7). Th en we assemble 
N copies of it on the cone by successively 
rotating c1 about the cone axis by an angle 
of 360/N degrees into new positions c2, 
c3,…, cN = c1. (See Figure 14.43.)
Finally, this rotational system of curves 
is refl ected at a plane through the cone 
axis, resulting in the desired tile pattern. 

Further variants of this example may be 
obtained by mapping the cone pattern 
to another cone, which is no longer 
rotational. If this mapping is isometric, 
the pattern has again the constant 
intersection angle property. Th is example 
shows that texture mapping may also 
employ mappings between surfaces and 
not just plane-to-surface mappings. 



Placing an architectural design within its environmental context is useful and 
interesting for purposes of visualization and presentation, and can be essential for the 
actual construction—especially if the local topography is more complicated or if one 
wants to use shapes of the surrounding landscape in the design (Figure 14.44). Th us, 
we briefl y address a few aspects of computer representations and the geometry of 
topographic surfaces. 

Digital Elevation Models

Fig. 14.44
Architecture in harmony with its 
environment. The Liaunig Museum 
(2004, project) by Odile Decq.
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Data acquisition and main representations. Providing precise and suffi  ciently many 
measurements of the earth’s topography has been a tedious and time-consuming task 
for surveyors. Today, the data acquisition process is greatly simplifi ed by modern 
technologies such as airborne laser scanning. It results in millions of data points on the 
topographic surface. 

Aft er some processing (such as noise removal or fi ltering of measurement points, 
which are actually on the vegetation and not on the ground), one obtains a 
digital elevation model. Figure 14.45 shows two frequently used representations 
of topographic surfaces in digital elevation models: a grid-based approach and a 
triangulation.

A grid-based representation basically assigns heights to data points in a regular 
grid. Simple interpolation techniques are used to derive a surface from this data. 
Triangulations (polyhedral surfaces with triangular faces) are not restricted to a grid-
like arrangement of vertices. Th erefore, they have advantages in the representation of 
important features such as sharp ridges or peaks. 

Topographic surfaces. Topographic surfaces are much less regular or smooth than 
the surfaces discussed so far. Th is complicated behavior implies that one actually 
needs to defi ne a resolution; that is, a level of detail to which one wants to represent 
the surface. We all know this from topographic maps which come in diff erent scales. 
At a larger scale, certain simplifi cations have to be made. Because this is not a topic of 
architecture, we will not discuss it further. 

For the integration of architecture or other man-made constructions into the existing 
environment, and for presentations and simulations, it may be useful to know a few 
basic concepts of topographic surfaces. Th ey stem from the fact that for a topographic 
surface the vertical direction (direction of gravity) plays a special role. 

Fig. 14.45
The two main representations of 
topographic surfaces in digital 
elevation models are (left) the 
arrangement of data points over a 
regular grid in the plane and
(right) a triangulation. (Image courtesy 
of G. Mandlburger.) 
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Th e intersection curves of a topographic surface S with a surface L of constant height 
above sea level (on a suffi  ciently small part of the earth, this surface L can be taken as 
a plane) is called a contour line. It is a level set of the height function (see Chapter 13). 
We may say that the contour lines on S are the horizontal curves that possess no ascent 
or descent. 

Orthogonal to the contour lines are the curves of steepest descent, along which the water 
would fl ow down (if the surface were suffi  ciently smooth). In an orthogonal projection 
onto a plane of constant sea level we see the right angle between contour lines and 
curves of steepest descent (Figure 14.46). 

Fig. 14.46
(a) Contour lines (curves of constant 
height above sea level) and
(b) curves of steepest descent (fl ow 
lines of water) form an orthogonal 
curve network on a topographic surface 
(image courtesy of T. Steiner).

(c, d) The right angles in this network 
are also seen in an orthogonal 
projection onto a plane of constant 
height.

contour lines curves of steepest descent

typical behaviour at a summit

(a) (b)

(c)

typical behaviour at a saddle point

(d)
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Assuming a smooth surface, the orthogonal network of level curves and curves 
of steepest descent is singular at critical points. Th ese are defi ned as points with a 
horizontal tangent plane (see Figure 14.47). Some of them (like certain summits or 
even saddle points) may be important locations in the landscape. We will encounter 
critical points again in the following section on topology. 

Fig. 14.47
Critical points of a topographic 
surface possess a horizontal tangent 
plane. They are locally highest points 
(summits), locally deepest points (e.g., 
at the bottom of a lake), or saddle 
points. In this fi gure, we also see the 
behavior of the level curves.
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Open versus closed surfaces. Very roughly speaking, topology deals with a 
description of the way geometric objects are connected. Th e actual shape is not 
important. Nor does topology distinguish between smoothness and non-smoothness. 
For example, a rectangular surface patch bounded by four straight line segments, a 
spherical patch bounded by three circular arcs, and a circular disk are topologically 
equivalent objects. Th ey are open surfaces because they have a boundary. Even more 
special, the surfaces in Figure 14.48 are confi ned by a single boundary curve. Of 
course, this single boundary curve (perhaps better termed a boundary loop) is not 
smooth for the fi rst two examples. 

Th e examples in Figure 14.48 are simply connected. Th ey have a single boundary curve 
and no holes. More formally, a surface S is simply connected if any closed curve in S 
can be shrunk to a single point such that each intermediate position is in S. Figure 
14.49 illustrates this property of a simply connected patch S and shows how it fails for 
some patches that are not simply connected. 

Geometric Topology 
and Knots

Fig. 14.48
From the perspective of topology, all of 
these geometric objects are equivalent. 
They can be mapped into each other 
by a deformation, which does not 
change the way in which the objects 

are connected. In particular, such a 
topology-preserving deformation keeps 
boundaries but may change their 
smoothness.
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Th e cylindrical piece in Figure 14.49 (right) is also an open surface because it has 
boundary curves. A surface that has no boundary curves is called a closed surface. All 
of its points are interior points. We can walk from any point on the surface in any 
direction and always remain on the surface. Examples of closed surfaces are a torus or a 
sphere, or deformed images of these. 

Deformations that do not change topology. When dealing with topology, it is 
important not to focus on special geometric properties but only have in mind how 
objects are connected. Let’s look at an example. All surfaces in Figure 14.50 are 
topologically equivalent to a sphere. Th is is so because deformations that do not create 
new connections or holes can be found that map each of the surfaces into a sphere.

Imagine the objects made of thin rubber, with air blown into them as into a balloon. 
Th ey will more and more obtain the shape of a sphere. Figure 14.51 shows an example 
of such a morphing into a sphere. Closed surfaces that are topologically equivalent to 
a sphere are said to have topological genus zero. Note that we cannot map a torus into 
a sphere, but obviously we can morph it into a sphere with a single handle—or into a 
cuboid with a hole (Figure 14.52). 

Fig. 14.50
All of these surfaces are topologically 
equivalent to a sphere.

Fig. 14.49
On a simply connected surface S, each 
closed curve can be shrunk to a single 
point such that each intermediate 
position is in S. On a surface with 
holes (middle) or for the cylindrical 
piece on the right-hand side, this is not 
possible.
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Fig. 14.52
Surfaces topologically equivalent to a 
torus.

Fig. 14.51
A surface of topological genus zero 
can be morphed into a sphere (images 
courtesy of Martin Kilian).
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Orientable versus non-orientable surfaces. All surfaces we have studied in the 
previous examples are orientable; that is, they have two sides. We can paint these 
two sides in diff erent colors. For example, the inner side of a sphere or a torus can be 
assigned a color diff erent from the outer side. Th is is not always the case. For example, 
the Möbius band encountered in Chapters 9 and 12 does not have this property.

Th e Klein bottle shown in Figure 14.53 is another example of a non-orientable surface. 
Unlike the Möbius band, it has a self-intersection (but it is closed). Th e one-sided 
property of the Möbius band has fascinated artists and architects. We have seen 
Escher’s version in Chapter 12. Figure 14.54 shows an architectural project that has 
been inspired by the Möbius band. 

Fig. 14.54
The Max Reinhardt House project 
(1992) by Peter Eisenman has been 
inspired by the Möbius band, an 
example of a non-orientable surface 
(images courtesy of Eisenman 
Architects).

Fig. 14.53
A Klein bottle is an example of a non-
orientable surface.
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Euler’s formula. In our study of polyhedra in Chapter 3, we encountered a remarkable 
relation among the number v of vertices, the number e of edges, and the number f of 
faces. If the polyhedron is topologically equivalent to a sphere, Euler’s formula holds:

v – e + f = 2.    (14.4)

Th is formula is much more widely applicable as follows. Given a closed surface, we 
decompose it into simply connected patches (cells, faces). In such a cell decomposition, 
vertices are points where at least two faces meet and edges are face boundaries 
connecting two vertices. (Essential vertices are only those where at least three faces 
meet, but keeping further ones does not cause problems.) In other words, we may 
draw a curve network on a surface that decomposes it into simply connected faces (see 
Figure 14.55). 

To prove Euler’s formula, we may think of these networks. Any network on a surface 
that is topologically equivalent to a sphere can be obtained as follows. We start from a 
very simple network, as shown in Figure 14.56a. It has one vertex, one (closed) edge, 
and two faces, and thus we have v – e + f = 1 – 1 + 2 = 2. 

Fig. 14.55
Euler’s formula v – e + f = 2 may also 
be applied to a curve network (cell 
decomposition) on a closed surface 
S that is topologically equivalent to 
a sphere. f is the number of (simply 
connected) cells (faces), v is the 

number of vertices, and e is the 
number of curve segments—each of 
which joins two vertices and separates 
two faces. In this case, we have v =12, 
e = 22, and f = 12.

Fig. 14.56
A proof of Euler’s formula v – e + 
f = 2 verifi es it for the basic cell 
decomposition shown in (a) and
(b) then observes that vertex insertion 
and

(c) edge insertion do not change the 
value of v – e + f. By applying these 
operations one may obtain any cell 
decomposition.

v=12, e=22, f=12

v-e+f = 12-22+12 = 2

 

(a) (b) (c)



522

A more complicated network may be obtained from such a simple one by iterative 
application of two basic operations; namely, insertion of an additional vertex on an 
existing edge and joining two vertices by a new edge (which splits an existing face into 
two faces). Let’s see why v – e + f does not change its value under these operations.

• If we insert a new vertex, we increase v by one. However, the new vertex will 
split an existing edge into two pieces and will thus also increase the number 
of edges by one. Th e number of faces remains unchanged. If a prime indicates 
the numbers aft er the vertex insertion, we have v' – e' + f  '= v + 1 – (e + 1) + f 
= v – e + f. 

• Likewise, joining two vertices by a new edge (which splits an existing face 
into two faces) increases the numbers of edges and faces by one but does not 
change the number of vertices: v' – e' + f  ' = v – (e + 1) + f + 1 = v – e + f. 

Th is is a proof of the formula, where admittedly we did not further argue why any 
network (cell decomposition) can be reached in the way outlined previously. 

Euler’s formula for other topological types. Th e value of v – e + f can be computed 
for any cell decomposition of a surface S or any polyhedron S. It only depends on the 
topology of S, but not on the special decomposition one has chosen. One calls this 
number χ = v – e + f the Euler characteristic of S. 

Example: 
Torus. As a fi rst simple example of a 
closed surface S that is not topologically 
equivalent to a sphere, we take a 
(topological) torus. Th e elementary 
network used in the previous proof 
is not suffi  cient here because it does 
not decompose the torus into simply 
connected domains. However, we 
may use the network shown in Figure 
14.57 (left ). It forms the boundary of 
a simply connected patch covering the 
torus. Th is special network has one 

vertex, two edges, and one face and 
thus χ = v – e + f = 0. Th e insertion of 
new vertices and edges results in more 
general networks (cell decompositions) 
for which the same formula must hold. 
We may not obtain all networks in 
this way. However, it can be shown 
that the formula is valid for any cell 
decomposition and thus the Euler 
characteristic for a surface topologically 
equivalent to a torus is zero:
v – e + f = 0.               (14.5)

Let’s examine why simply connected cells 
are necessary. Joining two vertices on 
the boundary of a not simply connected 
face may not split the face into two, but 
it might still be just one face and this 
would change the value of v – e + f. If we 
determine χ = v – e + f for a polyhedron, 
we may have to introduce further edges 
to make sure that all faces are simply 
connected (Figure 14.57, right). 
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Example: 
Planar domain with holes. Take a planar 
domain D with an outer boundary curve 
c and with h holes (see Figure 14.58). 
Each cut joins a point of c with a point 
on a hole’s boundary. For this basic 
network—composed of v = 2h vertices 
(the end points of the cuts), e = 3h edges 

(h edges on c, the h boundaries of the 
holes, and the h cuts), and the resulting 
single face f = 1—we have χ = v – e + 
f = 2h – 3h + 1 = 1 – h. For any other 
decomposition into simply connected 
cells, we obtain the same value for the 
Euler characteristic; namely, χ = v – e + 
f = 1 – h. 

Example: 
Möbius band. Th e Euler characteristic 
also makes sense for surfaces with 
boundaries. You may verify easily that χ 
= v – e + f = 1 for a Möbius band. In fact, 
you can use the generation of this band 
via appropriate gluing of a rectangle to 
obtain a proof. 

Fig. 14.58
With h cuts, a planar domain D with 
h holes can be cut into a simply 
connected domain. The result has 
been eroded near the cuts to better 
visualize the fact that we have a simply 
connected domain after the cutting 
operation.

Fig. 14.57
(Left) Two cuts through a point on 
the torus can be made so that they 
form the boundary of a single simply 
connected patch.
(Right) The rule v – e + f = 0 for an 
object of the topology of a torus is only 
valid if all faces are simply connected. 
To determine the value of v – e + f 
correctly, we may have to introduce 
further edges to make sure that all 
faces are simply connected.
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Classifi cation of closed orientable surfaces. A torus is equivalent to a sphere with 
one handle. It can be shown that any closed orientable surface S is equivalent to a 
sphere with a certain number g of handles. Th is number is called the topological genus 
of S. A sphere has genus g = 0, and a torus has genus g = 1. Th e Euler characteristic χ of 
a surface with genus g equals

χ = v – e + f = 2 – 2g.      (14.6) 

It may be hard to visually determine the number g of handles for surfaces of higher 
genus, as for those shown in Figures 14.59 and 14.60. In addition, the use of a cell 
decomposition for computing the genus from Equation 14.6 may be diffi  cult. To 
determine the genus in complicated cases, the following procedure can be used. 
We consider a height function on the surface. For example, we may just take the z 
coordinate of each point as the height value. Let’s view the z-axis as vertical.

Th is function then has critical points at places where the tangent plane is horizontal. 
Th ere are three types of critical points (see the section on topographic surfaces): local 
minima, local maxima, and saddle points. To a local minimum or maximum (elliptic 
surface point) we assign the value +1, and to a saddle point (hyperbolic surface point) 
we assign the value –1. It can then be shown that the Euler characteristic χ = 2 – 2g 
of the surface is the sum of all of these values (excluding certain degenerate cases of 
maxima, minima, or saddles whose explanation would require more math). Examples 
are shown in Figure 14.61. 

Fig. 14.60
As an exercise, the reader may 
determine the topological genus of the 
surfaces depicted in these sculptures 
by Carlo Sequin (images courtesy 
of Carlo Sequin). For this task, we 
consider the closed surface that 
confi nes the solid sculpture, though 
some of these objects may have been 
constructed from a thin solid layer 
around an open surface.

Fig. 14.59
Higher-genus surfaces designed with 
an algorithm developed by Ergun 
Akleman (images courtesy of Jotero 
GbR)
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Other topological invariants. So far we have encountered several topological 
invariants, such as the number of boundary loops, the number of sides (orientable or 
non-orientable), the Euler characteristic, and the closely related genus. We mention 
here two further topological concepts that have a very intuitive explanation.

Th e fi rst is the maximal number of cuts (closed cuts or cuts from boundary to 
boundary) one can make before a surface falls into two parts. For a sphere, this number 
is zero—and for a torus it is 2 (see Figure 14.57). Let’s see how many cuts we can make 
until a Möbius band falls into two parts (see Figure 14.62). Making the fi rst cut “in the 
middle” of the band, following roughly the direction of the boundary and making sure 
it is closed, the band does not fall apart. It becomes another closed band. One might 
think that the same trick works again. However, we obtain two closed bands that 
are linked (see Figure 14.62). Th us, we need to make another cut from boundary to 
boundary to obtain a simply connected domain. Th is illustrates (but does not prove) 
that the maximal number of cuts is two. 

Fig. 14.62
We may make a closed cut in a Möbius 
band and obtain another closed band. 
Applying the procedure again, we 
obtain two linked bands.

Fig. 14.61
The genus g of a closed orientable 
surface can be determined with help of 
the critical points in a height function. 
One assigns the value +1 to local 
minima or maxima and the value –1 to 
saddles. Then, the Euler characteristic 
χ = 2 – 2g equals the sum of these 
values attached to critical points. 
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A further topological quantity is the chromatic number. It is the minimal number of 
colors we need to color code any possible map drawn on the surface such that (for 
example) adjacent countries have diff erent colors along a common border. For the 
earth (a sphere), this number is four. A proof of that could not be given for a long 
time, but fi nally in 1977 one succeeded—but only with computer support. For a torus, 
the chromatic number turns out to be seven (see Figure 14.63).

Knots from the mathematical perspective. In mathematics, a knot is simply a closed 
space curve without self-intersections. For visualization, we may use a surface around 
this curve (for example, a pipe surface; Figure 14.64). Th e use of closed curves instead 
of “knotted” parts of an open curve has its origin in the much simpler formulation of 
admissible operations that do not change the type of knot.

One of these operations is shortening part of a knot (without introducing 
intersections). Shortening an open curve from an end may eventually remove any 
visually knotted parts, and fi nally the curve may totally vanish. Hence, we need to 
close our knots to avoid this type of problem. 

 

Fig. 14.64
A knot is a closed space curve without 
self-intersections. Its visualization may 
be enhanced with the help of a pipe 
surface wrapped around it.

Fig. 14.63
The number of colors needed to color 
any possible map on a surface such 
that different countries exhibit a 
different color along a common border 
is a topological quantity. The number is 
four in the case of the sphere. One can 
distribute seven countries on a torus 
such that any two have a common 
border, and thus the chromatic number 
of a torus is at least seven. In fact, it 
equals seven. The rectangular domain 
is a “planar map” of the torus; it can 
be deformed into the torus, gluing 
together opposite edges.
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One topic in knot theory is knot equivalence. It is exactly what one might attribute to 
equivalence in the presence of a closed knotted string. Figure 14.66 illustrates basic 
admissible operations that do not change the type of knot but may let it appear in a 
simpler way. Shortening of a part may not be possible with a given knotted string, but 
this is also admitted here because clearly the length of the string should not enter the 
discussion of types of knots. 

Fig. 14.67
By cutting two knots and gluing them 
together, we obtain a composed knot.

Fig. 14.66
(left) Refl ecting a knot at a plane P 
may result in an equivalent knot,
(right) but may also derive two knots 
that cannot be transformed into each 
other by admissible knot modifi cation.

Fig. 14.65
Admissible modifi cations of a knot may 
reveal it as the un-knot (i.e., the knot 
is equivalent to a circle).
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Refl ected knots may or may not be equivalent. Th is is illustrated in Figure 14.67. From 
two knots, we can form a new composed knot by cutting each of them and gluing them 
together (as shown in Figure 14.68). Th e classifi cation of knots is based on the crossing 
number, defi ned as the minimum number of crossing points in a projection (see Figure 
14.69). Th ere are some types of knots that appear in a systematic way and then have 
the same index in the labeling of types (e.g., 31, 51, 71, and so on). 

Otherwise, the indices in the classifi cation table are more of a historic than 
mathematical nature. Not listed are those knots obtained by composing simpler ones 
(in the sense of Figure 14.68). Refl ected knots that are not identical to each other still 
have the same label (e.g., 31, 51). Recall that we have encountered the trefoil knot 31 in 
Figure 14.2. 

Fig. 14.69
Generation of a torus knot by a 
“rotoidal” motion, which combines 
the uniform rotation of a point on a 
meridian circle of a torus with rotation 
of that circle about the torus axis.

Fig. 14.68
These are the simplest types of knots 
in the standard classifi cation. The 
classifi cation is based on the minimal 
number of crossings in a projection. 
For example, 51 refers to a knot with 
fi ve crossings in the projection, but 
the index does not have a special 
meaning (apart from some systematic 
knot sequences, which have the same 
index).
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Fig. 14.71
The (3,8)-torus knot (two views) has 
crossing number 16.

Fig. 14.70
The simplest torus knots are the (2,3)-
torus knot (trefoil knot, left) and the 
(2,5)-torus knot (Solomon’s seal knot, 
right).

Example: 
Torus knots. As an example of simple 
spatial motions, in Chapter 12 we 
discussed the superposition of two 
uniform rotations about orthogonal 
non-intersecting axes. Special trajectories 
of such motions can be used to create a 
sequence of knots (torus knots) as follows 
(Figure 14.69). We consider a circle c in 
the xz-plane, with radius 2 and midpoint 
(3,0,0). On this circle, a point r is rotating 
with angular velocity v = q/p—where 
p and q are integers without a common 
divisor. In time t, the rotation angle is 
v⋅t (and thus the motion of r) can be 
described as
x = 3 + 2⋅cos(v·t), y = 0, z = 2⋅sin(v·t).

Th is rotation is combined with a rotation 
about the z-axis with angular velocity 
one. Under this rotation, c generates a 
ring torus and the rotating point r traces 
a (p,q)-torus knot whose parametric 
representation is given by 
x = [3 + 2⋅cos(v·t)]⋅cos t, y = [3 + 
2⋅cos(v·t)]⋅sin t, z = 2⋅sin(v·t).
Th e simplest torus knot—shown in 
Figure 14.70 (left )—is the (2,3)-torus 
knot, also known as the trefoil knot 
31. Th e (2,5)-torus knot—depicted 
in Figure 14.70 (right)—is also called 
Solomon’s seal knot and is listed in the 
classifi cation as knot 51. Th e (2,7)-torus 
knot is the knot 71, and so on. Th ere 

are of course further torus knots that 
do not belong to this sequence of the 
classifi cation, such as the (3,8)-torus 
knot (Figure 14.71).
Th e crossing number of a (p,q)-torus knot 
is the minimum of the two numbers (p 
– 1)⋅q and (q – 1)⋅p. Th us, the crossing 
number of the (2,3)-torus knot is the 
minimum of 1⋅3 and 2⋅2—which is 3, 
in accordance with the classifi cation 31. 
Th e crossing number of the (3,8)-torus 
knot is 16; namely, the minimum of 2⋅8 
and 3⋅7.





Chapter 15
Developable Surfaces 
and Unfoldings





Physical three-dimensional models are an important medium in the architectural 
design process. One classical technique uses paper or cardboard to build geometric 
models. For that purpose, one generates a planar unfolding of the model on paper 
that can be cut out and glued together. It is relatively straightforward to unfold 
a polyhedral shape that consists of planar faces only. Here, the challenge is in the 
generation of a non-overlapping planar representation that consists of a small number 
of connected pieces.

For most curved surfaces, such as the freeform surfaces studied previously, an 
unfolding does not exist. However, there is a special class of surfaces (called developable 
surfaces) that behave just like paper if we bend or twist them without tearing or 
stretching. In this chapter, we study these special surfaces and show how to unfold 
them so that we can build paper models. Clearly, our ultimate goal is not these models.

Developable Surfaces 
and Unfoldings
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Fig. 15.1
The Walt Disney Concert Hall (1999–
2003) in Los Angeles by Frank O. Gehry.

Developable surfaces have the great advantage that they can be easily covered with 
sheet metal. In fact, one only needs to roll out the sheet metal bands on such a surface. 
Moreover, these surfaces carry a family of straight lines—which also simplifi es their 
construction. All of these properties are very attractive for the actual construction, 
and thus it is not surprising that one can fi nd developable surfaces in a number of 
important architectural projects. Frank O. Gehry in particular has been using these 
surfaces quite extensively (Figure 15.1; see [Shelden 2002]). 



535

   

Before studying this chapter, recall the basic facts on ruled surfaces discussed in 
Chapter 9. Moreover, one should bear in mind the curvature theory of surfaces as 
outlined in Chapter 14. We have also discussed isometric mappings (i.e., mappings 
between surfaces that preserve the length of any curve). Developable surfaces S are 
characterized by the property that they can be mapped isometrically into the plane.

Th e planar isometric image Sd is the planar unfolding of the surface. It is also called 
the development of S. Because isometric mappings preserve Gaussian curvature, a 
developable surface has the same Gaussian curvature as the plane (i.e., it has vanishing 
Gaussian curvature). Based on this fact, one can show that there are just three basic 
types of developable surfaces. All of them are ruled surfaces (Figure 15.2).

Moreover, any ruling of such a developable ruled surface must be a torsal ruling R. Th is 
means that the surface S has the same tangent plane at all points of the same ruling R 
(Chapter 9). Before stating more general results, we will study the three basic types: 
cylinders, cones, and tangent surfaces of space curves. 

Surfaces That Can Be 
Built from Paper

Fig. 15.2
Developable surfaces are special ruled 
surfaces. For each ruling there is a 
plane tangent to the surface along the 
entire ruling. More general developable 
surfaces are compositions of such 
developable ruled surfaces.
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Cylinders. A cylinder surface S is formed by a family of parallel lines. To model a 
cylinder surface, we may prescribe a profi le curve p and extrude it in some direction 
r by a parallel extrusion. If the profi le curve p lies in a plane normal to r, we call p a 
normal section. Th e lines on the surface are all parallel to r and are called its rulings. 
To fi nd the isometric mapping into the plane, we fi rst consider a discrete model of a 
cylinder surface; namely, a prismatic surface (prism). We obtain it if we select a polygon 
p as a normal section (Figure 15.3).

If we refi ne the normal section polygon p of a prism toward a smooth curve, we obtain 
a smooth cylinder surface with p as normal section curve. Th e unfolding of the prism 
becomes in the limit the development of the cylinder surface. Th e development pd 
of the profi le curve p is a straight line segment. All rulings of S are parallel. Th ey also 
appear as parallel lines in the development. Clearly, the right angle between normal 
section and rulings is also seen in the development (Figure 15.4).
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Fig. 15.4
Cylinder surface S and its development. 
A normal section p of S is mapped into 
a straight line segment pd. Rulings of 
S are mapped to parallel lines in the 
development.

Fig. 15.3
Prismatic surface and its unfolding 
into the plane. A normal section of the 
prism is mapped into a straight line 
segment. Parallel edges of the prism 
are mapped to parallel lines of its 
unfolded version.
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Fig. 15.5
Development of a cylinder S of 
revolution. Straight lines ld in the 
development that are not parallel or 
normal to the developed rulings belong 
to helixes l on S. Conversely, each helix 

on the cylinder has a straight image 
in the development. Thus, the helixes, 
circles, and rulings on S are the 
geodesics (shortest paths) on S.

Example: 
Cylinder of revolution and helixes. 
Figure 15.5 shows the development of a 
cylinder S of revolution. Th e base circle p 
of the cylinder has radius R and thus has 
length L = 2πR. Its development pd is 
therefore a straight line segment of length 
L. Note that the cylinder is closed. Th us, 
we have to cut it along a ruling and then 
unfold it.
In the development, we consider a straight 
line ld whose angle against pd is denoted by 
α. We establish that α shall be diff erent 
from zero and from a right angle. We want 
to study the reverse development (i.e., the 
original curve l on the cylinder S). Th e 
straight line ld intersects the fi rst and last 
ruling of the development (which belongs 

to the same ruling of S) in points ad and bd. 
ad has some distance d from the base line 
pd, and bd is at height d + h above pd. 
On S, points a and b lie on the same 
ruling—and their distance is h. Now we 
consider the midpoint md of ad and bd. Its 
height is d + h/2, which is also the height 
of m above the base circle p. m arises from a 
by rotation around the cylinder axis about 
an angle of 180 degrees and by a translation 
parallel to the axis of distance h/2.
Analogously, if we rotate a by a fraction 
360/N of the full angle, we obtain a point x 
at height d +h/N, which also lies on l (and 
a  corresponding point xd on ld). Th is shows 
that the curve l is a helix. Its properties 
follow easily from the development: 

ld forms a constant angle 90 − α with 
the developed rulings and because the 
development preserves intersection angles 
the helix l also intersects the rulings of the 
cylinder S at constant angle 90 − α. Th us, 
the tangents of the helix form a constant 
angle α with the plane of the base circle.
We may say that all tangents of the helix 
have a fi xed inclination angle or a fi xed 
slope. Th erefore, one calls the helix a curve 
of constant slope. Shortest paths (geodesics) 
on the cylinder S correspond to shortest 
paths in the plane. Because the latter 
are straight lines, general geodesics on a 
cylinder of revolution are (segments of ) 
helixes (circles or rulings in special cases). 
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Figure 15.6 depicts the development ed of an ellipse e on a cylinder of revolution S. 
Th e curve ed is not an ellipse! Note the variation of the intersection angle between 
the ellipse and the rulings of the cylinder. Because angles are preserved, we have the 
same variation in the development. Th e infl ection points may also be explained in 
this way. In Figure 15.6, the object contains a piece of a cylinder and two planar faces 
(one bounded by the ellipse and the other by the base circle). In an unfolding, we also 
obtain undistorted images of these planar faces.
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Development of an oblique circular 
cylinder. The base circle p is mapped 
to a curve pd in the development. Any 
normal section of the cylinder (ellipse) 
corresponds to a straight line segment 
of the development. In practice, the 
development is constructed with the 
unfold operation applied to a suffi ciently 
good approximation of the cylinder by a 
prism (approximation of the base circle 
by a polygon), which may be provided 
automatically by the system.

Fig. 15.6
Ellipses e on the cylinder do not 
correspond to ellipses in the 
development of the cylinder. The 
development ed of an ellipse e is a sine 
curve with infl ection points cd, dd arising 
from those points c and d on e where the 
plane of the ellipse e is orthogonal to the 
tangent plane of the cylinder S.

