ARK-E2515 Parametric Design

Optimization

$5 x+5-2$

Toni Kotnik

Professor of Design of Structures
Aalto University
Department of Architecture

architectural form
 as
 mathematical function

defined by
Associative Geometry Data Handling

architectural form
 as
 mathematical function

defined by
Associative Geometry Data Handling

How much area can be fenced in with a 1000 m long wall?

Optimization
 best possible output

Optimization
 best possible output

How much area can be fenced in with a 1000 m long wall?

X

$$
x=y=250
$$

$A=62.500 \mathrm{~m}^{2}$

$$
x=y=160
$$

$$
\mathrm{A}=80^{\prime} 424 \mathrm{~m}^{2} \quad+\mathbf{2 8 \%}
$$

Formalization of the problem is
of central importance

Optimization
 best possible output

Optimization

best possible output

fitness landscape

field of all possible solutions

basic intention in optimization process

stepwise improvement of solution by variation of parameter

Optimization

best possible output
fitness landscape
field of all possible solutions

basic intention in optimization process

stepwise improvement of solution by variation of parameter

Optimization

best possible output

fitness landscape

field of all possible solutions

evolutionary strategy

stepwise improvement of solution by recombination of parameter

Population

:

16

mutation

4 children

Optimization

best possible output
fitness landscape
field of all possible solutions

evolutionary strategy

stepwise improvement of solution by recombination of parameter

check 16: the task is to build three towers on a given site of $100 \mathrm{~m} \times 100 \mathrm{~m}$. Each tower should have a footprint of $20 \mathrm{~m} \times 20 \mathrm{~m}$. The investor likes to get a maximum of square meter. At the same time, the surface area of the tower needs to be as small as possible in order to reduce the running costs for the building (maintenance \& energy). How high should the buildings be and where should they be located on site?

$$
h_{1}=h_{2}=h_{3}=160
$$

$$
h_{1}=h_{2}=h_{3}=160
$$

 Pasila, Helsinki, Finland, 2018-27

$\mathbf{A}^{\prime \prime \prime} \mathrm{DS}^{\prime}$

Lahdelma \& Mahlamäki: Trigoni High-Rise Pasila, Helsinki, Finland, 2018-27

Nesting

check 17: layout a set of shapes in such a way that the required surface area is minimal.

Deon Architects: Nolax House
Sempach, Switzerland, 2017

Optimized layout through nesting

location
size
number of elements

ARK-E2515 Parametric Design

Optimization

-r-oserexer

problem formalization evolutionary strategy part of design strategy

