ARK-E2515 Parametric Design **Surfaces**

Toni Kotnik

Professor of Design of Structures

Aalto University Department of Architecture Department of Civil Engineering

1

Parametric Design Surfaces 26.1.2021

Curves

geometric information: curvature

From Curves to Surfaces

geometric information: curvature

From Curves to Surfaces geometric information: curvature

Surfaces uv-Parametrization

Surfaces uv-Parametrization

Check 8: divide a surface and scale the subsurfaces accordingly.

8

Component Mapping

Component Mapping

Exercise 4: divide a surface into blocks of arbitrary height

Mapping

Mathematically, the problem of making a map is related to projecting figures from a sphere into the flat. The major difficulty arises out of the fact that a sphere cannot be laid out flat without distorting geometric properties like distance, angle, or area. Because of this it is impossible to represent exactly the geometric properties that exist on a sphere.

A"DS Aalto University Design of Structures

Mapping architecture as cartographic problem

The cartographic problem of distortion is immanent to the construction of curvilinear architecture. Most building material is planar. This means only surfaces that can be mapped without any distortion – so called developable surfaces - can be fabricated and assembled relatively easy.

> Frank Gehry: Walt Disney Concert Hall Los Angeles, USA, 1999-2003

Surfaces

Surfaces

Gaussian curvature

Frank Gehry: Walt Disney Concert Hall Los Angeles, USA, 1999-2003

Principal Curvature Curve

Peter Cook & Colin Fournier: Art Museum Graz, Austria, 2002-03

4

LITTITI

Principal Curvature Curve

A"DS Aalto University Design of Structures 19

Parametric Design Associative Geometry 8.6.2020

Toni Kotnik, Professor of Design of Structures

Principal Curvature Curve

principal curvature curves for an ellipsoid

Peter Cook & Colin Fournier: Art Museum Graz, Austria, 2002-03

Parametric Design Surfaces 26.1.2021

diagrid

Check 10: divide a surface into a diagrid

diagrid

Foster + Partner: Smithsonian Institute Washington, USA, 2004-07

Parametric Design Surfaces 26.1.2021

Toni Kotnik, Professor of Design of Structures

Exercise 5: construct a roof with varying size of opening with the variation controlled by the curvature of the surface.

A³³DS Aalto University Design of Structures Parametric Design Surfaces 26.1.2021

Toni Kotnik, Professor of Design of Structures

A"DS Aalto University Design of Structures Parametric Design Surfaces 26.1.2021

Toni Kotnik, Professor of Design of Structures

Exercise 6: on a surface with a diagrid add a shading device similar to the Esplanade in Singapore; can you make it even kinetic (reacting to the sun position)?

and an

DP Architects: Esplanade Theater Singapore, 2002