Example: 
Development of an oblique circular 
cylinder. Consider a cylinder surface S 
with a base circle p, where the rulings of 
S are not orthogonal to the plane of p. We 
call S an oblique circular cylinder. Now 
the base circle is not mapped to a straight 
line segment of the development because 
p is not a normal section of the cylinder. 
We can easily observe the variation of 

the intersection angle between p and the 
rulings.
Th is variation becomes visible in the 
development (Figure 15.7). Th e normal 
sections of S are ellipses. Th ese ellipses 
are mapped to straight line segments in 
the development. Again, we note the 
following: those points c, d of p where the 
plane of p is orthogonal to the tangent 

plane of S are mapped to infl ection points 
cd and dd of the development pd.
Figure 15.7 shows the development of an 
approximation of a cylinder by a prism 
obtained via an approximation of the base 
circle by a polygon. Such a development 
of a polyhedron can easily be performed 
with any computer-aided design (CAD) 
system using the unfold operation. 
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Cones. Recall the defi nition of a general cone: Given a profi le curve p and a vertex 
point v, the cone consists of all lines connecting v with points of p. We may also 
generate the surface by a central extrusion. Taking a polygon p as a profi le, we obtain a 
pyramid surface. Pyramids may be seen as discrete counterparts of smooth cones, just as 
prisms are seen as discrete counterparts of cylinders.

We learn a lot about the development of a cone if we fi rst study the unfolding of a 
pyramid (Figure 15.8). Th e simplest reference polygons q on a pyramid in connection 
with the development are those whose vertices lie at constant distance R from the 
vertex v. Th ey are the counterparts of the normal sections of a prism. Clearly, their 
unfoldings qd have vertices on the circle with center vd and radius R. 

Now we perform the transition to the case of smooth cones. We imagine that the 
profi le polygon p is refi ned and becomes a smooth curve p in the limit (Figure 15.9). 
Th e smooth limit of the pyramid is a cone S. Th e polygon q at constant distance R 
from v becomes in the limit the intersection curve of S and a sphere with midpoint v 
and radius R. Th e development of that curve is a circular arc with center vd and radius 
R. Of course, the total lengths of q and qd are the same. 
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Fig. 15.9
Cone and its planar development. The 
intersection curve q of the cone and a 
sphere of radius R centered at the vertex 
v meets the rulings of the cone at a right 
angle. Its development qd is part of a 
circle with center vd and radius R.

Fig. 15.8
Pyramid surface and its unfolding into 
the plane. A polygon q on the pyramid 
whose vertices lie at constant distance 
R from the vertex v corresponds to a 
polygon qd whose vertices lie on the 
circle with center vd and radius R.
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Some examples of cones and their development are shown in Figures 15.10 and 15.11. 
As for cylinders, we construct them with the unfolding command in a modeling 
system. We only make a remark on the oblique circular cone: the intersection curve q 
with a sphere centered at v is not an ellipse but a curve of order 4 (Figure 15.11a).

We also note that such a cone carries two families of circles. Given one base circle in 
a plane P, clearly all intersections with planes parallel to P are also circles. Th e second 
family of circles may be found as follows (Figure 15.11). Pass a sphere through a circle 
k of the fi rst family and intersect it with the cone S. Th e complete intersection curve 
consists of the circle k and another circle l, which defi nes the second family. 
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Fig. 15.11
(a) The intersection curve q of an 
oblique circular cone and a sphere 
centered at the cone vertex v is not an 
ellipse.
(b) An oblique circular cone bounded 
by two circles k and l. These two 
circles lie on a common sphere. The 
fi gure also shows the development 
of the conical part. Both circles do 
not correspond to circles in the 
development.

Fig. 15.10
Right circular cone bounded by a circle 
and an ellipse, and the development of 
this object.

(a)

(b)
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Strips formed by planar quadrilaterals. Approximations of the objects in Figures 15.10 
and 15.11 by pyramids are actually compositions of planar quadrilateral faces pieced 
together to form a strip of planar quadrilaterals. However, the quads in these strips are 
very special because the edges along which they are joined all pass through a vertex v.

Looking at the foregoing prisms, the common edges of the faces are parallel. Now we 
want to investigate the general case of a strip of planar quadrilaterals, which we also call 
a planar quad strip or just a PQ strip (Figure 15.12). Th e two bounding polygons of the 
strip model shall be p1, p2, … and q1, q2, and so on. As edges of the model, we refer to 
the straight line segments p1q1, p2q2, and so on along which the quads are joined.

Consecutive edges are co-planar and therefore intersect at points r1, r2, and so on. 
Th ese points form the vertices of a polygon, which is referred to as a singular polygon of 
the strip model. We may view the singular polygon as a discrete model of a space curve. 
Th e edges of this polygon are the discrete counterparts of the tangents of a space curve. 
Th us, we can say that our model is a discrete version of the set of tangents of a space 
curve (tangent surface of a space curve).

We need to be slightly more careful, however. Our quad strip does not correspond 
to the entire discrete tangent surface but just to a part of it bounded by the polygons 
p and q. Th erefore, if we refi ne the model (see Figure 15.13) we obtain in the limit a 
patch on the tangent surface of a space curve.

PQ strips with a singular polygon are the general form of PQ strips. Strips arising from 
a pyramid have only one singular point (the vertex of the pyramid), and a prism has no 
singular point (it is at infi nity). Th is observation indicates that tangent surfaces of space 
curves will be the most general form of developable surfaces and thus we need to discuss 
them in more detail. Fortunately, the discussion can nicely be based on the strip model. 
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Fig. 15.13
Refi nement of a PQ strip toward a 
patch on the tangent surface of a space 
curve.

Fig. 15.12
Strip of planar quadrilaterals (PQ strip) 
as a discrete model of a developable 
surface. The quads are joined along a 
sequence of edges. Consecutive edges 
are co-planar and therefore intersect 
at points r1, r2, and so on. These points 
form the vertices of the so-called 
singular polygon of the strip model.
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Refi nement of a PQ strip with perturbed subdivision. It is easy to consider the 
refi nement of a PQ strip in theory. In practice, this is not as easy to achieve. Note 
that it is important that the strip retain its property of being formed by planar quads. 
Th is is the subtle part! Liu et al. [2006] have proposed an algorithm that works as 
follows. Given a PQ strip, subdivide it via a familiar algorithm such as Chaikin or 
Lane-Riesenfeld (Chapter 8). Subdividing the strip means application of the rule to 
both bounding polygons and joining of corresponding points. Unfortunately, one 
round of subdivision will destroy the planarity of some faces. Th us, aft er subdivision, 
the algorithm minimally perturbs the vertices of the bounding polygons to achieve 
planarity of the quads. Th en one subdivides again, planarizes, subdivides, and so on. 
Th is amounts to a quite useful modeling tool for developable surfaces (see results in 
Figures 15.14 through 15.16). 

Developable surfaces may appear in various stages of the architectural design process. 
Some architects use strips of paper in the form-fi nding process (Figure 15.17). Others 
prefer developable shapes in the fi nal design (Figure 15.1). 

Fig. 15.15
Developable Möbius band in the shape 
of a trefoil knot, constructed with 
the combination of subdivision and 
planarization explained in Figure 15.14.

Fig. 15.14
Refi nement of a PQ strip (upper 
left) with the cubic Lane-Riesenfeld 
subdivision algorithm, where each 
subdivision step is followed by a 
planarization step. This is necessary 
because pure subdivision would 
destroy planarity of some quads. 
The results after one, two, and three 
rounds of subdivision are shown.
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Fig. 15.17
Strips of paper employed by NOX 
(Rotterdam) in the form-fi nding 
process.

Fig. 15.16
Design studies with developable 
surfaces, generated with the perturbed 
subdivision method from Figure 15.14. 
The top part shows the original PQ 
strips for two of the four strips. It also 
shows the result of subdivision and the 
singular curves for the other two strips. 
The planarization step in the algorithm 
involves a technique that pushes 
the singular polygon away from the 
designed strip.



544

r

Tr

Pr

r
1

r
2

r
3

Mr

Q

Tangent surfaces of space curves. Let Pr be a polygon with vertices r1, r2, r3, and so on 
(Figure 15.18). From this polygon, we obtain a “discrete” (polyhedral) model Mr of a 
developable surface (as described previously). Any two consecutive vertices determine 
the edges r1r2, r2r3, and so on of the model—and any three consecutive vertices defi ne a 
face plane r1r2r3, r2r3r4, and so on of the model.

If we take the complete edge lines and if we use from the face planes exactly the 
double-wedged part between the two edge lines in it, we obtain a polyhedral model 
that contains the polygon Pr as a singular polygon in the following sense: Intersecting 
the surface with a general plane Q, we obtain a polygon that has a sharp turning point 
at the intersection point of Pr and Q. 

If Pr is refi ned and in the limit becomes a smooth curve r, the edges r1r2, r2r3, and so 
on of the model Mr become the tangents of r and thus the model itself in the limit 
becomes the tangent surface Tr of r (Figure 15.19). Th e face planes of Mr become in the 
limit the tangent planes of Tr. As limits of the connecting planes of three consecutive 
polygon vertices, these tangent planes are the osculating planes of r. We see that the 
tangent surface Tr is a special ruled surface because each tangent plane is tangent to the 
surface along an entire ruling and not just in a single point. 

Fig. 15.19
Refi nement of a polyhedral model Mr 

(as in Figure 15.18) yields in the limit 
the tangent surface Tr of a space curve 
r. Tangent surfaces of space curves 
are developable ruled surfaces. Each 
ruling R of the surface Tr is a tangent 
of r at some point p. In each point 
of a ruling R, the surface has the 
same tangent plane. This plane is the 
osculating plane of r at p. The curve 
r is a singular curve on the surface, 
also called its edge of regression or 
regression curve. This is visualized with 
a planar cut, which exhibits a cusp at 
the intersection point with r.

Fig. 15.18
Discrete model Mr of a developable 
surface, defi ned by a polygon Pr. 
A general plane Q intersects this 
polyhedral surface Mr in a polygon, 
which exhibits a sharp turning point 
(like a cusp) at the intersection point of 
Pr and Q. Thus, we call Pr the singular 
polygon on Mr.
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Th e fact that Tr is a developable surface follows from the obvious development of the 
model polyhedron Mr. We can also conclude it from the Gaussian spherical image of 
the surface (Figure 15.20). It is just a curve because all points of the same ruling of 
Tr have the same tangent plane. Th us, they have parallel normals and therefore the 
same Gaussian image point. Because the Gaussian spherical mapping shrinks every 
region on Tr to a curve segment on the unit sphere (which has area zero), the Gaussian 
curvature of the tangent surface of a space curve is zero. 

Fig. 15.20
(a) The Gaussian spherical image of a 
developable surface S is a curve, and 
thus the Gaussian curvature of S is 
zero. This implies that such a surface 
can be mapped (unfolded) into the 
plane without distortions.

(b) A developable surface composed 
of several pieces of developable ruled 
surfaces has as Gaussian image a 
network of curves (bottom right images 
courtesy of A. Sheffer).

cylinder cone tangent surface of a space curve

Gaussian spherical images
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Th ese are all developable surfaces. All three elementary types of developable surfaces 
addressed previously (cylinders, cones, tangent surfaces of space curves) have the 
following common properties: Th ey are special ruled surfaces because a tangent plane 
is always tangent to the surface along an entire ruling and not just in a single point. We 
call such surfaces developable ruled surfaces.

Moreover, the surfaces have vanishing Gaussian curvature because their spherical 
Gaussian image is just a curve. Th erefore, a developable surface contains only parabolic 
surface points or fl at points. It can be shown that the three basic types of developable 
surfaces are all developable surfaces in the following sense: Any developable surface 
is a composition of such developable ruled surfaces (Figure 15.20b). Note that planar 
surfaces are included in any of these three types: as cylinders or cones with a straight 
profi le and as tangent surfaces of planar curves. 

Off sets are also developable. Because all points x on a ruling R of a developable 
surface S have the same tangent plane T (and thus parallel normals), the corresponding 
points xd of an off set surface Sd at distance d lie on a straight line Rd at distance d to 
R (Figure 15.21). Th e tangent plane Td of the off set surface is parallel to T and lies at 
distance d to T.

Th us, the off set surface Sd is also a developable surface. Its rulings and tangent planes 
are at distance d to the corresponding rulings and tangent planes of S. However, 
singular points of corresponding rulings R and Rd are not at constant distance d. We 
do not discuss this in more detail, but just point to the example of a right circular 
cone whose off set is also a right circular cone but for which the distance between the 
vertices depends on the opening angle of the cone.

It should be noted that the off set surfaces of a cone are in general not cones! Only cones 
of revolution (right circular cones) have cones as off sets. Th e proof of this fact follows 
by noting that the tangent planes of the off set surface Sd of a cone S with vertex v must 
touch a sphere with center v and radius d. Th us, if the off set shall be a cone as well it 
must be tangent to that sphere and therefore Sd and S must be cones of revolution.  

Fig. 15.21
The offset surfaces of a developable 
surface are also developable surfaces. 
Corresponding rulings and tangent 
planes lie at constant offset distance.
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Surfaces of constant slope. We encountered surfaces of constant slope in Chapter 12 
(on kinematics), but we want to address them here as well because they are developable 
surfaces. Let’s start by asking the following question: What does a surface S look like if 
all of its tangent planes have a constant inclination angle α (diff erent from zero and a 
right angle) with a fi xed (e.g., vertical) direction?

Immediately, we fi nd a simple example; namely, a cone of revolution with vertical 
axis. But there are many other surfaces with this property. Let’s fi rst have a look at 
their Gaussian spherical image. Because all surface normals of S must have a constant 
inclination angle, their parallels through the origin lie on a cone of revolution with 
vertical axis. Hence, the Gaussian spherical image S* of S is a (small) circle (see Figure 
15.22). Having a curve as Gaussian image, S is a developable surface.

To study these surfaces S, we assume that the intersection curve c with a horizontal plane 
H (e g., the xy-plane of a Cartesian system) as well as the inclination angle α are given. 
Assume that c is a circle with center m. Th en, S must be a cone of revolution whose 
vertex v lies “above” m [i.e., the top view of v is m (Figure 15.23)]. Th e cone can be found 
as an envelope of all planes with inclination angle α that touch the base circle c.
Th ere are actually two such cones symmetric with respect to H. One cone has its vertex 
above H and the other below H. Th e following obvious facts are important for the 
generalizations discussed in material following. In each tangent plane of the cone S, 
the ruling is a line of steepest descent. Th e rulings of S are its curves of steepest descent 
and the circles on S are its curves of constant height (intersections with horizontal 
planes). Lines and circles intersect at right angles. 

Fig. 15.23
The simplest surfaces of constant slope 
are cones of revolution. Their rulings 
are curves of steepest descent. The 
circles are the curves of constant height 
(i.e., the intersections with horizontal 
planes).

Fig. 15.22
The Gaussian spherical image of a 
surface of constant slope lies in a circle.
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Let’s now consider a general smooth curve c in H. Th rough each point p of H we can 
pass two planes of inclination angle α, which touch c at p. To make a consistent unique 
choice, we impose an orientation on c and take that plane T(p) whose part above H has 
a top view to the left  of the oriented tangent of c at p (see Figure 15.24).

If p varies along c, we obtain a family of planes T(p) whose envelope is the desired 
surface S. Results about S can be deduced from the case of a cone as follows. We 
consider the osculating circle k(p) of c at p. Because this circle approximates c very 
well in a neighborhood of p (mathematically speaking, it approximates c up to second 
order), we can expect that the same holds for the corresponding surfaces of constant 
slope. Th e surface of constant slope through the circle k(p) is a cone. Its vertex r(p) lies 
above the center of k(p). Its ruling R(p) through p is a line of steepest descent in the 
tangent plane T(p) (Figure 15.24b). Th us, it also has constant inclination angle.

Because the cone describes the local behavior of S (up to second order), one can fi nd 
the following results. Th e rulings of the surface S have a constant inclination angle α 
and form the curves of steepest descent on S. Th ese rulings are the tangents of a curve 
r of constant slope. Th e intersection curves of S with horizontal planes intersect the 
rulings at a right angle. 

Let’s now look at the situation in the top view (Figure 15.24a). Th e top views of the 
rulings are the normals of c. Th e top views of two curves of constant height are a pair 
of off set curves because they have a common family of normals (top views of the 
rulings R of S). Th us, the top views of the curves of constant height form a family 
of off set curves. Th eir common evolute (Chapters 7 and 10) is the top view of the 
singular curve r of S.

Fig. 15.24
(a) A general surface of constant slope 
is the tangent surface of a curve r of 
constant slope. On S, the ulings a e 
the curves of steepest descent. The 
curves of constant height (intersection 
curves with horizontal planes) intersect 
the rulings at a right angle. The top 
views of these intersection curves 
form a family of offset curves whose 
common evolute is the top view of r.
(b) Along each ruling R(p), S has the 
same curvature behavior as a cone of 
constant slope whose vertex r(p) lies 
on the regression curve r.
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We can easily derive the kinematic construction of these surfaces of constant slope as 
follows (see Chapter 12 and the previous discussion on the development of cylinders). 
Th e singular curve r is a curve of constant slope on some vertical cylinder E. It is 
a geodesic curve (shortest path) on E. Under the development of E, the curve r is 
mapped to a straight line.

To construct the curve r on E, we may roll a tangent plane T along E. During this 
rolling motion, a straight line L in T will generate the tangents of r (i.e., the rulings 
of S). (See Figures 12.23 and 12.24 and recall the applications of surfaces of constant 
slope as shapes of roofs or dams illustrated in Figure 12.25.)

Fig. 15.25
Roof of constant slope, constructed 
through an ellipse c in a horizontal plane. 
The fi gure shows two versions: the usual 
solution, trimmed at the self-intersection 
(part of an ellipse) of the surface, and 
the extension of the surface until the 
singular curve r is reached.

Example: 
Construction of a roof. Figure 15.25 
shows a roof of constant inclination 
angle that passes through an ellipse c 
in a horizontal plane H. It has been 
constructed as a surface of constant 
slope, as discussed previously. Th e surface 
has a self-intersection (which is also part 

of an ellipse). Figure 15.25 also shows 
the extension of the surface beyond this 
self-intersection until the singular curve 
r is reached. Th e singular curve has four 
cusps corresponding to the vertices of 
c. Th ey lie directly above the curvature 
centers of c’s vertic s. 
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Example: 
Helical developable surface. A 
developable surface that is also a helical 
surface must be a helical ruled surface. 
Because it also has to be a tangent 
surface, it is the tangent surface of a 
helix. Figure 15.26 shows diff erent parts 
of such a surface. 

   

helix

Fig. 15.26
Different patches on a developable 
helical surface (tangent surface of a 
helix).
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Developable surfaces through curves. To connect two curves c and d by a 
developable surface, one has to note that the tangent planes of the surface must be 
tangent to both curves c and d. Moreover, the straight lines connecting the points 
of tangency are the rulings of S. Figure 15.27 shows a few solutions to special input 
curves. If one curve is a polygon, the solution surface contains planar segments.

Th e construction of developable surfaces through curves is not as simple as it may 
seem. Th ere may be many solutions, only one or a few of which will be desirable 
solutions. Rose et al. [2007] developed an algorithm for computing those developable 
surfaces through boundary curves which are optimal in the sense of user-specifi ed 
criteria; some results are depicted in Figure 15.27b.

d

c

F  15 27

Fig. 15.27
(a) To construct a developable surface 
S that joins two input curves c and 
d, we have to note that the tangent 
planes of S have to touch both curves 
and that the connecting lines of the 
points of tangency are the rulings of S. 

(b) These objects have been modeled 
with an algorithm by Rose et al. [2007] 
that computes developable surfaces 
through given boundary curves. 
(Images courtesy of A. Sheffer.)

(a) (b)
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Th e development and the inverse operation. Any developable surface can be mapped 
into the plane without stretching or tearing (i.e., by an isometric mapping). Th is distortion-
free mapping into the plane is called development. It is constructed in a CAD system 
with the unfold operation. We have previously discussed the following properties of the 
development. 

• Corresponding curves c and cd on S and the development Sd, respectively, have the 
same length. 

• Corresponding regions R, Rd have the same surface area. 

• Th e intersection angle between two curves c,d on S is the same as the intersection 
angle of the curves cd and dd in the development. 

Figure 15.30 shows the development of a part of a helical developable surface S. Th e surface 
S is the tangent surface of a helix r. Its development is the tangent surface of a planar curve rd. 
Because one can show that the curvature in corresponding points of r and rd is the same and 
because the helix r has constant curvature, rd also has constant curvature. Th us, rd is a circle. 

One can imagine to perform the development in a kinematic way by rolling S over a plane 
P. We may imagine S being covered with fresh paint. Th en the rolling surface will color the 
plane P exactly at the development Sd. Th is is shown for a cylinder in Figure 15.31. 

Fig. 15.28
D-forms are constructed by attaching 
two planar sheets to each other. The 
boundary curves of the planar sheets 
are of the same total length. This fi gure 
shows a few steps in an algorithm by 
M. Kilian that computes a D-form from 
the planar sheets.

Example: 
D-forms. A remarkable example of 
modeling with developable surfaces has 
been proposed by the British designer 
Tony Wills. He takes two planar sheets 
of unstretchable material (such as paper) 
bounded by convex curves c1, c2 of the 
same total length. Th en he attaches 
these two sheets to each other, starting 

at an arbitrary point p1 on c1 and p2 on c2. 
Finally, the two sheets are glued together 
along their common boundaries. 
Computing these shapes is not easy and 
involves some nonlinear optimization 
(Figure 15.28). Some designs by Tony 
Wills are shown in Figure 15.29. 
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Fig. 15.31
The development of a developable 
surface (in the present case, a 
cylinder) can be obtained by rolling S 
over a plane (rolling projection).

Fig. 15.30
Helical developable surface S and its 
development. The development rd of 
the curve of regression r (helix) of S 
turns out to be a circle rd.

Fig. 15.29
D-forms designed by Tony Wills. 
(Images courtesy of T. Wills.)
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Having computed the development, the mapping back to the surface S may also 
be of importance. For example, one may cover Sd by a texture and map the texture 
back to the surface without distortion (Figure 15.32). Especially, we may cover the 
development with parallel lines at constant distance w. Mapping them back to the 
surface, we obtain the curves along which we can roll out sheet metal bands to cover 
the surface. A discussion of geometric strategies for cladding architectural freeform 
designs can be found in Shelden [2002].

Fig. 15.32
(a) Using the inverse development, we 
can map texture onto a developable 
surface without distortion (images 
courtesy of P. Bo and W. Wang).
(b) One can also design the layout of 
sheet metal bands or tiles used for 
covering the surface S.

(b) 

possible layout of sheet metal bands

possible covering by hexagonal patches

(a)
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Developable surfaces related to principal curvature lines. Consider any surface 
S and a curve c on it. Th e surface normals along c form a ruled surface N (called the 
normal surface along c). It can be shown that the ruled surface N is developable if (and 
only if ) c is a principal curvature line of  S (Figure 15.33). Th is means that any tangent 
of c is in principal curvature direction. 

Instead of proving this result, we look at a few special cases. Let S be a surface of 
revolution. Th en, the circles and meridian curves (intersections with planes through 
the axis) are the principal curvature lines on it. In fact, the normal surface along a circle 
of S is a right circular cone (i.e., developable) and the normal surface along a meridian 
curve is contained in a plane (i.e., developable).

We also see that the rulings of a developable surface S are principal curvature lines 
because the normals along a ruling are parallel and thus lie in a plane. Th e second 
family of principal curvature lines on a developable surface S is the curves that 
intersect the rulings at a right angle. For a developable surface S of constant slope this 
second family is given by the curves at constant height.

Th e congruent profi les of a moulding surface S are principal curvature lines. Th is 
follows from the fact that all surface normals at points of a profi le curve lie in the 
profi le’s plane because the surface intersects that plane at a right angle. Th e second 
family of principal curvature lines is the trajectories of the profi le’s motion.

Any curve c on a sphere S may be considered a principal curvature line. In fact, the normal 
surface along c is a cone with vertex at the midpoint of the sphere. Hence, if a sphere S 
touches a surface F along a curve c it follows that F and the sphere have the same normals 
along c and therefore c is a principal curvature line on F. For example, the circles along 
which a canal surface is tangent to its generating spheres are principal curvature lines. 

Given a curve c on a surface S, we may consider the envelope surface of all tangent 
planes of S at points of c. Th is circumscribed developable surface D has a family of 
rulings. If c is a principal curvature line, the rulings of D are orthogonal to c (Figure 
15.34). It is a useful exercise to consider the examples addressed previously and verify 
this property in regard to them. 

   

D

S

c

Fig. 15.34
The developable surface D tangent to 
a given surface S along a curve c has 
rulings orthogonal to c if and only if c is 
a principal curvature line of S.

Fig. 15.33
The ruled surface formed by the 
normals of a surface S along a curve 
c is developable if and only if c is a 
principal curvature line of S.
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Strip models of doubly curved surfaces. Because developable surfaces have a 
number of properties that are attractive for architecture, one may think about the 
approximation of a surface by a union of developable strips. Th is is not as easy as it 
sounds. One may try to prescribe a few curves on a given surface F and connect them 
by developable surfaces. But by doing so one may easily end up in situations in which 
the connecting surface is no longer smooth.

We therefore propose to use a few curves on F that are close to principal curvature 
lines. Th en, the chance of becoming trapped in singular situations is reduced because 
rulings of these strips should be approximately orthogonal to their boundary curves 
(Figure 15.34). Th is follows from the previous discussion because the strips then 
approximate a tangent developable surface D. (See Figure 15.35.)

A simple special case where this becomes obvious is that of a rotational surface F. Its 
principal curvature lines are its circles and meridian curves. Strips bounded by circles 
lie on cones of revolution. Strips bounded by meridian curves lie on cylinder surfaces 
(Figure 15.36). Fig. 15.35

Approximation of a surface F by a union 
of developable strips.
(a) A zigzag model and 
(b) a model that approximates a 
smooth surface very well. Here, the 
developable strips follow the principal 
curvature lines of an underlying smooth 
surface. (Images courtesy of Yang Liu.)

Fig. 15.36
Two very simple strip models of a 
rotational surface F with 
(left) strips of right circular cones and
(right) strips of cylinder surfaces.
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In Figure 15.37, we have put together some strip models of other traditional surface 
classes. A strip model of a translational surface can be generated by joining a sequence 
of profi les. Consecutive profi le curves are related by a translation, and actually the 
translation vectors defi ne the connecting strip on a cylinder surface. Th us, we obtain a 
model formed by cylinder surface strips.

Let’s consider a sequence of congruent spheres. We circumscribe a tangent cylinder 
to consecutive spheres. Th en, consecutive cylinders intersect in an ellipse (actually 
two ellipses, but only one is needed) and in this way we obtain a strip model of a pipe 
surface (Figure 15.37 b) formed by cylindrical strips.

We can proceed in an analogous way to obtain a model of a canal surface (Figure 
15.37c), but there we start with spheres of diff erent radii and use circumscribed 
rotational cones. Consecutive cones intersect in an ellipse. Th is is not obvious but is a 
special case of a result regarding degenerate intersections of quadrics (Chapter 7).

Fig. 15.37
For some traditional surface classes, it 
is very easy to derive strip models. 
(a) A translational surface can be 
represented by a strip model consisting 
of cylinder strips. 
(b) A pipe surface may be modeled 
by rotational cylinders tangent to a 
sequence of congruent spheres. If 
theses spheres do not have the same 
radius, we obtain 
(c) a model of a canal surface
formed by pieces of right circular 
cones. The junction curves of the strips 
in cases b and c are ellipses.

   Kapitel 15 Figur 37

 

   

(c) 

canal surface

(b) 

pipe surface

(a) 

translational surface
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Strips of paper. Given a planar rectangular strip of paper, we can make a developable 
surface strip S from it. Th ese strips are special in the sense that the development of the 
boundary curves c1, c2 are (parallel) straight lines c1

d and c2
d (Figure 15.38). In addition, 

the middle curve m is mapped to a line md; namely, the equidistant line of c1
d and c2

d. 
Hence, the curves c1, c2, and m are shortest paths on the strip surface. If two points 
a and b on m are given, the shortest path on S that joins a and b follows along m. As 
stated previously, we call such shortest paths on a surface its geodesics. 

If the central curve m of a strip of paper is given (Figure 15.39), the strip lies on 
the rectifying developable surface R. It is formed by the rectifying planes of m. Th e 
rectifying plane of a curve m at a point p passes through the tangent of m at p and 
is normal to the osculating plane of m at p. We could also formulate the result as 
follows: Th e osculating planes of m are normal to the surface R. A system for modeling 
developable surfaces as rectifying developable surfaces of curves has been developed by 
Bo and Wang [2007]. 

Fig. 15.39
Strip of paper constructed from its 
central curve m. The developable strip 
surface is the envelope of the rectifying 
planes of m. These planes pass through 
the tangents of m and are orthogonal 
to m’s osculating planes. (Image 
courtesy of P. Bo and W. Wang.)

Fig. 15.38
Strip of paper and its development. 
Middle curve m and boundary curves 
are geodesics (shortest paths) on the 
developable strip surface S. (Image 
courtesy of P. Bo and W. Wang.)
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a shortest path on a polyhedron

crosses an edge at equal angles

x g

S

The osculating plane of the geodesic g in a point x

contains the surface normal of the surface S.

Shortest paths on polyhedra and on smooth surfaces. Let’s look at a shortest path 
on a polyhedron. Clearly, the path is a polygon because it must be straight on each 
face. We now investigate the crossing of an edge of the polyhedron. To understand 
this, we use an unfolding into the plane. In view of the straight unfolding, the shortest 
path crosses the edge of the polyhedron at equal intersection angles (see Figure 
15.40a).

Th is fact can be used to construct shortest paths on polyhedra. A more careful 
investigation of the geometry at the crossing point x and refi nement of the polyhedron 
to a smooth surface S yields the following property of a geodesic (shortest path) g on 
a surface S: At each point of a geodesic g, the osculating plane of g is normal to S (i.e., the 
osculating plane contains the surface normal). (See Figure 15.40b).

Fig. 15.40
(a) A shortest path on a polyhedron 
crosses an edge at equal angles. 
(b) At each point x of a shortest 
path g (geodesic) on a surface S the 
osculating plane of g contains the 
surface normal.

(b) 

(a)



   

   

   

Geodesics may serve for a natural segmentation of surfaces into patches. A straight 
strip of paper laid over a smooth surface will follow a geodesic on the surface (Figure 
15.41), which has implications on strategies for cladding and panelization of surfaces 
(see Spuybroek [2004]). J. Natterer used geodesics on surfaces for the beam layout in 
his wooden “polydome” constructions (see Figure 15.42 and Herzog et al. [2004]). 

