

Borromini: San Carlo alle Quattro Fontane Rome, Italy, 1638-1677

Drawing as Computation

Associative Geometry
sequence of geometric operations that built upon each other

association (lat. associare: to unite, to ally) uniting in a common purpose / work together for one goal

From Curve to Curvature

Borromini: San Carlo alle Quattro Fontane Rome, Italy, 1638-1677

From Curve to Curvature

circles as well-known and easy-to-construct curvy curves with radius as measurement for curvature!

Curvature

for a circle the curvature $\boldsymbol{\kappa}$ is defined as the invers of the radius r

$$
\kappa=1 / r
$$

the curvature $\boldsymbol{\kappa}$ is a measure for the roundness of the circle
by means of the limit circle $r(t)$ the local behaviour of a curve at point $\mathrm{c}(\mathrm{t})$ can be approximated

$$
k(t)=1 / r(t)
$$

Curvature

for a circle the curvature $\boldsymbol{\kappa}$ is defined as the invers of the radius r

$$
\kappa=1 / r
$$

the concept of limit circle is also valid in 3d and enables the definition of a curvature for a curve
the curvature $\boldsymbol{\kappa}$ is a measure for the roundness of the circle
by means of the limit circle $r(t)$ the local behaviour of a curve at point $\mathrm{c}(\mathrm{t})$ can be approximated

$$
k(t)=1 / r(t)
$$

$A^{y y} \square \begin{aligned} & \text { Aalto University } \\ & \text { Design of Structures }\end{aligned}$

Curvature Graph

Check 4: construct a curvature graph for a curve c

the concept of limit circle is also valid in 3d and enables the definition of a curvature for a curve
by means of the limit circle $r(t)$ the local behaviour of a curve at point $c(t)$ can be approximated

$$
k(t)=1 / r(t)
$$

Curvature Graph

Curvature Graph

joining curves
different degrees of smoothness of joining two curves are possible dependent on the continuity of the curvature graph

Frenet-Frame

curve frame
based on the limit circle a point $P=c(t)$ a local coordinate-system at P can be defined

Frenet-Frame

curve frame

Check 5: construct a paperstrip/model

Exercise 2: construct a pipe with varying diameter defined by the inverse curvature of the guiding curve

curve as trajectory of a point moving
from start point to endpoint

Check 6: Create a necklace with one big pearl in the middle, and gradually smaller size pearls towards the ends.

Exercise 3: for a planar curve construct a

 streetscape with a randamozed almost-squared footprint and randomized height.