Fig. 15.42
Polydome by J. Natterer. The wooden 
beams follow geodesics on a smooth 
underlying surface (image courtesy of 
Jan Debertshäuser).

Fig. 15.41
Strips of paper glued onto a surface 
follow the shape of geodesics on the 
surface. This technique is useful for the 
layout of panels on a double-curved 
surface.
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Any surface may be approximated well (in fact, up to any desired accuracy) 
by a polyhedron (i.e., a surface with planar faces). CAD systems support this 
approximation to some extent. Th ey also allow us to unfold a polyhedron. In an 
unfolding, the planar faces are shown in their actual size and shape. Any face of the 
unfolding is congruent to a face of the polyhedron.

So why is it then not possible to unfold an arbitrary surface in this way? Th e answer 
is obtained by looking at an example, as shown in Figure 15.43. Th e unfolding of 
a polyhedron yields a planar domain with numerous gaps. Th e more we refi ne the 
polyhedron the more gaps we introduce in the unfolding. Th erefore, to unfold an 
approximating polyhedron of a surface is not a proper solution for the construction of 
a development. 

Unfolding a Polyhedron

K    

Fig. 15.43
Unfolding a polyhedron introduces a 
gap at each elliptic vertex. Because the 
sum of angles at such a vertex is less 
than 360 degrees, the unfolding of the 
star around an elliptic vertex remains 
connected. 

   

unfold



562

   

In a development, we do not want to have these gaps! Note that the special polyhedral 
models of developable surfaces discussed previously do not create such gaps.

It is good to carefully think about the unfolding of a polyhedron; namely, about our 
chances of obtaining a connected unfolding. Th ese chances may be quite limited, as 
the following discussion shows. Assume we have an elliptic vertex of a polyhedron 
(Figure 15.43). Recall from Chapter 3 that this is a vertex v where the sum of angles 
between consecutive edges (when we march around the vertex) is less than a full angle 
(360 degrees). To unfold the “star” of faces around v, we need to introduce at least one 
cut. Th is yields a gap in the development. 

Th e situation is much worse if the vertex v is hyperbolic (i.e., if the sum of angles 
exceeds 360 degrees). If we would like to have an unfolding without overlaps, we need 
to introduce at least two cuts. Th is yields a separation of the development of the star 
around v into two pieces.

   

unfold

Fig. 15.44
Unfolding a polyhedron at a hyperbolic 
vertex causes problems. Because 
the sum of angles at such a vertex v 
exceeds 360 degrees, an overlapping 
free unfolding of the star around v 
consists of at least two separate pieces. 
Thus, an overlapping free unfolding 
of a polyhedron that approximates a 
surface with hyperbolic regions may 
be the union of a large number of 
separate pieces.
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Elliptic and hyperbolic vertices of a polyhedron are counterparts of elliptic 
and hyperbolic points of a smooth surface. Th erefore, if a polyhedron is a good 
approximation of a smooth surface that contains hyperbolic regions (regions with 
negative Gaussian curvature) there is no chance to obtain a connected unfolding 
without overlaps.

Avoiding overlaps will cause a decomposition of the unfolding into a potentially large 
number of pieces (see Figure 15.44). Aesthetically more pleasing models than those 
arising through a straightforward use of unfolding operations in CAD systems may be 
obtained aft er a careful geometric study of the shapes (Figure 15.45).

Whereas special surfaces may nicely be represented by strip models or unfoldings of 
polyhedral approximations, we have also encountered some limits and diffi  culties in 
the use of these model building techniques. Fortunately, modern technology provides 
further solutions to this problem—such as rapid prototyping and CNC machining. 
Th is is discussed in the following chapter. 

Fig. 15.45
The fabrication of paper models of 
double-curved surfaces poses great 
challenges to the designer. These 
examples are student projects from 
model building classes at TU Wien. 
(Images courtesy of A. Aigner.)





565

Aumann G. A simple algorithm for designing developable Bezier surfaces. Computer 
Aided Geometric Design 2003;20:601–19.

Bo P-B, Wang W. Geodesic-controlled developable surfaces for modeling paper 
bending. Computer Graphics Forum 2007;26 (in press).

Frey WH. Modeling buckled developable surfaces by triangulation. Computer-Aided 
Design 2004;36:299–313.

Herzog T, Natterer J, Schweitzer R. Wood Construction Manual. Basel: Birkhäuser 
2004.

Liu Y, Pottmann H, Wallner J, Yang Y, Wang W. Geometric modeling with conical 
meshes and developable surfaces. ACM Transactions on Graphics 2006;25:681–89.

Rose K, Sheff er A, Wither J, Cani M-P, Th ibert B. Developable surfaces from arbitrary 
sketched boundaries. Proceedings of the Symposium on Geometry Processing 2007 (in 
press). 

Shelden D. Digital surface representation and the constructibility of Gehry’s 
architecture. PhD thesis, MIT, 2002. 

Spuybroek L. NOX: Machining Architecture. London: Th ames & Hudson 2004. 

References and Further Reading





Chapter 16
Digital Prototyping 
and Fabrication





569

Model Making and 
Architecture

An architectural model is an integral part of most architectural design developments. 
Models play a role both in the development of a design and in the representation of 
the fi nal design at diff erent scales. Digital fabrication is used in close relationship 
with digital modeling. In this chapter, we assume we are working with digital data to 
produce a physical model. In the next chapter we study the inverse.

With freeform geometry, digital fabrication and rapid prototyping become especially 
important because producing a precise physical artifact from the digital data is much 
more diffi  cult than with rectangular geometries. Th is has to do with the use of tools 
and ways of registering and measuring parts. Registering a quadrangular planar surface 
in space requires only four points, whereas a freeform surface may need hundreds of 
sample points to recreate it precisely.

For a manual process, this is not feasible in a reasonable amount of time and 
reproducible manner. In general, one distinguishes between rapid prototyping (in 
which digital techniques are used for quickly creating functioning prototypes of an 
idea) and digital fabrication and digital manufacturing (in which digital techniques 
are used to manufacture the fi nal product at full scale).

Th e digitally supported techniques can be divided into computer numerically 
controlled (CNC) machining (in which material is removed from a block of material 
with tools to achieve the desired result) and the additive techniques—such as fuse 
deposition modeling (FDM)—which rely on adding material to build up the target 
geometry. When discussing model making, one also has to discuss scale.



In the Renaissance, Michelangelo had an enormous 5 meter high wooden section 
model built of the new design for St. Peter’s dome during the design phase as a way of 
studying the design and testing the construction geometries. With a model of such 
size, it was assembled of many parts—all craft ed individually by hand and assembled 
(Figure 16.1). Th e scale of a model is the main driver for the level of abstraction of a 
model all the way to a 1:1 implementation. Th e same design geometry can support the 
development of mockups at all scales (Figure 16.2). 

History:

Th e roots of digital fabrication go back to the 1950s, when 

the invention of numerically controlled machines created 

the demand for more sophisticated ways of driving these 

machines than manual punching in of numbers. Th e fi rst 

attempts at translating form into numerical output for such 

machines was based on tracing physical drawings to digitize 

the information. It quickly became clear that a mathematical 

way of describing geometry was needed to make any real 

progress. Th e invention of mathematical freeform curves 

and surfaces (e.g., Bezier curves), discussed in earlier 

chapters, made it possible to make more effi  cient use of the 

numerically controlled machines for both model building 

and fabrication. It still took the past decades for those 

processes to make it into the mainstream of architecture. 

Model building is beginning to be dominated by digitally 

produced componentry (with prices of machines and output 

declining gradually), and full-scale architecture increasingly 

relies on digital fabrication for complex geometries.

Fig. 16.1 
A 5 meter tall wooden model of 
St. Peter’s dome in Rome is an early 
stunning example of an architectural 
model and demonstrates the role of 
the model both as a representation of a 
design idea and as a prototype testing 
the construction of the full-scale building. 
Commissioned by Michelangelo (1475–
1564), the study model for the Dome 
of St. Peter’s was created from 1558 to 
1561 in wood. (Image Fabbrica di San 
Pietro of the Vatican, Rome)
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With digital fabrication processes, the boundary between model making and full-scale 
building blurs even further, as the same information used in model making may be 
used for fabricating the fi nal building. In most cases, architectural parts at full scale 
far exceed the part envelope of any fabrication equipment—which makes subdivision 
of geometry for fabrication and the subsequent assembly of the parts a key step of the 
process (Figure 16.2e). Th is is adding additional geometric and procedural challenges 
of decomposition and assembly. In this chapter, we will discuss the benefi ts and 
drawbacks of the various techniques and methods mentioned. 

Fig. 16.2 
The relationship between scale and 
geometry in architectural models 
is defi ned by the chosen level of 
abstraction. There are different forms 
of abstractions in design. A schematic 
example shows different levels of 
abstraction of a design geometry. The 
same underlying geometry can be 
used to generate different levels of 
detail from a massing model (a), shape 
model (b), fl oor model (c), panelization 
model (d), and a full scale detailed 
facade model (e). 
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From an architectural design point of view, the fabrication technique and the choice of 
material play a crucial role in the design process and in the aesthetics of the fi nal product. 
Th e choice of a fabrication technique can lead to a particular aesthetic due to the 
geometric translation necessary to produce its parts. Th e geometric translation can have a 
big infl uence on design development (Figure 16.3). Th e translation of a design idea into 
fabrication processes can be a complex process.

Th e choice of a fabrication approach also aff ects the representation of the design, and 
each approach requires a slightly diff erent process of abstraction of the core design idea. 
It poses particular challenges to the understanding of geometry, as the solutions must 
be valid for the production of a rendered image and robust enough to derive fabrication 
information from it that allows the geometry to be built using CNC machines.

We can distinguish three cases: representation models that abstract the design 
geometrically based on the scale of the model, mockups that are built to test physical 
implementation of parts of the overall design using actual material at full or close to 
full scale, and digital fabrication in which an entire building is manufactured using 
CNC techniques at full scale. All share similar geometric techniques and machinery 
but aim at diff erent goals and are evaluated diff erently.

Fig. 16.3 
(a) The design geometry of a model 
can be interpreted differently using 
its geometric properties. A thin-shell 
solid model of a surface creates a 
very different reading compared to an 
isocurve-based strip model or from 
a horizontal planar slice model. Each 
geometric abstraction emphasizes 
different features of the generating 
geometry.
(b) The orientation of the geometric 
features emphasizes different aspects 
of shape. In this case, a double curved 
surface is approximated with single-
curvature developable strips following 
the U and V isocurves.

(a)

(b)



A special case of models not discussed in detail here is the process sketch model,  oft en 
employed at the beginning of the design process to help formulate the initial ideas. In 
the following sections we present these three main categories (presentation models, 
papid prototyping models, and digital fabrication and assembly of parts) as they relate 
to architecture. 

Representation models. Architecture has a long history of model building for 
representation purposes. Th e scaled models emphasize representing an idea of a 
project, as well as the project’s proportions and overall context at diff erent scales. 
Models have also traditionally served as test beds for building complex buildings and 
as references for all participants in the process of building. Due to the large size of 
architecture, representation models are usually built at small scales. Th is reduces the 
amount of detail that can be shown.

Abstraction of detail and material therefore play a major role in architectural model 
building. Th e choice of abstraction is informed by the most important aspect to be 
represented in the model. Geometric properties of materials can be more important 
in the context of geometric model building than realistic appearance. For instance, 
cardboard is frequently used for modeling developable surfaces in scale models due to its 
ease of use and suitability in modeling developable surfaces.

Materials used in models may also be chosen more for what they represent conceptually 
than as a representation of the fi nal material choice. Th ree-dimensional printers off er the 
precision and intricacy of detail useful for depicting architectural representation models 
(Figure 16.4). Interestingly, for a small-scale model to be printable the geometry has to be 
changed and thickened to fi t the machine printing constraints.

Fig. 16.4 
Three-dimensional printers can create 
spatially complex small-scale models 
from one monolithic block of material. 
Most such models are representational, 
but with proper treatment they can be 
more durable prototypes. As purely 
representational models they help 
little in understanding the construction 
processes. (Image Axel Kilian, script 
generated space truss).



Fig. 16.5 
The architecture offi ce Morphosis 
makes extensive use of three-
dimensional printing in the design 
process both for representational 
models and for design development. 
(a) The Phare tower project in la 
defense (Paris) (Image Unibail-
Morphosis) 
(b) a 1:500 model of the Phare tower 
with much less detail then 
(c) a large-scale 1:200 representation 
model (1:500 model photo John 
Carpenter, 1:200 model photo Nicolas 
Buisson, Morphosis)

(a)

(b)
(c)



575

Th erefore, even a technique that is not limited by the types of geometries it can 
produce requires substantial scale-dependent adjustments of the geometry. Th e 
architectural practice Morphosis in Los Angeles has extensive experience in using 
three-dimensional printing at all steps in the design process and work with adapting 
models to diff erent scales for design development and printing (Figure 16.5). Other 
much larger practices, such as Foster and Partner, also have adopted the technique 
more  recently on an offi  ce-wide scale.

Rapid prototyping. Th e term rapid prototyping represents the next level of using 
CNC machines. Here, the models have to fulfi ll higher standards of physical 
robustness and tolerances. A rapid prototype is a partially or fully functional 
prototype at full scale produced using CNC machines. It is largely used in mechanical 
engineering and product design to evaluate and visualize complicated geometries. 
In architecture, these techniques are used for detail design of such things as facade 
joints. But increasingly these techniques also make it into the production of full scale 
component production such as in the case of ZipShape by the designtoproduction 
GmbH (Figure 16.6).

Fig. 16.6 
The projects by designtoproduction 
show the power of an intelligent 
approach to fabrication that is 
design coherent. ZIP-Shape is a 
product that creates single-curvature 
curved sheets from two zipper like 
interlocking, custom milled sheets. 
(Image: designtoproduction, Concept: 
designtoproduction GmbH, CNC-
Production: Bach Heiden AG, patent 
pending)
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Rapid manufacturing is an extension of rapid prototyping in which the parts produced 
with CNC tools are directly usable as fully functional parts that obviate the need for 
mass production. Th ere are only very few examples of rapid manufacturing, as digital 
fabrication techniques are still too limited in part size, production speed, and cost. 
Architecture is a special case because most buildings are a one-of-a-kind structure.

One could claim that each built structure is its own prototype compared to other 
industries. With freeform geometries, this gets even more challenging because even 
the parts of the building are non repetitive and require custom manufacturing. Th is 
becomes more common in architecture with many examples of CNC machined 
nodes for freeform facades with each part produced directly from CAD data. An 
experimental example of machined structure is the Swissbau Pavillion developed by the 
caad.designtoproduction team at the ETH Zurich (Figure 16.7), and the futurepolis 
installation by Studio Daniel Libeskind at the university St.Gallen (Figure 16.8).

Fig. 16.8 
Libeskind’s Futuropolis is a complex 
sculpture for the University of St. 
Gallen (HSG), designed by Studio 
Daniel Libeskind and made up of 
thousands of parts that interlock 
precisely using a detail developed 
for use with fi ve-axis mills. (Image: 
caad.designtoproduction, Geometry 
Consulting and Engineering: ETH 
Zürich, caad.designtoproduction, CNC-
Production: Bach Heiden AG)

Fig. 16.7 
The fi rm designtoproduction has been 
involved in a number of projects 
using algorithmically generated and 
managed designs directly used to 
generate fabrication information 
for CNC machines. The Swissbau 
Pavilion sphere is an algorithmically 
generated geometry with a web of 
beams generated in response to 
opening constraints (as well as the 
cutting geometry) and directly output 
to a fi ve-axis mill. (Image Contec AG, 
Geometry Consulting and Engineering: 
ETH Zürich, caad.designtoproduction, 
CNC-Production: Bach Heiden AG)



Digital fabrication and assembly. Fabrication of the parts is only one step of 
production. In architecture, due to the size of buildings the assembly of manufactured 
parts plays a major role. In comparison to car manufacturing, which makes use of 
controlled environments for assembly, architecture is largely constructed on site and 
is subject to weather and other unpredictable conditions. Laser range fi nders aid the 
precise positioning of parts with regard to a digital model, even in adverse conditions 
and within the scope of large tolerances.

Th e Stata Center by Frank Gehry is a good example of the combination of digital 
fabrication of parts. In this case, the freeform facade panels were produced in the 
Zahner factory in Kansas City and then trucked to the site. Th e assembly onsite was 
guided by site coordinate points measured using laser range fi nders with a locally 
established coordinate system.

Using adjustable fi xtures, it was possible to achieve a high degree of precision in the 
placement of the prefabricated panel system even though the concrete structure was 
relatively inaccurate. Both the data for the digital fabrication of the panel systems 
and the positioning data onsite were derived from one central CATIA master model 
provided by the architects (Figure 16.9).

Fig. 16.9 
Digitally assisted assembly of
prefabricated facade elements onsite
using three-dimensional data points
directly from a digital master model.
This way, the differences between
offsite and onsite constructs caused
by construction tolerances can be
accommodated. (Image courtesy of 
Peter Schmitt)
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More experimental is the use of robots in the assembly of parts. For instance, bricks 
were placed into exactly predefi ned positions by a robotic arm in a project by Fabio 
Gramazio and Matthias Kohler at the ETH, Zürich (Figure 16.10). To shift  the CNC 
control from the production of parts to the assembly off ers interesting new usage 
scenarios for traditional materials. Contour craft ing by Dr. Behrokh Khoshnevis is an 
example of the combination of concrete and CNC techniques. Concrete is placed in 
viscous form layer by layer to build up concrete walls without the use of form work 
(Figure 16.11).

Fig. 16.11 
Contour crafting is a technique using 
concrete in combination with digitally 
guided deposition nozzles to build 
three-dimensional concrete structures 
at full scale without additional 
scaffolding. Contour crafting was 
developed by Dr. Behrokh Khoshnevis 
of the University of Southern California.

Fig. 16.10 
Robotic assembly of standard parts. 
Gramazio & Kohler from the ETH 
(Zurich, Switzerland) developed the 
use of a robotic arm for algorithmically 
generated brick assemblies at 1:1 scale. 
The beauty of the approach is within 
the generation of a novel programmed 
brick pattern from standard parts using 
algorithmic processes. (Image courtesy 
of Gramazio & Kohler, Architecture and 
Digital Fabrication, ETH, Zurich)
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Fabrication Techniques
Overview. Th ere are a number of fabrication techniques used in digital fabrication 
today. Th ey can be grouped roughly by the governing principles of processes used. In 
part, the processes are based on the form of the material being worked on (e.g., fl at 
sheet materials versus volumetric blocks). Another criterion is whether material is 
added to or subtracted from shape the design.

From the perspective of geometry, another aspect is of interest. Th ere are processes 
in which the model geometry is pixelated into volumetric units and then assembled 
from scratch. Other processes are based on geometric features of the design being 
turned into spatial paths that are followed by arms with high degrees of freedom. 
Th ese diff erent approaches all aff ect the aesthetics and quality of the products, as well 
as the time it takes to produce them. For full-scale buildings, there are only very few 
experimental holistic fabrication approaches.

Most fabrication processes in architecture rely on assembly of parts that are fabricated 
separately. Th e machines used for CNC fabrication can be defi ned by the number of 
degrees of freedom. A degree of freedom (DOF) is a geometric defi nition of freedom 
of movement either along an axis in space or rotation about an axis in space. In three-
dimensional space, there are six degrees of freedom: three degrees for movement in 
the x, y, and z directions and three degrees for rotation about the x, y, and z axes. 
Th erefore, we would need a machine with only three degrees of freedom to reach any 
coordinate point in space. However, we would need a machine with six degrees of 
freedom to also orient a tool in any direction at any point in space.

Most CNC machines have far less DOF, as the higher the numbers the higher the 
cost and complexity of control. In addition, tolerances of moving parts accumulate—
leading to lower-precision machining if parts of the same quality are to be used. Th e 
simplest machine in terms of DOF is a drill press with one axis of movement in the z 
axis. Although tremendously useful, one axis gives us too little fl exibility to describe 
geometry in space.
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Th e use of two DOF cutters is common—with laser cutters, waterjet cutters, and 
routers all using movement in the x and y axes to move the tool head in space. Refer to 
the diagrams shown in Figure 16.12 for a more complete set of machining approaches 
and their respective geometries and DOF. Each implementation has its limitations 
due to the physical constraints of a mechanical solution. Th e area reachable with the 
full set of degrees of freedom is referred to in motion studies and robotics as the reach 
envelope.

In model building, however, there are additional constraints. For instance, a three-
axis three-dimensional powder-based printer can create any form using an additive 
process—even nested fully enclosed shapes. A much more complex six-DOF robotic 
milling arm would not be able to do so due to collisions with the model itself if it 
were to remove material from the innermost part. Th erefore, the DOF is not the only 
criterion determining the power of a fabrication approach. It is a combination of 
fabrication technique and geometric DOF that enables us to build abstract geometry 
in physical form. In the following section we look at diff erent techniques in fabrication 
and their geometric implications.

Fig. 16.12 
Overview diagrams of the relationship 
of the degrees of freedom (DOF) and 
different fabrication machines. The 
different colors depict the various 
axes either as axes of movement or 
rotational degrees of freedom. 



581

Sheet-based cutting techniques. Sheet-based two-dimensional cutting processes are 
among the simplest CNC fabrication processes other than drilling holes. Simple models 
can be built by stacking sections panels to build up the model (Figure 16.13 a). Th ey are 
fast and reliable and use material that is cheap and available in large quantities. Sheet-
based processes also match the nature of many geometric surface-based representations.

Faceted models can be built using triangles or fl at polygonal shapes cut from sheets 
(Figure 16.13 b), and even single-curvature developable forms can be build using parts 
produced with sheet cutting techniques (Figure 16.13 f ). Especially for full-scale 
fabrication of buildings, the economy of a process and material cost play an important 
role. Working with sheet based materials is relatively standard practice. Also designers are 
familiar with faceting processes and can integrate them easier into existing workfl ows. 
Th is is changing slowly in favor of three-dimensional printing, but for now sheet-based 
techniques still play a major role in the creation of representational models.

Cutting-Based 
Processes

Fig. 16.13 
(a) A simple diagram of using planar 
sheet cut to fi t the sections to build up 
a freeform geometry. Depending on the 
sheet thickness and the alignment of the 
sheets to the geometry, the resolution of 
the model varies. 
(b) faceting a shape is another standard 
option 
(c) thickening the panels requires an 
offset strategy 
(d) or miters joints 
(e) Giving a freeform panel based 
geometry material thickness creates 
a geometric challenges because the 
topology of the offset mesh is not 
guaranteed to be the same as the 
original mesh. In the case shown, the 
equal offset of all panels creates an H-
type intersection instead of the X type 
of the original mesh. This is caused by 
the different angles of the facets to one 
other causing their surfaces to no longer 
coincide in a single point (visible in the 
red wedge in the center). 
(f) Using single-curvature developable 
sheets instead of planar facets allows 
for a closer match with curved design 
geometries while using planar cutting 
geometries.

(a) (b)

(c)

(d)

(e)

(f)
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Laser cutters and plasma cutters. Laser cutters are among the most widespread rapid 
prototyping machines. Th ey are based on the usual x,y axis movement of a cutting 
head equipped with a set of mirrors that directs a laser beam from the back section of 
the machine vertically down onto the cutting material. Th e heat of the beam burns the 
material, leaving a cutting path or scoring mark in the sheet material varying by the 
thickness of the material and the power of the beam.

Like cutting, some limited relief is possible using subsequent passes on top of each 
other to remove layers of material. But the depth is limited due to the focus range of 
the lens bundling the laser beam. Similar machines exist in the steel industry with 
higher-powered lasers to cut metals. For plate steel, the laser is replaced with a plasma 
cutter that can cut through several inches of steel. Low-cost plasma cutters make this a 
relatively aff ordable fabrication technique.

Waterjet cutter. Waterjet cutters work with ballistic machining using a high-pressure 
water stream ejected through a very small nozzle and added abrasive material to blast 
through virtually any material—including several inches of steel, wood, plastic, or 
glass. Th e cutting happens with the part submerged under water to prevent excessive 
spray. Th e process is relatively expensive due to the abrasive material needed for cutting 
and the heavy machinery used. OMAX is one of the manufacturers of waterjet cutters 
(Figure 16.14).

Sheet cutter. Th e simplest cutting technique is using cutting blades on paper or thin 
foils. Th is technique is largely used for signage or simple paper cuts. Experimental use 
includes the cutting of fl exible circuits out of thin copper sheets. Some large-format 
plotters have paper cutters integrated.

Fig. 16.14 
(a) Cutting process using a waterjet 
cutter. The ballistic machining principle 
removes material by shooting a high-
pressure waterjet together with abrasive 
sand onto the cutting material. Waterjet 
cutters require additional geometric 
processing of the cutting path to 
calculate path offsets to compensate for 
loss of material and to accommodate 
entry and exit points to pierce the 
material initially. These processes are 
automated in most driver software. 
(b) A design prototyped in Aluminum 
using a waterjet cutter (Image and 
design Axel Kilian, Concept car design 
with Smart Cities Group, MIT Media Lab)



Th e layered manufacturing techniques off er a wide range of materials and processes. 
Th ey are in principle similar to traditional craft  lay-up processes (e.g., in pottery 
making). A shape is built up by successive stacking of layers of material, with each 
layer resting on the previous one. Th is stacking principle highlights one of the main 
challenges of the layer-based techniques.

Because each layer’s weight has to be supported by the previous layer and share at least 
a part of the same footprint in order to transfer this load from one layer to the next, 
not all freeform shapes can be fabricated this way without additional processes in 
place. Th ere are several techniques that involve support material. Others print within a 
volume of material or liquid (which is removed upon completion). 

One major limitation of layer-based techniques is the lack of fl exibility in adjusting 
the layering resolution direction locally with respect to the geometry of the part. Most 
techniques have some degree of stratifi cation along the built-up layers, which can 
aff ect the strength and appearance of the parts.

Additive Processes: 
Layered Fabrication 
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Fuse deposition modeling (FDM). In FDM, strands of abs plastic are heated to 
just above melting temperature and passed through a nozzle and deposited in rings 
following the section of the part onto a previously placed strand. Due to the heat, a 
successive strand bonds with the strand from the previous pass (Figure 16.15). Th e 
mechanical head is moved in the x and y axes during the building of a layer, and the 
support platform is moved in the z axis to advance to the next layer—giving the 
machine three DOF.

Abs plastic printers use support material to get around the problem of protruding 
parts. Support material is dispensable material (usually of lesser quality) added to the 
main structure—in parallel with the build material—in support of protruding parts 
that occur in subsequent phase fo the building process. Th is way, the protruding part 
can be built resting on the support material column and is not subject to deformation 
or failure.

Th e support material is usually created in a less solid, brittle nature to facilitate later 
removal without damage to the main model. Other techniques are based on soluble 
material that can be removed in a water bath using ultrasonic sound to aid the process. 
Th e process is generally robust, off ers a relatively aff ordable way of producing abs 
plastic-based models that reach about 80% of the strength of injection-molded parts, 
and can be used for functional prototypes with mechanical properties. Th e biggest 
setback is the high cost of the machines and the long printing time.

Fig. 16.15 
(a) Additive processes such as fuse 
deposition modeling (FDM) create ABS-
strength plastic constructs built directly 
from digital geometric data in a layered 
process using plastic string material. 
To build the forms shown here, support 
material (later removed) is required to 
hold the overhanging pieces. 
(b) A sculptural piece by Carlo H. 
Séquin showing the use of FDM to build 
intricate nested geometries generated 
by a mathematical expression. Such 
structures would otherwise be very 
diffi cult to build (Image Carlo H. 
Séquin)
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Powder-based processes. Other processes use plaster-like powders, such as Zcorp 
(Figure 16.16). Th e powder allows for a more homogenous, reduced texture fi nish 
compared to the plastic strand ripples from the FDM process. Th e fi ne powder is 
solidifi ed using a liquid binder to wet the areas of the powder that are to become solid, 
leaving the remaining powder as support. Th e use of inkjet printer heads for the binder 
fl uid allows for colored prints as well.

Th e process uses two parallel powder columns, with a piston in each adjusting the 
depth of the powder. One compartment contains the powder to be used, and the 
other the fi nished model embedded in the excess powder. At the beginning, the piston 
supporting the model is moved to the top and the model compartment is empty. With 
each move of the print head a rake scoops some powder from the top of the powder 
compartment and drags it over the model compartment, depositing a thin layer of 
powder on it.

Th is layer is the print layer. On the way back the print head prints the cross section of 
the model at this height into the powder and then returns to the powder compartment 
to start over again. With each cycle of the print head, the powder piston moves up 
to provide the next level of powder and the model piston moves down a bit to make 
room for the next model layer.

Fig. 16.16 
(a) A ZCorp three dimensional printer 
with automated powder loading and 
recycling.(Image courtesy of Zcorp) 
(b) Powder-based additive processes 
work with a plaster-like substance to 
build up the model. This makes the 
use of additional support material 
unnecessary because the piece is 
embedded and supported by the 
unused powder surrounding it. Similar 
geometries are possible, but a wider 
range of surface treatments is available 
to give the fi nished piece different 
properties. Another computationally 
generated sculpture by Carlo H. 
Séquin, printed using a powder-based 
process. (Image Carlos H. Séquin)
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At the end of the process, the model is embedded in powder in the model 
compartment. It is removed and excess powder is dusted off , revealing the fi nal model. 
Plaster-based models are fragile and require post-processing in the form of wax or 
epoxy infusion to harden the outer layer of the material for strength.

Stereolithography. Some of the earliest three-dimensional printing is the sintering-
based Stereolithography (Figure 16.17). Here, a bath of material in liquid form is 
selectively cured using a laser beam inscribing the cross section onto the surface of 
the liquid. A submerged platform supports the cured part and with each step retracts 
further below the surface, keeping the growing model always just below the surface 
for the next layer to be added. Th is process produces some of the most detailed and 
highest-resolution models but it is also very slow and expensive.

Fig. 16.17 
Stereolithography is one of the 
earliest three-dimensional printing 
processes. It uses a bath of a liquid 
material. A laser hardens the liquid 
section by section. The emerging piece 
is supported by a platform that is 
lowered into the liquid with each pass. 
This process produces very detailed 
models. (Image 3D system printer)



Subtractive Techniques
Machining models. Subtractive techniques create geometric models by removing 
material from a solid block or sheet. Layers of material are removed until the target 
surface is reached. Th is technique has the advantage that a large range of machinable 
materials (such as wood or stone) can be used in their natural forms. Machined parts 
have usually higher strength due to the material choices compared to the parts from 
additive processes. However, machining parts from blocks poses its own challenges.

Th e forces required to guide the tool can be very high, requiring stronger and more 
expensive machines. Th e tools need to follow the geometric features very closely and 
orient the cutting direction along the target surface. Th is requires at least fi ve axes 
of movement or fi ve DOF. For a complete-reach envelope, six DOF is ideal. Th e 
combination of high forces and high DOF makes such machines very bulky and 
requires high precision and expensive parts.

Most likely a model will not be machined out of a single block of material if it is large 
or is made up of complex geometry. In such cases, the decomposition of a model 
into machinable parts is a crucial step and is performed in parallel with machine and 
tool selection. Even in small models, some interior surfaces are simply not reachable 
without collision of the tool with the outer lying parts.

With 2.5-axis mills, undercuts are not possible and therefore the model has to be 
divided into surfaces that can be reached from above without model interference and 
surfaces that have to be milled from the opposite side. Even with mills with fi ve axes, 
not all surfaces may be accessible due to the need to hold the stock. When fl ipping a 
part, a negative of the model may be milled to provide a fi xture for the already-milled 
surface to rest on.
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Mills and routers. Th ere is a wide range of milling-based machines ranging in sizes 
and number of axes. Th e most simple mills and routers use 2.5 axes for moving the tool 
head. Machines with low axis count use cutting beds as the support to hold the cutting 
stock and are largely used with sheet material or material of moderate thickness (a 
few inches). Th e tool head is loaded with a fast-spinning router tool used for carving 
material when moved laterally (Figure 16.18). 

Mill end bits are used when cutting parts in more than two dimensions. Mills with 
more than 2.5 axes become very complicated mechanically, and the degrees of freedom 
increase the complexity of tool path generation. Moving the tool tip along the target 
surface is only part of the problem. It is also necessary to reach the target position 
without passing through the stock or the machine itself. In addition, larger forces and 
strong vibration are generated during milling of hard material—especially aluminum 
and steel.

Th ese forces have to be dealt with by securing the part, which further limits the 
accessible areas of the stock. Five-axis (or even a higher number) mills exist, but these 
are expensive due to demands on the hardware. Very large-scale mills exist for use in 
the automotive industry for milling full-size foam mockups for concept cars. Th ese 
mills use soft  milling foams that require less force compared to steel-based machining 
centers. Such mills can therefore be scaled up more easily.

Fig. 16.18 
(a) Subtractive processes remove 
material from a solid block of stock 
material such as foam, wood, or metal. 
(b) The tool paths create a distinctive 
pattern at low resolution that can be 
used to reinforce the reading of the 
geometry. 
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Foam cutters. Foam cutters use heated wires to slice through extruded polystyrene 
foams and are very fast. Machines with multiple axes of movement exist that allow the 
cutting of three-dimensional foam parts. Th e linear cutting wire limits the range of 
possible shapes and cutting geometries. Th e use of bend cutting wires is possible but 
requires retooling and limits possible forms to the extrusion and swept cross-section 
variety.

Robotic machining. A new trend is the combination of robotics and machining. As 
in other cases, the automotive industry has pioneered this approach for some time in 
post-processing steps such as degrading of injection mold pieces. 

Robotic machining is interesting because it can take advantage of the highly developed 
hardware of robotic arms for automotive welding with six DOF and more. Th e robotic 
arms off er a larger-reach envelop than their own size, therefore overcoming one of the 
biggest limitations with other fabrication machines (Figure 16.19). Usually, the part 
size is equal to or smaller than the machine used in the process because the machine 
has to enclose the part to reach all points.

Robotic machining departs from the envelope idea and uses a high-degree-of-freedom 
articulated robotic arm. Such robotic arms have a large range of motion and due to the 
many DOF a high degree of fl exibility in their reach envelope. Equipped with a router 
or mill bit as its tool, such arms can be used for foam milling of parts that can be larger 
than the machine itself if a simple track for lateral movement is added.

Fig. 16.19 
Milling using robotic arms with a high 
number of degrees of freedom allows 
for much better surface fi nishes with 
fewer cuts. With higher degrees of 
freedom of the tool head, surface 
geometries such as overhangs can be 
cut that are not possible with three-
axis processes. 
(a) A robotic arm used for milling at 
the TU, Vienna. 
(b) A milled surface produced with the 
robotic arm.
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Fig. 16.20 
Architects such as Greg Lynn have 
used the surface effect of milling 
as an aesthetic expression in their 
design. The geometry of the surface is 
emphasized by the cutting paths, which 
also link the product to its production 
process. Shown here is the Alessi 
Coffee and Tea Towers series designed 
by Greg Lynn FORM. Each coffee pot is 
uniquely shaped using a custom milled 
foam plug. The traces of the milling 
process are deliberately kept. (Image 
Carlo Lavatori)
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Challenges related to machining and rapid prototyping are numerous. CNC 
machines rely on data extracted from digital models to control movement 
in producing parts. The constraints of the machines constrain the possible 
operations. This may be a tool path following the edge of a part or a milling tool 
path in three dimensions following the surface of an object.

To adjust the tool in space with respect to the geometry to be cut is more 
complex because more degrees of freedom are involved. There are further 
problems with collision detection between parts to be machined and the tool and 
the machine itself. As the machining progresses, the situation constantly changes 
due to the removal of material. Tool orientation influences the possible surface 
qualities and cutting times.

The scale of the parts for most machines is determined by the maximum 
envelope of the machining bed, which is usually smaller than the overall size 
of the machine. Mobile robotic arms allow for bigger build envelopes, but this 
also affects precision and speed. Ultimately, some sort of assembly is required in 
most cases of architecture. Assembly of multiple machined parts for large-scale 
components is difficult in the uncontrolled environments of construction sites.

One challenge is the breaking apart of the initial geometry into meaningful 
components and ensuring that these parts can be fabricated with the given 
machinery. Another difficult geometric problem is the nesting of complex 
cutting geometries on planar cutting sheets to reduce material usage. Three 
dimensional nesting of printing geometry in the build envelope of a three-
dimensional printer is yet another difficulty. 

Geometric Challenges 
Related to Machining 
and Rapid Prototyping



Aesthetics of fabrication and geometric implications. In architecture, the 
wider use of rapid prototyping techniques made designers more aware of the 
aesthetic choices involved with CNC fabrication. For instance, Greg Lynn kept 
the cutting marks on foam plugs used for forming the titanium sheet metal of 
his Coffee and Tea Towers series for Alessi as an aesthetic aspect of the creation 
process (Figure 16.20). The roughness of the cut emphasizes the custom shape of 
each pod because each pot has its own molding tool machined based on a set of 
unique parameters.

Fig. 16.21 
Relationship between geometric 
properties of developable surfaces 
designed and refi ned using digital 
and physical model building and the 
fi nal architecture. Gehry’s Walt Disney 
Concert Hall shows the direction of 
curvature in the edge pattern of the 
metal facade sheets.
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This mold is lost in the forming of the sheet metal using an explosive charge. 
To cut down on machine time, and as an aesthetic choice, the surface finish is 
deliberately left unfinished. There are multiple ways of generating tool paths for 
a given geometry. Similar to texture mapping in rendering, a tool path creates a 
physical tangible texture that can be used to emphasize geometric features in an 
object. Higher-axis machines in particular offer a degree of flexibility.

Similarly, the lines of ruling for developable surfaces are used to structure large 
freeform surfaces. Frank Gehry’s Walt Disney concert hall masterly displays 
the geometric perfection of controlling fabrication and design geometry for an 
overall sculptural appearance (Figure 16.21). An integral part is the scale of the 
used components and the reflectiveness of the material. The sheet pattern aids 
in the reading of the geometry and breaks the large facades down into more 
perceivable units.

Choosing materials based on geometric properties. As discussed in previous 
chapters, the use of developable surfaces offers a fast way of building paper-based 
models with single-curvature surfaces. Some architecture offices (e.g., Gehry 
and Partners) use this approach extensively in developing designs and in testing 
and adjusting digital geometries in physical form as well as developing physical 
forms as starting points for a digital design. The use of paper also acts as a test of 
constructability using sheet-based materials in the full-scale building.

Additional material constraints are associated with wood, where the grain 
direction needs to be considered with respect to the direction of curvature. For 
double-curvature surfaces, either the material itself can be milled from a solid 
block or the material can be formed starting from a flat sheet. Glass sheets can be 
slumped over a curved form by applying heat. Metal plates can be stamped using 
solid steel tools milled into a positive and a negative form.

In shipbuilding, steel plates are rolled for single-curvature surfaces and partially 
heated for double-curvature surfaces. Most processes at a building scale still 
require substantial manual handling because machines do not exist for universal 
shaping of steel or glass. However, digital information is also of use in all of these 
hybrid cases. Tools for stamping are digitally calculated and CNC milled, and 
even manual processes rely on digital data as a guide and as a check of the results.
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Implications for standardization. With the use of digital fabrication, the 
concept of standardization shifts from the notion of standards as a dimensional 
agreement that streamlined manufacturing following the industrial revolution 
to that of the agreement between parts. Because each part can be fabricated on 
demand, dimensions and geometries can be adjusted to the context of use.

This allows the departure of the dimensional standards based on measurements 
and replacement with standardization for the rules of matching parts (Figure 
16.22). As long as each part fits its neighbors, the dimensions can be free to 
be adjusted to other factors such as forces, material properties, and geometric 
context.

Fig. 16.22 
Generating connection details 
dependent on the geometric context 
for laser-cut cardboard strips. (Project 
by Axel Kilian, 1999, programmed 
in AutoLisp and Laser cut using 
cardboard)



Fastener-based assemblies. Th e use of fasteners for assemblies of parts has a long 
tradition with the use of wood and metal nails as well as screws in more recent times. 
Although the standardization of fasteners and precision machining contributed to the 
rationalization and predictability of assemblies for performance under loads, it also led 
to a simplifi cation of many details.

Digital fabrication increases the precision of assemblies and oft en no adjustments 
are necessary. Th is is true for steel assemblies, and more recently for wood. Both part 
geometries and holes for fasteners can be machined precisely directly from CAD data. 
With the use of freeform geometries, there is an opportunity to revisit traditional 
joining techniques using spatial interlocking parts from carpentry (as discussed in the 
next section).

Assembly
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Geometry-based assemblies. Th e use of geometric assemblies without fasteners has 
an even longer tradition. It ranges from techniques of weaving to that of carpentry 
joints and stone masonry in which matching geometries of pieces keeps them in 
place. In the long run, geometry-based assemblies seem to have a greater life span than 
assemblies that make use of secondary fasteners or fi llers.

Carpentry joint examples are found in Japanese and Chinese temples, and some 
Inca built and custom fi t stone walls that withstood centuries of earthquakes (Figure 
16.23). Th e standardization of parts, starting with the Industrial Revolution, 
has contributed to the simplifi cation of construction part geometries in favor of 
inexpensive repetitive parts over sophisticated individually craft ed components. In 
freeform geometries, this advantage is to an extent lost.

Because standardized parts require substantial customization as well, the gap to a 
fully customized part is closing—with faster and more eff ective machines becoming 
available (Figure 16.6). In parallel, skills necessary for complex assemblies need to 
be taught. Th is is not a plea for the return to a traditionalist craft  but rather for the 
appreciation of the experience embedded within many of the traditional joinery 
techniques (e.g., Japanese carpentry).

Designs respond to many constraints, including longevity, aesthetics, and strength. 
With the introduction of sophisticated digital fabrication techniques, some of these 
techniques may return in adapted versions with manual skilled labor being translated 
into skilled fabrication (Figure 16.24). 

Fig. 16.23 
Complex geometries have long played 
a role in building, such as for stone 
walls built by the Incas. Adapting 
irregularly shaped rocks only minimally 
to fi t together with their neighbors 
creates a stronger overall wall capable 
that withstood earthquakes and the 
elements for centuries.  
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Robotic assembly. As mentioned previously, a recent project by Fabio Gramazio 
and Matthias Kohler at the ETH, Zürich, explored the use of robotics to place 
standard parts in digitally generated patterns (Figure 16.10.) . Th is is an interesting 
combination of low and high technology. A customized appearance is achieved with 
zero machining but through precise placement of parts.

More variations on the use of robotics in creative ways may be created over time. 
Previous eff orts focused on automating the standard process of building to increase 
cost effi  ciency. Now the goal is to use the technology in creative ways to create 
architectural designs not possible previously. Although currently the emphasis is 
on formal aspects, the performative side of architecture will become increasingly 
important and geometry can be of tremendous help here as well.

Fig. 16.24 
A chair assembled from about 150 fl at 
plywood sheet parts without adhesives 
relying only on interlocking geometries 
for structural stability and form. All 
pieces are forced into curvature in the 
assembly process, helping the overall 
stiffness and creating a continuous 
appearance that only works together 
with the resistance of the material. 
(Image Axel Kilian courtesy of the 
FRAC Center. Design Chair experiment 
by Axel Kilian)





Chapter 17
Geometry for Digital 
Reconstruction 





At various stages of the design process, one may want to change the medium—from a 
virtual to a physical model, and vice versa. Oft en physically based design processes are 
advantageous over digital ones in the early stages of a project due to their open and 
collaborative nature. In addition, physical materials give important tangible feedback 
to the designer for purposes of hand/eye coordination. (See Figure 17.1.) 

Here we are dealing with the digital reconstruction problem, i.e., the steps which are 
necessary to convert a physical model into a computer model. We discuss the entire 
pipeline, focusing particularly on requirements arising in architecture. Although 
there is powerful soft ware to support us here, good geometric knowledge and a solid 
understanding of the procedure are necessary to get excellent results.

First, we need to think about what we perceive as relevant data to be captured. Th ere 
are many aspects of an object: its surface geometry, its appearance, its materiality, and 
its geometric features. Directing our acquisition process is important because the data 
that can be gathered is fi nite and processing the data for meaningful results can be very 
time intensive. Th e digital reconstruction pipeline is well understood for applications 
in computer graphics [Bernardini and Rushmeier 2002] and in computer-aided 
design/computer-aided manufacturing (CAD/CAM) [Varady and Martin 2002]. 
However, architecture and design pose new challenges. Th e choice of the features to 
be digitized is crucial here. Just as a portrait of a person is less about the surfaces than 
about the distinct features defi ning nose and eye, a sculptural object might be best 
captured with a sparse set of key edges in space rather than with an undiff erentiated 
point cloud from a three-dimensional scanner.

Geometry for Digital 
Reconstruction

Fig. 17.1
The digital reconstruction of physical 
models is a valuable tool in the 
architectural design process. This image 
shows a model of a project by Frank O. 
Gehry.
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Th e translation process is always a process of evaluation and adjustment, never a literal 
mapping. Th is is an especially powerful process in design exploration. Moreover, 
design and manufacturing requirements such as functionality, materials, statics, and 
cost lead to limitations and complications more so than in other application areas of 
digital reconstruction. 

Th ere are two general approaches to capturing physical form. One is the use of a 
tracking arm, especially suitable for capturing strings of point data from selected 
feature curves. Th e other method uses a laser range scanner and results in a large 
number of more or less regularly distributed measurement points from the surface of 
the given physical model.

Fig. 17.2
Data acquisition and registration. Using 
a three-dimensional scanner, we obtain 
measurement points (coordinates) 
from the surface of an existing object. 
In general, one has to make several 
scans—which provide data in different
coordinate systems. Supported by 
appropriate algorithms, these scans 
have to be merged (registered) into a 
single data point cloud represented in 
the same coordinate system. 
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Fig. 17.3
Removal of redundant data points 
and fi ltering of noise (measurement 
errors) is advisable before leaving the 
“point phase” in the process. (Three-
dimensional model courtesy of Florian 
Doblhammer.)

registered data set without redundant data points

An overview of the digital reconstruction pipeline. Th e procedure starts with data 
acquisition. Th ree-dimensional scanning devices are used to produce measurement data 
from a real three-dimensional object. We are talking here only about those scanners that 
measure points on the surface S of the object.

Volumetric imaging systems such as CT scanners even deliver information about the 
interior of an object. Th is is fundamental in applications such as medicine, but seems to be 
of less importance in architecture if surface capturing is the objective. 

Th e measurement data consists of a large number of points, which is referred to as a point 
cloud. Ideally, these data points should be precise locations (coordinates) of points 
on the surface S, but in real applications there will be measurement errors we have to 
deal with. Only the regions of the surface S of the real object directly visible from the 
vantage point of the scanner will be captured, and thus a single scan usually contains 
only measurement data for a part of S.

Depending on the complexity of the surface, including such entities as undercuts 
and folds, we may have to produce a number of scans from diff erent vantage points. 
Th is number can go into the hundreds if great detail is desired. In general, each scan 
produces a point cloud with its own coordinate system (Figure 17.2). Finally, all of 
these point clouds have to be merged into a single combined point cloud represented 
in the same coordinate system. Th is procedure is called registration.

In the merged point cloud, there may be redundant data—such as data points very 
close to one another. Th ese redundancies will be removed. Moreover, we will have 
some noise (measurement errors) in the data that should be fi ltered by the digital 
reconstruction soft ware. Th is completes the point phase of the process (Figure 17.3). 
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Fig. 17.4
In the “polygon phase,” a triangle 
mesh is wrapped over the data point 
cloud and thus we obtain a fi rst surface 
representation of the object. 

In the subsequent polygon phase, a triangle mesh is computed that approximates the 
given data within the desired accuracy (Figure 17.4). Th is procedure is not as simple as 
it might seem. Some key details are discussed in the material following. 

Th e fi nal shape phase may not be necessary for pure visualization tasks in graphics 
applications, but it will be crucial for architecture. We have to convert the triangle 
mesh into a CAD representation of an object that is appropriate for further 
processing, simulation, and manufacturing. Issues related to this phase include edge 
and feature line detection and decomposition into parts of diff erent nature and 
geometry (e.g., planar parts, cylindrical patches, freeform patches). Th is process is also 
called segmentation (Figure 17.5). It requires a good geometric understanding and user 
interaction. Moreover, one has to approximate the data regions by the surface types 
identifi ed in the segmentation step (Figure 17.6). Th is process is also known as surface 
fi tting. 
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Fig. 17.6
Surface-fi tting algorithms are used to 
approximate regions using surfaces 
of the correct type (here, plane and 
cylinder) according to the outcome of 
the segmentation phase. A standard 
digital reconstruction process may stop 
here, but architecture poses additional 
requirements (discussed at the end of 
this chapter). 

Fig. 17.5
Segmentation splits the entire data 
set into regions of similar geometric 
behavior. For example, it will identify 
simple regions (such as planes 
and cylinders) and decompose the 
object into patches according to 
manufacturing constraints and 

aesthetic considerations. Especially 
for applications in architecture, this 
process is not fully automatic and the 
result greatly benefi ts from a good 
geometric understanding of the user. 
This example shows two different 
segmentation results.

example 1 example 2

Architecture then poses additional requirements tied to construction technology, 
structural analysis, and aesthetics. Th ese are not part of the standard digital 
reconstruction pipeline and are largely unsupported by currently available soft ware. 
We will address some of these issues in the last part of this chapter, hoping that it will 
stimulate further research and development. 
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Fig. 17.7
Use of a digitizer arm at Coop 
Himmelb(l)au. 



Digitizer arms. One approach to capturing a physical model is the use of a tracking 
arm with several degrees of freedom (Figure 17.7). Each joint is equipped with a 
sensor measuring the angle. From this data, the spatial point of the arm tip can be 
calculated. A designer can trace a physical object by running the tip along an edge 
to capture a string of point data. Th is results in a very sparse sampling, but has the 
advantage of being user driven and very selective. Th e method is very well suited to 
capturing particular selected features of a model. 

Optical scanning devices. Modern three-dimensional scanning devices are largely 
based on optical technologies. Near-range scanners, which measure objects of a size 
less than a few meters, are typically used with a combination of laser projection and 
detection of the projected stripes or patterns with one or more cameras. Th e scanner 
shown in Figure 17.8a emits laser beams in a planar stripe P. Th e laser highlights on 
the object a curve c, namely the intersection curve of P and the object surface S.

Th e image c* of c is detected in the digital photo produced by the camera. Each 
point p* (pixel) of c* may be connected with the optical center O of the camera to a 
projection ray, which intersects the plane P in that point p of c whose projection p* has 
been detected in the digital photo (Figure 17.8b). Th e computation of the intersection 
is possible because camera and laser are calibrated (i.e., one knows their positions in 
the same coordinate system). In this way, we obtain for one position of the laser plane 
a series of points on the resulting curve c on the object.

Data Acquisition and 
Registration

607
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Th e laser plane P is then rotated into new positions and thus the object is measured 
by a family of curve-like point sequences (see Figure 17.8c). Th e union of these points 
is referred to as a point cloud. Th ere are various sources of errors. Just think about 
the detection error made for a point p* in the digital image. Th e larger the ratio of 
distances Op:Op* (i.e., the larger the distance between object point p and scanner) 
the more the detection error of p* is magnifi ed into the measurement error of p. It is 
obvious that dark objects on which the laser stripe c can barely be detected will lead to 
low measurement quality. Th e same holds for shiny objects with a high level of total 
refl ection.

   

M GG I

MG IG

Fig. 17.8
(a) A near-range scanner may combine 
laser projection and detection of the 
resulting light stripe by a camera. The 
accuracy of this scanner is about 0.1 
mm.

(b) Acquisition of a data point p 
requires intersection of a projection ray 
Op* with the laser plane P.
(c) This point cloud has been obtained 
with the scanner shown in a.

(a) (b)

(c)
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As soon as larger objects have to be scanned and the distance between scanner and 
object exceeds 2 meters, another technology is used. Medium- and long-range scanners 
emit a pulsed laser beam and measure the light returned by diff use refl ection on the 
object. From the time span between light emission and detection of the refl ected light 
one computes the distance of the object point p to the measurement device on the 
corresponding laser ray and thus obtains the coordinates of p.

Th is has to be done for a large number of rays. Depending on the application, the 
measurement system will be placed on the ground (see Figure 17.9) or on an airplane. 
Th e latter technology is used to digitize three-dimensional topography and entire 
cities. Th is is an important input for applications such as geographic information 
systems or virtual reality models of cities. Figure 17.10 depicts an example that uses 
several data sources.

Fig. 17.9
Data captured by a midrange scanner. 



Fig. 17.10
The inner city of Graz, Austria, was 
reconstructed by converting 2.5-
dimensional data (top views plus 
heights) from a geographic information 
system into a simple block model. 
Image-based modeling was used to 
construct more detail for the facades 
based on photos taken from a truck-
based mobile platform, and more roof 
detail based on aerial images of the 
region. (Courtesy of VRVIS, Vienna.) 
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Fig. 17.11
Outliers and parts not belonging to 
the desired object (red) in a data set 
can easily be removed with digital 
reconstruction software. The same 
holds for noise reduction.

Outlier removal and noise reduction. Measurement errors can be roughly put into 
two categories: outliers and noise (Figure 17.11). Outliers are signifi cant measurement 
errors due to bad scanning conditions at specifi c places. Th ey are visually easy to see 
as expressed by measurement points clearly too far away from the dense point cloud 
representing the object. Outliers may be detected by an algorithm, but there are also 
tools for removing them interactively.

Th e resolution of the hardware, the limitations in measurement accuracy and similar 
eff ects result in other type of errors that occur almost randomly and are known 
collectively as noise. Knowing the accuracy of the measurement device, noise can 
be reduced automatically with appropriate algorithms. Noise reduction may have 
undesirable smoothing eff ects at sharp edges. It may be performed in connection with 
smoothing techniques of the polygon phase. 

data set with highlighted outliers
and undesired points

data set after outlier removal

  

  

  

original data set

increasing noise reduction value
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Registration. As previously mentioned, a single scan will only contain measurement 
points of those regions on the surface S of the real object that are visible for the 
scanner. Th erefore, we have to make several scans. Th eir number depends on the 
complexity of the object. Unless one can use special hardware (such as a turntable or 
a scanner mounted on a robotic device), the individual scans will be given in diff erent 
coordinate systems (Figure 17.2). For further processing, they have to be merged into a 
single combined point cloud represented in the same coordinate system—a procedure 
called registration. Most commercial systems contain registration algorithms according 
to the following workfl ow (Figure 17.12). 

• First, the user specifi es for each pair of overlapping scans (e.g., S1, S2) 
a few pairs of corresponding points (p1, p2), (q1,q2),…, on S1 and S2, 
respectively. Th ese corresponding points shall (at least approximately) be 
the measurements of the same object point p, q,… of the real object surface S. 

Fig. 17.12
Illustration of a registration workfl ow. 
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If there are clear features on the surface, this is a reasonable approach. Th e 
correspondences need not be precise. Th ey simply facilitate global registration, 
which means roughly aligning the scans within the same coordinate system.

• Th e alignment is done by an algorithm. It moves one scan (e.g., S2) into a new 
position S2* such that the new locations p2*, q2*,… of points p2, q2,… are as 
close as possible to their corresponding points p1, q1,… in scan S1. Of course, 
this alignment has to be done for other pairs of scans as well, so that one 
fi nally obtains a prealignment of all scans in the same system.

• Global registration is followed by local registration, which is a fully automatic 
procedure. Describing the underlying optimization algorithms is beyond 
the scope of this text. However, we want to warn the reader that numerical 
optimization will always work in an “optimal” way. Apart from diff erences in 
the speed of various registration algorithms, they may not reach the desired 
optimal solution. Th is is largely due to inappropriate results of the global 
registration procedure. To visualize the phenomenon, we look at the much 
simpler problem of fi nding the minimizer x* of a function f (x) of one variable 
x. Th e value x* is the x value with the minimal function value. Figure 17.13 
illustrates that the algorithms being used iteratively improve an initial guess. 
Depending how good this initial guess has been, one ends up in the desired 
global minimizer or just in a local minimizer. Th e same holds for registration, 
which is a higher dimensional problem [the dimension equals 6(N – 1) 
if N is the number of scans]. Aft er local registration, one usually removes 
redundant data points in the resulting point cloud. Th is may be followed by 
or combined with noise removal. 

Fig. 17.13
The numerical computation of a 
minimizer of a function f(x) of one 
variable x starts from an initial guess 
x0 and improves it [e.g., by a descent 
strategy toward a value x* with 
vanishing fi rst derivative (tangent of the 
graph is parallel to the x-axis)]. Such a 
numerical optimization algorithm will 
end in a local minimizer x*, not 

necessarily in the desired global 
minimizer. One has to start in the basin 
of attraction of the global minimizer 
(for the chosen algorithm). This task 
is not easy, especially if one has to 
fi nd the global minimizer of a function 
which depends on many variables and 
possesses several local minimizers near 
the global minimizer. 

global minimizerlocal minimizer
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Fully automatic registration and surface matching. Current research is close to 
reaching fully automatic registration. Th is is particularly important if the interactive 
approach to global registration is too slow or even impossible due to a lack of clear 
features. One such application (namely, digital reconstruction of archaeological artifacts) 
is illustrated in Figure 17.14 (see Hofer et al. [2006]). Global registration algorithms 
are based on the identifi cation of nearly congruent surface regions in large data sets. 
Th erefore, they can be extended to algorithms for the automatic reassembly of three-
dimensional objects from scanned fragments [Huang et al. 2006] (see Figure 17.15).  

Fig. 17.15
Results of an algorithm for the 
automatic reassembly of a fractured 
object.
For the model on the right hand side, 
we also show images of the fragments 
and their digital versions.

Fig. 17.14
(a) The original scanning data
(b) is aligned, including background 
information,
(c, top) which is removed after 
automatic registration.
(c, bottom) From this fi nal point cloud, 
a mesh is generated.

(a) (b) (c)
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Triangulation. In the polygon phase, a triangle mesh that approximates the given 
point cloud has to be computed. In an initial step, one may use only data points 
as vertices of triangles—perhaps even all data points. However, there are many 
triangulations that have this property. To more easily convey this concept, it is better 
to fi rst explore triangulations in two dimensions and then move into three dimensions. 

Voronoi diagrams in the plane. Given a set of N points p1, p2, …, pN in the plane, we 
want to compute a triangulation of (a part of ) the plane that contains the given data 
points as vertices. It turns out that it is better to fi rst discuss a decomposition of the plane 
into nearest neighbor regions C(p1), C(p2), …, C(pN) of the given points p1, p2, …, pN. Th is 
is known as a Voronoi diagram of the point set and defi ned according to Figure 17.16. 
Th e Voronoi cell C(pi) of a point pi contains all points of the plane that are closer to 
pi than to any other input point. Simple properties of this structure are depicted in 
Figure 17.16.

The Polygon Phase 

Fig. 17.16
The Voronoi diagram of a point set 
p1, p2, …, pN decomposes the plane 
into nearest-neighbor regions, called 
Voronoi cells C(p1), C(p2), …, C(pN). 
The Voronoi cell C(pi) of a point pi 
contains all points of the plane that 
are closer to pi than to any other input 
point. Voronoi cells are convex. 

A common edge of two neighboring 
cells [e.g., C(p1), C(p2)] lies on the 
bisector of their defi ning points (p1 and 
p2). A common vertex of three cells 
[e.g., C(p1), C(p2), C(p3)] is at equal 
distance to the defi ning points p1,p2,p3 
and hence the center of the circum-
circle of the triangle p1p2p3.
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In addition, Figure 17.17 points out that the input points with an unbounded Voronoi 
cell form the boundary polygon of the convex hull of p1, p2, …, pN  (recall Chapter 
8). Within the research area of computational geometry, effi  cient algorithms for the 
computation of Voronoi diagrams have been developed [CGAL]. Sometimes, one 
may observe structures similar to Voronoi diagrams in nature (Figure 17.18). Th e 
geometric beauty of Voronoi diagrams has recently received interest from architects. 
It may lead to a number of remarkable applications in architecture and design, other 
than the relation to triangulations discussed in material following.

Fig. 17.18
Phenomena seen in nature may 
resemble the shape of Voronoi 
diagrams.

Fig. 17.17
Points with unbounded Voronoi cells lie 
on the boundary of the convex hull of 
the input set p1, p2, and so on. 
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Two-dimensional Delaunay triangulation. In a triangulation of a set of points 
p1, p2, …, pN in the plane, these points have to be the vertices of the triangles. It is no 
restriction to demand that the union of the triangles shall be the convex hull H of 
the input points. Recall that a convex domain D has the property that it contains the 
connecting straight line segment of any two points of D. Th erefore, a triangulation 
cannot go beyond the convex hull H unless one inserts additional vertices.

Apart from the boundary edges of H, it is not yet clear which edges to join for a 
triangulation. Th ere are many triangulations, and some may exhibit very thin triangles 
(i.e., triangles with at least one very small angle; Figure 17.19a).

Th in triangles are undesirable for a number of applications (e.g., numerical simulations 
with the fi nite element method). Th us, one may ask for a triangulation in which the 
smallest occurring angle is as large as possible. Th is triangulation is the Delaunay 
triangulation, whose relation to the Voronoi diagram is surprisingly simple (Figure 
17.19b,c). Th e Delaunay triangulation joins exactly those points fr om the input set p1, 
p2, …, pN by an edge whose Voronoi cells share a common edge. Th is is closely related to 
the “empty circle property” illustrated in Figure 17.19b. Th e Delaunay triangulation 
is unique, unless there are empty circum-circles of more than three input points. Th is 
happens if more than three Voronoi cells meet at a common vertex (Figure 17.20). 

Fig. 17.20
In the case of an empty circum-circle 
of more than three input points (such 
as p1, p2, p3, p4 in this fi gure), there is 
an ambiguity in the construction of the 
Delaunay triangulation. In this case,

more than three Voronoi cells meet 
at a vertex. Up to such special cases, 
the Delaunay triangulation is uniquely 
determined.

Fig. 17.19
(a) Whereas an arbitrary triangulation 
of a point set p1, p2, …, pN may exhibit 
triangles with very small angles,
(b,c) this phenomenon is avoided best 
with a Delaunay triangulation. The 
latter is obtained by joining those input 
points by an edge whose Voronoi cells 
are adjacent (have a common edge). 
This triangulation fulfi lls the empty 
circle property. The circum-circle 
of any triangle in the triangulation 
does not enclose any vertex of the 
triangulation.

(a) (b) (c)
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Th ere is a remarkable procedure that may fi x some input points and changes the 
remaining ones so that they are closer to the barycenter of their corresponding Voronoi 
regions. Th e resulting centralized Voronoi diagrams (Figure 17.21) also produce very 
nicely shaped triangles in the associated Delaunay triangulation. For details on this 
algorithm and an extension to the approximation of a smooth surface by polyhedral 
surfaces, see Cohen-Steiner et al. [2004].

It is a good preparation for understanding surface triangulations to look at the Voronoi 
diagram and Delaunay triangulation of a set of points sampled from a smooth curve 
(Figure 17.22). We observe elongated cells roughly orthogonal to the curve and see that 
the Delaunay triangulation contains a polygon that approximates the curve well. 

Fig. 17.22
The Voronoi diagram and Delaunay 
triangulation of points from a smooth 
curve c provide information about the 
curve even if c is not known. 

Voronoi cells are elongated in direction 
orthogonal to c, and the Delaunay 
triangulation contains a polygon that 
approximates c well. 

Fig. 17.21
(a) To regularize a set of points, one 
may use an iterative procedure. In any 
step, it computes the Voronoi diagram 
and moves each point toward the 
barycenter of its Voronoi cell. Steps of 
this algorithm.

(b) Initial and fi nal position of another 
example, together with the trajectories 
of the barycenters. (Courtesy of Pierre 
Alliez.)

Next Page 



   

Voronoi diagrams in three dimensions. Th e defi nition of a Voronoi diagram in the 
plane also works in three dimensions. Voronoi cells are the nearest neighbor regions 
C(p1), C(p2), …, C(pN) of the given points p1, p2, …, pN. Of course, the input points are 
now arbitrarily located in space. Th e Voronoi cells are convex. Th eir faces are bisecting 
planes of input points. Edges are intersections of (in general) three bisecting planes 
(axis of a circum-circle of three input points), and at the vertices four (or more) 
bisecting planes meet. Of course, the vertices are centers of spheres through four (in 
special cases, more) input points (Figure 17.23). 

Th ree-dimensional Voronoi diagrams may comprise aesthetic arrangements of 
polyhedra—a fact that explains the interest in Voronoi diagrams by the architectural 
community (see Figure 17.24).

Fig. 17.24
The design of the Watercube of the 
National Swimming Center, Beijing, is 
based on a three-dimensional Voronoi 
diagram.

Fig. 17.23
Voronoi diagrams can also be 
constructed in space. Their properties 
are very similar to those of two-
dimensional Voronoi diagrams.
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Surface triangulations. Connecting those points by an edge, whose Voronoi 
cells share a common face, we obtain the edges in a three-dimensional Delaunay 
triangulation. We have to be careful here. We actually obtain a decomposition of the 
convex hull into a union of tetrahedra whose vertices are the input points. However, 
we are not really interested in the full three-dimensional Delaunay triangulation but 
only in a subset of it. Recall that our actual goal is the triangulation of a set of points 
from a surface S. Th ere, the Voronoi diagram has a special behavior (Figure 17.25) 
analogous to the two-dimensional curve case shown in Figure 17.22.

For a suffi  ciently dense set of points on S, the Voronoi cells are elongated in a direction 
normal to the surface. We connect two points (e.g., p1 and p2) by an edge if their 
Voronoi cells C(p1), C(p2) share a common face and if this face intersects S. Because 
S is not explicitly given, this is not as simple as it sounds. However, it can be realized. 
It would go beyond our scope to proceed here with further details or to discuss the 
many suggested alternatives to the Delaunay approach. Th e point here is to realize that 
surface triangulation is not a simple task. 

Fig. 17.25
Voronoi cells of measurement points 
from a smooth surface tend to be 
elongated in a direction normal to 
the surface. This helps to extract a 
surface triangulation from the three-
dimensional Delaunay triangulation 
of the input points (see also the two-
dimensional counterpart in Figure 
17.22).
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Interactive improvements. Especially under bad input conditions, such as large 
measurement errors or holes in the data set, the output of a triangulation program 
may not be satisfactory. It will require the application of some interactive tools (Figure 
17.26). Hole fi lling requires the specifi cation of part of the triangulation around the 
detected hole. Th en the program computes a triangulated fi lling surface, which can 
result from an energy-minimizing principle. Th is means that the surface is as simple 
and as smooth as possible. Th ere is also the possibility of specifying regions to be 
smoothed, a tool sometimes referred to as sandpaper.

Fig. 17.26
(a) Tools for interactive improvement of 
triangulations include hole fi lling and
(b) local smoothing.

(a) (b)
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Relaxation and smoothing. Relaxation means to admit changes of the vertex 
positions in a mesh in order to obtain a “better” mesh that approximates the same 
underlying surface or a smoothed version of it (Figure 17.27). Th e quality measure 
depends on the application. For example, one may look for nearly equilateral triangles. 
We encountered this method in Chapter 11. Relaxation will also remove noise. 
However, too high a threshold for noise removal may result in too much smoothing of 
features and even have a shrinking eff ect on the entire model. 

Mesh decimation. Mesh decimation is a data reduction strategy. It aims at removing 
triangles that are not necessary in capturing the shape at the chosen level of detail 
(resolution). Note that the scanning process produces a roughly constant data density, 
whereas the shape will not require constant density. It may exhibit simple regions, such 
as planar ones, where only a few triangles are necessary. At the same time, there may 
be highly complicated parts with many features that should be captured well. Th us, we 
need many triangles at these places. 

Fig. 17.27
(a) Relaxation changes the vertex 
positions of triangles in order to 
optimize given criteria. It should 
result in a visually more pleasing 
triangulation.

(b) Admitting large displacements may 
smooth the model too much. Features 
become less prominent or even get 
removed.

(a) 

a mesh before and after relaxation

(b) 

vanishing features because of over-smoothing
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Th ere are many variants of mesh decimation. One method works by edge contraction. 
An edge evaluated as “least important” in a ranking of edges (priority queue) is 
shrunk to a single point (Figure 17.28). Th e ranking of edges is oft en done with a local 
approximation of the neighborhood and by checking the eff ect edge contraction will 
have on it. Th ink of a nearly planar region. We may prefer large triangles there, and 
thus its edges will appear high in the priority queue for contraction.

If an edge is contracted to a point, the point’s location is computed as an optimal one. 
Th en, the new edges have to be checked and put into the appropriate place of the 
priority queue. Now the contraction process is continued until the queue is empty 
(i.e., there is no edge that can be contracted on the chosen level of detail). Mesh 
decimation has the nice eff ect that one obtains a hierarchic sequence of meshes at 
decreasing resolution. Computer graphics frequently uses this hierarchic approach 
because obviously it does not make sense to render a model with thousands of triangles 
if the image has the size of a few pixels. 

Fig. 17.28
(a) Mesh decimation can be based on 
successive edge contraction.
(b) The goal is data reduction while 
preserving the shape of the object 
at the required level of detail. Mesh 
decimation produces a sequence of 
meshes with decreasing resolution.

(a) 

edge contraction

(b) 

mesh decimation
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Fig. 17.29
Features on a geometric model can be 
detected according to the curvature 
behavior: small principal curvature 
in the direction of the feature, high 
principal curvature orthogonal to it. 
In this fi gure, the colors provide an 
automatic classifi cation into ridges, 
valleys, and prongs. (Courtesy of 
Yukun Lai.)
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Segmentation
Th e following steps, oft en referred to as segmentation, are critical in an application such 
as architecture. One has to detect edges and features. Th e defi nition of a sharp edge 
on a surface composed of smooth patches is pretty clear: An edge e is a curve where 
smooth surfaces intersect (with diff erent tangent planes on either side of the edge). 
However, edge detection on a triangulated model is not easy because the triangulation 
may not resolve the edges well. Th ere are algorithms that can detect most parts of the 
sharp edges, but it is very likely that some user interaction will be necessary. 

Feature detection is much more subtle. Th e problems start with a proper mathematical 
defi nition of feature. Oft en, a feature region is defi ned as one with a signifi cant 
diff erence in the principal curvatures (i.e., with a small principal curvature in feature 
direction and a high one across the feature). Th is criterion has been used for feature 
detection in Figure 17.29. Architecture has simpler shapes than this fi gure, but at 
the same time the location of a curve representing the feature best is of much greater 
importance.
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Th e detection of feature curves requires derivatives of principal curvatures and thus we 
will refrain from an explanation. Typical results achieved with state-of-the-art feature 
line detection algorithms (Ohtake et al. 2004,Hildebrandt et al. 2005) are shown in 
Figure 17.30. Obviously, architectural design will require interactive modifi cations 
and smoothing of feature lines if the latter are seen in the fi nal coverage by panels or in 
the supporting beam structure. 

Segmentation also includes the detection of areas that belong to special surface classes 
such as planes, spheres, cylinders, and cones. Th is can be done automatically. We 
sketch a method oft en used for the detection of planes, cylinders, and cones, but serves 
for detecting general developable surfaces as well (Figure 17.31).

From Chapters 14 and 15, recall the Gaussian spherical image formed by the unit 
normal vectors of a surface. If S is developable, the spherical image S* is just a curve 
or a composition of several curve segments. Th is expresses the fact that a developable 
surface carries straight lines along which the tangent plane, and thus the unit normal 
vector is constant. A plane S has a single point S* as a Gaussian image.

Fig. 17.30
(a) Feature curves on a geometric 
model computed at different levels of 
detail (courtesy of A. Belyaev)
(b) Feature curves on a technical 
object (courtesy of K. Polthier).
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Fig. 17.31
Detection of planes, cylinders, cones, 
and more general developable surfaces 
can be based on the Gaussian spherical 
image S* defi ned by the unit normal 
vectors of the triangular faces.
(a) A planar part of S yields a point-like 
cluster of S*,
(b) whereas a cylinder S is mapped to 
a point set S* close to a great circle.

(c) A cone of revolution S possesses 
a Gaussian image S* formed by data 
points close to a small circle on the unit 
sphere.
(d) More general developable surfaces 
are seen as general curve-like point 
sets S*.

For a cylinder S, the spherical image S* is a great circle. S* is a small circle for a 
rotational cone S (but the same holds for a developable surface S of constant slope). 
Given a triangulated model S, we can compute S* via the unit normal vectors of the 
triangular faces of S. If the model is almost planar, S* consists of a cluster of points in a 
very small region of the unit sphere.

Likewise, if S approximates a cylinder or cone S* is a point cluster close to a great 
circle or small circle, respectively. More general developable parts can be detected 
with this method because they give rise to curve-like point clusters on the unit 
sphere. It is beyond the scope of this book to discuss more advanced methods used to 
automatically recognize other types of surfaces. 

(a) 

Gaussian spherical image of a planar part

(b) 

Gaussian spherical image of a cylinder

(c) 

Gaussian spherical image of a cone

(d) 

Gaussian spherical image of a more general 
developable surface
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(a) 

(b) 
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In regard to surface fi tting we begin with an examination of technical objects (e.g., 
plane, sphere, cone, and cylinder) that exhibit only simple surfaces. Th ese shapes 
are not only rather easy to detect automatically but approximations of them are not 
diffi  cult to compute within the detected surface class (Figure 17.32). For example, a 
region identifi ed as being planar in the segmentation phase will be approximated by 
part of a plane. Computing such an approximation plane (regression plane) is a simple 
task, especially if the noise level is low.

Similar statements hold for the other simple shapes. However, we may not yet have 
obtained the fi nal result. Th ink of measuring a cube. Even if all faces have been nicely 
detected and approximated, the faces will in general not be exact squares (maybe not 
even rectangles). Th us, one has to impose certain constraints and run an appropriate 
approximation algorithm capable of maintaining the constraints. Th is is sometimes 
called model beautifi cation. 

Surface Fitting

Fig. 17.32
This technical object exhibits mainly 
simple surfaces and blending surfaces 
and has been obtained via digital 
reconstruction. 
(a) Result of segmentation,
(b) shaded image of the reconstructed 
model and
(c) optical lines for quality control 
(images courtesy of Geomagic, 
Inc., Research Triangle Park, North 
Carolina).

(c) 



Symmetries. An important part of beautifi cation concerns the achievement of the 
desired symmetries. Th is holds for all types of objects, not only those formed by simple 
surfaces, and includes more general symmetries than just refl ective symmetry. Figure 
17.33 shows an example of automatic symmetry detection [Mitra at al. 2006]. Th ere are 
even algorithms for symmetrization, which makes nearly symmetric objects perfectly 
symmetric [Mitra et al. 2007]. Th is even holds for the mesh describing the shape, as 
shown in Figure 17.34. 

Fig. 17.33
Results of an algorithm for symmetry 
detection by Mitra, Pauly, and Guibas. 
The six most signifi cant modes of 
symmetry detected on a model of 
the Sydney Opera are shown. The 
algorithm detects symmetries with 
respect to planar refl ection, translation, 
rotation, and uniform scaling.
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Fig. 17.34
Symmetrization applied to an 
architectural design study. The zooms in 
the middle row show how the meshing 
of the extracted symmetric element 
evolves during optimization. This 
element appears six times in different 
locations and orientations, as illustrated 
in the bottom row (images courtesy of 
N. Mitra).



632

Freeform surface fi tting. Neglecting for a moment the manufacturing constraints 
discussed in the following, one may regard all surfaces diff erent from the simple ones 
as freeform geometry and approximate them with B-spline surfaces—a procedure also 
known as B-spline surface fi tting. Th ere are fully automatic algorithms for this purpose, 
but as a strategy these are not recommended (Figure 17.35).

Th e problem lies in the specifi cation of patch boundaries. Ideally, and especially for 
architectural applications, these boundaries should follow features or other structure 
lines that are part of the design intent. A comparison of the automatic approach with 
the result of a careful patch boundary layout is illustrated by Figure 17.35. 

Sometimes it is possible to decompose the model into primary surfaces, fi t them 
individually, and construct the remaining parts via blending surfaces. Figure 17.35 
depicts this in terms of a detail from a model resembling Kunsthaus Graz.

Fig. 17.35
The quality of a B-spline model 
signifi cantly depends on the chosen 
patch layout. An automatic patch 
layout (example 1) will not likely lead 
to a meaningful segmentation into 
patches. For this data set, roughly 
resembling the shape of Kunsthaus 

Graz  a better result (example 2) is 
obtained by fi rst approximating the 
main body, fi tting the detail surfaces 
(here, cylinders; getting closer to the 
real object, one should use cones), 
and then computing smooth blending 
patches.

example 2 after adding cylindrical parts and blends
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Standard digital reconstruction soft ware will approximate freeform shapes by general 
B-spline surfaces. However, for applications in architecture it may be better to sacrifi ce 
some accuracy and try to approximate the measurement data by a union of surface 
patches that can “easily” be built. Th ese surfaces include ruled surfaces, developable 
surfaces, and other kinematically generated surfaces.

A related challenge here is that we cannot simply minimize approximation errors or 
fairness functionals because the panelization itself is a crucial aspect of the design 
expression of a building. Looking, for example, at the experience music project 
by Gehry it is obvious that the orientation of the tiles was carefully designed. 
Unfortunately, there is not much research on the geometric facets of panelization. 
Some of it was described in Chapter 15, and we will address the problem again at the 
end of Chapter 19. 

The Surfaces Need to 
Be Built
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Approximation with ruled surfaces. Ruled surfaces have the great advantage of 
carrying a family of straight lines. Th is greatly simplifi es the actual construction. Ruled 
surfaces are modeled by B-spline surfaces if we set one degree equal to 1 (see Chapter 
11). However, standard fi tting algorithms may not perform well. Th is is due to the 
mathematical formulation of the fi tting procedure. An approach that can handle such 
a situation has been presented by Pottmann and Leopoldseder [2003]. A result of this 
algorithm is shown in Figure 17.36. 

Developable surfaces. Developable surfaces are favorite shapes of some architects 
(see Chapter 15). However, fi tting such surfaces to given models is not as simple as it 
may seem. Digital reconstruction soft ware does not yet support this important surface 
class. Figure 17.37 shows results of an algorithm by Peternell [2004]. Fig. 17.36

Approximation by ruled surfaces is 
interesting for architecture because 
ruled surfaces can be more easily built 
than general freeform surfaces.
(left) Approximation algorithms evolve 
a simple ruled surface optimally toward 
the input data,
(right) which yields the fi nal surface 
(Images courtesy of Reinhard Gruber.)

point cloud and initial position of approximating surface

approximation of a point cloud by a ruled surface



 

Fig. 17.37
Approximation by developable surfaces 
is more diffi cult than fi tting arbitrary 
ruled surfaces to triangulated models. 
This fi gure shows results of an 
algorithm by M. Peternell that uses 
the Gaussian spherical image as an 
intermediate step.

   

   

 

data set Gaussian spherical image approximation by a developable 
surface

data set Gaussian spherical image approximation by a developable 
surface

regression curve
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Translational surfaces and more general sweeping surfaces. From a computational 
perspective, fi tting translational surfaces to a triangulated model is comparable 
to approximation by a ruled surface. Hence, the algorithm of Pottmann and 
Leopoldseder [2003] is also applicable in this case (Figure 17.38). Congruent profi les 
are also present on rotational surfaces, whose reconstruction is solved and supported 
by commercial soft ware.

More general sweeping surfaces, which are obtained by moving a curve in space 
with a rigid body motion (Chapter 12), may be interesting candidates for digital 
reconstruction in architectural applications. However, we are not aware of an 
algorithm that would go beyond helical surfaces or moulding surfaces. 

Fig. 17.38
Approximation of data point clouds 
by translational surfaces (left, initial 
shape; right, result after optimization). 
(Images courtesy of Reinhard Gruber.) 

point cloud and initial position of approximating surface

approximation of a point cloud by a translational surface
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Shape Optimization 
Problems

Th e realization of a design idea in an optimal way, both from the aesthetic and 
functional perspective, is a diffi  cult and complex problem area. Th e mathematical and 
algorithmic formulation of aesthetic shapes is also a complicated issue.

Adding functional requirements makes the overall problem even more diffi  cult, 
especially in that functional optimization cannot be fully separated from shape 
optimization (see the example in Figures 18.1a and b). Because this book is focussing 
on geometry, we will only describe certain geometric optimization problems in detail 
and then briefl y address a few functional optimization concepts closely related to 
geometric ways of thinking. 

Fig. 18.1
A hanging chain application by 
Axel Kilian as an example of shape 
optimization driven by a functional 
goal.

(a)
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(b)



643

To optimize a design, we need to defi ne the problem in a quantifi able way—in the 
case of optimization using a function to describe the range of possible outcomes. It 
is already within this modeling of the problem that the optimization occurs. A badly 
defi ned model of the problem will never be made viable by even the best optimization 
approach. Th us, we off er the following postulate.

Any optimum is only an optimum within the conceptualization of the problem space and 
the boundary conditions applied.

If we can translate an aspect of a problem into a functional description, optimization 
can be a very powerful method. We have encountered optimization in the previous 
chapter. In regard to functions of one variable, we pointed out that numerical 
optimization techniques may not reach the desired “optimal result” if the initial guess 
is not within the basin of attraction. Here, we add further basic concepts and address 
functions of more than one variable. 

We consider a function f (called objective function) that assigns to each point p of a 
domain D a real number f (p). D may be in a high-dimensional space. Optimization 
deals with the computation of local or global minimizers of f. A local minimizer p* is a 
point whose function value f (p*) is smaller than the function values of the points in a 
small neighborhood around p*.

Th e function value f (p*) itself is called a local minimum. A global minimum on D is 
the smallest of all local minima and is attained at the global minimizer. Confi ning the 
search for minima to a domain D is actually a constraint, and minima may occur at the 
boundary of D. In the following, we will not address this boundary case. Th e reason 
one is only looking at minima is simple: A maximum of f is a minimum of the function 
–f and thus it suffi  ces to confi ne the discussion to minima. 

To get an idea of optimization in the case where f depends on more than one variable, 
we address the case of two variables. Th is means that the objective function f shall be 
defi ned for points p = (x,y) of the plane and thus we write it as f (x,y). 

Remarks on Mathematical 
Optimization
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local minimizer

saddle point

f(u,v)

f(x*,y*)

T

Optimization needs the concept of diff erentiation. Th e partial derivative fx of f with 
respect to x is computed like the derivative of a function of only one variable x. We 
simply treat the other variable y like a constant. Th e meaning of fx can be visualized at 
hand of the graph surface z = f (x,y) of f . It is the slope of the graph’s tangent plane in 
the x direction. Analogous statements hold for the partial derivative fy of f with respect 
to y.

Clearly, at a local minimizer the tangent plane T of the graph surface must be 
horizontal (parallel to the xy-plane). Th is means that its slope in any direction is 
zero, which is equivalent to requiring that both partial derivatives fx and fy be zero 
(Figure 18.2). Unfortunately, maxima or saddles with horizontal tangent plane exhibit 
vanishing fi rst partial derivatives as well—and thus one also has to look at the second 
partial derivatives to confi rm that one has a minimum. We omit the formulation of the 
resulting criteria.

Fig. 18.2
At a local minimizer (x*,y*) of a 
function f(x,y), the partial derivatives 
fx and fy of f are zero. This expresses 
the fact that the tangent plane T of the 
graph surface is parallel to the 
xy-plane. The same conditions hold at 
a maximum or at a saddle point with an 
xy-parallel tangent plane and thus the 
test for a minimum requires looking at 
the second derivatives as well.

Example 
(minimization of a quadratic function). 
We search for a minimizer of the quadratic 
function f (x,y) = 3x2 + y2 – 6x – 4y + 8. 
Th e partial derivatives are fx = 6x – 6, 
fy = 2y – 4, and setting them to zero yields 
as the only candidate for a minimizer 
the point (x*,y*) = (1,2) with function 
value f (1,2) = 1. Looking at the function 
values at other points, it is easily seen that 

x y

z

(x*,y*) = (1,2) is really a minimizer of f. 
Th e graph surface z = f (x,y) is an elliptic 
paraboloid with vertex (1,2,1).
Admittedly, this example is extremely 
simple. However, it shows an important 
fact: Th e partial derivatives of a quadratic 
function f are linear functions and thus 
setting them to zero yields a system of 
linear equations. Th is holds for two 

variables as well as for an arbitrary 
number of variables.
Th e minimization of quadratic functions is 
a fundamental tool in optimization. Many 
numerical optimization techniques solve, 
in each iteration step, the minimization 
of a quadratic auxiliary function g—
which approximates the function f in an 
appropriate way. 
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Fig. 18.3
The simple least squares 
approximation problem of optimally 
fi tting a roof in the shape of a 
hyperbolic paraboloid to a number of 
points is an optimization problem in six 
dimensions.

Example 
(roof design via least squares 
approximation). Assume that we 
want to span a roof in the shape of a 
hyperbolic paraboloid over a design. We 
have a number of points p1, …, pN the 
roof shall pass through. However, they 
are numerous (more than six) to fulfi ll 
this requirement precisely.
To the rescue, we use least squares 
approximation. Among all hyperbolic 
paraboloids, we compute the one as 
close as possible to the N data points 
p1 = (x1,y1,z1),…,pN = (xN,yN,zN). Due to 
structural reasons, we prefer a paraboloid 
P with vertical axis—which has in the 
underlying (x,y,z) coordinate system a 
representation of the form

P: z = ax2 + 2bxy + cy2 + dx + ey + f.       (P)
For any choice of the coeffi  cients a, b, 
c, d, e, f  this is a paraboloid (for special 
choices, a parabolic cylinder or a plane). 
Th e condition for a hyperbolic paraboloid 
is b2 – ac > 0. We do not include this 
inequality in our approximation because 
we assume that the best approximation 
to the input data will result in a 
hyperbolic paraboloid anyway. Th e 
(signed) distance of a data point, say p1, 
to the paraboloid P (measured in the z 
direction) is computed as
d(p1) = ax1

2 + 2bx1y1 + cy1
2 + dx1 + ey1 + 

f – z1.  (D)
Analogous expressions hold for the other 
data points. Least squares approximation 

now determines a,b,c,d,e,f  such that the 
sum of squared distances is minimized. 
Th us, the objective function F is given 
by
F = d(p1)2 + d(p2)2 + … + d(pN)2.
Here, we have to insert expression D and 
similar ones for the occurring distances 
d(pi). Th e unknowns a,b,c,d,e,f occur 
linearly in the terms d(pi), and therefore 
quadratically in d(pi)2. Th us, F is a 
quadratic function of the six unknowns. 
According to the previous example, 
this eventually leads to the solution of a 
system of six linear equations. We do not 
provide the details of the system and just 
show a result in Figure 18.3.
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We hope that the example shows why even simple problems end up in higher 
dimension. Note that we are not minimizing a function in x,y but a function in 
a,b,c,d,e,f  (i.e., a function in six-dimensional space). 

Gradient descent. Even at a point p that is not a minimizer, the partial derivatives are 
important. We form the gradient ∇f = (fx ,fy), which is the vector whose coordinates 
are the partial derivatives of f with respect to x and y. Th e gradient is always pointing 
in the direction of steepest ascent and is thus orthogonal to the direction of no ascent 
[i.e., to the corresponding iso-line (level set) of f (recall Chapters 12 and 14 and see 
Figure 18.4)].

To move “downhill” toward a minimum one may always move in the direction of the 
negative gradient –∇f. Th is is the simplest numerical optimization algorithm, called 
gradient descent. At a local minimizer, the gradient vanishes and the descent algorithm 
stops there. Th is is exactly what one wants to achieve. Th ere are much better gradient-
based algorithms. Th eir idea is very similar to that which led us to pure gradient 
descent.

Shape optimization problems may be rather nasty from various perspectives. Th e 
objective function f may be very complicated and far away from a quadratic function. 
Moreover, the representation of a shape may depend on many variables. Just think of a 
surface represented as a triangle mesh.

Apart from a few mesh vertices, which may be fi xed, the search for a surface that 
minimizes a certain objective function f  has as unknowns the coordinates of the mesh 
vertices. For example, if the mesh is rather simple and only 100 vertices are subject to 
optimization the optimization problem has 300 variables. 

Fig. 18.4
A gradient descent algorithm iteratively 
performs small steps in the direction of 
the negative gradient. Geometrically, 
this means that one moves like the 
fl ow of water on the graph surface; 
namely, in the steepest descent 
direction (i.e., orthogonal to the 
contour lines). It is obvious that in this 
way one will reach a local minimizer. 
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We have previously encountered various geometric optimization problems such as 
registration, surface fi tting, hole fi lling, and symmetrization. We will now focus on a 
few partially very famous types of curves, surfaces, and meshes that may be obtained 
as solutions of optimization problems and that merit attention from an architectural 
perspective.

Minimal surfaces. One of the oldest and most famous geometric optimization 
problems for surfaces is Plateau’s problem, which was formulated by the French 
mathematician J. L. Lagrange (1769) but named aft er the Belgian physicist J. Plateau—
who posed it in 1866 (Figure 18.5).

Given a smooth closed curve c without self-intersections, fi nd the surface patch with 
boundary curve c that has the smallest surface area A.

Th e optimal surface S is called a minimal surface. We may observe a minimal surface 
as the shape of a soap membrane through a closed wire c. Neglecting gravity, surface 
tension implies that the soap membrane attains the shape of the surface with minimal 
surface area (recall Chapter 14). To obtain an interesting surface S, one requires c to be 
nonplanar because otherwise the solution S would be a planar patch. 

Th e present problem is dependent on more than a fi nite number of variables, and in 
this sense it is more complicated than the optimization problems addressed previously. 
Th ere is an infi nite dimensional set of surface patches with a given boundary curve c, 
and among those one has to fi nd the optimal solution (i.e., the one with the smallest 
surface area). Such a problem is called a variational problem.

Fig. 18.5
Plateau’s problem requires one to pass 
a surface with minimal surface area 
through a closed spatial curve c. Such 
surfaces can be observed at soap fi lms. 
Frei Otto used soap fi lms as “analogue 
computers” for form-fi nding purposes 
[Otto and Rasch 1995].
(left) Soap-fi lm form-fi nding model with 
projected grid lines.
(right) Architectural realization at a 
church (1982–1983) in Bremen-Grolland 
by architect C. Schröck, consultant 
Frei Otto, and execution manager F. K. 
Schleyer and Company. 

Geometric Optimization
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Th e variational equivalent to setting the gradient to zero yields a condition known as 
the Euler-Lagrange equation of the variational problem. Applying this method to the 
Plateau problem, one obtains an equation that expresses the following fundamental 
property: A minimal surface has vanishing mean curvature in each of its points. 

Recall from Chapter 14 that mean curvature H is the mean value of the principal 
curvatures, H = (k1 + k2)/2. H = 0 is equivalent to k1 = –k2. Unless we have a fl at point 
(k1 = k2 = 0), the two principal curvatures have diff erent signs. Th erefore, a generic 
surface point p of a minimal surface must be a hyperbolic point (saddle-like). At p, 
there is a locally approximating paraboloid (see equation (14.2), which is valid in an 
adapted coordinate system with origin at p, and x-axis and y-axis in principal curvature 
direction):

z = (k1/2)(x2 – y2) = (k1/2)(x + y)(x – y).

Th is is a hyperbolic paraboloid whose rulings in the plane z = 0 are the two orthogonal 
straight lines x + y = 0 and x – y = 0. Th ese straight lines are the asymptotic directions 
(directions of vanishing normal curvature). We see that in each point of a minimal 
surface the asymptotic directions are orthogonal. In other words, the bisecting lines of 
the (always orthogonal) principal directions are the asymptotic directions.

A curve on a surface S in each point tangent to the corresponding asymptotic 
direction of S is called an asymptotic curve. Hence, on a minimal surface the asymptotic 
curves form an orthogonal curve network. It is the bisecting curve network of the 
network of principal curvature lines (Figure 18.6). Th e asymptotic curve network and 
the network of principal curvature lines can form the basis for realizations of minimal 
surfaces as frameworks of rigid straight rods with fl exible connections. Applying 
appropriate forces at the boundary vertices, such frameworks may be brought into 
static equilibrium.

asymptotic curvesprincipal curvature lines

Fig. 18.6
A generic point of a minimal surface 
is a hyperbolic surface point with 
orthogonal asymptotic directions. The 
asymptotic curves, which always follow 
the asymptotic direction, form an 
orthogonal curve network that “bisects” 
the network of principal curvature 
lines. 
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Minimal surfaces are also special with regard to the Gaussian spherical mapping G. 
Recall from Chapter 14 that G maps a surface point p onto that point p* of the unit 
sphere S*, which is described by the unit normal vector n(p) of S at p. A curve c on S is 
mapped to a curve c* on the sphere S*.

For any (non-developable) surface S, the network of principal curvature lines on 
S is mapped onto an orthogonal curve network on S*. For a minimal surface, the 
asymptotic curve network is also mapped to an orthogonal curve network of S* 
(Figure 18.7). Th is is a result of the remarkable property that the Gaussian spherical 
mapping of a minimal surface S to the unit sphere S* is conformal (angle preserving). 

In our study of nonlinear planar transformations (Chapter 5), we have mentioned that 
angle-preserving mappings of the plane are obtained via complex functions. It turns out 
that a minimal surface S can also be nicely represented with the help of a diff erentiable 
complex function—a fact related to the conformal Gaussian spherical mapping.

Let t = u + iv be a complex variable (u and v are real) and f (t) a complex function of 
t [i.e., the function values f (t) are also complex]. Of course, i is the imaginary unit 
satisfying i2 = –1. We call R[t] = u the real part of a complex number t = u + iv, and 
I[t] = v its imaginary part. Th en, a representation of a minimal surface is given by

 x = I[(t2 – 1)f  ''(t) – 2t f  '(t) + 2f (t)],

 y = R[–(1 + t2)f  ''(t) + 2t f  '(t) – 2f (t)],     (M)

 z = 2 I[–t f  ''(t) +  f  '(t)].

Here, f  ' and f  '' are the fi rst and second derivatives, respectively. It is not allowed to 
insert a function f with vanishing third derivative, but otherwise one always obtains 
a minimal surface. Equations (M) may be seen as a parametric representation of a 
minimal surface in terms of u (real part of t) and v (imaginary part of t). Th e mapping 
from the uv-plane to S is always conformal. To illustrate the power of equations (M) 
for the generation of minimal surfaces, we give an example.

S*S
Fig. 18.7
The Gaussian spherical mapping of 
a minimal surface to the unit sphere 
preserves intersection angles of curves. 
This fi gure shows the orthogonal 
network of principal curvature lines on 
S and the corresponding orthogonal 
curve network on the unit sphere S*. 
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Fig. 18.8
Enneper’s minimal surface is a 
polynomial minimal surface all of 
whose asymptotic curves and principal 
curvature lines are cubic curves. 

Example: 
Enneper surface. We set f (t) = t3 in the 
representation (M). With f  '(t) = 3t2 
and f  '(t) = 6t we obtain
x = I[2t3 – 6t), y = –R[2t3 + 6t], z = 
2I[–3t2].
To return to real parameters u,v, we insert 
t = u + iv and arrive at the parametric 
representation 
x = 6u2v – 2v3 – 6v, y = –2u3 + 6uv2 – 6u, 
z = –12 uv.
Th is simple polynomial minimal surface 

S is known as Enneper’s minimal surface 
(Figure 18.8). Th e iso-parameter lines u 
= const and v = const are the asymptotic 
curves on S. Th e straight lines u + v 
= const and u – v = const of the uv 
parameter plane correspond to the 
principal curvature lines on S. 
Both the asymptotic curves and the 
principal curvature lines are cubic 
curves. Th e principal curvature lines are 
even planar. 

All minimal surfaces may be obtained from (M). We give a few further examples, but 
omit the derivation from equations (M).
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Fig. 18.9
Helicoids are the only ruled surfaces 
among the minimal surfaces (apart 
from the plane, which is minimal and 
ruled in an obvious way).

Example: 
Helicoid. We have already studied a 
minimal surface in Chapter 9; namely, 
the helicoid. Take a straight line G (e.g., 
the x-axis), which intersects an axis A 
(e.g., the z-axis) at a right angle. Th en any 
helical motion about the axis A moves 
G along a helicoid. Helicoids are the 
only ruled surfaces among the minimal 
surfaces. Clearly, the rulings are one 
family of asymptotic curves. Th e other 
family of asymptotic curves constitute 
the helical paths (Figure 18.9). 

Enneper’s minimal surface:
parameter lines

Enneper’s minimal surface:
principal curvature lines
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Fig. 18.10
Left: A rope attains under the infl uence 
of gravity the shape of the catenary 
y = a cosh(x/a). Right: Rotating the 
catenary about the x-axis, one obtains 
the catenoid. Up to similarities, this 
surface is the only minimal surface of 
revolution. Right page: The catenary 
is the ideal shape of an arc as for 
example in the Gateway Arch (1963–
1965) in St. Louis by Eero Saarinen.

Example: 
Rotational and helical minimal 
surfaces. Prior to the description of 
those minimal surfaces, which can be 
generated as rotational or helical surfaces, 
it is good to look at a remarkable planar 
curve—the catenary (Figure 18.10). 
It is the equilibrium shape attained 
by an idealized rope (homogeneous, 
completely fl exible, and not extensible) 
under the infl uence of gravity.
An interesting property of the catenary 
is that the same curve appears as an 
equilibrium shape in multiple ways. Any 
two points of a catenary c can be used 
as support points, and one obtains the 
same curve c as equilibrium shape. Th e 
catenary (now gravity direction being 

inverted) is the ideal shape of an arc, and 
extensions of this idea are the frequently 
used hanging models (addressed later 
in this chapter). A mathematical 
representation of a catenary uses 
hyperbolic functions. Th ese functions 
cosh(x) and sinh(x) are defi ned via the 
exponential function ex as 
cosh(x) = (ex + e-x)/2, sinh(x) = (ex – ex)/2. 
Th e catenary is basically the graph of the 
function cosh(x) and has the equation
 y = a cosh(x/a).
Here, a is a constant that defi nes its 
point (0, a) on the y-axis. Rotating the 
catenary about the x-axis, one obtains 
the catenoid—the only minimal surface 
of revolution. 

To obtain all helical surfaces among the 
minimal surfaces, we consider x = a· 
cosh(z/a) as an equation in an (x,y,z) 
system. It is a cylinder C with y-parallel 
rulings and a catenary as a base curve 
in the xz-plane. Th e envelope of this 
catenary cylinder C under any helical 
motion about the z-axis is a helical 
minimal surface.
Figure 18.11 shows some surfaces from a 
continuous sequence of helical minimal 
surfaces. Th ese surfaces are isometric to 
each other [i.e., they can be bent into 
each other without stretching or tearing 
(the length of any curve on the surface 
remains unchanged)]. At the two ends 
of this bending sequence, we have the 

catenoid
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Fig. 18.11
After cutting the catenoid along a 
catenary, one can bend it (without 
changing the lengths of curves) 
into a part of a helicoid such that 
all intermediate positions are helical 
minimal surfaces.  

catenoid and the helicoid. To aid the 
reader in the implementation of this 
remarkable surface sequence, we add 
a parametric representation of helical 
minimal surfaces:
x = a cos(u) cosh(v) + p sin(u) sinh(v),
y = a sin(u) cosh(v) – p cos(u) sinh(v),
z = av + pu.
Here, u is the rotational angle about 
the z-axis and p is the pitch of the 
helical motion. With p = 0, one obtains 
the catenoid—whereas a = 0 yields a 
helicoid. To obtain the aforementioned 
bending sequence, we can select a and p 
according to a = c⋅cos(α), p = c⋅sin(α) 
and vary α in the interval [0,π/2]. 
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Fig. 18.12
Scherk’s minimal surface can be 
generated by translation of a planar 
profi le p1 along another planar profi le 
curve p2.
(right) The Scherk surface carries 
straight lines and
(bottom) has a periodic structure. 

Example: 
Scherk’s minimal surface. A remarkable 
minimal surface was discovered by 
H. F. Scherk in 1834. Its explicit 
representation
z = ln(cos y) – ln(cos x)
shows that this surface is a translational 
surface. We may translate the planar 
curve p1 : x = 0, z = ln(cos y) along the 

planar profi le curve p2 : y = 0, z = –ln(cos 
x) to obtain this surface (Figure 18.12).
It is surprising that the Scherk surface can 
be generated as a translational surface 
in infi nitely many ways. Th e complete 
Scherk surface has a periodic structure. 
Because we may write its equation as z 
= ln[cos(y) / cos(x)] and the logarithm 

is only defi ned for positive numbers, 
we can compute surface points only for 
those pairs (x,y) whose cosines cos x, cos 
y have the same sign. Th is yields a regular 
pattern of squares in the xy-plane over 
which the surface is defi ned. Th e surface 
carries a few straight lines that fi t well 
into this pattern (Figure 18.12).



Numerical solution of the Plateau problem. Although equations (M) (p.649) 
are capable of producing all possible minimal surfaces, they cannot be used to solve 
Plateau’s problem for a given closed curve c. Th e solution of the Plateau problem is 
achieved with a numerical optimization algorithm. It approximates the given closed 
curve c with a polygon and the minimal surface with a mesh, typically a triangle mesh.

Usually, the connectivity of the mesh is specifi ed in advance and only the geometry 
is found via optimization. Among all meshes of the given connectivity and with the 
given boundary vertices on c, the algorithm computes the mesh with the minimal 
surface area. Th is is an optimization problem with 3N unknowns, where N is the 
number of vertices in the mesh that are not on c (i.e., whose position has to be found 
by the algorithm). 

Figure 18.13 shows examples that have been computed in such a way. A frequently 
used tool used to compute minimal surfaces and related optimal surfaces is K. Brakke’s 
surface evolver [Brakke 1992].  

Fig. 18.13
(a) The Plateau problem can be solved 
via numerical optimization algorithms 
that approximate the surface to be 
constructed by a triangle mesh. 
(b) The Costa minimal surface as 
shown in the movie “Touching Soap 
Films” (Image courtesy of A. Arnez, 
K. Polthier, M. Steffens, and C. Teitzel).

(a)

(b)
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Surfaces with constant mean curvature. Minimal surfaces have constant mean 
curvature zero. Th ose surfaces whose mean curvature H has a constant value diff erent 
from zero possess remarkable geometric properties. In fact, these constant mean 
curvature (CMC) surfaces occur in a generalization of Plateau’s problem; namely, when 
looking for an area-minimizing surface under a volume constraint.

      

Fig. 18.15
The Delaunay surface is a surface 
of revolution with constant mean 
curvature. Its profi le can be generated 
as a trajectory of the focal point of an 
ellipse or hyperbola that rolls along 
a straight line. (Images courtesy 
of Center for Geometry, Analysis, 
Numerics & Graphics, University of 
Massachusetts, Amherst.) 

Fig. 18.14
Shapes closely related to surfaces 
of constant mean curvature occur 
in architecture at pneumatic 
constructions. Pneumatic Hall 
‘Airtecture’ (1996) in Esslingen-
Berkheim, Germany, constructed for 
Festo [Schock, 1997]. 

trajectory of focal point of an ellipse

 
rotational CMC surface

  

rotational CMC surface

trajectory of focal point of a hyperbola
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Th ey arise as shapes of thin fi lms in the presence of diff erent pressure values on either 
side. One may see CMC surfaces at the boundaries of cells in foams. In architecture, 
approximate CMC surfaces occur at pneumatic constructions (Figure 18.14). Th e 
simplest CMC surface is of course a sphere. Figure 18.15 shows CMC surfaces of 
revolution. Th eir profi le curves are trajectories of the focal point of an ellipse or 
hyperbola that rolls along a straight line. If the rolling conic is a parabola, the focus 
generates a catenary. Th e resulting catenoid (Figure 18.10) is a minimal surface and 
thus has constant mean curvature H = 0. Recent research in diff erential geometry has 
led to powerful soft ware for the generation of minimal surfaces or CMC surfaces (see 
Figure 18.16). 

Fig. 18.16
Some CMC surfaces generated with 
CMCLab, developed at the Center 
for Geometry, Analysis, Numerics & 
Graphics, University of Massachusetts, 
Amherst. (Images courtesy of F. Pedit.) 
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Willmore energy. Th e search for aesthetic shapes may be based on the minimization 
of objective functions that express a balanced distribution of curvature along the 
surface. Various ways of achieving this have been proposed in the literature (see, for 
example, Sequin [2005]). We address here one famous approach based on Willmore 
energy EW : 

Consider a surface S, form the squared diff erence (k1 – k2)2 of principal curvatures 
at each point, and “sum up” these values. “Summing up” means integration over the 
surface S. With dA as surface area element, the surface area is the integral of the 
constant function 1 (i.e., A = ∫SdA). Willmore energy is the surface integral of the 
function (k1 – k2)2: 

EW = ∫S (k1 – k2)2dA.

Th e surface integral is easily understood if we approximate the surface by a fi ne triangle 
mesh and assign a value (k1 – k2)2 (Tj) to each triangle Tj. If Aj is the area of Tj, the 
integral is approximated by the sum of products Aj⋅(k1 – k2) 2(Tj) over all triangles. 

Because (k1 – k2)2 is never negative, EW is never negative. Th e smallest possible value 
is obtained for a surface with k1 – k2 = 0 at all points (i.e., for a sphere). In some sense, 
we may say that the Willmore energy tries to make surfaces as spherical as possible. An 
important advantage of the Willmore energy is that one can prescribe a boundary strip 
(i.e., a boundary curve plus tangent planes along it) and compute an energy minimizer 
that interpolates these data.

Fig. 18.17
For the minimization of Willmore 
energy, one may prescribe a boundary 
curve and tangent planes along it. 
Hence, one can use surfaces that 
minimize Willmore energy as smooth 
blending surfaces between given 
surfaces. A related application is to 
smoothly fi ll a hole of a surface. These 
images illustrate some steps of an 
optimization algorithm that iteratively 
reduces the Willmore energy. (Images 
courtesy of A. Bobenko and P. 
Schröder.)
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Applications of this fact include the computation of smooth blending surfaces 
between given surfaces or smooth hole-fi lling techniques ([Bobenko and Schröder 
2005], Figure 18.17). More complicated surfaces that are minimizers of the Willmore 
energy are shown in Figure 18.18. Th ere is also a physical reason for studying 
Willmore energy. Th in fl exible structures are governed by a surface energy (in which 
Willmore energy is involved) that reduces to the Willmore energy in a special case. 

Fair curves and polygons. Let’s now take a step back and discuss shape optimization 
for curves. We are doing this as preparation for the discussion of curve networks, 
which constitute a possible modeling tool for surfaces. Th e bending energy of an 
idealized thin elastic beam is proportional to the integral of the squared curvature, 
expressed as

E = ∫c k2 ds.

Th e integral is taken over the curve, which may be understood as follows. We use a 
parameterization c(s) = (x(s),y(s)) of the curve (see Chapter 7), where the parameter 
s is the length of the curve segment from its initial point c(0) to the point c(s) under 
consideration. Th e parameter s runs from zero (initial point) to L, where L is the total 
length of the curve.

If k(s) is the curvature of c at c(s), the curve integral from the previous equation is an 
ordinary integral; that is, E = ∫(k(s))2ds extended from 0 to L. We may visualize the 
integral with a polygonal approximation of the curve. We form the sum ∑k2(ej)⋅Lj. 
Here, the values k2 are assigned to the edges ej, and Lj are the corresponding edge 
lengths. 

Fig. 18.18
Surfaces minimizing Willmore 
energy and computed by numerical 
optimization. (Images courtesy of F. 
Pedit.) 
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dk

vk

mk
vk-1

vk+1

Th e minimization of E was studied by Leonhard Euler (1730), who coined the 
name elastica for the minimizers. More recently, Euler’s elastica received interest in 
geometric computing (e.g., for the generation of aesthetic curves that pass through 
given points). In fact, the drawing tool of a spline (Chapter 8) produces shapes of least 
bending energy. Ordinary cubic spline interpolation is based on a simplifi cation of the 
energy E. Instead of studying this simplifi cation for smooth curves, we immediately 
proceed to the discrete version (which acts on polygons).

Consider a polygon, in the plane or in space, whose vertices are given by their 
coordinate vectors v1, v2, …, vN. We select a vertex (say v2) and its neighboring vertices 
v1 and v3. Let m2 = (v1 + v3)/2 be the midpoint of v1v3. We now compute the squared 
distance d2

2 = (v2 – m2)2 of points v2 and m2. Analogously, we can compute a squared 
distance value dk

2 at any inner vertex vk (Figure 18.19).

Assuming that the edge lengths of the polygon are not varying too much, the distance 
dk  is an appropriate discrete curvature measure at vk. Hence, the sum Es of these 
squared distances is a (rough) approximation of the bending energy E. Because dk

2 = 
(vk-1 + vk+1 – 2vk)2/4 is a quadratic function of the coordinates of the involved vertices, 
the sum

Es = (1/4) ∑(vk-1 + vk+1 – 2vk)2

is a quadratic function of the vertex coordinates. Th is makes the use of Es simple. 
For example, if we want to interpolate some points we fi x appropriate vertices and 
compute the remaining ones by minimization of Es. Because it is a quadratic function 
in the unknown vertex coordinates, its minimization requires only the solution of a 
system of linear equations. 

Because the resulting curves may exhibit undesirable undulations, one attaches 
some tension to it by adding a tension term T = ∑(vk+1 – vk)2 with some weight 
w. Minimization of the tension term alone would just give a straight line, but 
minimization of the combined objective function Et = Es +  w⋅T is a useful tool for 
controlling the tension of the curve to be designed (see Figure 18.20).

Fig. 18.20
(left) Minimization of the simplifi ed 
discrete bending energy Es 
(middle and right) may lead to 
pleasing shapes, whose tension can 
be increased by adding a tension 
term with an appropriate weight w. 
The involved objective functions are 
quadratic and thus their minimization 
requires only the solution of a system 
of linear equations.

Fig. 18.19
The distance dk between a vertex vk 

of a polygon and the midpoint mk of 
its left and right neighbor is a rough 
discrete curvature measure. The sum 
of the squared distances is a simple 
fairness measure for polygons. It is a 
quadratic function in the coordinates 
of the vertices and is therefore easy to 
minimize. 
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Fair curves on surfaces. Curve design based on minimization of Es or Et is so simple 
that extensions can also be handled well. Examples of such extensions include the 
design of smooth interpolating curves on surfaces (Figure 18.21), curves in the 
presence of obstacles (Figure 18.22), and even curves that follow features of surfaces 
(Figure 18.23) (see Hofer and Pottmann [2004]). Minimization of an energy 
consisting only of the tension term and restricting the curve to a surface yields a 
geodesic path (shortest path) on the surface (Figure 18.21, right; for geodesics, see 
Chapter 15). 

Fig. 18.23
There are algorithms that support the 
user in the design of curves following 
the features of the surface.

Fig. 18.22
Curve design based on discrete energy 
minimization is also nicely combinable 
with the avoidance of obstacles.

Fig. 18.21
(from left to right) Curve interpolation 
on surfaces with increasing tension 
can also be performed by minimization 
of the energies Es or Et. However, one 
has to make sure that the vertices of 
the polygonal approximations of these 
curves lie on the given surface. This is 
computationally more demanding.



662

Fair webs and mesh beautifi cation. A further extension of fair curves concerns curve 
networks. Th ese networks may be free in space or be restricted to a given surface. Th e 
energy of the network is defi ned as the sum of energies of type Es or Et applied to each 
curve in the network. Th e resulting fair webs [Wallner et al. 2007] can be used for the 
generation of meshes that follow the design intent (Figure 18.24).

Th e aesthetic quality of meshes in architecture and other design applications where the 
meshes are actually materialized also depends on the behavior of the mesh polygons 
contained in the mesh. Th erefore, a design tool that constructs such meshes by energy 
minimization of these polygons may be welcome. An attempt to use this in design is 
shown in Figure 18.24. 

In connection with aesthetic meshes, we also have to recall relaxation (Chapter 11). 
Th e following form of relaxation is simple and easy to implement. Iteratively displace 
each vertex to the barycenter of its neighboring vertices. If one has to remain on a 
given surface S, one moves to the projection of the barycenter onto S. A result of 
relaxation for a real architectural data set is shown in Figure 18.25. In this example, we 
have constrained boundary vertices to boundary curves (not shown)—and the corner 
vertices have been fi xed.

Fig. 18.24
Aesthetic remeshing of a triangulated 
model. 
(a) User input on the original triangle 
mesh. 
(b) Fair mesh interpolating the given 
input polygons. 
(c) Design based on a coarser fair 
mesh interpolating the given input 
polygons. 

(a) (b)

(c)
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Fig. 18.25
An example of mesh relaxation (image 
courtesy of Simon Flöry).

Geometric constraints. In the previous discussion we encountered constraints 
at various places. Th ese concern fi xed boundaries, obstacles, curves or networks 
constrained to surfaces, curves close to features, and so on. Other constraints in 
geometric modeling for architectural applications may be constraints on enclosed 
volumes, maximal height, or avoiding local minima (for the fl ow of water).

Th e avoidance of local minima is always guaranteed for minimal surfaces because 
these have only saddle-like surface points. More precisely, they follow the maximum 
principle (i.e., the points with maximal and minimal height occur at the boundary 
curve of the considered surface patch). Th e inclusion of constraints is oft en not a 
simple task, but there are powerful optimization packages that can be used. 

original mesh

relaxed mesh



Fig. 18.26
Steering form example for a simple 
catenary chain of blocks. The blue 
and green sections have moment 
connections allowing for no catenary 
parts in the arc. (Image from research 
by Axel Kilian.)
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Functional Optimization
Functional optimization goes beyond geometry and thus also beyond the objective 
of the present book. Th erefore, only a few topics with a very geometric fl avor are 
addressed.

Hanging models. Th e catenary curve can be easily computed by using the 
hyperbolic cosine function introduced previously. Th is simple case is applicable 
if a hanging line connects two fi xed support points. But once three hanging 
lines—supported at diff erent points—connect at a (non-fi xed) point we cannot 
provide such a simple explicit solution. Of course in practice one uses much more 
complicated systems of hanging lines.

Here we have to adopt a solver-based approach to compute an equilibrium solution. 
Th e model we can choose is one of point masses (referred to as particles) and 
weightless springs, which generate a force when displaced from their rest length 
proportional to their spring constant. Th is model is called a particle spring model 
and is a general force-solving model that can be used to approximate the hanging 
model case.

Th e solver sums all forces present and moves each node in the system by a small 
step toward an equilibrium state that is reevaluated at each solver step based on the 
previous changes to the model. Recently, these solvers were greatly improved in 
stability and speed—mainly in an eff ort to make cloth simulation in animation more 
interactive and robust for design use [Baraff  and Witkin 1998].

Th e particle spring model gives a good approximation of the catenary curve but is 
not perfect because the springs need to stretch in order for the solver to function. 
Th erefore, the catenary chain is subject to small deformation. A further extension of 
optimization in design is the experimental use of optimization selectively to steer a 
form toward a desired form, allowing some suboptimal regions to occur. Most pure 
optimal hanging forms are rather limited in their formal language, and working 
with a mixture of optimal and suboptimal forms increases the vocabulary of forms 
(Figure 18.26).



Membranes. Th ere is a long tradition of textile building in architecture, in particular 
around Frei Otto at the institute for Lightweight Structures in Stuttgart (see http://
www.uni-stuttgart.de/ilek/ and Otto and Rasch [1995]). Membranes are related to 
minimal surfaces, with the exception that they have a fi nite amount of material and 
therefore a fi nite resistance to stretching.

Nevertheless, when calculating a surface a pattern can be created that approximates 
the desired surface and fi nds its form under tension. In the physical application, the 
direction of fabric plays a crucial role in the membrane behavior because the stretch 
factor can vary dramatically depending on the thread direction. 

Figure 18.27 shows applications of membrane structures. We refer here also to 
Formfi nder, a soft ware tool developed by R. Wehdorn-Roithmayr to assist architects in 
the preliminary design of form-active structures [Wehdorn-Roithmayr 2003]. 

A recent beautiful example of a membrane structure was the installation by Anish 
Kapoor at the Tate Modern in London. Th e membrane was carefully optimized by a 
group at Arup, London, under the lead of Cecil Balmond (Figure 18.28).

Fig. 18.27
Examples of membrane structures in 
architecture (images courtesy of Robert 
Wehdorn-Roithmayr). 

Fig. 18.28
Anish Kapoor’s membrane installation 
at the Tate Modern in London. 
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Discrete Freeform 
Structures





671

Th e realization of freeform shapes in architecture poses great challenges to engineering 
and design. Th e complete design and construction process involves many aspects, 
including form fi nding, feasible segmentation into panels, functionality, materials, 
statics, and cost. Geometry alone is not able to provide solutions for the entire 
process, but a solid geometric understanding is an important step toward a successful 
realization of such a project. In particular, it is essential to know about the available 
degrees of freedom for shape optimization. 

Th ere is a current trend toward architectural freeform shapes based on discrete surfaces, 
largely realized as steel/glass structures (see Figure 19.1). Th e most basic, convenient, 
and structurally stable way of representing a smooth shape in a discrete way is via the 
use of triangle meshes. We will discuss them briefl y, but then proceed toward attractive 
alternatives; namely, quadrilateral meshes with planar faces (PQ meshes).

Th e latter tend to have less weight and can be constructed with geometrically 
optimized nodes in the supporting beam layout. We will see that the geometry of 
such PQ meshes is more diffi  cult than that of triangle meshes. Especially challenging 
are the aesthetic layout of edges, planarity of faces, and optimization of nodes in the 
underlying supporting beam structure. 

Discrete Freeform 
Structures

Fig. 19.1
Zlote Tarasy in Warsaw at various stages 
of the construction (Images courtesy of 
Waagner-Biro Stahlbau AG). 



Discrete surfaces may be present in freeform architecture in various ways. Th e 
discrete representation may not be visible and may simply be used to support the fi nal 
skin (see Figure 19.2). On the other hand, in steel/glass or similar structures (such 
as those shown in Figure 19.1) the mesh directly determines the aesthetics of the 
entire building and thus the mesh must be optimized to very high quality. Th is high 
aesthetical mesh quality has hardly been touched so far by the research communities in 
geometric modeling or geometry processing.



Fig. 19.2
The Kunsthaus (2000–2003) in Graz by 
P. Cook and C. Fournier.
(bottom) The fl uid body of the outer 
skin.
(right) An interior view during 
construction, showing the triangulated 
and fl at physical layers of the inner 
skin. (Images courtesy of S. Brell-
Cokcan and M. Hofer.) 

Only very recently researchers became interested in the challenging problems that arise 
in connection with discrete surfaces in architecture. We have been involved in this 
research and we believe there is still a lot of room for future research. Th us, we would 
like to conclude our book with this topic—which is situated at the cutting edge of 
research in architectural geometry. 
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Fig. 19.3
Triangle meshes that can be arranged 
into three families of fair polygons tend 
to be visually pleasing. 
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Most of the basic tasks related to geometric computing with triangle meshes were 
addressed in Chapter 11. We would like to add here a few considerations specifi c to the 
applications we have in mind. Th ese concern the layout of triangle meshes M on a given 
freeform surface S. It is not important in which way S is represented: S could be any 
surface designed with a 3D modeling system. It might even be just a fi ne triangle mesh.

Th e triangle mesh M we are looking for should approximate S well (i.e., stay within 
a user-specifi ed tolerance region around the given design surface S). Aesthetics is 
greatly enhanced if the mesh can be decomposed into three families of fair polygons 
(structure lines), as shown in Figure 19.3. Th is means that the mesh should largely 
consist of vertices of valence 6 (i.e., six edges meeting at an inner vertex). 

Let’s add a further design requirement. To manufacture the mesh at the best possible 
cost, it may be necessary to meet rather tight constraints on the edge lengths and the 
angles in the triangular faces. We have been involved in a project for which the initial 
mesh M exhibited edge lengths that were too short (Figure 19.4), resulting in a too 
heavy and expensive construction. Redesigning this mesh with larger faces retains the 

Triangle Meshes 

Fig. 19.4
The average edge length in the initial 
mesh M for the present design has been 
too small, resulting in high weight and 
cost. A remeshing scheme based on a 
mapping into a planar domain has been 
used to coarsen the mesh M toward a 
mesh M1 that can be built at a lower 
cost. (Data courtesy of Waagner-Biro 
Stahlbau AG, Vienna.) 
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aesthetics and reduces the cost. Th e basic idea of our remeshing scheme is a mapping 
onto a planar domain (recall Chapter 13). First, remeshing is done in the planar 
domain—and then the resulting coarser mesh is mapped back to surface S. 

A core problem is to fi nd a mapping into the plane that handles the boundaries in 
the desired way. Th is parameterization problem has been widely studied in computer 
graphics [Floater and Hormann 2005], but the application in architecture may benefi t 
from further work that gives the designer intuitive design handles for optimized 
triangle mesh layout on freeform geometries. Also recall the work on fair webs, 
addressed in the previous chapter. It aims at the generation of meshes that satisfy the 
aesthetic requirements in artistic design. 

Triangle meshes are easy to deal with from the perspective of representing a given 
surface S with the desired accuracy. Even the aesthetic constraints are not really 
diffi  cult to achieve. Moreover, statics is simpler if we stay with triangle meshes. 
However, there are the following issues—which make other solutions, in particular 
quadrilateral meshes with planar faces, attractive.

• In a steel/glass or other construction based on a triangle mesh, typically six 
beams meet in a node. Th is means a signifi cantly higher node complexity 
compared to other types of meshes. 

• Experience shows that the per-area cost of triangular glass panels is higher 
than that of quadrilateral panels. Th is is mainly due to the fact that 
quadrilaterals fi ll their smallest rectangular bounding boxes better than 
triangles do.

• Generally, one aims at less steel, more glass, and less weight, which also points 
to non-triangular faces.

• For the actual construction, optimized (torsion-free) nodes are preferred 
(see discussion following). Th e geometric theory, however, tells us that for 
triangle meshes in general torsion-free nodes do not exist.

• Apart from very simple cases, triangle meshes do not possess off sets at 
constant face-face or edge-edge distance. Neither is it possible to use triangle 
meshes as the basis of a multilayer freeform construction in which only the 
basic requirement of parallelism of layers is imposed.
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Quadrilateral Meshes 
with Planar Faces

 

      

Planar quad meshes of simple geometry. We have encountered meshes formed by 
planar quadrilaterals [called planar quad (PQ) meshes hereaft er] in several previous 
chapters (see also Figure 19.5). For example, translational surfaces can easily be 
represented as PQ meshes by translating a polygon against another polygon. In a 
similarly simple way, we can obtain discrete rotational surfaces (Figure 19.6) or certain 
generalizations (sometimes referred to as cross-skinning surfaces; Figure 19.5 and 
Glymph et al. [2002]).

Slightly more advanced examples, including their representation via PQ meshes, have 
been discussed in Chapter 12; namely, moulding surfaces and generalized moulding 
surfaces. We would like to add here one simple fact: If we have designed a PQ mesh M, 
any affi  ne transformation (e.g., obtained by scaling with diff erent factors in x, y, and 
z directions) maps M onto another PQ mesh M1 (Figure 19.5). Th is follows from the 
property that an affi  ne map preserves planarity. Th e same holds for projective maps, 
but the latter will in general imply higher distortions to the face sizes and thus may be 
less suitable to the present application. For a detailed discussion of PQ meshes with 
simple geometry, see Glymph et al. [2002]. 

Fig. 19.5
PQ meshes can easily be designed for 
certain surfaces of simple geometry.
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PQ strip

PQ strip

family A

family B

A
1

A
2

M
Fig. 19.6
Rotational PQ mesh M. The mesh 
polygons are aligned along parallel 
circles and meridian curves, 
respectively. Adjacent mesh polygons 
of the same family form PQ strips, 
which can be seen as discrete versions 
of developable surfaces tangent 
to a rotational surface S along the 
rotational circles and meridian curves 
(respectively). The network of parallel 
circles and meridian curves is an 
instance of a conjugate curve network, 
and the PQ mesh M can be seen as a 
discrete version of it.

Example: 
Rotational PQ mesh. To understand 
the geometric constraints on PQ meshes, 
we fi rst look at a very simple example: a 
rotational surface represented by a PQ 
mesh M (Figure 19.6). Th is quad mesh 
can be decomposed into two families of 
mesh polygons: a family A of polygons 
representing rotational circles (also 
called parallel circles) and a family B of 
polygons representing the profi les in 
planes through the axis (these profi le 

curves are also called meridian curves).
Two adjacent polygons A1 and A2 of 
family A form a very simple PQ mesh 
called a PQ strip, which is a discrete 
version of a piece of a cone of revolution. 
Likewise, two adjacent polygons of 
family B form a PQ strip; namely, a 
discrete version of a general cylinder 
surface. Recall from Chapter 15 that 
PQ strips defi ne discrete models of 
developable surfaces. 
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If we refi ne our mesh toward a smooth rotational surface (Figure 19.7), the PQ strips 
converge to developable surfaces in the following sense: Th e edges of a strip (i.e., the line 
segments along which successive quads of a strip are connected; e.g., the connections 
of corresponding points in polygons A1 and A2 of Figure 19.6, seen as discrete rulings 
of a discrete developable surface) tend toward rulings of a smooth developable surface.

Th is developable surface is a cone of revolution if the strip comes from family A, and 
is a cylinder through a meridian curve if the strip arises from family B. Note that 
the edges of a strip from A are edges of polygons in family B and thus tend toward 
tangents of profi le curves. Th is results in the obvious property that the tangents to the 
meridian curves taken at points of the same rotational circle lie in a cone of revolution 
(in special cases, we obtain a cylinder or a plane).

Likewise, the tangents of the rotational circles taken at the points of the same meridian 
curve form a cylinder surface. Th is property of the two families of rotational circles 
and meridian curves can be extended to the concept of conjugate curve networks, which 
plays a crucial role in the design of PQ meshes. 

T

C

general cylinder surfacecone of revolution

Fig. 19.7
The network of parallel circles and 
meridian curves on a rotational surface 
is an instance of a conjugate curve 
network. The tangents to the curves of 
one family at points of a single curve 
of the other family form a developable 
surface; namely, a cone of revolution 
or a general cylinder. 
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Conjugate curve networks. Assume that we are given two families of curves, denoted 
A and B, on a smooth surface S. Th ese two families are said to form a conjugate curve 
network if the following property holds (Figure 19.8): Pick a curve c in the network 
and compute in each of its points the tangent to the curve fr om the other family. Th en, 
these tangents must form a developable ruled surface. It is obvious that this developable 
surface touches S along c. Th us, it is the envelope of the tangent planes of S at the 
points of c. We simply speak of the tangent developable surface along c. 

Th e rotational network from Figure 19.7 obviously has this property. Th e tangents 
to the meridian curves at points of a rotational circle form a cone (in special cases 
a cylinder or a pencil of lines in a plane, but it any case a developable surface). Th e 
tangents to the parallel circles at points of a fi xed meridian curve form a cylinder.

A network of curves resulting by translation is another simple example of a conjugate 
curve network. Along each curve in the translational network, the tangents to 
the other network curve form a cylinder—which is a developable surface. For a 
generalized moulding surface (Chapter 12), we fi nd cylinders as developable surfaces 
along the profi les—whereas the developable surfaces along the motion trajectories are 
already more general.

Th ese examples are simple and hopefully illustrative, but they may be misleading. A 
surface S does not contain just a single conjugate curve network. It carries infi nitely 
many conjugate curve networks! To realize this, we prescribe one arbitrary family A of 
curves (e.g., the intersections of S with a sequence of surfaces). We can then compute 
the conjugate family B as follows. Along each curve c of family A, we determine the 
tangent developable surface and consider its rulings. Th us, in each point of c we obtain 
such a ruling (called the conjugate direction to the tangent of c).

S

family A

family B

c

Fi  

Fig. 19.8
Geometry of a conjugate curve 
network. The tangents to the curves 
of one family, taken at the points of 
a curve in the other family, form a 
developable ruled surface.
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We then do this for all curves c in A. Finally, we have at each point of S a ruling (the 
surface tangent that defi nes the conjugate direction to the tangent of the curve in 
family A). It is known in mathematics that this system of conjugate directions can be 
“integrated” (i.e., one can compute a family B of curves whose tangents are exactly 
these given lines). In this way we have found the conjugate family B and have thus 
determined a conjugate network on S. 

Although this procedure is in principle possible, the resulting network may not be 
suitable for our purpose. Th at is, it might not serve as a basis for the layout of a PQ 
mesh. To understand the problem, we look at a simple example.

Negatively curved areas cause problems. Th e problem with the rulings in a skew 
ruled surface such as the hyperbolic paraboloid is a special case of a more general 
phenomenon: It turns out that the relation of conjugate tangent directions at a surface 
point depends on the curvature behaviour. 

In a hyperbolic point of a surface (point of negative Gaussian curvature), we have 
two tangent directions with vanishing normal curvature (the rulings of the locally 
approximating hyperbolic paraboloid discussed in Chapter 14). Th ese asymptotic 
directions are self-conjugate and thus cause problems with the layout of conjugate 
networks and the layout of PQ meshes (discussed in material following). 

Fig. 19.9
Several conjugate curve networks on a 
hyperbolic paraboloid.
(a) Translational network formed by 
parabolas.
(b) Principal curvature lines.
(c) Intersection curves (red) with 
planes through an axis and their 
conjugate curves (black). In this case, 
the black curves also lie in planes 
through an axis.

Example: 
Hyperbolic paraboloid. Figure 19.9 
shows several conjugate curve networks 
on a hyperbolic paraboloid S. It does 
not exhibit a network that contains a 
family of rulings. Th is has a very simple 
reason. Along each ruling R, the tangent 
planes contain R and thus the tangent 
developable surface degenerates to R 
itself. We can say that the rulings are self-
conjugate and thus cannot serve as the 

basis of a PQ mesh. Th e latter claim is 
obvious: two rulings of the same family 
are skew and thus one cannot form a strip 
of planar quads from them. Th e surface 
S, however, contains some very nice 
conjugate networks. One is translational 
and is formed by parabolas. Another is 
the network of principal curvature lines 
(see discussion following).

(a) (b) (c)
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PQ strip

PQ strip

Principal curvature lines. Ideally, one may want to have a conjugate curve network 
such as the rotational network discussed previously. In this network, called an 
orthogonal curve network, curves of diff erent families intersect at right angles. We may 
therefore ask whether any surface S contains a curve network that is conjugate and 
orthogonal. Th e answer is affi  rmative: a surface S carries in general one such network; 
namely, the network of principal curvature lines (see Chapter 14; this network is not 
uniquely determined for a sphere or a plane S only). 

Th e layout of PQ meshes with the help of principal curvature lines is a promising 
approach because principal curvature lines also nicely refl ect basic shape properties 
and thus may be very suitable from an aesthetic perspective. Th e fact that this network 
is unique and thus does not give us design fl exibility is of course a disadvantage of 
design principles relying on principal curvature lines. 

Planar quad meshes are discrete versions of conjugate curve networks. Th e reader 
may wonder why we spent so much eff ort on conjugate curve networks. However, 
the answer has already been suggested by the example on rotational PQ meshes. It 
can be stated as follows: PQ meshes M are discrete versions of conjugate curve networks. 
Th e proof follows from the observation that any PQ strip formed by mesh polygons 
of family A is a model of a developable surface, and its edges may be seen as discrete 
tangents of polygons in family B (Figure 19.10). 

Th ere are special PQ meshes that are discrete versions of the network of principal 
curvature lines in a very precise way. Th ese principal meshes are discussed in material 
to follow in connection with off sets. Here, we only mention one type of principal 
meshes, the circular meshes. A quad mesh is called circular if each of its quads possesses 
a circum-circle (Figure 19.11). Th e rotational meshes shown previously are circular 
meshes due to symmetry. 

Fig. 19.11
A PQ mesh whose quads possess 
a circum-circle (circular mesh) can 
be seen as a discrete version of the 
network of principal curvature lines. 
Its quads being aligned with principal 
curvature directions, such a mesh is 
capable of representing fundamental 
shape characteristics.

Fig. 19.10
A PQ strip in a PQ mesh is a discrete 
model of a tangent developable 
surface. The alignment of its edges 
with the polygons in the mesh shows 
that PQ meshes are discrete versions of 
conjugate curve networks. This has an 
important practical consequence. Only 
quad meshes roughly aligned along 
the curves of a conjugate network may 
serve as the basis of mesh optimization 
toward a PQ mesh.



683

A planarization algorithm. It is a natural idea to ask for an algorithm that takes as 
input a quad mesh whose quads are not planar and delivers as output a mesh that 
approximates the same smooth surface but exhibits only planar quads. Planarity of 
faces has to be provided at least within some tolerance so that one can use planar glass 
panels. Such an algorithm has been developed recently [Liu et al. 2006]. It is based on 
a rather sophisticated optimization strategy.

For the details, we refer you to the literature. Here, we focus on the practical use of 
such an algorithm. First, we cannot provide as input any quad mesh and hope that 
the algorithm will make quads planar while retaining aesthetic requirements and 
proximity to the underlying surface. However, if the input mesh has been extracted fr om 
a conjugate curve network chances are high that the optimization will not get stuck in 
an undesirable solution and thus may yield a practically useful result (Figure 19.12). 
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Limitations on meshing. Th e design of a PQ mesh that satisfi es all of the high 
requirements of aesthetics and that is suffi  ciently close to a provided input surface is 
an unsolved research problem. We will be able to compute a solution if the network 
of principal curvature lines can be used as a basis of a mesh that is then improved via 
optimization. However, singularities as well as large variations in cell sizes caused by 
the fl ow of principal curvature lines may make this approach unfeasible (Figure 19.13).
 

Combination of subdivision and planarization as a design tool. Aiming at a mesh 
with planar quads already in the form-fi nding process greatly raises the chance of 
success in realizing even a complicated freeform shape with a PQ mesh. A strategy 
that has proved to be very eff ective is to combine quad-based subdivision algorithms 
and the planarization algorithm of Liu et al. [2006] (recall Chapters 11 and 15). Th is 
means that one applies planarization aft er each subdivision step. Subdivision alone, 
unfortunately, destroys planarity of faces. Meshes that have been designed with this 
strategy are depicted in Figure 19.14.

Fig. 19.13
An architectural design surface whose 
principal curvature lines are not 
suitable as the basis for the layout of a 
PQ mesh.
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Fig. 19.14
Alternating between subdivision and 
planarization is an effective design tool 
for PQ meshes.
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One reason for the success of this method is that the required changes are made 
by optimization at diff erent levels of detail, at fi rst at the coarsest level and then 
proceeding toward fi ner levels. Another reason is that one can include further 
requirements on the fi nal mesh into the optimization part. For example, the meshes 
shown in Figure 19.15 have been optimized to be circular.

M
1

M
2

M
3

M
4

Fig. 19.15
Alternation between subdivision and 
optimization (extended version of 
planarization) allows for inclusion 
of further requirements into the 
optimization part. In this example, the 
sequence of meshes M1, M2, and so 
on has been optimized so that these 
meshes are even circular. 



Parallel meshes and multilayer constructions. A steel/glass construction based on 
a mesh can be viewed as a physical realization of the vertices, edges, and faces of that 
mesh. Conversely, the mesh is a mathematical abstraction of such a construction. 
However, the passage from the concrete construction to the abstract mesh is 
not unique. Structures such as those shown in Figure 19.16 yield several meshes, 
corresponding to the diff erent layers of the construction. It is natural to demand that 
meshes that correspond to diff erent layers be “parallel.”

Parallel Meshes, 
Offsets, and Supporting 
Beam Layout

Fig. 19.16
Sketches of multilayer constructions 
based on two parallel meshes M, M* 
at approximately constant distance. 
On the bottom, the lower layer of 
the glass roof is suspended from the 
upper layer—which has a structural 
function. The right-hand image shows 
a rudimentary construction of a glass 
facade for which the closed space 
between layers has an insulating 
function.
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We call two meshes M, M* parallel if there is a one-to-one correspondence among their 
vertices, edges, and faces (such meshes are called combinatorially equivalent) and if 
corresponding edges are parallel (Figure 19.17). We use this defi nition only if the faces 
of M (and hence of M*) are planar. Th ey need not be quadrilaterals, but in most of the 
discussion following they are quads. Because corresponding edges of parallel meshes 
are parallel and their faces planar, corresponding faces lie in parallel planes. Hence, any 
mesh parallel to a PQ mesh is also a PQ mesh. 

Beams and nodes. In the actual realization of a mesh M as a steel/glass roof, planar glass 
panels are held by prismatic beams following the edges of M (Figure 19.18). A beam is 
symmetric with respect to its central plane, which passes through the edge corresponding 
to the beam. A node corresponds to a vertex of M and connects incoming beams in a way 
that supports the force fl ow imposed by the overall statics of the structure.

M

m
1

m
2

M*

m*
1

m*
2

node

beam

node axis

Fig. 19.18
Nodes, supporting beams, and the 
underlying geometric support structure 
of a steel/glass construction—based 
on a mesh M (vertices m1, m2,…) and 
a parallel mesh M* (vertices m1*, 
m2*,…). All beams are symmetric with 
respect to their central plane (blue). 
At an optimized node such as m1, the 
central planes of supporting beams 
pass through the node axis. This axis 
connects corresponding vertices m1 and 
m1* of M and M*, respectively.

M M*

Fig. 19.17
Two meshes M, M* with planar faces 
are parallel if they are combinatorially 
equivalent and corresponding edges 
are parallel.
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M*

M

Node construction and manufacturing are greatly simplifi ed if there is a node axis A, 
which is contained in the central planes of incoming beams (Figure 19.18). Figure 19.19 
shows a case of a welded node that does not have a node axis. Obviously, the handling 
and manufacturing of such nodes with torsion is more complicated than the case of a node 
with an axis (such a node is also called a torsion-fr ee node). 

Geometrically, straight lines A1, A2,… passing through the vertices m1, m2, … of a given 
mesh M are a suitable collection of node axes if and only if adjacent axes (i.e., the axes at 
the end points of any edge in the mesh) lie in a common plane. Th is plane is then used 
as the central plane of a supporting beam. To avoid pathologic cases, we forbid that node 
axes lie in edges.

Th e following simple but fundamental result relates node axes to an auxiliary mesh 
M* parallel to the given mesh M (see Figures 19.18 and 19.20, and Brell-Cokcan and 
Pottmann [2006] and Pottmann et al. [2007]). If the meshes M (with vertices m1, m2,…) 
and M* (with vertices m1*, m2*, …) are parallel, the connecting lines A1 = m1m1*, A2 = 
m2m2*, … of corresponding vertices can serve as node axes for the mesh M.

Conversely, assume that a (simply connected) mesh M is equipped with node axes A1, A2, 
… passing through its vertices. Th en there exists a mesh M* parallel to M such that the 
node axes are connecting lines of corresponding vertices in M and M*. 

Th us, we see that suitable node axes of M are obtained via a parallel mesh M*. Th ere are 
infi nitely many parallel meshes, and most of them are not ideal for the actual supporting 
beam layout. In practice, one wants to have node axes that are roughly orthogonal 
to M (as shown in Figure 19.20). One obtains them with a parallel mesh M* lying at 
approximately constant distance to M, and thus M* can be seen as an off set of M.

Before we enter the interesting geometry of off set meshes, we defi ne the concept of 
a geometric support structure, which essentially simplifi es the geometry of supporting 
beam layout by looking only into their central planes. A geometric support structure 
is a collection of planar quads which connect corresponding parallel edges of two parallel 
meshes M, M* which are used for the defi nition of node axes (see Figure 19.20). 

Fig. 19.20
Any collection of node axes is obtained 
by connecting corresponding vertices 
of two parallel meshes M and M*. 
The connecting planar quads of 
corresponding parallel edges form a 
geometric support structure. 

Fig. 19.19
A node without an axis (i.e., a node 
with geometric torsion). (Image 
courtesy of Waagner-Biro Stahlbau 
AG.) 
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M

M*

If all quads in the geometric support structure have the same height (i.e., if 
corresponding edges of M and M* are not only parallel but even at constant distance), 
we call M* an edge off set of M. Th en, beams of constant height are perfectly aligned on 
both the upper (outer) and lower (inner) side of the construction (Figure 19.21). In 
general, M and M* will not be edge off sets. In this case, perfect alignment of beams of 
the same height can only be achieved on one side (Figure 19.22). 

Triangle meshes. For triangle meshes, the concept of parallel meshes is less 
interesting. Two triangles with parallel edges are related by a similarity transformation. 
Hence, a parallel mesh M* of a triangle mesh M is just a scaled version of M. Th is has an 
important implication to the construction of support structures.

A geometric support structure of a connected triangle mesh M with torsion-free nodes 
can only be very simple. Either all node axes must be parallel or must pass through a 
single point. Requiring that the node axes be roughly orthogonal to the underlying 
design surface implies that the mesh M has planar or spherical shape. For a general 
freeform triangle mesh M, there is no chance to construct a practically useful support 
structure with torsion-free nodes.

Fig. 19.22
This geometric support structure is 
defi ned by two parallel meshes that are 
not of constant edge-edge distance. We 
nevertheless employ beams of constant 
height to physically realize this support 
structure.

(left) The resulting misalignment is not 
visible from the outside,
(middle) hardly visible from the beams’ 
mid sections lying in the respective 
central planes,
(right) but it is clearly visible from the 
inside.
Still, this node has no torsion and 
central planes of beams intersect in the 
node axis. 

Fig. 19.21
Beams of constant height are 
perfectly aligned on both sides of the 
construction if the underlying parallel 
meshes M and M* are edge offsets of 
each other (corresponding edges in M 
and M* lie at constant distance). 

Next Page 
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Off set surfaces revisited. An off set surface F d of a smooth surface F lies at constant 
normal distance d to F (see Chapter 10). Let x(u,v) be a parametric representation of 
the surface F, and let n(u,v) denote the normal vectors of F (normalized to length 1 
and pointing to a chosen side of the surface). Th e unit normal vectors n(u,v) describe a 
part of the unit sphere S* (sphere of radius 1 with center at the origin o) known as the 
Gaussian spherical image of F (see Chapter 14).

Th en, the off set surface F d at distance d has the representation x d(u,v) = x(u,v) + 
d⋅n(u,v). Note that the normals of F are normals of F d as well, and hence F is also an 
off set of F d. Th e tangent planes at corresponding points of F and F d are parallel and 
at constant distance d. If we know the representations x(u,v) and x d(u,v) of the two 
surfaces F and F d, respectively, we can compute the Gaussian spherical image as scaled 
diff erence surface n(u,v) = [x d(u,v) – x(u,v)]/d. Th is equation encodes a basic relation 
that will help us study off set meshes in a simple geometric way. 

PQ meshes with exact off sets. Th e defi nition of the off sets of a smooth surface F uses 
its normals and requires constant distance along the normals. It is not straightforward 
to extend the defi nition to meshes with planar faces. In fact, we will see that there 
are several meaningful defi nitions of an off set in the case of meshes. Most of the 
defi nitions and investigations given in the material following are valid for general 
meshes with planar faces and generically more than three edges per face. However, we 
will confi ne the discussion to PQ meshes M.

Offset Meshes 

Previous Page 
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Having the parallelism of tangent planes in a pair of smooth off set surfaces in mind, it 
is natural to use the following defi nition: An off set mesh Md of a PQ mesh M is parallel 
to M and lies at constant distance d to M. Of course, this defi nition is not yet complete 
because we have to say how the constant distance d shall be measured. Th ere are 
three precise ways of doing this. Th ey are not equivalent and thus have to be studied 
separately.

• Vertex off sets: Th e distance of corresponding vertices of M and Md has a 
constant value d, which does not depend on the vertex.

• Edge off sets: Th e distance of corresponding parallel edges of M and Md (actually, 
lines that carry these edges) does not depend on the edge and equals d. 

• Face off sets: Th e distance of corresponding faces of M and Md (actually, the 
parallel planes of corresponding faces) is independent of the face and equals d. 

Before proceeding with the study of off set meshes, we want to point to a fundamental 
diff erence in relation to the smooth case: we cannot prescribe an arbitrary PQ mesh M 
and then construct a vertex off set, an edge off set, or a face off set. We will see in material 
following that the existence of vertex off sets characterizes special PQ meshes M (circular 
meshes). Likewise, face off sets can only be constructed for another type of special PQ 
mesh—and it is even more diffi  cult to construct meshes M that possess edge off sets. 

Discrete Gaussian image and characterization of meshes with precise off sets. 
An off set pair of smooth surfaces with parametric representations x(u,v) and x d(u,v) 
defi nes the Gaussian image via the diff erence surface, scaled with factor 1/d: n(u,v) = 
[x d(u,v) – x(u,v)]/d. Given a pair of off set meshes M and Md, we therefore defi ne the 
discrete Gaussian image (Gaussian image mesh) as the scaled diff erence mesh S = (Md 

– M)/d of the two (parallel) meshes M and Md.

S is computed as follows. If m1, m2, … and m1
d, m2

d,… are the coordinate vectors of 
corresponding vertices in M and Md, one forms the scaled diff erence vectors s1 = (m1

d 

– m1)/d, s2 = (m2
d – m2)/d, … and uses them as coordinate vectors of the vertices s1, s2, 

… of the mesh S. Note that the vectors s1, s2, … are connecting corresponding vertices 
of M and Md and thus are also direction vectors of node axes. Figure 19.23 illustrates 
the fact that the Gaussian image mesh S is parallel to M and Md and that distance 
properties between M and Md are also refl ected in distances between S and the origin.

M

d
M

S

S*

F  

Fig. 19.23
The scaled difference mesh S = (Md 

– M)/d of two parallel meshes M and 
Md is parallel to M and Md.



M

d
M

S*

S

M and Md shall exhibit constant distance d in an appropriate sense. Hence, the 
Gaussian image S must have distance 1 to the origin in the same sense (i.e., S 
approximates the unit sphere S*). Th is can be specifi ed as follows (the main derivation 
is provided in the following; see also Pottmann et al. [2007]).  

Consider a PQ mesh M, its off set mesh Md at distance d, and the Gaussian image mesh 
S = (Md – M)/d. Th en the specifi c off set properties are encoded in the Gaussian image 
mesh S as follows.

• Md is a vertex off set of M if and only if the vertices of the Gaussian image 
mesh S are contained in the unit sphere S* (Figure 19.24). In this case, M and 
Md are circular meshes (i.e., each face has a circum-circle).

• Md is an edge off set of M exactly if the edges of the Gaussian image mesh S 
are tangent to the unit sphere S*. 

• Md is a face off set of M if and only if the faces of the Gaussian image mesh 
S are tangent to the unit sphere S*. In this case, M and Md are conical meshes 
(see material following).

Fig. 19.24
A circular mesh M has circular offset 
meshes Md at constant vertex-vertex 
distance d and a Gaussian image mesh S 
whose vertices lie in the unit sphere S*.
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Vertex off sets: circular meshes. Due to the constant distance d between 
corresponding vertices of M and Md, the coordinate vectors s1 = (m1

d – m1)/d, s2 = (m2
d 

– m2)/d, … of the Gaussian image mesh S have length 1 and thus describe points on 
the unit sphere S*. Th us, S has its vertices on the unit sphere S*. Each face of S is planar 
and the plane of that face intersects S in a circle. Hence, each face of S has a circum-
circle and therefore S is a circular mesh. M and Md are parallel to S.

To show that M and Md are also circular meshes, it is suffi  cient to prove the following 
property (Figure 19.25): If a planar quad 1234 has a circum-circle, any parallel quad 
1*2*3*4* also has a circum-circle. A circular mesh M with Gaussian image S and vertex 
off set Md are shown in Figure 19.24. We will not further discuss circular meshes and 
their vertex off sets, but instead refer you to the literature. 

Face off sets: conical meshes. Th e existence of face off sets leads to a class of meshes 
that is particularly interesting for architecture [Liu et al. 2006]. Due to the constant 
distance between the parallel planes of corresponding faces in a face off set pair M, Md, 
the Gaussian image mesh S has face planes that lie at constant distance 1 to the origin 
o. Th is means that the face planes of S are tangent to the unit sphere S* (Figure 19.26).

We say S is circumscribed to S*. Consider a vertex; for example, s1 of S. Th e four face 
planes that meet at s1 are tangent to S*. Because all tangent planes of S* that pass 
through that vertex s1 envelope a cone of revolution C1* (with axis passing through the 
center o of S*), the planes of faces meeting at s1 are also tangent to the cone C1*. 

1

2

3
4

1*

2*

3*
4*

S

S*

Fig. 19.26
The Gaussian image mesh of a conical 
mesh is a PQ mesh whose faces are 
tangent to the unit sphere.  

Fig. 19.25
For a quad 1234 with a circum-circle, 
the sum of opposite angles equals 180 
degrees. Any quad 1*2*3*4* parallel 
to 1234 has the same angles and thus 
also has a circum-circle. 
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Consider now the vertex m1 of our mesh M (parallel to S), which corresponds to 
s1. Because corresponding face planes in parallel meshes are parallel, the face planes 
meeting at m1 are tangent to a cone of revolution C1. We just have to translate the 
cone C1* so that its vertex s1 moves to m1. Th is translation moves face planes of S into 
corresponding face planes of M and thus moves C1* to a cone C1 tangent to all face 
planes meeting at m1. Because this holds for any other vertex as well, the mesh M has 
the property that the face planes meeting at any vertex are tangent to a cone of revolution 
associated with this vertex (Figure 19 27). Such a mesh M is therefore called a conical mesh.  

A precise description requires the use of oriented face planes (e.g., oriented toward the 
outer side of the building). Various reasons this is more precise and has advantages in 
the study of conical meshes are given in the literature [Liu et al. 2006]. 

According to the previous general results, the node axis A1 at a vertex m1 of M contains 
the corresponding vertex m1

d
 of the off set mesh Md and thus A1 is parallel to the line 

os1, which connects the origin o (center of the unit sphere S*) with the corresponding 
vertex s1 of S. Because the line os1 is the axis of the cone C1*, the node axis A1 at m1 must 
be the rotational axis of the cone C1.

Th is can also be verifi ed as follows. If we pass from M to a face off set Md at distance d, 
we have to off set all face planes around a vertex m1 by distance d. Th us, the translated 
planes will be tangent to the off set cone C1

d of C1, which has the same axis A1. Hence, 
the corresponding vertex m1

d lies on the cone axis A1 and thus the cone axis is seen as a 
discrete surface normal at m1. As we know, the collection of node axes (i.e., cone axes) 
defi nes a geometric support structure.

Even without the general theory, we see that neighboring cone axes lie in the same 
plane (Figure 19.28). Th e cones C1, C2 attached to the end points m1, m2 of an edge are 
tangent to the planes T1, T2 of the two faces meeting at that edge. Given two tangent 
planes T1, T2 of a cone of revolution, the axis of the cone must lie in their bisecting 
plane (here it is useful to have oriented planes T1, T2).
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Fig. 19.28
In a conical mesh M, the node axes 
are the axes of the vertex cones. Node 
axes at the end points of any edge 
are co-planar because they lie in a 
bisecting plane of the two face planes 
meeting at that edge. Hence, the cone 
axes are suitable for the defi nition of a 
geometric support structure. 

Fig. 19.27
In a conical mesh M, the planes of 
faces meeting at a vertex m are 
tangent to a cone of revolution C. This 
fi gure also shows the rulings r1,…, 
r4 along which the face planes are 
tangent to the cone. 
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We can defi ne a unique bisecting plane as the set of all points that have equal signed 
distance to T1 and T2 and lie on the same side (outer or inner side) of both planes. 
Hence, the axes A1, A2 of the two adjacent cones lie in the bisecting plane of the two 
face planes T1, T2. Th us, we again see that the cone axes are suitable for the defi nition 
of node axes and a geometric support structure. 

It turns out that the cone condition at a vertex can also be formulated in terms of angles 
(see Figure 19.29a). Th e sum of opposite edge angles must be equal: 

ω1 + ω3 = ω2 + ω4. 

Th e proof of this relation is easily derived for a convex vertex (as for the one in 
Figure 19.29b), but there are other cases (Figure 19.29c,d) that are more diffi  cult to 
understand and for which the proof requires more work.

Th e angle condition is very useful for optimization procedures aimed at changing 
a mesh toward a conical mesh. Th is angle balance condition may also be seen as a 
discrete condition for orthogonality of the two mesh polygons passing through a vertex. 
Because conical meshes are orthogonal and conjugate in a discrete sense, conical meshes 
are a discrete version of the network of principal curvature lines on a smooth surface.

Th is is important for practical design as well. Th e layout of a conical mesh on a given 
surface can be based on an optimization algorithm whose input mesh has been derived 
from the network of principal curvature lines. Figure 19.30 depicts conical meshes 
designed with the strategy of alternating between subdivision and mesh optimization 
(see Liu et al. [2006]). 

�
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�
1

�
2
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4

Fig. 19.29
(a) At a vertex of a conical mesh, the 
sum of opposite edge angles is equal: 
ω1 + ω3 = ω2 + ω4.
(b)Although this is easy to prove for a 
convex vertex,
(c,d) other types of vertices require a 
more detailed analysis.

(b) 

elliptic

(c) 

hyperbolic

(d) 

parabolic



Fig. 19.30
These conical meshes have been 
computed by alternating between 
subdivision and mesh optimization. 
Another example of a conical mesh is 
furnished by the cover image of this 
book (images courtesy of 
B. Schneider).
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Meshes with edge off sets. Th e construction of PQ meshes with edge off sets is more 
diffi  cult than the cases of vertex off sets or face off sets. Th us, we will keep the discussion 
short and refer you to the literature [Pottmann et al. 2007] for a thorough discussion. 
A pair of meshes M and Md at constant edge-edge distance d has as Gaussian image 
mesh S a PQ mesh whose edges are tangent to the unit sphere S*. Such a mesh, known 
as a Koebe mesh, has an interesting geometry (Figure 19.31).

Th e face planes of S intersect S* in circles, which are the inscribed circles of the faces. 
In this way, we obtain a (special) circle packing on the sphere S*. Computing such 
circle arrangements is possible, even on-line [Sechelmann 2006], but the underlying 
mathematics is beyond the scope of this book. Th erefore, we simply assume that we 
have computed a Koebe mesh S with one of the available tools. Th en, any mesh M 
parallel to S has the edge off set property. Th e off sets Md are the meshes M + d · S 
(understood in the same sense as the scaled diff erence mesh).

Since four edges emanating from a vertex s1 of S are tangent to S*, they are rulings of 
a right circular cone with vertex s1 circumscribed to S*. Th e axis os1 of the cone forms 
equal angles with all rulings, and hence forms equal angles with all edges of S meeting 
in s1. By parallelism of corresponding edges in M and S, the same holds for M.

S*

S

  

S*

S

M

Fig. 19.32
A practically useful geometric support 
structure can be assigned to a given 
mesh M with the help of a parallel mesh 
S approximating the unit sphere S*. 

Here, S has an over-folding due to a 
change in the sign of Gaussian curvature 
in M and is contained in the layer 
between radii 0.98 and 1.04.

Fig. 19.31
A mesh M with edge offsets is parallel 
to a Koebe mesh S. The mesh S has 
planar faces, and its edges are tangent 
to the unit sphere S*. The inscribed 
circles of the faces of S form a circle 
packing on the sphere. 

geometric support structure
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Th e edges meeting at a vertex m1 lie in a cone of revolution whose axis A1 is the node 
axis. Th us, its incoming edges form the same angle with the node axis. Th is is in 
accordance with the fact that beams of constant height meet at the node in a perfect 
way (Figure 19.21). Unfortunately, quad meshes with edge off sets are not capable of 
approximating arbitrary shapes and thus we do not further discuss them.

Approximate off sets: computing a support structure for a PQ mesh. Assume that 
we have constructed a PQ mesh M, but the mesh M does not have precise off sets. 
To compute a geometric support structure for M, we have to fi nd a suitable parallel 
mesh M*—ideally at constant edge-edge distance d to M. If corresponding edges of 
M and M* lie at approximately constant edge-edge distance d, the edges of the scaled 
diff erence mesh S = (M* – M)/d must have approximately distance 1 to the origin.

Th is means that the edges of S should be nearly tangent to the unit sphere S*. In 
practice, only M is given. To compute a support structure for M, one fi rst computes 
the parallel mesh S that best approximates the unit sphere S*. Th is problem turns out 
to be a rather simple optimization problem in the (linear) space of all meshes parallel 
to M. Th e vertices of S determine the node axes, the parallel mesh M* = M + dS, and 
thus the geometric support structure. Examples are provided by Figures 19.32 and 
19.33. For details on the optimization, see Pottmann et al. [2007]. 

S
M

Fig. 19.33
These support structures have been 
computed with the method outlined 
in Figure 19.32. The auxiliary mesh S 
employed in the construction of the 
support structure for the mesh M is 
of extremely low aesthetic quality but 
still serves very well for the purpose 
of supporting beam layout. The mesh 
S also shows that a mesh parallel to a 
fair mesh such as M need not be fair 
as well.
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Q* Q

Fig. 19.34
(a) A quad Q* in a Koebe mesh S 
and the corresponding parallel quad 
Q in the mesh M that represents a 
discrete minimal surface have reverse 
orientation and parallel diagonals (13 
parallel 2*4*, 24 parallel 1*3*).
(b) Discrete minimal surface M 
(catenoid; see Chapter 18) obtained 
from a Koebe mesh S with rotational 
symmetry.

(a)
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We conclude our study of discrete surfaces for architecture with a few discrete 
analogues to surfaces that result from optimization problems. Mainly, we examine 
minimal surfaces and surfaces closely related to them. Th ese considerations will also 
lead us to meshes in static equilibrium. 

Discrete minimal surfaces. Th e Koebe meshes S introduced in connection with 
edge off sets (Figure 19.32) are the basis of an elegant construction of discrete 
minimal surfaces [Bobenko et al. 2006]. Th e construction starts with a Koebe mesh 
S and transforms it into a discrete minimal surface M. Th e mesh M is parallel to S, 
and its faces are constructed as illustrated in Figure 19.34. Let Q* = 1*2*3*4* be a 
quadrilateral face of S,. Th e corresponding quad Q = 1234 of M then has parallel 
edges, reversed orientation, and parallel diagonals as follows.

13 parallel 2*4*, 24 parallel 1*3*

Optimal Discrete 
Surfaces

(b)
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We start the entire construction of M with any face Q* of S. For Q, we still have the 
choice of one vertex position and one edge length. Now we continue with adjacent 
faces and will observe that there are no contradictions in the construction. Four faces 
meeting in a vertex of S will lead to four faces meeting in the corresponding vertex 
of M. An interesting result is illustrated in Figure 19.35 (for details on this discrete 
Schwarz minimal surface, see [Bobenko et al. 2006]). 

Th e minimal meshes M possess edge off sets because they are parallel to Koebe meshes. 
It is remarkable that the existence of an inscribed circle of the face Q* in the Koebe 
mesh implies that the corresponding face Q of M has an inscribed circle (Figure 
19.34a). Th us, these discrete minimal surfaces M are also formed by a collection of 
circles. 

Th ere are various reasons the meshes M can be considered discrete counterparts 
of minimal surfaces. One is that one can develop an appropriate curvature theory 
and then see that M has vanishing discrete mean curvature [Pottmann et al. 2007]. 
Another reason is that the relation between M and S can be viewed as a discrete 
conformal (i.e., angle-preserving) mapping. A variety of further beautiful analogues to 
results on smooth minimal surfaces are found in Bobenko et al. [2006]. 

Th e Christoff el dual: static equilibrium of diagonal meshes. Applying the 
construction of Figure 19.34 to a Koebe mesh S will yield the mesh M in a consistent 
way. We call M the Christoff el dual of S. Applying the construction to M, we return to 
S. Christoff el duality is a symmetric relation. As mentioned previously, the consistency 
of the construction is not obvious. Starting with an arbitrary PQ mesh S and applying 
the construction, one will fail to obtain a mesh M. Th is is easily seen as follows. 
Assume that we have used the construction to obtain three quads Q1, Q2, and Q3 of 
M, meeting at a vertex m. Th e fourth quad Q4 follows from parallelism of its edges 
to the corresponding edges in S, and thus the parallel diagonal property cannot be 
guaranteed for Q4 and Q4*. 

Fig. 19.35
This discrete minimal surface (Schwarz 
surface) is computed from Koebe 
meshes via the face-wise construction 
illustrated in Figure 19.34 (mesh 
courtesy of S. Sechelmann).



In other words, a mesh S to which the construction can be applied needs to satisfy 
certain criteria. Th ese criteria are understood if we look at the meshes formed by the 
diagonals of S and M. In fact, S has two diagonal meshes D1* and D2*, and M has two 
diagonal meshes D1 and D2. Th ese are quadrilateral meshes (in general, with nonplanar 
faces). Due to the parallel diagonal property of Figure 19.34, we can use a notation 
such that corresponding edges in D1 and D1* are parallel (likewise, corresponding 
edges in D2 and D2* are parallel).

Edges of a face in D1* correspond to edges emanating from a vertex in D1, and vice 
versa (Figure 19.36). Such meshes are called reciprocal parallel and arise as reciprocal 
force diagrams in graphical statics. Let’s view D1 as a framework of rods connected with 
spherical joints. We assume that in some vertices external forces are applied. A system 
of internal forces is an assignment of a pair of opposite forces to each edge, one for 
either end. Such a system of forces is in equilibrium if for each vertex the sum of forces 
equals zero.

Th en the existence of the reciprocal mesh D1* implies that there is an assignment of 
forces such that the resulting system is in static equilibrium (the external forces to 
be applied at the boundary follow from the reciprocal diagram). Omitting a more 
thorough discussion, we can state that a mesh S can be transformed by the Christoff el 
dual construction if its diagonal meshes can be brought into static equilibrium (if one 
diagonal mesh can be brought into equilibrium, the same holds for the other diagonal 
mesh). Note that the diagonal meshes may be materialized to stiff en a quad mesh with 
planar faces (see Figure 19.37). 

It is known that the existence of static equilibrium is preserved when affi  ne or even 
projective transformations are applied. Hence, we may apply the Christoff el dual to 
any mesh resulting from a Koebe mesh by a projective transform.

Fig. 19.37
Diagonal meshes may be used 
as stiffening elements in a steel/
glass construction based on a PQ 
mesh. (image courtesy of Schlaich 
Bergermann and Partners.)

Fig. 19.36
Diagonals in a pair of meshes S, M 
that are related by the Christoffel 
dual construction of Figure 19.34 can 
be arranged into reciprocal parallel 
meshes. Hence, these diagonal 
meshes can be brought into static 
equilibrium. Only meshes whose 
diagonal meshes are in equilibrium 
possess a Christoffel dual.



Th e mesh in Figure 19.38 has been constructed in this way. A Koebe mesh has 
been transformed such that the sphere S* is mapped to a paraboloid of revolution 
with vertical axis, and then the Christoff el dual has been computed (for geometric 
properties of such meshes, see Pottmann and Liu [2007]). Christoff el duality also 
plays a central role in the computation of discrete counterparts to surfaces with 
constant mean curvature and may be extended to meshes with planar hexagonal faces. 

Beyond quad meshes. Most of what we have said about off sets of PQ meshes can be 
extended to meshes formed by planar N-gons, with N greater than 4. Pentagonal and 
hexagonal meshes that possess edge off sets and a certain type of shape optimality are shown 
in Figures 19.39 and 19.40. Th ey have been computed with recently developed methods 
from discrete diff erential geometry [Pottmann et al. 2007]. Note that these meshes possess 
non-convex faces in negatively curved areas. Structural considerations will lead to the 
insertion of additional stiff ening diagonals, which are missing in the fi gures. 

Fig. 19.38
This PQ mesh M has been computed 
via Christoffel duality from a mesh 
S whose edges are tangent to 
a paraboloid of revolution with 
vertical axis. It can be shown that 
the top views M’ and S’ of M and S, 
respectively, are discrete versions of 
orthogonal curve networks.
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M

S

Fig. 19.39
Two hexagonal edge offset meshes.
(a) This mesh, also shown as a 
model obtained by rapid prototyping, 
is a discrete version of a catenoid 
(rotational minimal surface).
(b) This mesh is related to a surface 
with constant mean curvature (via a 
Laguerre transformation). The planar 
hexagons are convex in areas with 
positive Gaussian curvature and non-
convex in the negatively curved parts.

Fig. 19.40
The pentagonal edge offset mesh M 
has been constructed from the parallel 
Koebe mesh S by a change of face 
orientations and by an optimization 
procedure that aims at fairness of M. 
In negatively curved areas, planarity of 
faces can only be achieved by the use 
of non-convex pentagons.

(a)

(b)
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We have reached here the current frontier of research in architectural geometry. Th ere 
is quite a lot of work ahead of us. We would like to address a few important directions 
for future research, especially in order to stimulate more work at the interesting border 
between architectural design and geometry processing.

• We need new and intuitive tools for the design of PQ meshes. Because PQ 
meshes are discrete versions of conjugate curve networks, a possible approach 
would be an interactive method for the design of conjugate curve networks 
in which the network curves “automatically” avoid asymptotic directions and 
consequently intersect transversely. Th ese curve networks can then be used to 
construct quad meshes capable of optimization.

• In architectural design, the aesthetic value of meshes is of great importance. 
It is natural to employ geometric objective functions and consider their 
minimizers. Minimal surfaces are an example, but more work is needed in 
this area. 

• Optimization should not neglect statics and structural considerations.

• Th e climate within glass structures demands separate attention. Geometric 
questions that occur here have to do with light and shade, the possibility of 
shading systems tied to support structures, and even a layout of supporting 
beams with regard to shading (for an initial result, see Figure 19.39b). In 
addition, the aesthetic component is present here at all times.

• A challenge is to devise a geometric optimization strategy of freeform 
surfaces that supports the architectural design process.

• Th e “right” choice of an overall segmentation of a multilayered building skin 
with a good planar mesh is an important problem. 

• We have confi ned our discussion so far to planar panels. Depending on the 
chosen manufacturing technology, other panel shapes (such as cylinders 
or developable surfaces) are very well suited [Shelden 2002]. Th is topic 
requires a lot of future research. We conclude by quoting Lars Spuybroek: 
“Th e panellization of complex double curved surfaces is a hugely important 
issue, aesthetically and methodologically. … Th e least interesting method 
is triangulation,… Th e most interesting techniques are based on variability, 
which is a ‘textile’ way of thinking, where fl exible bands precede the hardened 
ceramic tile.” [Spuybroek 2004]. 

Future Research
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Appendix A – Geometry Primer
In this appendix we provide short descriptions of a few basic geometric concepts, as well 
as some comments on our notation. 

Nomenclature

We label points, straight lines, and curves with lowercase 

characters in italic font. In most cases, we use the fi rst letter of 

the name of the corresponding point or line to denote them. 

For example, a general point is denoted p, whereas a general 

line is labeled l, and a tangent with t. As a consequence, an 

axis should be labeled with the small letter a. But this could 

be confusing in some text passages. Th us, for the sake of 

readability we use the capital letter A to label an axis.

In three-dimensional space, we also have planes (which can 

be considered fl at surfaces). Planes and surfaces are labeled 

with uppercase characters in italic font. For example, a plane 

might be labeled P and a cylinder (surface) C.

In Chapter 7 (on curves and surfaces), the letter t is 

reserved for describing the parameter. Th us, to avoid 

misunderstandings in that chapter we label a tangent with 

the capital letter T.

To label a set of points corresponding to one geometric 

object, it is oft en convenient to use the same label p together 

with a counting number i, which we add as an index to the 

name of each point. Instead of giving diff erent points of the 

same object diff erent labels p, q, r, and so forth we denote 

them with p0, p1, p2, and so forth. In the notation pi the letter 

p indicates “point” and the small subscript i indicates the 

“index.” 
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Basic Operations on Vectors

Th e addition of two vectors↑ a and b results in a vector c 

= a + b, which is constructed by appending one of the two 

vectors at the terminal point of the other (parallelogram 

rule). If the coordinates of the input vectors are a = (a1,a2,a3) 

and b = (b1,b2,b3), the sum of the two vectors is c = (a1 + b1, 

a2 + b2,a3 + b3).

Multiplication of a vector a = (a1,a2,a3) with a real number 

t yields the vector = (t⋅a1, t⋅a2, t⋅a3). Th is scales the vector 

with factor t. Multiplication by a negative number t reverses 

the orientation. Because addition and multiplication 

by a number correspond to the ordinary addition and 

multiplication in each coordinate, familiar rules such as 

t⋅(a + b)= t⋅a + t⋅b and (s + t)⋅a = s⋅a + t⋅a hold.

Complex Numbers

A complex number is an expression of the form a + b⋅i. 
Here, i is the imaginary unit satisfying the rule i2 = –1. a 

and b are real numbers. We call a the real part and b the 

imaginary part of the complex number. Complex numbers 

whose complex part is equal to zero are real numbers. One 

can add and multiply complex numbers like ordinary terms, 

but we have to obey the rule i2 = –1. For example, (3 + 2i)⋅
(1 – i) = 3 + 2i – 3i – 2i2 = 3 + 2i – 3i – 2⋅(–1) = 5 – i. 
Complex numbers can be viewed as position vectors↑ of 

points in the plane (called Gaussian plane), where the x-axis 

denotes the real part and the y-axis denotes the complex 

part. Th e absolute value of a complex number z is defi ned 

as the length of the position vector. It is calculated with the 

help of the Pythagorean theorem↑ as |z| = √⎯a⎯2 ⎯ ⎯+⎯ ⎯b⎯2

Th e argument of z = atan (b/a) is the angle between the 

oriented x-axis and the position vector. Th e complex conjugate 

of a complex number z = a + b⋅i is defi ned as z̄ = a – b i. Th e two 

points z and z̄  are symmetric with respect to the real axis.

Example: Th e complex number z1 = 3 + 4i has the real part 

3 and the complex part 4. Th e absolute value is calculated 

with 5 = √⎯3⎯ 2⎯ ⎯+⎯ ⎯ 4⎯ 2 , whereas the argument is atan(4/3) which 

is approximately 53,13°.

Th e complex conjugate of z1 is z̄1= 3 – 4i.

a

b
c
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Collinear

Points are called collinear if they are contained in the same 

straight line.

Coordinates of a Vector

A vector↑ a viewed as a position vector emanates from the 

origin and has a terminal point with certain coordinates 

(a1,a2,a3). Th ese are the coordinates of the vector a. A 

direction vector may be translated to any initial point. To 

determine its coordinates, we translate it such that its initial 

point lies at the origin. Th en the coordinates are those of 

the terminal point (as for a position vector). Clearly, in two 

dimensions we have only two coordinates.

Co-planar

Geometric objects such as points, lines, and curves are called 

co-planar if they are contained in the same plane.

Cross Product of Vectors 

In three-dimensional space, the cross product of two 

vectors↑ a and b results in a vector c = a × b that is 

orthogonal two both vectors a and b. Th e cross product of a 

= (a1,a2,a3) and b = (b1,b2,b3) can be calculated by

c  = (c1,c2,c3)

  = (a2·b3 – a3·b2, a3·b1 – a1·b3, a1·b2 – a2·b1).

Note that the cross product of two vectors results in a vector, 

whereas the dot product↑ results in a real number. 

Direction Vector

A direction vector may be visualized as an arrow that can be 

translated to other positions (parallel arrows). Its initial point 

can be any point. It will always be clear from the context whether 

a vector has to be seen as a position vector↑ (of a point) or 

direction vector (of a straight line). Th e direction vector v 

joining two points with position vectors a = (a1,a2,a3) and b 

= (b1,b2,b3) is the vector v = b – a = (b1 – a1, b2 – a2, b3 – a3).  

l

a

v=b-a

b

o

a

b
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Dot Product of Vectors

Th e dot product (inner product, scalar product) of two 

vectors↑ a = (a1,a2,a3) and b = (b1,b2,b3) is a number 

computed as

a⋅b = a1⋅b1 + a2⋅b2 + a3⋅b3.

If the two vectors have length ||a|| and ||b|| and if they 

enclose the angle α, the dot product satisfi es

a⋅b =||a||·||b||· cos(α).

Orthogonal vectors a and b belong to α = 90°, and hence 

cos(α) = 0, and thus their dot product is equal to zero. 

Interpolation

Given is a set of points. Th e aim of interpolation is to fi nd 

a curve that exactly passes through the given points. In 

general, there are many diff erent solutions to the problem 

and one needs to select an appropriate one. A special case 

of interpolation is linear interpolation↑, which joins two 

points by a straight line. 

Length (Norm) of a Vector

If we view a vector as an arrow, the length of this arrow is the 

length (or norm) of the vector. A vector a = (a1,a2,a3) has 

length ||a|| = √⎯a⎯ 12⎯  +⎯ ⎯ a⎯ 22⎯  ⎯+⎯  ⎯a⎯ 32 .
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Linear Interpolation

Given are two points p and q. We want to fi nd a point r that 

interpolates p and q such that it divides the straight line 

segment pq in a certain given ratio↑ dist(p,r):dist(r,q) = 
a:b. Noting dist(p,r):dist(p,q) = a : (a + b), we fi nd for the 

position vectors p,q, and r of the involved points 

r  = p + a/(a + b)∙(q – p)

 = (1 – a/(a + b))∙p + a/(a + b)∙q.

If we denote the fraction a/(a + b) by t, we can rewrite the 

previous equation as

r = (1 – t)∙p + t∙q.

To indicate that the point r depends on the parameter t we 

oft en write r(t) instead of r. Th us,

r(t) = (1 – t)∙p + t∙q.  (1)

If the parameter t takes on all real numbers, the point r(t) 

describes the entire straight line connecting the two points 

p and q. Equation (1) only involves linear functions of t 

and thus one speaks of linear interpolation. Note that if 

the parameter t assumes only values in the interval [0,1] we 

obtain exactly the line segment between p (t = 0) and q (t = 1). 

Mutual Positions of Lines

In two dimensions, lines are either parallel or intersect. 

In three dimensions, two lines either lie in a plane (they 

intersect or are parallel) or they are skew. In the latter 

(generic) case, they do not lie in a common plane and thus 

form a truly spatial confi guration.

Normal to a Plane

A normal to a plane P (or a planar polygonal face) is a line 

perpendicular to all lines contained in the plane P. Th e 

direction of the normal can be computed with the help of 

the cross product↑ of two vectors parallel to P. 

P
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Parallelogram

A parallelogram is a planar quadrilateral with opposite 

sides parallel. Th us, opposite sides are of equal length and 

opposite angles are also equal.

Planes

Th e analytical representation of planes in three dimensions 

bears some similarity with that of straight lines and thus 

we recommend studying them together. A plane P can be 

spanned by three points p,q,r that form a triangle. Th en, we 

introduce the direction vectors a = q – p and b = r – p. 

Multiples of these vectors, u⋅a and v⋅b, are parallel to the 

plane and thus x = p + u⋅a + v⋅b is the position vector of a 

point in the plane. Th is is called the parametric representation 

of the plane. Th e parameters u and v are real numbers that 

may be chosen arbitrarily. Diff erent choices lead to diff erent 

points of the plane.

A vector n normal to the plane can be computed as the cross 

product of a and b as n = a × b. Now the position vector x 

describes a point of the plane P exactly if the vector x – p 

is normal to n [i.e., the dot product of these two vectors is 

zero, n⋅(x – p) = 0]. Th is is the implicit equation of a plane. 

For example, the plane with normal vector n = (2,–1,3) 

that passes through the point p = (1,2,0) has the equation 

(2,–1,3)⋅(x – 1,y – 2,z) = 0 (i.e., 2x – y + 3z = 0. All points 

whose coordinates (x,y,z) satisfy this equation lie in the 

plane [obviously the origin (0,0,0) is among these]. 

Polygon and Polyline

A polygon (or polyline) is a fi gure that consists of a sequence 

of straight line segments called edges. Adjacent edges meet 

in points called vertices. We mainly use the term polygon for 

a closed fi gure, and polyline otherwise. However, we could 

not strictly follow this rule because a control polygon (which 

is standard terminology in geometric design) need not be 

closed. 

�

o

p x

x
p

a

b

.n (x-p)=0

n

x-p

vertices

edges

v
1

v
2

v
3

v
4

v
5

e
1 e

2

e
3 e

4

�



717

Position Vector

A position vector p is a vector↑ that describes the position 

of a point p relative to the origin. Its initial point is the 

origin, and its terminal point is the point p. Th e coordinates 

of the vector p are identical to those of the point p.

Positive and Negative Rotation 

In two dimensions, a mathematically positive rotation is a 

counterclockwise rotation—whereas a clockwise rotation is 

called mathematically negative.

Radian Measure

A frequently used measure for an angle formed by two 

straight line segments meeting at a common point p is 

obtained as follows. We consider the circle c with center p 

and an arbitrary radius r. Th e angle determines an arc on the 

circle whose length shall be called s. Th en, the ratio α = s:r 

is used as a measure (the radian measure) of the angle. Note 

that this ratio does not depend on the radius of the circle. 

Noting that a circle of radius r has length 2πr, we see that 

an angle of 360 degrees has radian measure 2π, 90 degrees 

corresponds to radian measure π/2, and so on. Th e formula 

relating the radian measure α of an angle with its value α° 

in degrees is α = π⋅(α°/180). If one works with oriented 

angles, the radian measure has the sign as explained for a 

positive and negative rotation.

Ratio

In this book, the term ratio is used for the ratio of two 

distances formed with the aid of three points on a straight 

line. Oft en it is used to describe the exact position of a point 

r on a straight line segment pq. In the Figure, r divides pq in 

the ratio dist(p,r):dist(r,q) = 2:3.

�

p

p’

q’

q

c

�

p
1

p

r

r

s



718

l

p

v=q-p

q

o

p

q

x

x

.x=p+t (q-p)

Regular Polygon

A closed polygon is regular (i.e., is a regular n-gon) if all n 

vertices lie on a circle and consecutive vertices are seen from 

the center of the circle under an angle of 360/n degrees. 

Th us, all n edges have the same length. Th e inner angle of a 

regular n-gon has 180⋅(n – 2)/n degrees.

Straight Lines 

A straight line l can be defi ned by two points p and q. Let 

p and q be their position vectors. Th en, a direction vector 

of the line is given by v = q – p. Adding any multiple 

t⋅(q – p) of it to p, we always arrive at a position vector x of 

a point on l: x = p + t⋅(q – p). We call x = p + t⋅(q – p) or 

x = p + t⋅v a parametric representation of the line l. Here, t 

is a parameter. Diff erent values of t yield diff erent points of 

the straight line. If t ranges in the entire set of real numbers, 

we obtain the entire straight line. Note the close relation to 

linear interpolation↑ in that x = p + t⋅(q – p) = (1 – t)⋅p 

+ t⋅q. Th is representation works in two dimensions and in 

three dimensions. 

In two dimensions, there is another method of representing 

a straight line. Let n = (n1,n2) be a vector normal to 

the direction vector v = (v1,v2). A simple choice for n is 

n = (–v2,v1). Now x represents a point on the line if the 

vector x – p is a direction vector of l (i.e., if it is normal to 

n). Th e latter property is expressed via the dot product n⋅(x 

– p) = 0.

Th is is the implicit equation of a straight line. For example, 

let x = (x,y), p = (1,2), and n = (3,–1). Th en the equation 

reads (3,–1)⋅(x – 1,y – 2) = 0, which is the same as 3⋅(x – 1) 

+ (–1)⋅(y – 2) = 0 and can be simplifi ed to 3x – y – 1 = 0. 

Recall its meaning: the line l is the set of all points (x,y) that 

satisfy this equation. 
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p Th eorem of Pythagoras

Th e Pythagorean theorem relates the lengths of the three 

sides of a right-angled triangle. Let c be the length of the 

longest side (hypotenuse; opposite the right angle) and a 

and b the lengths of the two other sides (adjacent to the 

right angle). Th en these lengths are related by

a2 + b2 = c2.

Th eorem of Th ales

Connecting the endpoints r and s of a circle’s diameter with 

any further point p of the circle, we obtain two orthogonal 

straight lines. Likewise, the locus of all points p whose 

connecting lines with two fi xed points r and s are orthogonal 

is a circle. Its center is the midpoint of the line segment rs. 

Vector

We visualize a vector as an arrow emanating from an initial 

point and ending at a terminal point. If the initial point is 

the origin of the underlying coordinate system, the vector 

may used to describe the terminal point p. We speak of a 

position vector p (see also coordinates of a vector↑ and 

direction vector↑). From Chapter 1 to Chapter 10, vectors 

are emphasized by boldface font.

Zero Vector

Th e zero vector is the unique vector whose coordinates are 

0 (initial point and terminal point agree). Th e zero vector 

in three dimensions is o = (0,0,0). As a position vector↑, it 

represents the origin o.
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List of Symbols 

∈  Element of

∉ Not an element of 

∩ Intersection 

∪ Union

\ Diff erence of sets: A\B contains all elements of A that are not in B

< Less than

> Greater than

≤ Less than or equal to

≥ Greater than or equal to

∞ Infi nity 

[a,b] Closed interval: set of all real numbers x between a and b, including a and b

(a,b) Open interval: set of all real numbers x between a and b, excluding a and b

[a,b) Half-open interval: set of all real numbers x satisfying a ≤ x < b

|x| Absolute value of a real number x (cuts off  a possible negative sign)

√⎯ Square root

a × b Cross product of two vectors a and b

||v|| Length of a vector v

f  ', f  '' First and second derivatives of a function f

∫ Integral
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